
dropClust2: An R package for resource efficient
analysis of large scale single cell RNA-Seq data
Debajyoti Sinha1,2, Pradyumn Sinha3,+, Ritwik Saha3,+, Sanghamitra Bandyopadhyay1,*,
and Debarka Sengupta4,*

1SyMeC Data Center, Indian statistical Institute, Kolkata, 700108, India
2Department of Computer Science & Engineering, University of Calcutta, Kolkata, 700098, India
3Department of Computer Science & Engineering, Delhi Technological University, Delhi, 110042, India
4Department of Computer Science & Engineering, Department of Computational Biology, Center of Artificial
Intelligence, Indraprastha Institute of Information Technology, New Delhi, 110020, India.
*debarka@iiitd.ac.in; sanghami@isical.ac.in
+these authors contributed equally to this work

ABSTRACT

DropClust leverages Locality Sensitive Hashing (LSH) to speed up clustering of large scale single
cell expression data. It makes ingenious use of structure persevering sampling and modality based
principal component selection to rescue minor cell types. Existing implementation of dropClust involves
interfacing with multiple programming languages viz. R, python and C, hindering seamless installation
and portability. Here we present dropClust2, a complete R package that’s not only fast but also minimally
resource intensive. DropClust2 features a novel batch effect removal algorithm that allows integrative
analysis of single cell RNA-seq (scRNA-seq) datasets.

Availability and implementation: dropClust2 is freely available at
https://debsinha.shinyapps.io/dropClust/ as an online web service and at
https://github.com/debsin/dropClust as an R package.

With the advent of single cell transcriptomics, it is now possible to discern phenotypic diversity
among seemingly similar cells in complex tissues1. Recent development of the Droplet based single
cell sequencing technologies has enabled profiling several thousands of cells at a time2, 3. Large pool of
cells present the opportunity of identifying cell types which are previously unseen due to their limited
presence or rarity4. Clustering of cells is a primary step involved in single cell expression data analysis.
A plethora of techniques exist for this purpose5. Majority of these methods struggle with the typical
sample size of the data produced by droplet-based technologies6. Recently some softwares have been
reported for addressing the issue of scalability. SCANPY7, bigSCale8, DendroSplit9 clusterExperiment10

and dropClust6 are notable among these. The algorithm dropClust was originally designed to attain lower
time complexity while not sacrificing on the clustering accuracy. Here we present dropClust2, a memory
efficient, monolithic implementation of the original dropClust algorithm with improved execution time
and the ability to remove batch effect across datasets, thereby enabling integrative analysis. We hosted
the lightweight implementation of dropClust2 on web allowing, for the first time, online analysis of large
scRNA-Seq data.
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1 dropClust and its limitations
Runtime advantage and accuracy of the dropClust algorithm come largely from the use of Locality Sensitive
Hashing (LSH) and a de nevo Structure Preserving Sampling (SPS) technique respectively. The existing
dropClust software entails various fundamental steps involved in single cell data analysis. These are data
normalization, gene selection, clustering, 2D visualisation of cells and differential expression analysis.
Moreover, dropClust has been demonstrated to be effective in detecting minor cell sub-populations6.

The existing implementation of dropClust suffers from some critical drawbacks, specially with respect
to its usability and resource requirements. The existing implementation of dropClust involves interfacing
with multiple programming languages viz. R, python and C. This hinders seamless installation experience
on the user end. Also, dropClust is unfit for standard PCs, due to its memory requirements.

2 Improvements
As part of the current release, dropClust has been enhanced in the below areas (refer to Figure S1 for the
schematic diagram).

Selection of Principal Components
In the existing version of dropClust, principal components are re-ordered based on the number of Gaussian
mixtures identifiable on the projected data. Bayesian Information Criterion (BIC)11 is used to determine
the number of modes corresponding to each principal component (Supplementary Figure S4-S6). In
practice, Gaussian Mixture Models (GMM) converge slowly. In dropClust2, instead, we use Gaussian
Kernel Density Estimator12 for convolving a non parametric probability density function (density
module in R) for projections on each principal component. Probabilities corresponding to 512 random
points are sampled using this estimator. Further, a cubic spline curve is fitted (smooth.spline module
in R) on these 512 points to obtain a continuous approximation of the density function13. From the
second order derivative of the spline, we record the change in direction of the slope along the curve to
determine the number of modes. This approach causes significant speed-up over the previously used
GMM technique.

Introduce Batch effect removal
DropClust2 is equipped with a novel strategy to mitigate batch effects. Our strategy is based on the
observation that ranks corresponding to expression values are robust to noise and do not require additional
normalisation. However, gene pairs having similar marginal distribution of expression often add noise to
the distance computation since their ranks in the individual transcriptomes get flipped highly inconsistently.
An algorithm is designed to randomly discard one gene out of such pairs. The algorithm details can be
found in the Supplementary Information.

Disambiguation of post-hoc cluster assignment
DropClust pipeline clusters cells in two steps. First, it clusters a small fraction of carefully sub-sampled
(using Structure Preserving Sampling) transcriptomes using hierarchical clustering. The remaining
transcriptomes are assigned cluster identities based on the cluster identities of their nearest neighbors.
In doing so, previously we followed a simple strategy, wherein the frequent most cluster identity, as
represented by the nearest neighbors, was chosen as the identity of a cell that did not participate in
clustering6. This strategy would forcibly assign cluster identity to a cell even when the highest obtained
frequency fails to stand out as a clear majority. To this end, we introduce conf, a user parameter (range
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Figure 1. (a) Snapshot of online application after data upload and clustering. The clustering tab contains
the clustering scatter plot with predicted clusters, The cluster IDs for respective samples can be
downloaded as well. (b) Tab showing the result of differential gene expression analysis. The output
contains the clustering scatter plot highlighting the concentration of a selected gene. Genes can be
selected from a table accompanying the plot. The table enlists the top 25 genes for each cluster and
differential with respect to one-vs-rest basis. (c)-(e) Performance comparison shown on PBMC 68K
dataset across methods - ARI, time and peak memory usage respectively.
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[0,1], default 0.5) that applies a cut-off on minimum expected frequency (fraction of the nearest neighbors)
of the majority class.

R package
Existing dropClust uses python module LSHForest and C module Louvainfor nearest neighbor search
and community detection respectively. We replaced LSHForest with RcppAnnoy, which implements a
significantly faster version of LSH14. C implementation of Louvian was replaced by its R implementation,
as part of the popular igraph R package.

DropClust pipeline performs dispersion based gene selection at an early stage. This step uses R
functionvar through apply, which makes multiple copies of the expression matrix, thus incurring
significant memory footprint. We implemented a custom functionColDispersion in Rcpp that operates
on a single copy of the matrix, thus reducing both memory usage and execution time.

Web-server
We used the Shiny framework to host dropClust2 as a web application accessible through a user friendly
wizard, allowing online analysis of large scRNA-seq datasets, as typically obtained from droplet based
high-throughput technology platforms (Figure 1 (a), Figure 1(b)).

3 Results
Compared to the initial version of the software which took 7 minutes and 20GB of RAM to process a
dataset containing 68K single cell transcriptomes of peripheral blood mononuclear cells (PBMCs,15) , the
improved version takes less than 3 minutes and consumes 3.5GB of RAM. The performance enhancement
is attributable to the below implementation changes.

1. Use of RcppAnnoy R module in lieu of the python version of LSHForest

2. Replacement of the var module with a custom C function (ColDispersion)

3. Substitution of mclust (used for GMM) by a spline based peak determination technique

On this data, we recorded an Adjusted Rand Infex (ARI) of 0.4, in contrast to 0.37 obtained using
the former implementation. For this we bench-marked the cluster identities against cell type annotations
provided by the authors using marker sorted bulk replicates15. DropClust2 outperformed Seurat2 and
SCANPY7 by a large margin (Figure 1 (c)-(e)).

Supplementary Figure S3 demonstrates the advantage of batch effect removal on a cohort of ∼6K
PBMC transcriptomes supplied from two independent experiments.
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