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Abstract (150 words) 22 

Genomic surveillance is increasingly common for infectious pathogens. Phylodynamic models can 23 

take advantage of pathogen genome sequence data to infer epidemiological dynamics, such as 24 

those based on the exponential growth coalescent and the birth-death process. Here we investigate 25 

the potential of including case notification data without associated genome sequences in such 26 

phylodynamic analyses. Using simulations, we demonstrate that birth-death phylodynamic models 27 

can capitalise on notification data to eliminate bias in estimates of the basic reproductive number, 28 

R0, particularly when the sampling rate varies over time. In addition, an analysis of data collected 29 

from the 2009 pandemic H1N1 influenza virus demonstrates that using only samples from the 30 

prevalence peak results in biased estimates of the reproductive number over time, whereas using 31 

case notification data has a comparable accuracy to that achieved when using genome samples 32 

throughout the duration of the pandemic. 33 

 34 

 35 

Keywords 36 

Phylodynamics, Notification data, Bayesian phylogenetics, Birth-death model, Coalescent model, 37 

Influenza virus. 38 

 39 

Main text (2000 words max.) 40 

Outbreak investigations increasingly rely on genome sequencing of the causative pathogens. For 41 

example, it has been estimated that approximately 70% of Ebola cases that occurred in Sierra 42 
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Leone during the 2013-2016 West African Ebola virus outbreak have been sequenced (Stadler et al. 43 

2014). Phylodynamic methods can take advantage of these data to infer epidemiological dynamics 44 

(Grenfell et al. 2004). Recent sequencing technologies can generate such data very rapidly, such 45 

that phylodynamic inferences can be conducted in nearly real-time (Gardy and Loman 2018; 46 

Hadfield et al. 2018; Grubaugh et al. 2019). The main appeal of phylodynamics is that the sequence 47 

data can inform on epidemiological dynamics for timescales prior to the earliest collected sample. 48 

Moreover, because phylodynamic inferences assume an underlying phylogenetic tree, the internal 49 

nodes and branches are informative about transmission.  50 

 51 

Phylodynamic models describe a branching process. In Bayesian phylogenetic implementations the 52 

phylodynamic model is part of the prior and is sometimes referred to as the ‘tree prior’. Internal 53 

nodes in the tree are assumed to be associated with transmission events while the tree tips 54 

represent sampling events, after which an individual is typically not infectious (du Plessis and 55 

Stadler 2015). The simplest models posit that the number of infected individuals increases 56 

exponentially over time. Although more sophisticated methods now exist (Kühnert et al. 2014; 57 

Popinga et al. 2015; Kühnert et al. 2016; Rasmussen et al. 2017; Vaughan et al. 2017; Volz and 58 

Siveroni 2018), we focus our simulations on those that assume simple exponential growth that are 59 

appropriate for the early stages of an infectious disease outbreak. 60 

 61 

Two commonly used phylodynamic models are the coalescent exponential and the birth-death, 62 

both of which assume that the infected population size, N, grows at a rate r; N(t)=ert, where t is time 63 

after the origin. In the context of a branching process, r, is the difference between the transmission 64 

rate, λ, and the become uninfectious rate, δ, (r= λ- δ), and where 1/δ is the duration of infection. The 65 

basic reproductive number, R0, is the average number of secondary infections in a fully susceptible 66 

population, estimated as R0= λ/δ. The exponential coalescent is a generalisation of the Wright-67 

Fisher model where population size is a deterministic function of time (Griffiths and Tavare 1994; 68 

Volz et al. 2009; Volz et al. 2013). The birth-death model typically assumes a stochastic process with 69 

sampling through time (Stadler 2010; Stadler et al. 2012; Stadler and Yang 2013), with δ=ψ+μ, 70 

where μ is the recovery rate and ψ is the sampling rate with recovery (the sampling proportion, p, 71 

can be calculated as p= ψ/ψ+μ). This model can treat the time of origin of the outbreak as a 72 

parameter, which is not the case with the coalescent exponential. The individual parameters, λ, δ, 73 

are non-identifiable because the tree likelihood in both models depends on two compound 74 

parameters, λ-δ and λδp, so prior information about any individual parameter is necessary to 75 

estimate the rest (Boskova et al. 2014). 76 

 77 

Phylodynamic analyses typically require sequence data and sampling times (Rambaut 2000; 78 

Drummond et al. 2002; Drummond et al. 2003; Biek et al. 2015; Rieux and Balloux 2016). The 79 

number of samples and their times are also informative for the birth-death model because they are 80 

explicitly modelled (e.g. they inform ψ) (Boskova et al. 2018). Although the amount of sequence 81 

data in outbreak investigations has increased, a key consideration is that sequencing efforts are 82 

often conducted only after a large number of cases are reported. For instance, the trees in Fig 1 83 

were simulated under an R0 of 2, a constant sampling effort, and over the course of 1 year. If 84 

sequencing was only conducted for samples collected after 0.75 years samples from the deep 85 

sections of the tree would be missed (late sampling in Fig 1). Such sampling bias can mislead 86 
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inferences of epidemiological dynamics because there are no data to inform inferences of the early 87 

stages of the outbreak.  88 

 89 

Here we investigate bias in epidemiological parameters due to sampling heterogeneity, and we 90 

propose some effective approaches to reduce such bias. The first approach involves using a birth-91 

death skyline model (Stadler et al. 2013), that requires an understanding of the sampling effort. For 92 

example, if there is knowledge that there was no attempt to collect samples early in the outbreak 93 

one can set two intervals for the ψ parameter. However, without knowledge of sampling effort this 94 

scenario is indistinguishable from one with a constant sampling effort but where initial prevalence 95 

was so low as to preclude obtaining any sequence data in the early stages of the outbreak. The 96 

second approach consists of including early case notification data in the analyses, where a 97 

notification is a clinically-confirmed case that was not sequenced (notifications scenario in Fig 1). 98 

Indeed, notifications are an inexpensive source of information traditionally used in epidemiology, 99 

such that they could be readily applied to leverage sequence data in outbreak investigations. In a 100 

Bayesian phylogenetic framework notification data can be incorporated by assigning a sampling 101 

time with no sequence data, and topological uncertainty is naturally incorporated into the analysis. 102 

An analogous approach can be used to coherently specify fossil data for molecular clock calibration 103 

(Heath et al. 2014; Heath and Moore 2014). 104 

 105 

Simulation study 106 

We simulated phylogenetic trees under a birth-death process in MASTER v6.1 (Vaughan and 107 

Drummond 2013), with the following parameterisation; R0=2 or 1.5, δ=91, p=0.05, and an outbreak 108 

duration of one year (1/δ = 0.011 of one year for a duration of infection of about 4 days). The number 109 

of tips and their ages are naturally variable (from 100 to 150 tips). We assumed a strict molecular 110 

clock with an evolutionary rate of 0.01 substitutions per site per year (subs/site/year) and the HKY+Γ 111 

substitution model to produce alignments of 13,000 nucleotides using NELSI (Ho et al. 2015) and 112 

Phangorn v2.4 (Schliep 2011). These settings are broadly similar to an influenza virus outbreak 113 

(Hedge et al. 2013). We then assumed three sampling scenarios: (i) constant sampling with all 114 

sequences from the simulation included (e.g. the sequence for every sample in the tree in Fig 1 is 115 

included), (ii) late sampling only with samples after time Ts (e.g. only sequences for samples after 116 

the dashed line in the tree in Fig 1), and (iii) notifications in which sequence data are available only 117 

after time Ts and the sampling time for samples before Ts are included with no sequence data (i.e. 118 

notifications). We set Ts at 0.75 and 0.9 years. For each parameter configuration we simulated 100 119 

sequence data sets which were subsampled according to the three scenarios above. We analysed 120 

the data in BEAST v2.5 (Bouckaert et al. 2014; Bouckaert et al. 2018), considering several 121 

phylodynamic models; a coalescent exponential and the birth-death. For the late sampling scenario 122 

we also considered the birth-death skyline with two intervals for the ψ parameter, with the interval 123 

time fixed at Ts. We matched the substitution and clock model to those used to generate the data 124 

and we used an informative prior on δ using a Γ distribution with mean 91 and standard deviation of 125 

1. 126 

 127 

Analyses of data sets with late sampling using a birth-death model produced inaccurate estimates 128 

of R0. In only 11 of 100 simulations with R0=2 the 95% highest posterior density (HPD) for this 129 

parameter included the value used to generate the data (Table 1 and Fig 2). For simulations with 130 

R0=1.5 this model was never able to recover the true R0 (Table S1 and Fig S1). The birth-death 131 
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skyline had much better performance, with 96 of 100 simulations estimating R0 accurately (i.e. the 132 

true value was within the HPD). The coalescent exponential had better performance than the birth-133 

death, but it was still less accurate than the birth-death skyline, with 90 simulations producing 134 

accurate estimates. In general, for data sets with late sampling we observed that R0 tended to be 135 

overestimated with the birth-death and underestimated with the coalescent exponential (Fig 2). 136 

Interestingly, estimates of the evolutionary rate displayed a similar pattern to those of R0, with the 137 

birth-death skyline and the birth-death being the most and least accurate, respectively.  138 

 139 

As expected, analyses of the data with constant sampling were accurate in a majority of cases, with 140 

97 and 93 of 100 simulations being accurate for R0, and 98 and 97 for the evolutionary rate, using the 141 

birth-death and the coalescent exponential, respectively (the correct model is the birth-death, such 142 

that it is expected to perform better than the coalescent). Estimates of R0 including notification 143 

data were similarly accurate as those with complete sampling under the birth-death model, where 144 

96 analyses correctly estimated this parameter, but this was not the case for the coalescent 145 

exponential, where only 84 analyses included the true value (Table 1). Evolutionary rate estimate 146 

with notification data were less accurate than those from the complete data, with 88 accurate 147 

analyses using the birth-death and 66 using the coalescent exponential. These results can be 148 

attributed to the fact that the birth-death treats sampling times as data, whereas the coalescent is 149 

conditioned on the number of samples and their ages (Stadler et al. 2015; Boskova et al. 2018). 150 

Notifications improve the accuracy of R0 in the birth-death and they pose an informative prior on 151 

the age of the tree height (Boskova et al. 2014), which can also improve the accuracy of the 152 

evolutionary rate relative to the coalescent exponential, but this estimate is unlikely to be as 153 

accurate as that with the complete sequence data because there is necessarily less molecular 154 

information.  155 

 156 

The coalescent exponential appears to be more robust to the sampling process, with greater 157 

accuracy than the birth-death for the late sampling analyses. This model may be a good alternative 158 

when the sampling process is poorly understood, and with no reliable notification data. However, 159 

our simulations suggest that this comes at the expense of estimates that are less precise (with 160 

higher uncertainty) than those from the birth-death, as measured by the mean estimate divided by 161 

the HPD width (Table 1). 162 

 163 

Empirical case study: A/H1N1 Influenza virus from North America 164 

To illustrate the accuracy of notification data relative to completely sequenced data sets we 165 

analysed 639 whole genome sequences sampled from the 2009 A/H1N1 influenza pandemic from 166 

North America that were downloaded from GenBank (Supplementary material). The sequences 167 

were collected from early April to October 2009. We chose this period of time because it 168 

corresponds to a densely sampled clade and captures the peak number of infections as reported in 169 

the FluView application (CDC 2019). We considered three data subsets for our analyses; (i) 170 

‘complete sampling’ with all of the genome sequences, (ii) ‘notifications’ with 104 sequences only 171 

from September and the remaining 535 samples treated as notifications, and (iii) ‘late sampling’ 172 

with only the 104 sequences from September 2009. Because we do not expect constant exponential 173 

growth for these data, we used a birth-death skyline model to estimate the reproductive number, Re 174 

(similar to R0, but not assuming a fully susceptible population), on a monthly basis from January to 175 

October. We set the duration of infection at 4 days with a Γ prior on δ with mean 91 and standard 176 
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deviation of 1, and we used the HKY+Γ substitution model and a strict molecular clock model. In all 177 

cases we set two intervals for ψ, to allow for a low sampling probability before the oldest sample. 178 

 179 

The birth-death skyline plot revealed nearly identical trends for the complete data and that using 180 

notifications (Fig 3a). For example, the highest Re was estimated in April, with a mean of 1.52 (HPD: 181 

1.40 – 1.66) for the complete sampling and a mean of 1.54 (HPD: 1.40 – 1.70) for the analysis using 182 

notifications. The estimate for the epidemic origin for the late sampling analyses was around late 183 

June, such that we cannot estimate Re before this time. However, for July, August and September 184 

we found that late sampling resulted in substantially different estimates to those from the other 185 

analyses (Fig 3b-d), particularly in July where Re with late sampling had a mean of 2.10 (HPD: 1.60 – 186 

2.54) and those with complete sampling and notifications were 0.79 (HPD: 0.72 – 0.85 and 0.72 – 187 

0.86, respectively). Importantly, estimates of Re using complete sampling or notifications are overall 188 

similar in magnitude to those from large-scale epidemiological studies (Fraser et al. 2009; 189 

Biggerstaff et al. 2014), and previous estimates using genome sequence data (Hedge et al. 2013).  190 

 191 

Notification data in empirical phylodynamic studies 192 

Our simulations and empirical data analyses reveal that notification data are a rich source of 193 

information for birth-death models that can dramatically improve the accuracy and precision in 194 

estimates of epidemiological parameters. A key consideration is that notifications should represent 195 

confirmed cases that would have been sequenced if sequencing effort had been constant. 196 

Combining notification and sequence data can be particularly useful in situations where it is 197 

unknown whether sequence sampling has been constant over time or where there exist several 198 

confirmed cases but a smaller number of sequences. For example, in recently emerging outbreaks 199 

combining both sources of data can provide timely insight about the recent evolution of the 200 

pathogen in question.  201 
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 294 

Figure legends 295 

 296 

Fig 1. Example of a phylogenetic trees generated under a birth-death process with a basic 297 

reproductive number, R0, of 2 a become uninfectious rate, δ, of 100 for three analysis scenarios. The 298 

solid line denotes the number of samples collected over time. In constant sampling samples are 299 

collected and sequenced at a rate ψ=5 (i.e. sampling probability, p, of 0.05). In late sampling 300 

samples are collected and sequenced after time Ts shown with the dashed line. In notifications 301 

samples are collected constantly over time, but only sequenced after time Ts, such that before Ts 302 

only notifications (sampling times with no sequence data) are included. Blue circles represent 303 

samples with sequence data, whereas those in orange correspond to notifications. In the 304 

notifications scenario a Bayesian analysis would integrate over their phylogenetic uncertainty. The 305 

solid line represents the number of samples collected over time. In late sampling there are no 306 

samples collected before Ts, such that assuming constant sampling can produce a bias in estimates 307 

of epidemiological dynamics. 308 

 309 

Fig 2. Posterior densities for estimates of the basic reproductive number, R0, and the evolutionary 310 

rate for 100 simulations with true R0 of 2 and an evolutionary rate of 0.01 subs/site/year. The bars 311 
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represent the 95% highest posterior density (HPD) and the points are the median. We analysed the 312 

data by sampling late in the outbreak only (i.e. after 0.75 of the tree height), with a constant 313 

sampling effort (with all samples sequenced), and by including notifications. The colours represent 314 

four different models; red for the coalescent exponential, blue for the birth-death skyline, and 315 

orange for the birth-death with constant sampling. For the data with sampling late in the outbreak 316 

only we use the birth-death skyline model with constant R0 and two intervals for the sampling rate, 317 

ψ, before time 0.75. This model is not applicable to analyses with complete sampling or with 318 

notifications where sampling is constant. The dashed horizontal lines correspond to the true 319 

parameter value used to generate the data. 320 

 321 

Fig 3. Estimates of the reproductive number, Re, for empirical data of the 2009 A/H1N1 influenza 322 

pandemic in North America. a. Is a birth-death skyline plot where in which Re is estimated per 323 

month from January to October 2009. Each line is a sampled trajectory from the posterior using 324 

each analysis, with red for that from the complete sampling (639 sequences), blue for notifications 325 

with 104 sequences from September (the month with largest number of infections) and 535 326 

notifications, and green is for only the 104 sequences from September. Note that the analysis using 327 

only sequence data from September has a more recent origin parameter, such that it is only 328 

possible to estimate Re from June. The ticks along the x-axis represent the timing of sequences 329 

sampled in all analyses in black, and those treated as notifications (with no sequence data) in the 330 

‘notifications’ analysis. Panels b., c. and d. show the posterior density for estimates of Re in July, 331 

August, and September, respectively, for each analysis with colours matching those in panel a. (i.e. 332 

they are the densities for these months shown in a.).  333 

 334 

  335 
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Tables 336 

Table 1. Results of the simulation study with R0 of 1.5 and evolutionary rate of 0.01 subs/site/year. 337 

The rows correspond to the seven treatments. The first two columns denote the number of 338 

simulations (out of 100) where the value used to generate the data was contained within the 95% 339 

highest posterior density (HPD). The last two columns are a measure of precision of the estimates 340 

calculated as the estimated mean estimate of R0 and the evolutionary rate divided by the 95% HPD 341 

width, such that large values imply low precision. Here we report the mean value over 100 342 

simulations. 343 

 344 

Supplementary material 345 

Table S1. Results of the simulation study with R0=1.5, evolutionary rate of 0.01 subs/site/year, and 346 

late sampling starting at 0.9 years of a total time of 1 year. The rows correspond to the seven 347 

treatments. The first two columns denote the number of simulations (out of 100) where the value 348 

used to generate the data was contained within the 95% highest posterior density (HPD). The last 349 

two columns are a measure of precision of the estimates calculated as the estimated mean estimate 350 

of R0 and the evolutionary rate divided by the 95% HPD width, such that large values imply low 351 

precision. Here we report the mean value over 100 simulations. 352 

 353 

Fig S1. Posterior densities for estimates of the basic reproductive number, R0, and the evolutionary 354 

rate for 100 simulations with true R0 of 1.5  and an evolutionary rate of 0.01 subs/site/year. The bars 355 

represent the 95% highest posterior density (HPD) and the points are the median. We analysed the 356 

data by sampling late in the outbreak only (i.e. after 0.75 of the tree height), with a constant 357 

sampling effort (with all samples sequenced), and by including notifications. The colours represent 358 

four different models; red for the coalescent exponential, blue for the birth-death skyline, and 359 

orange for the birth-death with constant sampling. For the data with sampling late in the outbreak 360 

only we use the birth-death skyline model with constant R0 and two intervals for the sampling rate, 361 

ψ, before time 0.75. This model is not applicable to analyses with complete sampling or with 362 

notifications where sampling is constant. The dashed horizontal lines correspond to the true 363 

parameter value used to generate the data. 364 

 365 

Supplementary data. Zip file with input files to generate trees in MASTER and to analyse sequence 366 

data in BEAST according to the birth-death skyline, birth-death, and the coalescent exponential 367 

models. Accession numbers for empirical A/H1N1 Influenza virus data. 368 

 369 
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Table 1. Results of the simulation study with R0=2, evolutionary rate of 0.01 subs/site/year, 
and late sampling starting at 0.75 years of a total time of 1 year. The rows correspond to 
the seven treatments. The first two columns denote the number of simulations (out of 100) 
where the value used to generate the data was contained within the 95% highest posterior 
density (HPD). The last two columns are a measure of precision of the estimates calculated 
as the estimated mean estimate of R0 and the evolutionary rate divided by the 95% HPD 
width, such that large values imply low precision. Here we report the mean value over 100 
simulations. 
 

 R0 within 
95% HPD 

Evol. rate 
within 95% 

HPD 
Mean R0 / 
HPD width 

Mean evol. 
rate / HPD 

width 
Late sampling BD const. 11 58 0.21 0.41 
Late sampling BD skyline 96 96 0.28 0.51 
Late sampling Coal. exp. 90 93 0.36 0.63 

Constant sampling BD const. 97 98 0.18 0.27 
Constant sampling Coal. exp. 93 97 0.23 0.29 

Notifications BD const. 96 88 0.19 0.37 
Notifications Coal. Exp 84 66 0.31 0.49 
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