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Abstract 26 

The healthcare industry is in dire need for rapid microbial identification techniques. Microbial infection is a major 27 

healthcare issue with significant prevalence and mortality, which can be treated effectively during the early stages 28 

using appropriate antibiotics. However, determining the appropriate antibiotics for the treatment of the early stages 29 

of infection remains a challenge, mainly due to the lack of rapid microbial identification techniques. Conventional 30 

culture-based identification and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy are 31 

the gold standard methods, but the sample amplification process is extremely time-consuming. Here, we propose 32 

an identification framework that can be used to measure minute quantities of microbes by incorporating artificial 33 

neural networks with three-dimensional quantitative phase imaging. We aimed to accurately identify the species 34 

of bacterial bloodstream infection pathogens based on a single colony-forming unit of the bacteria. The successful 35 

distinction between a total of 19 species, with the accuracy of 99.9% when ten bacteria were measured, suggests 36 

that our framework can serve as an effective advisory tool for clinicians during the initial antibiotic prescription. 37 

 38 
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1. Introduction  42 

Infection by microorganisms is one of the major healthcare issues worldwide, causing a significant number 43 

of casualties and a large amount of healthcare expense. Bacteria notably account for a large portion of life-44 

threatening infections. During the year 2015, bacterial infections caused 4.4 million deaths, among a total of 45 

8.8 million casualties by infections of any etiology (Hessling et al., 2017). In addition, the cost for treating 46 

bacterial infections accounts for 8.7% of the national health spedning in US (Torio and Moore, 2016).  47 

The ideal treatment for an infection is the administration of appropriate antibiotics during the early stage. 48 

However, this is not easily implemented in the clinical settings, owing to the difficulty in rapid determination 49 

of the pathogen. Early prescriptions of antibiotics are commonly carried out empirically without the complete 50 

understanding of the etiology, and thus are often imperfect (García, 2009; Peterson et al., 2014) as antibiotics 51 

vary in the efficacy for different pathogens (Hutchings et al., 2019). A systematic review underlines that 46.5% 52 

of sepsis patients were given inappropriate empricial antibiotic treament and suffered 1.6-fold increased 53 

mortality risk (Paul et al., 2010). Accordingly, a rapid method for identifying the pathogen is required. 54 

Conventional phenotypic approaches are time-consuming and often nonspecific, despite being relatively 55 

simple to perform (Bizzini and Greub, 2010). Culture tests, biochemical tests, and microscopic examination 56 

of gram-stained specimens are well-known conventional methods for microbial identification. They require 57 

hours or days of incubation for the metabolic activity or growth to take place. Molecular diagnostic methods 58 

are not scalable because of their process-specific sensitivity and high cost, even though they provide detailed 59 

information (Bizzini and Greub, 2010). Notably, 16S ribosomal RNA sequencing and real-time polymerase 60 

chain reaction offer genetic evidence regarding the identity of the pathogen. While these methods can 61 

precisely screen for a specific pathogen, the effectiveness of detection relies on the experimental setting, such 62 

as the choice of the primer or probe. Along with the relatively high cost, this technical intricacy limits the 63 

applicability of the molecular diagnostic methods. 64 

In recent years, matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF 65 

MS) has become the gold standard for microbial identification (Bizzini and Greub, 2010; Seng et al., 2009), 66 

owing to its robust capability to investigate the molecular profile of the specimen. However, MALDI-TOF 67 

MS typically entails a turnaround time above 24 h, since sample amplification must precede to secure a 68 

detectable level of signal (Lin et al., 2018). A previous study indicated that a minimum of 105 colony-forming 69 

units (CFUs) are required for MALDI-TOF MS-based detection of bacteria (Barreiro et al., 2017). In clinical 70 
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settings, this quantity is obtained after hours or days of in vitro culture, while the mortality risk increases at 71 

an alarming rate (Moehring et al., 2013). Although some studies have sought alternative protocols to reduce 72 

the turnaround time of MALDI-TOF MS (Köck et al., 2017; Lin et al., 2018), the standard time-consuming 73 

protocol remains the most reliable approach. 74 

To tackle this challenge of early microbial identification, we exploit quantitative phase imaging (QPI) and 75 

machine-learning-based image classification. Due to the noninvasive nature, QPI has facilitated quantitative 76 

investigations of live cells (Park et al., 2018b). Among various biomedical studies, bacteria has been 77 

investigated with QPI during growth (Ahn et al., 2020; Mir et al., 2011), while optically controlled in the 78 

presence of eukaryotic cells (Kemper et al., 2013), and upon the treatments of antibotics (Oh et al., 2020). In 79 

recent years, machine learning has been introduced to QPI (Jo et al., 2018; Rivenson et al., 2019b), enabling 80 

diverse applications including virtual staining (Rivenson et al., 2019a), virtual molecular imaging (Jo et al., 81 

2020; Kandel et al., 2020), improvement of image quality (Kamilov et al., 2015; Ryu et al., 2019; Ryu et al., 82 

2021), and a variety cell type classification (Chen et al., 2016; Rubin et al., 2019; Siu et al., 2020; Yoon et al., 83 

2017). One noteworthy study realized efficient screening for anthrax spores using a handheld two-84 

dimensional (2D) QPI microscope and artificial neural network (ANN) (Jo et al., 2017).  85 

Here, we propose an image-based framework for the identification of bacterial species, which is accurate 86 

even for single or a few bacterial cells. We exploit the single-cell profiling ability of (3D) QPI in synergy 87 

with the image recognition power of ANN. Our ANN, that extracts the rich and complex information 88 

delivered by 3D QPI, facilitates accurate identification of bacterial species.The proposed framework was 89 

tested using our laboratory-obtained database of isolates that includes major bloodstream infection (BSI) 90 

pathogens. BSI, which is defined as the presence of microbial pathogens in the bloodstream, is a morbid 91 

disease with a mortality rate of approximately 25% and incidence rate around 200 per 100,000 people 92 

(Bearman and Wenzel, 2005). We demonstrate the species identification from a single or a few cells of BSI 93 

pathogens using our framework, evaluate the performance in multiple perspectives, and deliberate on how to 94 

circumvent the error. 95 

 96 

2. Materials and methods 97 

2.1. Preparation of bacteria 98 

The bacterial samples were cultured in vitro from frozen glycerol stocks. The frozen stock of each species 99 
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was stored at −80°C and thawed at room temperature (25°C) before use. After thawing, the stock was 100 

inoculated into a liquid medium and stabilized for over an hour in a shaking incubator at 35°C. The stabilized 101 

bacteria were seeded in agar plates containing a suitable medium. The agar plates were incubated at 35°C for 102 

12-24 h until colony growth was visible. A liquid subculture seeded from the agar plate was incubated at 35°C 103 

for 8–16 h in a shaking incubator until the medium turned turbid. The subculture solution was diluted with a 104 

liquid medium to a concentration suitable for imaging, then sandwiched between cover glasses. Each species 105 

was inoculated in one of the following media: nutrient agar, brain heart infusion agar, tryptic soy agar, and 106 

chocolate agar. The glycerol stock or subculture was grown in nutrient broth, brain heart infusion broth, 107 

tryptic soy broth, or Giolitti-Cantoni broth. 108 

 109 

2.2. Three-dimensional QPI 110 

Each 3D refractive index (RI) tomogram was acquired using a commercialized 3D QPI system, also known 111 

as holotomography or optical diffraction tomography (ODT), (HT-2H, Tomocube Inc., Daejeon, Republic of 112 

Korea). The optical components are shown in Fig. 1(a). The system exploits Mach-Zehnder laser 113 

interferometry equipped with a digital micromirror device (DMD). As an optical analogous to X-ray 114 

computed tomography, ODT reconstructs the 3D RI tomogram of a transparent microscopic object from 115 

multiple 2D measurements of holographic images obtained with various illumination angles (Kim et al., 2016; 116 

Wolf, 1969). A continuous-wave laser with a wavelength of 532 nm serves as the light source. Two water-117 

immersion objective lenses with 1.2 numerical aperture magnifies and de-magnifies the light. 118 

The optical phase delay and the amplitude of light are retrieved from the 2D holographic image at each 119 

illumination angle (Fig. 1(b)), resulting in a sinogram of phase delay and amplitude. Here, the DMD alters 120 

the illumination angle by serving as a controllable binary grating (Lee et al., 2017; Shin et al., 2015). Our 121 

measurement scheme involves a total of 49 illumination angles. Once the sample is located in the microscope 122 

field-of-view, the 49 holographic measurements take approximately 0.4 sec. The 3D RI tomogram is 123 

reconstructed from the sinogram by inversely solving the Helmholtz equation followed by an iterative 124 

regularization (Lim et al., 2015) (Fig. 1(c)). The theoretical resolutions of the tomogram is 110 nm in the 125 

horizontal direction and 330 nm in the vertical direction, considering the spatial frequency range of the 126 

imaging system (Park et al., 2018a). Further descriptions regarding the computational details of ODT 127 

including the reconstruction algorithm can be found in previously published literature (Kim et al., 2013; Kim 128 
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et al., 2016). 129 

An individual 3D RI tomogram referred to the distribution of RI in a 12.8 μm × 12.8 μm × 12.8 μm volumetric 130 

space, sampled at a voxel resolution of 100 nm × 100 nm × 200 nm. Each 3D RI tomogram contained a single 131 

bacterium or several bacteria that were adherent together after fission; we term this qauntity a single CFU 132 

henceforth (1) in conformity to the definition of CFU (Hazan et al., 2012; Krieger, 2010) and (2) to connote 133 

the sample quantity required for our framework. A manual inspection of each 3D RI tomogram ensured that 134 

noisy measurements were ruled out before establishing the database. 135 

 136 

2.3. Artificial neural network 137 

The structure of ANN utilized in this framework mainly consists of 3D convolutional operations which can 138 

effectively explore the 3D structure of 3D RI tomograms. More specifically, the dense connections between 139 

the convolutional operations induce the ANN to revisit the feature maps of the shallower layers even at the 140 

deep layers. Fig. 2 illustrates the structure of our ANN in detail. The structure is inspired by the convolutional 141 

ANN design that outperformed most of the other designs in the benchmark tasks of 2D image analysis (Huang 142 

et al., 2017). The four dense blocks include 12, 24, 64, and 64 colvolutional operations, respectively, from 143 

shallow to deep. The number of feature channels after the initial convolution and the growth rate of the feature 144 

channels are 64 and 32, respectively. 145 

The ANN was optimized by minimization of the cross-entropy loss between the ground truth and the 146 

prediction. For each species, 40 tomograms were randomly chosen as the blind test dataset and another 40 147 

tomograms were randomly chosen as the validation dataset. The remaining tomograms composed the training 148 

dataset, which were directly reflected in the loss minimization process. The loss that occured in the training 149 

dataset was reduced using the stochastic gradient descent algorithm. The step size of the stochastic gradient 150 

descent algorithm was scheduled according to the cosine annealing method (Loshchilov and Hutter, 2016) at 151 

an initial step size of 0.001 and a period of 64 epochs. During training, data augmentation took place for each 152 

tomogram, once every epoch, to prevent overfitting of the trained model. The augmentation included  153 

random processes of horizontal crop, horizontal rotation, and Gaussian noise. During the blind test, each input 154 

tomogram was horizontally cropped around the center to provide an identical dimension. These processes 155 

resulted in an input tomogram of 9.6 μm × 9.6 μm × 12.8 μm to be fed into the ANN. A single training epoch 156 

through the entire training dataset took approximately 10 min, when using eight graphics processing units of 157 
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GeForce GTX 1080ti and a central processing unit of Xeon E5-2600. The ANN was trained for 2,000 epochs 158 

while saving models that yielded high training accuracies or validation accuracies. The ANN and the 159 

optimization were implemented using PyTorch 1.0.0. 160 

The algorithm for the blind test involved the predictions of multiple best-performing ANN models. Models 161 

with the highest accuracies for the training and validation datasets were chosen and integrated, to exploit a 162 

wider variety of features and prevent model-by-model variance. In search of the optimal strategy for chosing 163 

and integrating multiple models, four relevant parameters were explored. These parameters included the 164 

number of integrated models weighting between the accuracies for the training validation dataset, whether or 165 

not to normalize the neural activation, and the formula for integrating the predictions by the chosen models. 166 

Four options were considered as the formula for integrating the predictions: taking the average, taking the 167 

exponential average, voting, and taking the maximum projection of the neural activation. The combination 168 

of the parameters which yielded the highest validation accuracy established the algorithm for the blind test. 169 

 170 

3. Results 171 

The key function of our framework is to assess the species of the bacterial pathogen under a quantity of a 172 

single CFU level. 3D QPI and ANN classification can provide preliminary results during the early stages of 173 

infections, whereas the results of gold standard methods will be available dozens of hours later. Incorporation 174 

of our framework into the gold standard routine is practicable since our framework operates with a minute 175 

quantity of bacteria without destroying nor chemically modifying the bacteria. 176 

 177 

3.1. Three-dimensional images of the bacteria 178 

A database, which comprised 10,556 3D RI tomograms, was established with 19 different species of BSI 179 

pathogens. The 19 species accounted for around 90% of all BSI-related cases, as indicated by the annual data 180 

from a 1,000-bed tertiary care institute (Opota et al., 2015). The 3D RI tomograms of the 19 species showed 181 

that 3D QPI effectively conveys the microscopic structure of bacteria (Fig. 3). Some characteristic structures 182 

are clearly visible in the 3D RI tomograms, e.g., cellular chains of streptococci. The species and the 183 

corresponding numbers of tomograms are as follows: Acinetobacter baumannii (664), Bacillus subtilis (515), 184 

Enterobacter cloacae (541), Enterococcus faecalis (526), Escherichia coli (600), Haemophilus influenzae 185 

(511), Klebsiella pneumoniae (525), Listeria monocytogenes (632), Micrococcus luteus (247), Proteus 186 
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mirabilis (517), Pseudomonas aeruginosa (596), Serratia marcescens (519), Staphylococcus aureus (558), 187 

Staphylococcus epidermidis (559), Stenotrophomonas maltophilia (549), Streptococcus agalactiae (537), 188 

Streptococcus anginosus (644), Streptococcus pneumoniae (566), and Streptococcus pyogenes (750).  189 

 190 

3.2. Identification with single images 191 

The optimized ANN model determined the species from an unseen 3D RI tomogram with an accuracy of 82.5% 192 

in the blind test. Our single-CFU accuracy was comparable to the rate of correct species identification using 193 

MALDI-TOF MS (Drancourt, 2010). During the training, the neural network was prompted to recognize 194 

structural features in the 3D RI tomograms of the training set and relate the features to the species. As a result, 195 

the ANN amplifies the neural activation of the species that share structural features with a blind test tomogram, 196 

whereas it attenuatese the neural activation of those that display distinct structural features (Fig. 4(a)). The 197 

species scoring the highest neural activation was chosen as the prediction result. 198 

Examinations verified the significant roles of 3D QPI and ANN in achieving species identification at a single 199 

CFU level. 3D QPI presented the 3D structure of bacterial cells in detail, while the ANN extracted the 200 

underlying features from the complex domain of 3D RI tomograms. Our comparative study (Appendix A.1) 201 

showed that neither a 2D QPI measurement nor a multi-angular sinogram of 2D QPI measurements could 202 

reproduce the accuracy of 82.5%. In addition, our ANN outperformed the classification method based on 203 

machine learning and handcrafted features (Yoon et al., 2017) with more than twofold accuracy (Appendix 204 

A.2) 205 

The risk of error could be reduced through a broader interpretation of the neural activaton. To be precise, 206 

narrowing down a few species that display high neural activation achieved lower rate of missing the correct 207 

species, compared to the single-species prediction. This approach secures additional sensitivity at the cost of 208 

specificity, which is a strategic trade-off. Approximately 94.3% of the blind test data included the correct 209 

species, two of which had the highest values of neural activation. The probability further increased to 97.1% 210 

when considering the top three values of neural activation (Fig. 4(b)). This considerable reduction of error 211 

was due to the robust feature-extracting ability of our ANN; the ANN recognizes the features related to the 212 

correct species, even in the cases of misidentified tomograms. 213 

 214 

3.3. Error in species identification 215 
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To characterize the errors in each species, the blind test results for all 19 species were investigated using the 216 

confusion matrix (Fig. 5(a)). The most frequent errors included misidentification of Acinetobacter baumannii 217 

as Streptococcus pneumoniae, Klebsiella pneumoniae as Streptococcus pneumoniae, Streptococcus 218 

agalactiae as Staphylococcus aureus, and Listeria monocytogenes as Bacillus subtilis. Notably, thick bacilli 219 

and coccabacilli were prone to the misidentification as Streptococcus pneumoniae. This tendency is in 220 

agreement to the relatively elongated morphology of Streptococcus pneumoniae compared with other species 221 

of cocci (Hoyer et al., 2018; Pathak et al., 2018),  222 

The distribution of the species with the second and third highest values of neural activation visualizes the 223 

similarity projected by the ANN (Fig. 5(b)). In this distribution, it is evident that the ANN reflects the 224 

morphological similarities between different species belonging to close categories. For instance, two clusters 225 

representing bacilli and other bacteria can be outlined, whereas the similarity between gram-positive bacilli 226 

further stands out compared with the similarity among all bacilli. 227 

Classification tasks referring to the gram-stainability and respiratory metabolism were also carried out, 228 

resulting in accuracies of 94.6% and 94.2%, respectively (Fig. 5(c) and (d)). The higher accuracy of 229 

classification tasks compared with species identification indicates that the proposed framework can be 230 

conducted with higher certainty in broader categories.  231 

 232 

3.4. Identification with multiple images 233 

The accuracy of species identification significantly increased when multiple 3D RI tomograms were reflected 234 

in the prediction. The neural activation averaged over the inferences of multiple tomograms displayed a high 235 

probability to indicate the correct species, even for cases where most individual tomograms were 236 

misidentified (Fig. 6(a)). The error rate dropped more sharply than a simple reciprocal function of the number 237 

of tomograms; 94.9% and 98.4% accuracy was achieved, respectively using two and three 3D RI tomograms 238 

(Fig. 6(b)). This dramatic gain in accuracy was attributable to the robustness of the trained ANN in extracting 239 

species-related features, which was described in Section 3.2. In addition, a quantitative analysis underpinned 240 

that the correct predictions were made with higher contrasts in the neural activation compared to the 241 

mispredictions (Appendix A.3). This analysis explained how the averaging process selectively promotes 242 

correct predictions while flattening the erroneous signals in the neural activation. 243 

 244 
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4. Discussion 245 

We propose a framework for species identification of bacterial pathogens at a single CFU level using 3D QPI 246 

and ANN. The exceptionally high accuracy under a limited sample quantity is attributable to the remarkable 247 

single-cell profiling ability of 3D QPI and the feature-extracting ability of ANN. Results show that the ample 248 

species-related features in a 3D RI tomogram are robustly extracted by the trained ANN, overcoming the 249 

quantity requirement of the previous methods. 250 

We believe that the proposed framework will efficiently refine the initial antibiotics prescribed in the clinical 251 

settings. Our species identification accuracy based on a single CFU of bacteria is comparable to the 252 

performance of MALDI-TOF MS in identifying the species of blood-born pathogens (Drancourt, 2010). The 253 

risk of misidentification by our framework can be suppressed by taking multiple species into consideration. 254 

The risk of missing the correct pathogen dramatically dropped when two or three most likely species were 255 

selected. Our framework is also capable of being flexibly tuned for broader categories of bacteria such as 256 

gram-stainability or aerobicity. Even though these categories are not as specific as species, they can play a 257 

vital role in guiding antibiotic prescriptions. For instance, gram-positive pathogens can be effectively treated 258 

with vancomycin, whereas the gram-stainability can be determined by a destructive staining of sufficient 259 

sample. In addition, the accuracy of our framework can sharply increase through additional measurements of 260 

3D RI tomograms. This signifies that our framework can be more accurate depending on the available sample 261 

quantity, compared to the baseline of the single-CFU performance. Furthermore, this framework can be 262 

incorporated along with the routine methods of microbial identification, including MALDI-TOF MS. The 263 

high performance at a minute sample quantity and the noninvasive property allow our framework to be added 264 

without exhausting the limited quantity of the sample. 265 

Future studies on sample processing will propel our framework towards more immediate use. A condition 266 

suitable for imaging bacteria has to be met to perform our single-CFU level identification. For blood samples, 267 

this condition is achieved by performing lysis centrifugation after the initial blood culture (Kirn and Weinstein, 268 

2013). However, application of our framework before completion of the blood culture is possible if a high-269 

throughput procedure for enrichment of bacteria is introduced. A prominent and practical technique is the 270 

selective collection of particles utilizing advanced fluidic systems (Balyan et al., 2020; Kuntaegowdanahalli 271 

et al., 2009; Lee et al., 2019; Lei et al., 2012). Bacteria have also been prominent targets of collection using 272 

fluidic systems (D'Amico et al., 2017; Jung et al., 2020). The adoption of these strategies will facilitate the 273 
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identification of the pathogen earlier than that suggested in our demonstration. 274 

Moreover, validation using a larger diversity of pathogens will provide insights into the scope of application. 275 

We expect the proposed framework to be applicable to pathogens causing different classes of infections, such 276 

as urinary tract infections and lower respiratory infections, which are partially covered in this study. In 277 

addition, it is yet to be assessed whether the framework is capable of distinguishing strains resistant to 278 

antibiotics. The emergence of drug-resistant strains has compromised the established convention of antibiotic 279 

prescription, and the need to screen out resistant strains has also been highlighted (Chamieh et al., 2020; 280 

Hutchings et al., 2019; Shariati et al., 2020). Investigatig the performance in identifying bacterial strains and 281 

ensuring a higher accuracy to screening resistant strains will be crucial for improving the proposed framework. 282 

 283 

5. Conclusion 284 

To the best of our knowledge, our study demonstrates an unprecedented distinction of live and unmodified 285 

bacteria at a single CFU level among a wide range of species. With a single measurement of a bacterium or a 286 

CFU, we achieved the blind test accuracy of 82.5%, 94.6%, and 94.2% for species, gram-stainability, and 287 

aerobicity, respectively. With ten individual measurements, we achieved, the blind test accuracy of 99.9%, 288 

98.9%, and 99.9% for species, gram-stainability, and aerobicity, respectively. Our accuracy based on a single 289 

measurement, which is comparable to the identification rate of MALDI-TOF MS, is facilitated by the precise 290 

3D measurement of bacteria through 3D QPI and the statistical utilization of the measurement through ANN. 291 

We believe that the proposed framework will substantially augment the early countermeasures against 292 

bacterial infections; identifying the pathogen without the delay of sample amplification can provide a shortcut 293 

for administrating the appropriate antibiotics. We note that, in principle, the application of our framework can 294 

be brought forward to briefly after the sample collection if integrated with an advanced sample processing 295 

techniques. 296 

 297 

 298 

Appendix A 299 

A.1. Suitability of 3D QPI for species identification of bacteria 300 

The benefit of 3D QPI in identification of bacteria at single CFU level was verified in a comparative 301 

experiment. Our proposed framework was compared with two other approaches utilizing the 2D equivalent 302 
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of our 3D ANN structure. One approach is trained to identify the species from 2D amplitude and phase delay 303 

maps, while the other is trained to identify the species from the sinogram composed of 2D amplitude and 304 

phase delay maps in multiple illumination angles. The approaches based on 2D and sinogram data achieved 305 

67.6% and 68.0% blind-test accuracy respectively after training and model incorporation identical to that of 306 

the 3D ANN (Fig. A.1). The significant difference in the accuracy suggests that 3D holographic microscope 307 

offers features to ANN in a more ostensive manner. 308 

 309 

A.2. Suitability of ANN for classification of 3D RI tomograms 310 

The performance of ANN in recognizing the 3D RI tomograms of bacteria was compared to that of a 311 

conventional machine learning approach. For the comparison we apply the strategy of threshold-derived 312 

feature extraction and run k-nearest neighbors (k-NN) classifications based on the extracted features, that is, 313 

an approach that had effectively classified 3D RI tomograms of lymphocytes (Yoon et al., 2017) (Fig. A.2(a)). 314 

Scanning the values of k from 1 to 40, the lowest and the highest accuracies of the k-NN were 27.4% and 315 

32.2% for k = 2 and k = 30 respectively (Fig. A.2(b)). As specified from the comparison, our implementation 316 

of ANN was more capable of recognizing species-related characteristics, compared to the machine learning 317 

with handcrafted features. 318 

 319 

A.3. Contrast of neural activation  320 

The dramatic rise of identification accuracy based on multiple 3D RI tomograms was accounted for by the 321 

feature-extracting ability of the ANN. A tendency appearing in the neural activation displays how the 322 

prediction significantly benefits from multiple tomograms. The contrast of neural activation, defined as the 323 

highest activation value divided by the sum of all other positive activation values (Fig. A.3(a)), was 324 

significantly higher in the correctly identified cases than the misidentified cases (Fig. A.3(b)). The difference 325 

displays how taking the average of neural activation from multiple 3D RI tomograms elevates the correct 326 

element of the neural activation. 327 
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Figure 507 

 508 

Fig. 1. Three-dimensional quantitative phase imaging of bacteria. 509 

(A) The optical system is based on a simplified Mach-Zehnder interferometer. The incident angle of the light 510 

illuminated into the sample is controlled using the digital micromirror device, that is, utilizing the +1st order beam 511 

diffracted by the grating pattern on the DMD. BC: beam collimator, BS: beam splitter, CL: condenser lens, DMD: 512 

digital micromirror device, FC: fiber coupler, LP: linear polarizer, OL: objective lens, TL: tube lens. (B) 513 

Holograms including both the phase delay and the amplitude is measured while altering the illumination angle 514 

using the DMD. (C) The three-dimensional RI tomogram is acquired by integrating the sinogram into the 515 

scattering potential via optical diffraction tomography, followed by an iterative regularization. 516 
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 518 

Fig. 2. Structure of the artificial neural network. 519 

(A) The structure can be represented with four dense block transition units between adjacent dense blocks. Other 520 

elements include initial three-dimensional convolutional operation (Conv) of 3 × 3 × 3 kernels and a stride of 2 × 521 

2 × 2, batch normalization, leaky rectified linear units, global average pooling, and fully connected operation. (B) 522 

The structure of the dense blocks allows features of shallower layers to be revisited in deeper layers. A dense 523 

block consists of a pair of Convs followed by concatenation of the feature map before the two Convs. In each pair 524 

of Convs, the first one has 1 × 1 × 1 kernels, and the second one has 2 × 2 × 2 kernels; meanwhile, the stride is 1 525 

× 1 × 1 for both Convs. (c) The transition units shift the scale of the feature extracted by convolution. The Conv 526 

in each transition unit has 1 × 1 × 1 kernels and 1 × 1 × 1 stride. 527 

 528 
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 530 

Fig. 3. Three-dimensional refractive index tomograms of bacterial bloodstream infection pathogens. 531 

Representative tomograms addressed in out study are rendenred in three dimension. Each tomogram represents 532 

an individual species of bacterial pathogens. Scalebar = 2μm 533 

 534 
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 536 

Fig. 4. Identification of an individual three-dimensional (3D) refractive index (RI) tomogram using the 537 

artificial neural network (ANN). 538 

(A) The ANN model processes the given 3D RI tomogram and results in a neural activation profile, which 539 

represent the similarity in the space of features extracted by the ANN. (B) The resulting neural activation allows 540 

the accurate narrowing down of possible species and the selection of the single most likely species. 541 

 542 
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 544 

Fig. 5. Distribution of error in species identification based on a single tomogram. 545 

(A) The confusion matrix visualizes the overall performance of the entire blind test dataset. The row and column 546 

indices correspond to the ground truth and the prediction, respectively. The indices of the 19 species are ordered 547 

to reflect the common bacterial categories. (B) The distribution of the second and the third most likely species 548 

further visualizes the interspecific similarity recognized by the trained artificial neural network (ANN). (C), (D) 549 

Individual tomograms are categorized under broader groups including gram-stainability and respiratory 550 

metabolism using a modified ANN for each task. 551 
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 553 

 554 

Fig. 6. Increase o fidentification accuracy with multiple measurements 555 

(A) A higher accuracy is obtained by taking the average of the neural activation resulting from multiple three-556 

dimensional refractive index tomograms of an identical species. (B) The reduction of error is sharper than a simple 557 

reciprocal function owing to the feature-extracting ability of the artificial neural network. 558 

 559 
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 561 

Fig. A.1. Comparison between three-dimensional (3D) and two-dimensional (2D) quantitative phase 562 

imaging (QPI) in image-based species identification. 563 

(A) Three types of QPI data are compared in the task of image-based species identification. A 2D QPI data consists 564 

of light phase delay and amplitude in a perpendicular illumination angle. A sinogram of 2D QPI data consists of 565 

light phase delay and amplitude in 49 illumination angles. The 3D QPI data refers to the 3D refractive index 566 

tomogram acquired from the 2D QPI sinogram. (B) The 3D QPI outperforms the 2D QPI and sinogram by a 567 

significant margin. 568 

 569 
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 571 

Fig. A.2. Comparison between artificial neural network (ANN) and conventional machine learning in 572 

image-based species identification. 573 

(A) An alternative identification approach based on handcrafted features of the three-dimensioanl refractive index 574 

tomogram and k-nearest neighbor (k-NN) algorithm. (B) The identification accuracy is compared between the 575 

proposed ANN approach and the k-NN analysis of handcrafted features. ANN outperforms k-NN by a huge margin, 576 

in both the best-performing case (k=30) and the worst-performing case (k=2). 577 
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 580 

Fig. A.3. Contrast of neural activation for correctly and incorrectly identified tomograms. 581 

(A) The contrast of neural activation is defined as the highest neural activation divided by the sum of other positive 582 

neural activation, in order to represent the exclusiveness of the identification. (B) Statistical comparison of the 583 

identification contrast between the correctly identified test data and the misidentified test data. 584 
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