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Abstract: The ability to generate and process semantic relations is central to many aspects of 

human cognition. Theorists have long debated whether such relations are coded as atomistic 

links in a semantic network, or as distributed patterns over some core set of abstract relations. 

The form and content of the conceptual and neural representations of semantic relations remains 

to be empirically established.  The present study combined computational modeling and 

neuroimaging to investigate the representation and comparison of abstract semantic relations in 

the brain. By using sequential presentation of verbal analogies, we decoupled the neural activity 

associated with encoding the representation of the first-order semantic relation between words in 

a pair from that associated with the second-order comparison of two relations. We tested 

alternative computational models of relational similarity in order to distinguish between rival 

accounts of how semantic relations are coded and compared in the brain. Analyses of neural 

similarity patterns supported the hypothesis that semantic relations are coded, in the parietal 

cortex, as distributed representations over a pool of abstract relations specified in a theory-based 

taxonomy. These representations, in turn, provide the immediate inputs to the process of 

analogical comparison, which draws on a broad frontoparietal network. This study sheds light 

not only on the form of relation representations but also on their specific content. 

 
Keywords: distributed representations, relations, analogy, neuroimaging, computational 
modeling 
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Significance: Relations provide basic building blocks for language and thought. For the past half 

century, cognitive scientists exploring human semantic memory have sought to identify the code 

for relations. In a neuroimaging paradigm, we tested alternative computational models of relation 

processing that predict patterns of neural similarity during distinct phases of analogical 

reasoning. The findings allowed us to draw inferences not only about the form of relation 

representations, but also about their specific content. The core of these distributed 

representations is based on a relatively small number of abstract relation types specified in a 

theory-based taxonomy. This study helps to resolve a longstanding debate concerning the nature 

of the conceptual and neural code for semantic relations in the mind and brain.  
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Introduction 

The poet Samuel Taylor Coleridge claimed that the creative mind needs to become 

“accustomed to contemplate not things only, … but likewise and chiefly the relations of 

things….” (1) Because relations provide basic building blocks for language and thought, they are 

central for a range of cognitive tasks. A prime example is the critical role of relation 

representations in analogical reasoning (2), a mental process that impacts human activities as 

diverse as metaphor comprehension (3), mathematics education (4), scientific discovery (5) and 

engineering design (6). But while the importance of relations is widely recognized, no consensus 

has emerged regarding the form of relation representations in the mind and brain. 

For the past half century, cognitive scientists exploring human semantic memory have 

sought to identify the nature of the code for relations (for reviews see Refs. (7, 8)). Two 

longstanding views, mainly based on data from speeded verification of category-membership 

relations (e.g., deciding as rapidly as possible whether a rose is a flower), continue to be 

influential. One approach, originating in computer science (9), treats relations as labeled unitary 

links between localist nodes representing concepts (e.g., an “is a” link connecting rose to 

flower). Relation verification is viewed as an all-or-none process of retrieving the relevant link. 

Current computational models of analogy based on traditional symbolic knowledge 

representations (10) continue to assume relations are coded as atomistic links.  In contrast, an 

alternative view hypothesizes that rather than being represented by explicit links, relations 

between concepts are computed by operations performed on featural representations of concepts 

(11, 12). In support of the latter view, analyses of verification time based on speed-accuracy 

decomposition have revealed that relation information accrues continuously over time, rather 

than being retrieved in an all-or-none fashion (13, 14). These findings suggest that relations are 
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not stored and retrieved as atomic units. However, the specific nature and content of relation 

representations remain a mystery. There is continuing debate as to whether a relation is coded 

explicitly (i.e., each relation has its own semantic representation), or whether a relation is coded 

only implicitly based on the features of the concepts it links (15). The resolution of this debate is 

likely to require evidence that goes beyond behavioral measures such as verification times. 

Here we test a model of relation representation, combining recent advances in machine 

learning and cognitive science with neuroimaging. Our tests are based on a key property of 

distributed representations: they predict systematic and graded variations in similarity, rather 

than simply an all-or-none distinction between same and different. We propose that specific 

semantic relations between words are coded as distributed representations over a set of abstract 

relations, specified in a taxonomy founded on linguistic and psychological evidence (16). This 

taxonomy includes ten general types of relations (e.g., similar, contrast, cause-purpose), each of 

which has several subtypes, resulting in a total of 79 semantic relations. After a computational 

model has acquired knowledge of these relations, the specific relation between any pair of words 

can be represented as a vector based on the posterior probability that the pair instantiates each 

known relation. The resulting distributed representation captures the intuition that many word 

pairs instantiate multiple relations to some degree. For example, the concepts hill-mountain 

primarily instantiate the relation of similar (both are types of high geological formations), but 

they also to some degree instantiate contrast (differing in height).  

Following Coleridge (1), to represent relations between things it is first necessary to have 

representations of those “things”—in the case of semantic relations, we first need semantic 

representations of individual words. To represent word meanings, we adopt word embeddings 

produced by a recent machine-learning model, Word2vec (17). This model applies a predictive 
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learning algorithm to a large text corpus (e.g., Google News) to create high-dimensional 

semantic vectors for individual words. Vectors generated by Word2vec and similar models have 

been show to accurately capture human judgments of semantic similarities among words (18), 

and have also been used to create a neural decoder to predict patterns of brain activity produced 

in response to sentences (19). 

Using semantic vectors for individual words derived by Word2vec, pairs of words can be 

used to learn representations of individual relations in the taxonomy using a model called 

Bayesian Analogy with Relational Transformations (BART; see Refs. (20, 21)). BART is trained 

with a small number of word pairs (~20 pairs) as positive examples of each specific relation in 

the taxonomy (16). After learning the set of 79 abstract relations, for any word pair BART can 

estimate the probability that the word pair instantiates each learned relation. The model 

accurately predicts human judgments of how well word pairs instantiate relations (i.e., relation 

prototypicality)(21). 

When the entire set of learned relations is considered, any word pair can be coded as a 

vector of relation probabilities, which constitutes a distributed representation of the specific 

relation between the two words (Figure 1). The high-dimensional input vectors for individual 

words are thus transformed into a new (and much more interpretable) vector space that codes the 

semantic relations between words. BART’s relation vectors enable computations of second-order 

relational similarity between word pairs, providing a direct basis for solving verbal analogies in 

the form A:B::C:D (e.g., old:young :: hot:cold). To evaluate an analogy between two word pairs, 

BART assesses their second-order relation similarity based on the cosine distance between the 

two distributed patterns of relations (with low cosine values indicative of a good analogical 

match). Behavioral evidence indicates that BART can solve a set of simple verbal analogies with 
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a degree of accuracy comparable to humans (21). 

 

Figure 1. Examples of distributed representations of the relation instantiated by an individual 
word pair, generated by the BART model (21). Each word pair primarily instantiates one of the 
three general relation types used in the neuroimaging experiment reported here: hill-mountain 
(similar), hot-cold (contrast), disease-sickness (cause-purpose). The distributed code is based on 
the posterior probabilities that a given pair instantiates each of 79 abstract relations, drawn from 
10 major types (16). The representations vary in their degree of distribution across the pool of 
abstract relations, with each word pair attaining its highest value on one or more relations within 
its general type.  

 

To test the proposed distributed code for semantic relations, we performed a study of 

verbal analogical reasoning using functional magnetic resonance imaging (fMRI) to measure 

similarities among neural responses during different stages of relational processing. The basic 

logic was to use BART and baseline models to predict degrees of relation similarity, and then to 

correlate predictions of the models with patterns of neural similarity in regions of interest. We 

examined three types of abstract relations (similar, contrast, cause-purpose), with three specific 

relations for each type (see Methods and Materials).  For each relation, we selected 16 word 

pairs high in typicality as assessed by human judgments (22), yielding 48 word pairs per relation 

type.  Using the resulting 144 (48 examples × 3 relation types) distinct word pairs, we formed 
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pairs of pairs to create verbal analogy problems in the form A:B :: C:D (valid) or else A:B :: 

C’:D’ (invalid). 

We employed a sequential event-related fMRI design (23) to separate the construction of 

first-order relations (i.e., relations between words in a pair) from the second-order assessment of 

similarity between relations (i.e., the analogical match between A:B and C:D relations) (see 

Figure 2; also Materials and Methods).  The A:B phase provides a relatively pure measure of 

neural activity involved in coding the individual A and B words and the A:B relation. The C:D 

phase includes the neural computation required to compare the two relations (as well as neural 

activity required to maintain the A:B relation and to represent the C:D relation). If semantic 

relations have distributed representations based on the taxonomy of abstract relations, we should 

find brain regions in which BART is the best predictor of neural similarity. In contrast, if 

relations are coded as atomic units, then similarity of two word pairs will only depend on 

whether they instantiate the same or different relation types. 

 

 

Figure 2. Timing of events on each trial. Participants were shown two word pairs, first an A:B 
pair for 2 seconds, then a C:D pair for 2 seconds after a jitter, and finally a cue to make a yes/no 
decision about the validity of the analogy. Participants responded by pressing a button box, 
where the location of “yes” and “no” buttons varied from trial to trial, making it impossible to 
plan a specific motor response until the first two phases had been completed. In a rapid event-
related fMRI design, healthy young adults were asked to evaluate two pairs of semantic 
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concepts. Each analogy was presented as two pairs of words, an A:B pair (e.g., rich:poor) 
followed by a C:D pair (e.g., hot:cold) exemplifying the same relation (here contrast) as the A:B 
pair (valid analogy), or else a C’:D’ pair (e.g., loss:grief) exemplifying a different relation (here 
cause-purpose) (invalid analogy). All analogies were based on word pairs taken from a set of 
norms (22), exemplifying three abstract relation types (similar, contrast, and cause-purpose) (16) 
[see supporting information (SI) Appendix, Table S4].  
 

Results 

In what follows we describe a three-pronged approach to characterizing the 

computational architecture supporting first- and second-order relational processing. First, we use 

a multivariate pattern analysis (MVPA; (24)) approach to confirm the sensitivity of large, 

known, regions of cortex to different types of semantic relations. Second, we employ a model-

guided representational similarity analysis (RSA;(25, 26)) approach to test the neural plausibility 

of the first-order (i.e., A:B) relational representations described by four possible computational 

accounts of semantic relations. Finally, we employ a second model-guided analysis to test at the 

neural level the predicted patterns of second-order (i.e., A:B::C:D) relational comparisons 

suggested by different computational accounts. 

Decoding Neural Activity Patterns to Classify Relation Types. To characterize the 

representations of abstract semantic relations in the brain, we first conducted a multivariate 

pattern analysis using a searchlight method (27). This analysis revealed left-lateralized areas of 

the brain capable of distinguishing different types of abstract relations on the basis of activation 

patterns across both the A:B and C:D phases. In addition, during the second-order comparison 

(i.e., the C:D phase) the three abstract relations could  also be distinguished in left rostrolateral 

and right fronto-temporal cortices. (See SI Appendix, Supplemental Data Analyses, for a detailed 

report and also for a univariate analyses of areas active during the A:B phase versus rest, C:D 

phase versus rest, and C:D versus A:B.) 
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Figure 3. MVPA searchlight results. Regions in which the three general semantic relations could 

be discriminated above chance during different phases of the analogy task (p < 0.01, corrected 

for multiple comparisons using TFCE cluster correction (28)). 

 

Comparing Computational Accounts of First-order Relational Similarity (A:B Phase). The 

initial decoding analysis established that the three relation types can be classified using brain 

activity patterns. However, that analysis treats each word pair as instantiating a single relation 

type, generating only a coarse measure of similarity (same or different relation type). To assess 

more detailed computational accounts that predict graded similarity patterns, we examined item-

level similarity across word pairs using Representational Similarity Analysis (RSA; (25, 26, 29)). 

 Theoretical patterns of dissimilarity across word pairs were derived from four 

computational models. First, a design matrix based on the three relation types was used as a 

baseline model, which predicts relation similarity is all-or-none (i.e., same versus different 

relation types). Two additional control models were tested, both of which derive similarity 

predictions directly from Word2vec vectors for the individual words in a pair. These two control 

models differ in their assumptions about how (or whether) the relation between the two words is 
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represented. Under Word2vec-concat, the meaning of the words within a pair is a simple 

aggregate of the semantic vectors of the two individual words. The similarity between any two 

word pairs is computed by the cosine distance between the two concatenated vectors. This model 

is nonrelational, instead capturing semantic similarity across pairs based solely on the meanings 

of the individual words. Word2vec-concat serves to identify patterns of similarity based on 

lexical semantics, separate from any representation of the relation between the two words within 

each pair. Under Word2vec-diff, the first-order relation between two words is defined in a 

generic fashion as the difference between the semantic vectors of each word within a pair; 

second-order similarity of relations is assessed by the cosine distance between the two difference 

vectors that form the analogy. This model, which has been directly applied to analogy problems 

in work on machine learning (18), codes relations only implicitly (i.e., as a difference vector 

computed from individual words). 

The fourth model, BART, creates a distributed representation of the specific relation 

between a pair of words based on the posterior probabilities that the word pair instantiates each 

relation in a theory-based taxonomy (16). Unlike any of the control models, BART assumes that 

the specific relation between a pair of words has an explicit distributed representation. The 

similarity between any two word pairs is computed by the cosine distance between the two 

relation vectors. As illustrated in Figure 4, BART and the two control models based on 

Word2vec each take identical inputs (Word2vec vectors for the individual words in a pair) and 

assume an identical computation for relation similarity between two word pairs (cosine distance 

between the final vector produced by the model) (see SI Appendix, Supplemental Details for 

Computational Models). 
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Figure 4. Model-guided approach to discovering neural signatures of specific relations. For any 
two word pairs (e.g., rich:poor, hot:cold), three alternative models are used to predict 
dissimilarity based on the cosine distance between the representations of each individual word 
pair, using 300-dimensional Word2vec vectors as inputs (left). Word2vec-concat (nonrelational) 
concatenates the vectors for individual words in a pair; Word-2vec-diff (generic relation) defines 
the relation as the difference vector; BART (specific relations) creates a new relational vector for 
each pair based on previously-learned relations. The neural response to each word pair (right) is 
obtained, allowing a calculation of dissimilarity between patterns of voxels. Neural 
dissimilarities are compared with computational predictions in order to arbitrate between 
alternative models. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2019. ; https://doi.org/10.1101/596726doi: bioRxiv preprint 

https://doi.org/10.1101/596726
http://creativecommons.org/licenses/by-nc-nd/4.0/


Distributed Code for Relations 

 
 

13 

 

Figure 5. Theoretical Representational Dissimilarity Matrices (RDMs). The RDMs derived from 
the three computational models are of size 144 x 144 (i.e., based on individual word pairs). 
Theoretical RDMs capturing the cosine distance between the vector representation for each word 
pair were correlated with empirical RDMs derived from brain activity patterns.  

 

Using a searchlight procedure, Representational Dissimilarity Matrices (RDMs) predicted 

by each of the four models (relation-types baseline, BART, Word2vec-concat, Word2vec-diff) 

were compared to the empirical pattern of dissimilarity across word pairs observed in neural 

activity patterns during the A:B phase (see SI Appendix, Representational Similarity Analysis). 

These analyses were conducted at the level of individual word pairs; hence the size of each RDM 

was 144 × 144 (Figure 5). Among the four models that were tested, only the RDM derived from 

BART yielded significant correlations with neural RDMs (Figure 6A). These correlations 

primarily involved the left superior parietal lobe (lSPL) and intraparietal sulcus (lIPS). In 

approximately the same regions, the correlation for BART was significantly greater than those 

for either of the other computational models (Figure 6B) or for the relation-types baseline model 

(Figure 6C). These findings indicate that the distributed representation of relations postulated by 

BART is realized in regions within the posterior cortex previously reported to be involved in the 

formation and/or retrieval of relational information (30–32). Notably, neither BART nor any of 
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the other models yielded significant correlations with the neural patterns of activity in 

rostrolateral PFC (Brodmann area (BA)10m, BA10l), consistent with the hypothesis that the 

RLPFC is not involved in representing first-order relations, but rather is primarily engaged in 

making second-order comparisons between relations (33, 34). 

 

Figure 6. Searchlight results for RSA analyses testing alternative models as predictors of neural 
similarity during A:B phase for 144 word pairs instantiating abstract semantic relations. A: 
Lateral and posterior views of areas in which the BART model based on distributed relation 
representations was significantly correlated with neural RDM. None of the other three models 
yielded areas with significant correlations. B: Posterior view of areas in which correlation of 
BART with neural RDM was significantly greater than correlation for each of the alternative 
computational models. C: Posterior view of areas in which correlation of BART with neural 
RDM was significantly greater than that for the baseline model, which assumes discrete codes 
for relations. Colored regions represent searchlight sphere centers that were significant as 
assessed by FSL randomise with TFCE cluster correction (28, 35) for multiple comparisons 
(corrected p < 0.05).   
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Comparing Computational Accounts of Second-order Relational Processing (C:D Phase). 

With respect to the phase in which the A:B and C:D relations are compared to verify the validity 

of the analogy (i.e., C:D phase), BART and the two Word2vec models make the general 

prediction that the difficulty of identifying a valid analogy is proportional to the (word or 

relation-based) similarity of the A:B and C:D word pairs, with greater dissimilarity making the 

analogy harder to verify. Valid analogies by definition have the same relation for A:B and C:D; 

hence the design-matrix model based on relation-types predicts no differences. 

In order to derive a measure of relational dissimilarity from each of the three models, for every 

valid A:B::C:D analogy (144 problems in total) we calculated the cosine distance between the 

representations of A:B and C:D specified by each model, with higher cosine distance implying 

greater dissimilarity between the two pairs of words. For each individual participant, the 

theoretical relational dissimilarity scores derived from each model were then correlated (using 

Spearman’s rho) with observed mean activity during the C:D phase of each valid analogy for 

each region of interest (ROI) (see SI Appendix, Univariate Relational Dissimilarity Analysis). 

ROIs were taken from previous work showing that regions within a left frontoparietal network 

play prominent roles in relational reasoning (31) (see Materials and Methods). 

As shown in Figure 7, BART’s predictions of theoretical relational dissimilarity were 

significantly correlated with neural activity in frontal ROIs, with all p values FDR-corrected 

(BA9: mean r = 0.06, p = 0.022; BA44: r = 0.105, p = 0.003; BA45: r = 0.135, p < 0.001; 

BA10m: r = 0.052, p = 0.022; BA10l: r = 0.069, p = 0.006). In addition, the predictions of the 

BART model, but neither of the alternative ones, were significantly correlated with activity in 

subregions of parietal cortex (AG: r = 0.085, p < 0.001; pSMG: r = 0.055, p = 0.014; and 

trending in the IPS, r = 0.0521, p = 0.081).  
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Word2vec-concat’s predictions of relational dissimilarity were correlated with neural 

activity in some of the same frontal ROIs as BART (BA44: r = 0.045, p = 0.03; BA45: r = 0.068, 

p = 0.003; BA47: r = 0.052, p = 0.026; BA10l: r = 0.057, p = 0.009), but not in parietal ROIs. 

Follow-up stepwise regression analyses (see SI Appendix, Supplemental Data Analyses) revealed 

that in each of the prefrontal ROIs where BART and also Word2vec-concat yielded significant 

correlations, the BART model explained unique variance in brain activity after accounting for 

the influence of word meanings as measured by the predictions of the alternative model. After 

adjusting for Word2vec-concat predictions, semi-partial correlations between BART’s 

predictions and neural activity were significant in four prefrontal ROIs (BA44: r = 0.109, p = 

0.015, BA45: r = 0.136, p = 0.005, BA 10l: r = 0.07, p = 0.01, BA 47: r = 0.139, p = 0.006). 

Neural activity in BA10l also showed a correlation with Word2vec-diff predictions. However, 

the BART model still explained unique variability in brain activity in BA 10l as revealed by a 

significant semi-partial correlation between BART’s prediction after adjusting for Word2vec-diff 

prediction (r = 0.029, p = 0.020). Stepwise regressions with a reversed order revealed that neither 

Word2vec-concat nor Word2vec-diff predicted variance beyond that attributable to BART.  

The coarse semantic coding assumed by the relations-type model is completely unable to 

explain the fine-grained differences in neural responses observed among the pool of valid 

analogies during the verification phase of analogical reasoning. In general, the process of 

second-order relation comparison appears to be dominated by relational dissimilarity as 

measured by the BART model, which creates distributed representations of relations.  
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Figure 7. Relation comparison in the brain. Correlation between model-derived relational 
dissimilarity and mean BOLD signal in each frontal and parietal ROI during the C:D phase. 
Error bars indicate ± 1 standard error of the mean; * indicates model correlation significantly 
different from 0 (p < .05 after FDR correction). 
 

Discussion  

 The present study combined computational modeling and neuroimaging to investigate the 

representation and comparison of abstract semantic relations in the brain. We used sequential 

presentation of verbal analogies with clear temporal phases (23) to decouple (1) the neural 

activity associated with encoding the representation of the individual words in a pair and the 

relation between them from (2) that associated with the comparison of two relations (while also 

separating these high-level reasoning processes from planning for a motor response). By testing 

alternative computational models of relational similarity, we were able to distinguish between 

rival accounts of how semantic relations are coded and compared in the brain. The BART model, 
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which postulates that semantic relations between words are coded as a distributed representation 

based on a taxonomy of abstract relations (16), was able to predict patterns of neural activity 

during analogical reasoning that could not be explained by alternative models. During the phase 

in which a single relation is being encoded (A:B phase), the BART model was the most effective 

predictor of patterns of neural activity in the superior parietal cortex, a region previously 

associated with relation representation (36, 37)). During the phase in which relations are 

compared to verify whether the analogy is valid (C:D phase), BART was uniquely predictive of 

neural activity in ROIs spanning the frontal and parietal cortices.   

 The present findings support three major conclusions. First, semantic relations have 

distributed representations, primarily coded in subregions of the parietal cortex. Second, the core 

of these distributed representations is based on a relatively small number of abstract relation 

types specified in a theory-based taxonomy (16); thus we are able to draw inferences not only 

about the form of relation representations, but also about their specific content. Third, the 

process of relation representation (A:B phase) can be decoupled from the process of making 

second-order comparisons to solve analogy problems (C:D phase). 

 The fact that similarity measures derived from the BART model yielded stronger and 

more reliable predictions of relational processing—both of individual relations, and of 

comparisons between relations—than did the Word2vec-diff model is consistent with 

computational evidence favoring the former model as an account of human relational judgments 

(21). The relative success of the BART model in predicting patterns of neural activity is directly 

relevant to a debate as to whether or not individual semantic relations have explicit 

representations (for discussion see Ref. (15)). Whereas Word2vec-diff provides only a generic 

and implicit representation of relational similarity (i.e., the difference vector between semantic 
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vectors for two words), BART learns representations of individual semantic relations, which then 

collectively provide an explicit distributed representation of the relations(s) linking any word 

pair. The neural evidence favoring the BART model of relation similarity thus supports the 

hypothesis that the brain encodes semantic relations between words as distributed representations 

across abstract semantic relations, such as synonym, antonym, and cause-effect. By coupling 

computational modeling with analyses of similarity in neural activity, it proved possible to 

resolve theoretical issues that have been debated for the past half century. 

 The present study focused on abstract semantic relations. These are particularly important 

because a pool of abstract relations provides basic elements that can be used to represent more 

specific relations. However, further research will be required to determine the extent to which the 

neural basis for relational reasoning may differ for more concrete semantic and visuospatial 

relations (e.g., inferring that grasping a hammer enables it to be lifted). More generally, future 

studies may benefit from applying the overall strategy of model-guided similarity analyses. This 

approach has the potential to be used to analyze patterns of neural activity underlying semantic 

representations of information units more complex than individual words. Careful task design 

(e.g., presenting a problem in sequential phases) can be used to separate key component 

processes. Alternative computational models can then be used to generate item-level predictions 

of neural similarity, which can be tested by methods such as Representational Similarity 

Analysis.  This research strategy shows promise in decoupling component processes and in 

identifying specific representations underlying high-level reasoning. Future work should aim to 

develop and test well-specified computational models of how propositions and larger knowledge 

units are represented in the brain and used to reason.  

Materials and Methods 
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Participants. Sixteen participants (8 female) were recruited at the University of California, Los 

Angeles (UCLA) through a flyer distributed in the Psychology department.  Participants signed 

informed consent prior to the experimental session, and were paid $50 for their participation in the 

1-hour study, in compliance with the procedures accepted by the local institutional review board 

(IRB). The study was approved, including informed consent procedures, by the UCLA Office of 

the Human Research Protection Program. 

Stimuli. The stimuli were a set of analogy problems constructed from word pairs taken from a 

normed set of examples of abstract relations (22). These norms were in turn based on a linguistic 

taxonomy of semantic relations (16). The full norms include examples of word pairs instantiating 

ten general types of relations, each including five to ten more specific relations, for a total of 79 

distinct relations. For the present study, we focused on three relation types with three specific 

relations drawn from each, for a total of nine relations: similar (synonym, attribute similarity, 

change); contrast (contrary, directional, pseudoantonym); cause-purpose (cause:effect, 

cause:compensatory action, activity:goal).  For each relation, we selected 16 word pairs from 

among the most highly rated (i.e., most prototypical) examples. In making this selection we 

avoided duplicate pairs that were simple reversals (e.g., happy-sad and sad-happy), choosing in 

such cases the pair with the higher typicality rating. Pairs that included conspicuously long or 

low-frequency words were also excluded. Because for some subcategories it proved difficult to 

identify 16 pairs that passed our selection criteria, we also included some pairs that (22) had used 

as “seed” examples to elicit word pairs from humans. These were considered excellent examples 

(most taken from (16). The full list of word pairs is provided in the SI Appendix, Supplemental 

Materials and Methods, Table 4. 
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Using the 144 (16 examples × 9 specific relations) distinct word pairs selected as 

described above, we formed pairs of pairs to create verbal analogy problems in the form A:B :: 

C:D (valid) or else A:B :: C’:D’ (invalid), where all pairs were drawn from the pool of 144. For 

the invalid pairs, the C’:D’ pair was drawn from a different relation type than was A:B. We 

avoided creating invalid items using different specific relations within the same general relation 

type (e.g., specific relations contrary and pseudoantonym, both subtypes of contrast) because 

pilot work suggested that such “near-miss” problems would lead to excessive errors. At the same 

time, C’:D’ pairs always instantiated a natural semantic relation (rather than being semantically 

anomalous), forcing participants to consider the paired relations carefully in judging validity of 

the analogies. 

Counterbalancing was used to create four complete sets of analogy problems. To form an 

individual set, for each of the nine specific relations, eight of the 16 pairs were assigned to the 

A:B role and four to the C:D role. The remaining four pairs were assigned to the C’:D’ role 

associated with A:B pairs for four of the six specific relations representing the two remaining 

general relation types. Assignments to the C:D role were random subject to the above restriction. 

Subject to all of the above restrictions, specific 4-term analogy problems were created by random 

pairing of word pairs. Each set thus consisted of 72 analogy problems (9 specific relations x 8 

problems each). For each specific relation, four problems were valid and four were invalid. 

Within a set of 72 problems, each of the 144 word pairs occurred twice in the A:B role and once 

in each of the C:D and C’:D’ roles. The same procedure was used to create a total of four sets, 

each with 72 problems distributed as described above. Across all four sets, each of the 144 word 

pairs appeared in each role with the same proportions (i.e., twice as often as A:B than as C:D or 

C’D’). The four sets, with a total of 288 problems (4 sets x 72 problems each), were treated as 
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four blocks administered to each participant. The procedure for problem generation ensured that 

any individual analogy problem occurred only once in the set of 288 problems. The order of 

problems was randomized within each block, and the order of the four blocks was 

counterbalanced across participants. The overall aim of this procedure for problem creation was 

to ensure that data analyses could be based on neural patterns associated with each of the 16 

word pairs representing each of the nine specific relations (144 pairs in total), in each of the three 

possible roles (A:B, C:D, C’:D’), while avoiding any confounding between specific pairs and 

roles. Finally, each of these four sets was further split into two sets of 36 for presentation 

convenience.  

Procedure. The experiment was administered using PsychoPy2 (38). On each trial (see Figure 

2), participants were first shown the A:B word pair for 2s, then the C:D pair for 2s (with an 

average .5s jitter in between). The words “yes” or “no” then appeared on the left and right of the 

screen, indicating the assignment of two response buttons used to indicate whether or not the two 

pairs represented the same relation. Critically, the assignment of “yes” and “no” buttons was 

randomly varied, ensuring that participants could not begin planning a motor response during the 

earlier phases of the trial. 

fMRI Data Acquisition. Data were acquired on a 3 Tesla Siemens Prisma Magnetic Resonance 

Imaging (MRI) scanner at the Staglin IMHRO Center for Cognitive Neuroscience at UCLA. 

Structural data were acquired using a T1-weighted sequence (MPRAGE, TR = 1,900 ms, TE = 

2.26 ms, voxel size 1 mm3 isovoxel). Blood oxygenation level dependent (BOLD) data were 

acquired with a T2*-weighted Gradient Recall Echo sequence (TR = 1,000 ms, TE = 37 ms, 60 

interleaved slices (2mm gap), voxel size 2x2x2 mm, 6x multiband acceleration). 
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fMRI Preprocessing. Data preprocessing was carried out using FSL (39). Prior to univariate 

analyses, data underwent preprocessing steps including motion correction, slice-timing 

correction (using Fourier-space time-series phase-shifting), spatial smoothing using a Gaussian 

kernel of 5 mm full-width half-max, and highpass temporal filtering (Gaussian-weighted least-

squares straight line fitting, with s=50.0s). Data from each individual run were analyzed 

employing a univariate general linear model approach (40) inclusive of a pre-whitening 

correction for autocorrelation. 

 Spatial smoothing was omitted from the above preprocessing steps for classification and 

Representational Similarity Analysis in order to preserve spatial heterogeneities. Beta-series (41)  

parameter estimates were derived using the Least Squares-Separate, LS-S approach (42). The 

LS-S algorithm iteratively estimates parameters for each trial using a general linear model 

including a regressor for that trial as well as another regressor for all other trials. 

ROI Selection. For the univariate analysis of neural activity during the C:D phase, we selected a 

number of ROIs associated with relational reasoning within the left lateral frontoparietal network 

based on meta-analyses of studies of relational reasoning (30, 31, 37, 43). These ROIs were 

defined using the Juelich, Sallet, Neubert, and Harvard Oxford atlases in FSL (44). The variety 

of atlases was used so ROIs would be roughly the same size, and so that ROIs would cover 

previously-reported coordinates based on the relevant meta-analyses. ROIs included BA10, 

which was separated into a medial BA10 (BA10m) defined by the Sallet dorsal frontal 

connectivity parcellation, and a lateral BA10 (BA10l) defined by the Neubert ventral frontal 

connectivity parcellation. These two ROIs, together with BA47 (see below), were selected to 

fully cover the area of previously-reported activations in rlPFC. We also selected areas from the 

ventrolateral and dorsolateral PFC, including BA9 (defined using the Sallet frontal connectivity 
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parcellation), BAs 44 and 45 (defined by the Harvard Oxford atlas), and BA 47 (selected using 

the Neubert frontal connectivity parcellation). In the parietal cortex, we used the Juelich 

histological atlas. We created the IPS ROI by taking the union of all IPS subdivisions (37). We 

also selected the superior parietal lobe (SPL 7A), and two subdivisions of the inferior parietal 

lobe (PFm and PGa) corresponding to the angular gyrus (AG) and posterior supramarginal gyrus 

(pSMG). 

Data Availability. Raw and preprocessed NIFTI files, as well as experiment timing files will be 

uploaded to a repository (openfmri.org), and is available from the first author upon request.  

Code Availability. Code for the BART model can be downloaded from 

cvl.psych.ucla.edu/BART2code.zip. Code for the experiment and all custom analyses can be 

found at https://github.com/njchiang/analogy-fmri.  
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