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Abstract (350 words max. currently 173) 19 

Point 1: Phylodynamic models use pathogen genome sequence data to infer 20 

epidemiological dynamics. With the increasing genomic surveillance of pathogens, 21 

especially amid the SARS-CoV-2 outbreak, new practical questions about their use are 22 

emerging.  23 

 24 

Point 2: One such question focuses on the inclusion of un-sequenced case occurrence 25 

data alongside sequenced data to improve phylodynamic analyses. This approach can be 26 

particularly valuable if sequencing efforts vary over time.  27 

 28 

Point 3: Using simulations, we demonstrate that birth-death phylodynamic models can 29 

employ occurrence data to eliminate bias in estimates of the basic reproductive number 30 

due to misspecification of the sampling process. In contrast, the coalescent exponential 31 

model is robust to such sampling biases, but in the absence of a sampling model it cannot 32 
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 2 

exploit occurrence data. Subsequent analysis of the SARS-CoV-2 epidemic in the 33 

northwest USA supports these results. 34 

 35 

Point 4: We conclude that occurrence data are a valuable source of information in 36 

combination with birth-death models. These data should be used to bolster phylodynamic 37 

analyses of infectious diseases and other rapidly spreading species in the future.  38 

 39 

Key Words: Phylodynamics, pathogens, coalescent, birth-death, Bayesian statistics 40 

 41 

Introduction 42 

Outbreak investigations increasingly rely on genome sequencing of causative pathogens. 43 

Phylodynamic methods take advantage of these data to infer epidemiological dynamics 44 

(Rife et al., 2017). New sequencing technologies generate these data rapidly, such that 45 

phylodynamic inferences can be conducted in actionable time frames (Gardy & Loman, 46 

2018; Grubaugh et al., 2019; Hadfield et al., 2018). In this context, the main appeal of 47 

phylodynamics is that it uses sequence data to infer epidemiological dynamics preceding 48 

the earliest collected sample, or during periods without collected sequences, and offers 49 

insight into transmission chains.  50 

 51 

Phylodynamic models describe a branching process, modelling both how a branching 52 

transmission chain and phylogenetic tree of the underlying pathogen evolve. These are 53 

central to linking epidemiological dynamics to the evolution of a pathogen. In Bayesian 54 

phylogenetic implementations the particular model of a branching process is part of the 55 

prior and is sometimes referred to as the ‘tree prior’, such as the birth-death or coalescent 56 

exponential. Internal nodes in the tree are associated with transmission events while the 57 

tips of the tree represent sampling events (du Plessis & Stadler, 2015). The basic 58 

reproductive number, R0, is a key parameter that reflects the average number of secondary 59 

infections in a fully susceptible population. The simplest tree priors that can infer R0 posit 60 

that the number of infected individuals increases exponentially over time. Although more 61 

sophisticated methods now exist (Kühnert et al., 2014; Popinga et al., 2015; Rasmussen et 62 

al., 2017; Vaughan et al., 2019; Volz & Siveroni, 2018), we focus here on tree priors 63 

assuming simple exponential growth since they are appropriate for the early stages of an 64 

outbreak and are increasingly used to assess the efficacy of public health interventions 65 

(Geoghegan et al., 2020; Vasylyeva et al., 2019). 66 

 67 
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Two commonly used phylodynamic tree priors are the coalescent exponential and the birth-68 

death, both of which assume that the infected population size, N, grows at a rate r; N(t)=ert, 69 

where t is time after the origin. From an epidemiological perspective, r is the difference 70 

between the transmission rate, λ, and the become uninfectious rate, δ, (r= λ- δ). 1/δ is the 71 

duration of infection. R0 is estimated as R0= λ/δ. The exponential coalescent is a 72 

generalisation of the Kingman-n coalescent where population size is a deterministic 73 

function of time (Griffiths & Tavare, 1994; Volz et al., 2009, 2013). In contrast, the birth-74 

death tree prior assumes  stochastic population growth with sampling through time 75 

(Stadler, 2010; Stadler et al., 2012; Stadler & Yang, 2013). This is captured in the death 76 

rateδ=ψ+μ, where μ is the recovery rate and ψ is the sampling rate such that the sampling 77 

proportion, 𝑝, can be calculated as 𝑝 = 	 !
!"#

 .  78 

 79 

Phylodynamic analyses draw from sequence data and sampling times (Biek et al., 2015; 80 

Drummond et al., 2002, 2003; Rambaut, 2000; Rieux & Balloux, 2016). In the coalescent 81 

exponential, sampling times are useful insofar as they influence the distribution of 82 

coalescent events through time, influencing R0 in turn. Coalescent models typically 83 

condition upon sampling times instead of using them to infer sampling rates. Some 84 

‘augmented likelihood’ approaches can combine the coalescent with a sampling process 85 

(Volz & Frost, 2014), but they are not standard practice. For the birth-death tree prior, the 86 

number of samples and their times are naturally informative because they are explicitly 87 

modelled through the sampling rate (i.e. they inform ψ) (Boskova et al., 2018). This is a well 88 

understood difference between the two tree priors, but its consequences remain to be 89 

explored in the context of occurrence data. Although the amount of sequence data in 90 

outbreak investigations has increased, a key consideration is that sequencing efforts are 91 

often conducted only after relatively a large number of cases are reported. This latency in 92 

sampling can bias estimates of epidemiological parameters. To visualise this, the trees in 93 

Fig 1 were simulated under an R0 of 2, a constant sampling effort, and over the course of 1 94 

year. If sequencing were only conducted for samples collected after 0.75 years, samples 95 

from the deep sections of the tree would be missed (late sampling in Fig 1). Such sampling 96 

bias can mislead inferences of epidemiological dynamics because there is no sampling 97 

data and very few branching events to inform inferences of the early stages of the outbreak.  98 

 99 

Here we investigate bias in epidemiological parameters due to sampling heterogeneity and 100 

present two approaches to reduce such bias using occurrence data. The first approach 101 

involves using a birth-death skyline tree prior that requires an understanding of the 102 
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sampling effort (Stadler et al., 2013). If it is known that there was no attempt to collect 103 

samples early in the outbreak, one can set two intervals for the ψ parameter where one is 104 

zero. However, without knowledge of sampling effort this scenario is indistinguishable from 105 

a constant sampling effort where initial prevalence was so low as to preclude obtaining any 106 

sequence data early in an outbreak. The second approach consists of including early case 107 

occurrences in analyses, where an occurrence is a laboratory confirmed case that was not 108 

sequenced (occurrences scenario in Fig 1). Occurrence data are a relatively inexpensive 109 

and often readily available source of information because they are traditionally used in 110 

epidemiology and accurately identified via contact tracing and testing efforts. In a Bayesian 111 

phylogenetic framework, topological uncertainty due to occurrence data is naturally 112 

incorporated into the analysis through the posterior. An analogous approach can be used 113 

to coherently specify fossil data for molecular clock calibration (Heath et al., 2014; Heath & 114 

Moore, 2014). This approach and others have been modelled, but not applied in 115 

phylodynamics hitherto (Gupta et al., 2020; Manceau et al., 2019). 116 

 117 

Materials and Methods 118 

Simulation study 119 

We simulated phylogenetic trees under a birth-death process in MASTER v6.1 (Vaughan & 120 

Drummond, 2013), with the following parameterisation; R0=2 or 1.5, δ=91, p=0.05, and an 121 

outbreak duration of one year (1/δ = 0.011 years, corresponding to an expected infectious 122 

period of about 4 days). The number of tips and their ages are naturally variable (from 100 123 

to 150 tips). We assumed a strict molecular clock with an evolutionary rate of 0.01 124 

substitutions per site per year (subs/site/year) and the HKY+Γ substitution model to 125 

produce alignments of 13,000 nucleotides using NELSI (Ho et al., 2015) and Phangorn v2.4 126 

(Schliep, 2011). These settings are broadly similar to an influenza virus outbreak (Hedge et 127 

al., 2013), but a rescaling of the epidemiological parameters could apply to many other 128 

pathogens. We then assumed three sampling scenarios: (i) constant sampling with all 129 

sequences from the simulation included (e.g. the sequence for every sample in the tree in 130 

Fig 1 is included), (ii) late sampling only with samples after time Ts (e.g. only sequences for 131 

samples after the dashed line in the tree in Fig 1), and (iii) occurrences in which sequence 132 

data are available only after time Ts with those preceding recorded as occurrences. We set 133 

Ts to 0.75 or 0.9 years. For each parameter configuration we simulated 100 sequence data 134 

sets which were subsampled according to the three scenarios above. Occurrences were 135 

emulated by replacing simulated DNA sequences with ‘n’ (i.e. missing data) in the 136 

alignment. We analysed the data in BEAST v2.5 (Bouckaert et al., 2019) with coalescent 137 
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exponential and the birth-death tree priors. Our results focus on the birth-death, but the 138 

coalescent exponential forms a valuable point of comparison through its robustness to 139 

variation in sampling. For the late sampling scenario, we also considered the birth-death 140 

skyline (BDSky in figures) with two intervals for the ψ parameter, with the interval time fixed 141 

at Ts. We matched the substitution and clock model to those used to generate the data and 142 

we used an informative prior on δ using a Γ distribution with mean fixed to the true value of 143 

91 and standard deviation of 1. 144 

 145 

We assessed the effectiveness of each analysis treatment using three statistics. First, we 146 

considered the coverage as a measure of accuracy, or the number of times the 95% 147 

highest posterior density (HPD) intervals covered the true value of a given parameter. 148 

Second, we consider ‘average bias’, which is the difference between the posterior mean 149 

and true mean for a given parameter averaged across the 100 simulations for each 150 

sampling treatment. Third, we consider average 95% HPD width for each treatment, as a 151 

measure of precision.  152 

 153 

Empirical case study 154 

To illustrate the accuracy of occurrence data relative to completely sequenced data sets we 155 

analysed 821 whole genome sequences sampled from the SARS-CoV-2 pandemic from 156 

Washington State, USA, and the adjacent Washington County, Oregon, downloaded from 157 

GISAID (Supplementary material) and partially documented by (Bedford et al., 2020). 158 

Accordingly, we downloaded 2,164 high-coverage genome sequences collected between 159 

January 18 and June 30 2020, but selected the 821 sequences taken up to March 21 2020 160 

to capture an exponential phase in the epidemic and sampling (Fig S1). We corroborated 161 

exponential growth in the underlying population using an Epoch Sampling Proportion 162 

Skyline Plot (Parag et al., 2020). We further divided this data set into five subsets as per our 163 

simulation study: (i) ‘complete sampling’ including all 821 sequences; (ii) late sampling post 164 

March 6 2020 (decimal date 2020.18) including 637 sequences; (iii) late sampling post 165 

March 14 2020 (2020.20) including 340 sequences; (iv) late sampling post March 6 2020 166 

(2020.18) including 637 sequences and 184 occurrences; and (v) late sampling post 2020.2 167 

including 340 sequences and 481 occurrences. Including two late sampling data subsets 168 

offers information about how inflation in R0 varies with latency in sequences.  169 

 170 

We then analysed each data set with each tree prior used in the simulation study with 171 

BEASTv2.5. We first employed a birth-death model with serial sampling. We placed a 172 
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lognormal prior on R0 with mean 0 and standard deviation of 1; fixed 𝛿 at 36.5 (i.e. 10-day 173 

duration of infection as estimated recently (Price et al., 2020)); a β prior on sampling 174 

proportion with shape and scale equal to 2 to penalise extreme values. Second, we used a 175 

birth-death skyline with the same priors as the birth-death, but with two sampling rate 176 

parameters. The first pertained to after the 2020.18 or 2020.2 cut-off, and the second to 177 

before the cut-off. Both used the same beta prior for sampling proportion as for the birth-178 

death. Third, a coalescent exponential tree prior was used with a Laplace prior on growth 179 

rate with mean 0 and scale 100 and an exponential prior with mean 100 on the coalescent 180 

exponential effective population size (𝜙). For both tree priors, we assumed HKY+Γ 181 

substitution model with a strict molecular clock rate fixed to 10-3 subs/site/year, following 182 

recent estimates (Duchene et al., 2020). We ran a Markov chain Monte Carlo of 5x108 steps, 183 

sampling at every 1000th step. We determined sufficient sampling from the posterior by 184 

verifying that the effective sample size all parameters of interest was above 200. 185 

 186 

Results 187 

Simulation study 188 

Analyses of data sets with late sampling using the birth-death model were least accurate in 189 

estimating R0. In only 12 of 100 simulations with R0=2 did the 95% HPD include 2 (Table 1 190 

and Fig 2a). The true value was never recovered for simulations with R0=1.5 (Table S1 and 191 

Fig S2). The birth-death skyline was more accurate with 95 and 92 of 100 simulations 192 

covering R0=2 and R0=1.5 respectively. The coalescent exponential was also more accurate 193 

with 100 and 80 simulations having HPD intervals that covered R0=2 and R0=1.5 194 

respectively. However, this came at the cost of low precision as HPD width was the largest 195 

for the coalescent out of all treatments. 196 

 197 

In general, we observed that the birth-death model tended to overestimate R0 while the 198 

coalescent exponential underestimated it for data sets with late sampling (Fig 2). Estimates 199 

of the evolutionary rate displayed an identical pattern to those of R0, with the coalescent 200 

exponential and the birth-death model being the most and least accurate respectively at 201 

the expense of precision. However, the evolutionary rate appeared overall robust to the 202 

choice of the tree prior, with the only treatment producing a less than 90% coverage being 203 

the birth-death model with late sampling. This is a valuable consideration for analyses of 204 

future outbreaks as considerable attention is initially devoted to estimating a reliable 205 

evolutionary rate for a given pathogen because this is key to phylodynamic inference 206 

(Duchene et al., 2020). 207 
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 208 

As expected, analyses of the data with constant sampling were accurate in a majority of 209 

cases, with 94 and 89 out of 100 simulations covering R0 alongside 94 and 92 for the 210 

evolutionary rate under the birth-death and the coalescent exponential models, 211 

respectively. The true model is the birth-death, and as such it is expected to perform better 212 

than the coalescent. Estimates of R0 including occurrence data were similar in accuracy to 213 

those with complete sampling. A total of 94 analyses correctly estimated this parameter 214 

under the birth-death model, and 96 analyses included the true value for the coalescent 215 

exponential. Evolutionary rate estimates with occurrence data were similar, with 95 216 

accurate estimates using the birth-death model and 91 using the coalescent exponential 217 

(Table 1, Fig2a,d). These results are attributable to the fact that the birth-death model treats 218 

sampling times as data, whereas the coalescent exponential model conditions on the 219 

number of samples and their ages (Boskova et al., 2018; Stadler et al., 2015). In the birth-220 

death model, occurrence data improve accuracy when inferring R0 and are also informative 221 

about the age of the tree height under this tree prior, which can also improve the accuracy 222 

of the evolutionary rate relative to the coalescent exponential model. But these estimates 223 

are unlikely to be as accurate as those with complete sequence data because they include 224 

less information.  225 

 226 

The coalescent exponential model appears to be more robust to the sampling treatment, 227 

with greater accuracy than the birth-death model across late sampling and occurrence 228 

treatments. Our simulations suggest that this comes at the expense of less precise 229 

estimates than those from the birth-death model (Table 1). In turn, birth-death and birth-230 

death skyline models tend to produce more precise estimates with less bias (Table 1, Fig 231 

2). Together these results suggest that in a genomic-reporting scenario, the coalescent 232 

exponential is suitable when sampling proportion is assumed to be low, when the sampling 233 

process is otherwise poorly understood, or when no reliable occurrence data are available. 234 

However, when increased precision is desirable and occurrence data are available, birth-235 

death tree priors may provide the sharper estimates with comparable accuracy. The choice 236 

of tree prior could be optimised depending on prioritisation of precision and bias based on 237 

the ordering of bars in Figure 2. 238 

 239 

Empirical case study: SARS-CoV-2 from the northwest USA 240 

Mirroring trends in our simulated data sets, the coalescent exponential returned consistent 241 

estimates of R0 across treatments which were generally lower than those inferred by the 242 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 14, 2020. ; https://doi.org/10.1101/596700doi: bioRxiv preprint 

https://doi.org/10.1101/596700
http://creativecommons.org/licenses/by-nc/4.0/


 8 

birth-death tree prior (Fig 3a, Table 2). Coalescent exponential treatments again produced 243 

wider HPD intervals than birth-death treatments, with the exception of late sampling which 244 

was highly uncertain under the birth-death, as expected from simulations. Uncertainty in 245 

posterior R0  does not appear to change when substituting sequenced data for occurrence 246 

data (Fig 3A), indicating that late samples are highly informative while occurrence data 247 

contribute relatively little additional information to coalescent analyses. Moreover, we 248 

observed a near perfect match between estimates from analyses with only late sampling 249 

and those that included occurrences. This pattern can be explained because occurrence 250 

data have no influence on marginal posterior estimates under the coalescent. By contrast, 251 

our simulations show small differences in performance between coalescent analyses with 252 

late sampling and those with occurrence data, which we attribute to noise in the simulation 253 

study.  254 

 255 

The results of the birth-death analyses recapitulate our observation from simulations that 256 

later sampling inflates estimates of R0, and that occurrence data rectify this (Figure 3B table 257 

2). Complete sampling gave a mean R0 of 1.96 (95% HPD: 1.85, 2.07) and late sampling 258 

with occurrence data estimated mean R0 of 1.95 and 2.00 (95% HPDs: 1.8, 2.11 and 1.9, 259 

2.12 for post - 2020.18 and 2020.2 respectively). These estimates are slightly lower than 260 

those from earlier work to estimate R0 in the Washington state epidemic (Vaughan et al., 261 

2020). This discrepancy may be due to the former being conducted earlier when the virus 262 

may have been spreading more rapidly. Late sampling alone inferred a mean R0 of 2.44 and 263 

3.53 for post 2020.18 and 2020.2 (2.31, 2.58 and 3.24, 3.82 95% HPDs respectively). The 264 

way in which the latest sampling data set inferred the highest values of R0 further suggests 265 

that upward bias increases with lateness in sampling.  266 

 267 

In both late sampling treatments, the birth-death skyline posterior distributions of R0  were 268 

lower than their equivalents under the standard birth-death model, with later sampling 269 

corresponding to lower estimates (Fig 3). This is consistent with the simulated data (Fig S2), 270 

and suggests that including occurrence data is a preferential strategy to rectify posterior R0  271 

estimates amid late genome sequence sampling. Furthermore, the entropy of each birth-272 

death based posterior R0  distribution, a measure of uncertainty, is comparable at 3.68-3.78 273 

as calculated with the mlf R package (Peterson, 2018). This further suggests that the 274 

topological uncertainty induced by occurrence data does not considerably increase 275 

uncertainty in posterior R0 (Fig 3).  276 

 277 
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Discussion 278 

Occurrence data in empirical phylodynamic studies 279 

Occurrence data represent an extreme case of when genome coverage in samples is poor. 280 

Herein we show that low-coverage samples can be useful in phylodynamics so long as the 281 

sequences analysed are accurate. An outstanding task is to characterise an upper-bound 282 

on the relative proportion of occurrence to genomic samples from which genomic samples 283 

can still inform tree topology for epidemiological dynamics. To this end, we caution against 284 

over-inflating occurrence among genomic data sets without comparing to results obtained 285 

with genomic samples alone. 286 

 287 

Our simulations and empirical data analyses reveal that occurrence data are a rich source 288 

of information for birth-death tree priors that can dramatically improve the accuracy and 289 

precision in estimates of epidemiological parameters. A key consideration is that 290 

occurrences should represent confirmed cases that would have been sequenced if 291 

sequencing effort had been constant, and which are known to belong to a particular 292 

outbreak, such as via contact tracing. Combining occurrence and sequence data can be 293 

particularly useful in situations where it is unknown if sequence sampling has been constant 294 

over time or where there exist several confirmed cases but a smaller number of sequences. 295 

This is valuable amid recently emerging outbreaks where combining both sources of data 296 

can provide sharper and more timely insight into the recent evolution of the pathogen in 297 

question.   298 
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 454 

Figure legends 455 

 456 
Fig 1. Example of a phylogenetic trees generated under a birth-death process with a basic 457 

reproductive number (R0) of 2, and a becoming uninfectious rate(δ) of 100 for three analysis 458 

scenarios. The solid line denotes the number of samples collected over time. In constant 459 

sampling samples are collected and sequenced at a rate ψ=5 (i.e. sampling probability, p, 460 

of 0.05). In late sampling samples are collected and sequenced after time Ts shown with the 461 

dashed line. In occurrence data samples are collected constantly over time, but only 462 

sequenced after time Ts, such that before Ts only occurrences (sampling times with no 463 

sequence data) are included. Blue circles represent samples with sequence data, whereas 464 

those in orange correspond to occurrences. In the occurrence data scenario, a Bayesian 465 

analysis would integrate over their phylogenetic uncertainty. The solid line represents the 466 

number of samples collected over time. In late sampling there are no samples collected 467 

before Ts, such that assuming constant sampling can produce a bias in estimates of 468 

epidemiological dynamics. 469 

Sequenced Samples
s Ts

Occurrences (No sequence data available)

      Constant Sampling                          Late Sampling                                  Occurrences   
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 470 

 471 
Fig 2. Bar ordering varies across plots to reflect preferential performance in each statistic 472 

such that those in red are most preferential. A) The number of simulations (out of 100) for 473 

which HPDs for R0 captured 2, the value simulated under. B) Mean bias in R0 across 474 

simulation treatments. C) Mean HPD width in R0 across simulation treatments. D) The 475 

number of simulations (out of 100) for which HPDs for evolutionary rate captured 0.01, the 476 

value simulated under. E) Mean bias in Rate across simulation treatments. F) Mean HPD 477 

width in rate across simulation treatments. 478 

 479 
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 483 
Fig 3.  Posterior estimates of R0 for SARS-CoV-2 genome data. Constant sampling refers to 484 

using all 821 genomes in the empirical dataset. Post 2020.18 refers to only including 485 

sequences from 2020-03-04 and afterwards. Post 2020.2 refers to the same from 2020-03-486 

14 and afterwards. A) Posterior densities of the basic reproductive number, R0 under the 487 

coalescent exponential. B) Posterior densities for estimates of the basic reproductive 488 

number, R0 under the birth death. In B, birth-death and birth-death skyline posteriors for R0 489 

and post cut-off sampling proportions are overlapping. 490 

 491 

Tables 492 

Table 1. Results of the simulation study with R0 of 2 and evolutionary rate of 0.01 493 

subs/site/year. The rows correspond to the seven treatments. For R0 and evolutionary rate 494 

(subs/site/year), columns denote the number of simulations (out of 100) where the value 495 
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used to generate the data was contained within the 95% highest posterior density (HPD), 496 

also referred to as coverage and reflecting accuracy; average bias measured the average 497 

difference between posterior mean R0 and 2; and the average HPD width. BD stands for 498 

birth-death, CE for coalescent exponential, and BDSky to the birth-death skyline model 499 

with two sampling intervals. 500 

 501 
 502 

Table 2. Posterior estimates of R0 and p using the birth-death for the SARS-CoV-2 503 

empirical dataset. Rows correspond to the 12 treatments. 504 

 505 
Supplementary material 506 

 507 

Table S1. Results of the simulation study with R0=1.5, evolutionary rate of 0.01 508 

subs/site/year, and late sampling starting at 0.9 years of a total time of 1 year. The rows 509 

Treatment

BD Constant Sampling

R0 Within
HPD

CE Constant Sampling

R0 Mean
Bias

BD Late Sampling

R0 Mean
 HPD Width

BDSky Late Sampling

Rate
Within HPD

CE Late Sampling

Rate Mean
Bias

BD + Occurrences

Rate Mean
HPD Width

CE + Occurrences

 94
 89
 12
 95
100
 94
 96

0.072
0.115
0.364
0.125
0.156
0.076
0.163

0.364
0.481
0.515
0.591
0.786
0.384
0.748

94
92
58
90
97
95
91

0.00057
0.00067
0.00233
0.00122
0.00138
0.00097
0.00140

0.00285
0.00298
0.00511
0.00559
0.00646
0.00450
0.00605

Sampling Treatment

BD Constant Sampling

Mean R0

BD Post 2020.18

95% HPD

BD Post 2020.18 + Occurrences
BD Post 2020.2

BD Post 2020.2 + Occurrences
BDSky Post 2020.18
BDSky Post 2020.2

CE Constant Sampling
 CE Post 2020.18

CE Post 2020.18 + Occurrences
CE Post 2020.2

CE Post 2020.2 + Occurrences

1.96
2.44
1.97
3.53
1.96
1.57
1.48
1.52
1.51
1.50
1.43
1.43

(1.85, 2.07)
(2.31, 2.58)
(1.87, 2.08)
(3.24, 3.82)
(1.83, 2.09)
(1.43, 1.71)
(1.35, 1.63)
(1.4, 1.65)

(1.39, 1.64)
(1.38, 1.62)
(1.3, 1.58)

(1.29, 1.57)
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correspond to the seven treatments. The first two columns denote the number of 510 

simulations (out of 100) where the value used to generate the data was contained within the 511 

95% highest posterior density (HPD). The last two columns are a measure of precision of 512 

the estimates calculated as the estimated mean estimate of R0 and the evolutionary rate 513 

divided by the 95% HPD width, such that large values imply low precision. Here we report 514 

the mean value over 100 simulations. 515 

 516 
 517 

 518 
Fig S1. The temporal distribution of SARS-CoV-2 samples taken from Washington State 519 

and Washington County, Oregon, during the COVID-19 pandemic downloaded from 520 

Table�S1. Results of the simulation study with R0=1.5, evolutionary rate of 0.01 
subs/site/year, and late sampling starting at 0.9 years of a total time of 1 year. The rows 
correspond to the seven treatments. The first two columns denote the number of 
simulations (out of 100) where the value used to generate the data was contained within the 
95% highest posterior density (HPD). The last two columns are a measure of precision of 
the estimates calculated as the estimated mean estimate of R0 and the evolutionary rate 
divided by the 95% HPD width, such that large values imply low precision. Here we report 
the mean value over 100 simulations.
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GISAID. Colouring represents the subset of these data that we analysed and vertical lines 521 

show our two cut-offs for late sampling. 522 

 523 

 524 

 525 
Fig S2. Posterior densities for estimates of the basic reproductive number, R0, and the 526 

evolutionary rate for 100 simulations with true R0 of 1.5 and an evolutionary rate of 0.01 527 

subs/site/year. The bars represent the 95% highest posterior density (HPD) and the points 528 

are the mean. Estimates are ordered from lowest to highest mean. We analysed the data by 529 

sampling late in the outbreak only (i.e. after 0.75 of the tree height), with a constant 530 

sampling effort (with all samples sequenced), and by including occurrence data. The 531 

colours represent four different tree priors; red for the coalescent exponential, blue for the 532 

birth-death skyline, and orange for the birth-death with constant sampling. For the data 533 

with sampling late in the outbreak only we use the birth-death skyline tree prior with 534 

constant R0 and two intervals for the sampling rate, ψ, before time 0.75. This tree priori not 535 

applicable to analyses with complete sampling or with occurrence data where sampling is 536 

constant. The dashed horizontal lines correspond to the true parameter value used to 537 

generate the data. 538 
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