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Back in 2012, Churchland and his colleagues proposed that “rotational dynamics”, uncovered through 
linear transformations of multidimensional neuronal data, represents a fundamental type of neuronal 
population processing in a variety of organisms, from the isolated leech central nervous system to the 
primate motor cortex. Here, we evaluated this claim using Churchland’s own data and simple 
simulations of neuronal responses. We observed that rotational patterns occurred in neuronal 
populations when (1) there was a temporal shift in peak firing rates exhibited by individual neurons, 
and (2) the temporal sequence of peak rates remained consistent across different experimental 
conditions. Provided that such a temporal order of peak firing rates existed, rotational patterns could 
be easily obtained using a rather arbitrary computer simulation of neural activity; no special provisions 
were needed for modeling motor cortical responses. Additionally, arbitrary traces, such as Lissajous 
curves, could be easily obtained from Churchland’s data with multiple linear regression. While these 
observations suggest that “rotational dynamics” depict an orderly activation of different neurons in a 
population, we express doubt about Churchland et al.’s exaggerated assessment that this activity 
pattern is related to “an unexpected yet surprisingly simple structure in the population response” which 
“explains many of the confusing features of individual neural responses.” Instead, we argue that their 
rotational dynamics approach provides little, if any, insight on the underlying neuronal mechanisms 
employed by neuronal ensembles to encode motor behaviors in any species. 

 

Introduction 
It is well known that individual neurons in 

cortical motor areas transiently modulate their 
firing rates following a stimulus that triggers the 
production of a voluntary movement (Evarts 
1972).  These neuronal modulations have been 
shown to represent various motor parameters, 
for example movement direction 
(Georgopoulos, Kalaska et al. 1982), although 
the specifics of these representations are still a 
matter of debate (Georgopoulos, Ashe et al. 
1992, Kakei, Hoffman et al. 1999, Zhuang, 
Lebedev et al. 2014). With the development of 
multichannel recordings (Nicolelis, Dimitrov et 
al. 2003, Schwarz, Lebedev et al. 2014), it has 
become possible to study modulations recorded 
in multiple cortical neurons simultaneously. This 
methodological advance led to many studies 
attempting to uncover how neuronal 
populations process information  (Chapin and 
Nicolelis 1999, Laubach, Shuler et al. 1999, 

Averbeck and Lee 2004, Nicolelis and Lebedev 
2009).  

Among the studies on motor and premotor 
cortical neuronal populations, one paper by 
Churchland and his colleagues (Churchland, 
Cunningham et al. 2012) became especially 
popular. In their work, Churchland et al. claimed 
to have discovered a unique property of cortical 
population activity that they called “rotational 
dynamics.” Their analysis is based on the idea 
that motor cortical activity could be modeled as 
a dynamical system: 

𝑋̇ = 𝑀𝑠𝑘𝑒𝑤𝑋   (1) 
where 𝑋 is a multidimensional vector 

representing neuronal population activity, 𝑋̇ is 
its time derivative and 𝑀𝑠𝑘𝑒𝑤  is the transform 
matrix. 𝑀𝑠𝑘𝑒𝑤  has imaginary eigenvalues, which 

means that the vector 𝑋̇ is turned 90 degrees 
relative to 𝑋 (Figure 1A) because 𝑋 rotates 
(Garfinkel, Shevtsov et al. 2017).  In the analysis 
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of Churchland et al., vector 𝑋 is produced from 
the activity of neuronal populations by the 
application of principal component analysis 
(PCA). The first six principal components (PCs) 
are selected to avoid overfitting that could take 
place with a larger number of dimensions. 
Hence, 𝑋 is six-dimensional.  Next, a method 
called jPCA is applied to compute 𝑀𝑠𝑘𝑒𝑤  and the 
corresponding eigenvectors. Churchland et al. 
projected PC data to the plane defined by the 
first two most prominent rotational 
components generated with jPCA and obtained 
convincing looking figures, where population 
responses rotated in the same direction for 
different experimental conditions (Figure 1B).  

According to the interpretation of 
Churchland et al., “rotational dynamics” are a 
fundamental feature of population activity in 
the motor and premotor cortical areas and a 
proof that motor cortical populations act as a 
dynamical system rather than representing 
various motor parameters by their firing. They 
called the rotational effect an “orderly 
rotational structure, across conditions, at the 
population level”, a “brief but strong oscillatory 
component, something quite unexpected for a 
non-periodic behavior”, and “not trivial” 
observations that are “largely expected for a 

neural dynamical system that generates 
rhythmic output.” 

While this proposal has merits, we found 
the results of Churchland et al. difficult to 
comprehend because of the lack of clarity 
regarding the concrete neuronal patterns 
contributing to the rotations revealed by jPCA. 
For example, they suggested that “motor cortex 
responses reflect the evolution of a neural 
dynamical system, starting at an initial state set 
by preparatory activity […]. If the rotations of 
the neural state […] reflect straightforward 
dynamics, then similar rotations should be seen 
for all conditions. In particular, the neural state 
should rotate in the same direction for all 
conditions, even when reaches are in 
opposition” – a statement that is hard to 
understand. Particularly, it is unclear what 
“straightforward dynamics” are and why it 
imposes the same rotational patterns on all 
conditions. The major obstacle to understanding 
the proposal of Churchland et al. is the absence 
of a clear explanation of how individual neurons 
and/or their populations contribute to the 
rotational patterns revealed by jPCA. 

To eliminate this gap in understanding, we 
reanalyzed some of the data that Churchland et 
al. made available online. We applied perievent 
time histograms (PETHs), a basic method for 

Figure 1. Rotation in a multidimensional neuronal space. A: Schematics of “rotational dynamics”, where there 

is an angle between the neuronal vector, 𝑋, and its time derivative, 𝑋̇, meaning that 𝑋 is turning. In jPCA 
proposed by Churchland et al. (2012), is 𝑋 is formed by the first six PC of the population activity. B: Application 
of jPCA to neuronal data. Curves represent experimental conditions, where a monkey performed armed 
reaching with different trajectories. The color of the curves (red, green, black) corresponds to different levels 
of premovement activity. 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 2, 2019. ; https://doi.org/10.1101/597419doi: bioRxiv preprint 

https://doi.org/10.1101/597419
http://creativecommons.org/licenses/by/4.0/


 3 

displaying neuronal data, to find the underlying 
cause for the “rotational dynamics.” Next, we 
ran simple simulations to verify our findings. 
Based on our results, we found the 
interpretation offered by Churchland et al. 
highly overstated and overreaching. Even 
though the “rotational dynamics” appear to 
represent a certain temporal order in which 
different cortical neurons are activated during a 
behavioral task, and which is consistent across 
conditions, we are not convinced that this 
observation could significantly “help transcend 
the controversy over what single neurons in 
motor cortex code or represent,” as stated by 
Churchland and his colleagues. 

 

Results 
Rotation in a multidimensional neuronal 

space could be thought of as a process where 
individual neurons are activated in a certain 
order, which results in the neuronal vector 𝑋 
changing orientation (Figure 1A). Such a pattern 
can be also described as a phase shift between 
the responses of different neurons. Consider the 
simplest case of a population that consists of 
two neurons where the activity of the first 
neuron is a sine function of time and activity of 
the second neuron is a cosine. Since the phase 
shift between the responses of these neurons is 
90 degrees, a two-dimensional plot with the 
firing rates of these neurons on the axes 
produces circular or elliptical trajectories. This 

Figure 2. Time spread in peak firing rates of different neurons in the data provided by Churchland et al. 
(2012). A-D: Color-coded population PETHs for four representative conditions. Horizontal lines represent PETHs 
for individual neurons. E: PETHs averaged across conditions. From top to bottom: neurons are ordered by the 
time of peak firing rate, from the earliest activated neurons to the latest. The same order is used in A-D, F and 
G. The neuronal population was dived into three subpopulations: early (neurons 1-73), intermediate (74-146), 
and late (147-218). F: A scatterplot showing the times of peak firing rates for different neurons and conditions. 
Peak times are represented by dots. G: Pairwise correlation between the activity patterns of different neurons. 
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type of trajectory is observed for all conditions if 
the phase shift between the neurons persists.  

 Following this logic, we hypothesized that 
the data of Churchland et al. contained phase 
shifts between the neurons, which remained 
consistent across conditions. To test this 
hypothesis, we analyzed their data using the 
traditional PETH method. The dataset included 
PETHs of 218 neurons calculated for 108 
experimental conditions. Each condition 
corresponded to a monkey performing a 
reaching movement with a straight or 
convoluted trajectory. We simply stacked these 
PETHs to produce population color plots for 
different conditions (Figure 2A-D). Additionally, 
we averaged the PETHs across all conditions to 
obtain average responses for each neuron 
(Figure 2E). For the average PETHs, we 
calculated peak values and reordered the 
neurons according to the value of the time when 
each neuron reached its peak firing rate. In the 

color plot showing the average PETHs (Figure 
2E), PETHs of the neurons activated early are 
plotted at the top and PETHs of the neurons 
activated late are plotted at the bottom, which 
results in a clear display of an activity wave 
running across the neurons in the population. 
Exactly the same reordering was applied to the 
PETHs for the individual conditions (Figure 2A-
D). In the PETHs for individual conditions, the 
temporal order of responses persisted with 
some jitter (e.g., compare panels A, B, C and D in 
Figure 2). The same sequence of responses is 
also clear in the scatterplot that displays the 
time of peak response for different conditions 
and different neurons (Figure 2F). Additionally, 
pairwise correlations are strong for the neurons 
with similar occurrences of response and weak 
(or negative) for the neurons with dissimilar 
occurrences (Figure 2G). Thus, the PETH analysis 
showed that in Churchland’s data neurons 
responded in a certain temporal order, and this 

Figure 3. “Rotational dynamics” revealed by splitting neuronal population into the early, intermediate and 
late activated subpopulations. A: Average PETHs for the three subpopulations, for different experimental 
conditions. The composition of the subpopulations is shown in Figure 2E. Color coding of the traces is the same 
as in Figure 1B. B: Average PETHs for the shuffled-conditions data. C,D: “Rotational dynamics” shown as three-
dimensional plots with the axes representing average PETHs for different subpopulations. Original (C) and 
shuffled (D) datasets are shown. 
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order persisted even when the monkey altered 
the way it performed a reaching movement. 

To further illustrate how the activation 
order of different neurons contributed to a 
population rotational pattern, we split the entire 
neuronal population into three subpopulations: 
neurons with early peaks (ranks 1-73), 
intermediate peaks (74-146), and late peaks 
(147-218) (Figure 2E). Next, we calculated 
average PETHs for each subpopulation and for 
each experimental condition (Figure 3A). As 
expected, this plot revealed three groups of 
PETHs (early-peak, intermediate-peak and late-
peak) whose shapes did not change substantially 
across conditions. Plotting these PETHs in a 
three-dimensional space (where dimensions 
corresponded to the subpopulations) yielded a 
family of curved trace (Figure 3C) that 
resembled the circles obtained with jPCA (Figure 
1B). As an additional control, we randomly 
shuffled conditions for each neuron and plotted 
the curves for the shuffled data (Figure 3B,D). 
Both the average PETHs for the subpopulations 

(Figure 3B) and the three-dimensional plot 
(Figure 3D) were little affected by the shuffling 
procedure, which confirmed that the activation 
order of the neurons was approximately the 
same for different conditions. 

To further clarify the origin of the rotational 
patterns, we calculated the initial three PCs for 
the data of Churchland et al. and plotted them 
as a three-dimensional plot (Figure 4A). The PC 
traces were clearly curved. Additionally, distinct 
clusters of conditions were visible in the plots, 
each of them containing several traces that had 
similar shapes. The clusters started from 
approximately the same point but separated 
toward the end of the trial. Despite the 
differences between the clusters, they rotated 
in approximately the same fashion (e.g., in the 
plane defined by the first and second PCs). Thus, 
“rotational dynamics” were clearly visible even 
before the application of jPCA. As to JPCA, it also 
yielded several clusters of circles (Figure 4C). 
Rotations were also present after experimental 
conditions were randomly shuffled for each 

Figure 4. Rotations of principal components. A: The first three PCs plotted as a three-dimensional plot. Color 
conventions as in Figure 1B. B: PCs for the data with shuffled conditions. C: jPCA results for the data in A. D: 
jPCA results for the data in B. 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 2, 2019. ; https://doi.org/10.1101/597419doi: bioRxiv preprint 

https://doi.org/10.1101/597419
http://creativecommons.org/licenses/by/4.0/


 6 

neuron. The PC traces for the shuffled data were 
clearly curved, although the condition-specific 
clusters were removed by the shuffling 
procedure (Figure 4B). Yet, jPCA failed to detect 
this curvature and returned noisy traces (Figure 
4D) because the algorithm operated on the ill-
conditioned data (Golub and Van Loan 2012) 
produced from very similar entries for different 
conditions. (The same problem occurs, for 
example, for simulated neurons with half of the 
neurons with a sine-shaped response and the 
other half with a cosine-shaped. Although this is 
an obvious case of “rotational dynamics,” 
because of the data being ill-conditioned, the 
jPCA algorithm fails to produce circles. This 
problem can be handled by shifting the 
responses of simulated neurons in time for 
different conditions; see below.)  

Having established that neurons were 
activated in consistent temporal order in 
Churchland’s data, we examined this effect 
further using a simulation of population activity. 
The simulation was very simple and did not 
incorporate any specific features of motor 
cortical responses. For example, simulated 
neurons were not directionally tuned and 
instead each of them exhibited random 
amplitude of response for different conditions. 
Because of this randomness, response 
amplitude was not correlated in any pair of 
neurons. The only nonrandom pattern that we 
simulated was the presence of a sequence of 
responses in different neurons. The shape of 
simulated PETHs was a Gaussian function with 
an amplitude drawn from a uniform distribution 
(Figure 5). We simulated 208 neurons and 108 
conditions to match Churchland’s data. 

We started with a simulation, where the 
responses of different neurons were shifted in 
time: neuron i responded 10 ms later than 
neuron i-1 (Figure 6A). This simulation produced 
a wave of activity running through the neuronal 
population. Since the neuronal patterns were 
very similar for different conditions, the data 
was ill-conditioned, and jPCA analysis returned 
noise (Figure 6B) even though the input data 
contained the major ingredient of “rotational 
dynamics.” The problem of ill-conditioning could 
be easily solved by introducing some variability 
to the conditions. We simulated two groups of 
conditions: for conditions 1-54, the first neuron 
exhibited peak activity at time t = 50ms, and for 
conditions 55-108 the time of its peak activity 
was t = 200ms (Figure 6C). The structure of the 
activity wave (i.e. the rule that neuron i 
responded 10 ms later than neuron i-1) was the 
same for both groups of trials. Such groups of 
trials would occur if a monkey on some trials 
waited for an additional 150 ms before initiating 
the movement. This slight alteration of the data, 
which did not change the structure of the 
population response, was sufficient for jPCA to 
start generating circles (Figure 6D). We also 
simulated three groups of conditions, where the 
first neuron’s peak rate occurred at 50, 150 and 
200 ms for the first, second and third groups, 
respectively (Figure 6E). The structure of the 
population wave was the same for all three 
groups. In this case, again, jPCA returned circles 
(Figure 6F). 

To verify that a temporal sequence of 
activation was necessary for the rotation 
pattern to occur, we simulated neuronal 
populations without any spread in peak activity 
times (Figure 7). The shapes of neuronal 
responses were the same as in the previous 
simulation (Figure 5). In this case, jPCA failed to 
generate circles (Figure 7B) even when three 
groups of conditions were simulated with 
shifted activity onsets (Figure 7A). 

Mathematically, the method proposed by 
Churchland et al. consists of fitting the 
population activity vector to its first derivative 
(equation 1) with the goal of extracting a 
rotational structure. We asked if this goal could 
be achieved with a more direct approach. In this 
analysis, we utilized multiple linear regression to 
fit neuronal data to a circle: 

𝑥 = cos
2𝜋t

T
;  𝑦 = sin

2𝜋t

T
  (2) 

or to the Lissajous curve shaped as ∞: 

𝑥 = cos
2𝜋t

T
;  𝑦 = sin

4𝜋t

T
  (3) 

where t is time and T is trial duration. The 
regression worked well for both shapes (Figure 

Figure 5. Simulated responses for an individual 
neuron. Neuronal responses were simulated 
using a Gaussian function. Response amplitude 
was randomly drawn from a uniform distribution 
(in the interval 0.2-1.2). 
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8A,B), and it even generalized to new conditions, 
as evident from the analysis where half of the 
data were used for training the regression 
model and the other half for generating 
predictions (Figure 8C,D). The shuffled data 
could be fit to the Lissajous curves, as well 
(Figure 8E-H), although the prediction of ∞ was 
very noisy (Figure 8H). 
 

Discussion 
To clarify the neurophysiological 

significance of “rotational dynamics,” we have 
conducted additional analyses of Churchland’s 

data and performed simple simulations. In the 
original dataset, we discovered a temporal order 
in which the neurons were activated and found 
that this order was relatively consistent across 
conditions. We suggest that this is a useful 
observation that has not been described in 
sufficient detail in the original article of 
Churchland et al. We also suggest that it would 
be useful to add a simple PETHs analysis to any 
paper that employs jPCA to study “rotational 
dynamics.” In particular, a PETH analysis would 
be helpful to add substance to any claim like the 
“rotational dynamics” persist even though 

Figure 6. Simulated population responses with a time spread of peak firing rates. A: PETHs for a simulated 
wave of population activity, where response of neuron i occurs 10 ms later than response of neuron i-1. B: jPCA 
results for the data in A. C: The same population wave as in A with an early onset for conditions1-54 and late 
onset for conditions 55-108. D: jPCA results for the data in C. E: The same population wave as in A and C with 
three different onsets for conditions 1-36, 37-72 and 73-108. F: jPCA results for the data in E. 
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motor-related patterns are different across 
condition. 

The existence of a temporal spread in 
neuronal peak rates (or response latencies) has 
been documented in the literature. For example, 
Figure 7 in Georgopoulos et al. (Georgopoulos, 
Kalaska et al. 1982) shows a distribution of the 
times of onset of the first increase in discharge 
in motor cortical neurons for center-out arm 
reaching movements performed by a monkey. 
The onsets were calculated for the neurons’ 
preferred directions and ranged -300 to 500 ms 
relative to movement initiation time. In a more 
recent paper (Ifft, Lebedev et al. 2011), we have 
demonstrated such a spread for simultaneously 
recorded populations of neurons recorded in 
the motor and primary somatosensory cortical 
areas. It may be true that no previous paper 
focused on the consistency of neuronal 
activation order for a range of movements. Yet, 
there is no emphasis of this result in 
Churchland’s paper. Instead, the authors 
described the rotational patterns as a 
population phenomenon that persisted despite 
a high variability of neuronal responses. The 
temporal order in which different neurons 
respond during a motor task could be related to 
serial information processing. In this respect, it 
would be interesting to compare peak activity 
times for different cortical locations, for 
example in the motor cortex versus premotor 
cortex. Orderly activity onsets have been 
reported for different cortical areas. For 
example, de Lafuente and Romo (2006) 

reported that a wave of neuronal activity 
travelled from the somatosensory cortex to the 
premotor cortical areas when monkeys 
performed a task that required perceptual 
judgment of a tactile stimulus. Possibly, such an 
activity transfer could be found for neuronal 
populations confined to a single cortical area. 
Waves of activity similar to those shown in 
Figure 2E-F can be found in many other 
publications (Luczak, Barthó et al. 2007, Gage, 
Stoetzner et al. 2010, Peyrache, Benchenane et 
al. 2010, Kvitsiani, Ranade et al. 2013, Bulkin, 
Law et al. 2016). 

Even though the rotational patterns 
reported by Churchland et al. appear to be 
related to a certain temporal structure of 
neuronal responses, we question that they 
provide a strong evidence in favor of the 
dynamical-system model of motor cortical 
processing. Indeed, such a temporal structure 
could occur for a variety of reasons. For 
instance, early activated neurons could be 
involved with the processing of sensory 
information leading to movements, whereas the 
later activated neurons could handle motor 
execution and even reward representation. 
Calling the neuronal processing chain a 
“dynamical system” adds a definition but does 
not really solve the issues related to the 
mechanisms of neuronal information processing 
and the representation of different motor 
parameters.  

Rotational patterns could be obtained with 
little effort using simple and quite arbitrary 

Figure 7. Simulated population responses without a time spread of peak firing rates. A: PETHs with different 
response onsets for conditions 1-36, 37-72 and 73-108. For each group of conditions, peak responses of 
different neurons were not spread in time. B: jPCA results for the data in A. 
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simulations that did not mimic any important 
property of motor cortical activity, such as 
directional tuning. It was sufficient for the 
simulated neurons to respond in a certain 
temporal sequence for “rotational dynamics” to 
occur. This observation suggests that the 
existence of rotation tells us very little about the 

function of motor cortical areas. Instead, jPCA 
appears to be just a way to illustrate the 
presence of phase shifts between the responses 
of different neurons rather than a method that 
provides insights to the underlying 
neurophysiological mechanisms ruling the 
function of the motor cortex. 

Figure 8. Fitting population data to Lissajous curves. A: Fitting to a circle. B: Fitting to the curve shaped as ∞. 
C: Prediction of a circle. Half of the conditions were used to train the regression model; the other half to 
generate prediction. D: Prediction of the ∞ shape. E-H: Fitting and predicting for the data with shuffled 
conditions. 
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Mathematically, Churchland’s method to 
produce a rotating pattern from neuronal PETHs 
can be described as linear transformation with a 
certain number of free parameters. With a 
sufficient number of free parameters, multiple 
linear regression can yield practically any 
desired curve (Babyak 2004). For example, when 
we applied a multiple linear regression to 
Churchland’s data, we easily produced a variety 
of Lissajous curves. This transformation even 
generalized from the training dataset (half of the 
conditions) to new data in the test dataset (the 
other half) (Figure 8). Evidently, no one would 
claim that any of these curves represents a 
physiologically meaningful neural population 
mechanism, although we used a linear 
transformation very similar to the one 
Churchland and his colleagues employed to 
generate their curves.  

Altogether, our results challenge the 
conclusions of Churchland and his colleagues. 
Clearly, their effects simply reflect what one 
should expect by applying a linear 
transformation, such as PCA, to reduce the 
dimensionality of large-dimension data and then 
adjusting the resulting components to a new 
basis that reproduces a desired behavior (in this 
case rotation). PCA (Chapin and Nicolelis 1999) 
and independent component analysis (Laubach, 
Shuler et al. 1999) were introduced twenty years 
ago by our group to extract correlated neuronal 
patterns and reduce dimensionality of neuronal-
ensemble data. While the findings of Churchland 
and his colleagues can be viewed as an 
extension of this approach and a method to 
produce a visually appealing phase plot, we 
doubt that they have discovered any new 
neurophysiological mechanism, as claimed in 
their article. Indeed, the mere fact that neurons 
in a population respond at different times with 
respect to a go-cue tells very little about the 
function of these responses and does not 
discard any of the previously proposed 
representational interpretations, such as the 
suggestion that neuronal populations perform a 
sensorimotor transformation (Georgopoulos, 
Lurito et al. 1989, Kalaska 1991, Kakei, Hoffman 
et al. 2003) or handle specific motor parameters 
(Georgopoulos, Kalaska et al. 1982, 
Georgopoulos, Ashe et al. 1992, Kakei, Hoffman 
et al. 1999, Zhuang, Lebedev et al. 2014). 
Cortical activity is certainly dynamical in the 
sense that neuronal rates change in time, but 
understanding this dynamic requires a much 
more thorough analysis than the method 
proposed by Churchland et al. 
 

Methods 
The data (single units and good multiunits 

recorded in monkey N; the data used to 
construct Fig. 3f of Churchland et a.) and 
MATLAB scripts were obtained from Churchland 
lab’s online depository 
(https://www.dropbox.com/sh/2q3m5fqfscwf9
5j/AAC3WV90hHdBgz0Np4RAKJpYa?dl=0). The 
dataset contained PETHs for each neuron and 
each condition. We used the following 
commands to run Churchland’s code: 

   times = -50:10:550;      (4) 

   jPCA_params.numPCs = 6; 
   [Projection,Summary]=jPCA(Data,times, jPCA_params); 

This corresponds to the time range -50 to 
550ms and six PCs entered in jPCA. 

To produce the plots shown in Figure 2A-D, 
we stacked Churchland’s PETHs together, and 
Figure 2E shows PETHs averaged across 
conditions. The average PETHs were used to find 
peak firing rates and the time of their 
occurrences. PETHs of Figure 2A-E were sorted 
according to the sequence of these peaks of the 
average PETHs. To improve the display of phase 
shifts between the neurons, PETHs of Figure 2A-
E were normalized by subtracting the mean and 
dividing by the peak PETH value. This 
normalization was used only for plotting the 
graphs of Figure 2A-E but not for calculating 
average PETHs for individual neurons (Figure 2E) 
or neuronal subpopulations (Figure 3). 

In the PCA analysis (Figure 4), we 
standardized PETHs for each neuron by 
subtracting the overall mean (i.e., average for all 
conditions combined) and dividing by the overall 
standard deviation (again, for all conditions 
combined). 

Simulated PETHs (Figure 5) were computed 
in MATLAB as: 
   PETH = exp(-(times-tau).^2/50)*(0.2+rand(1)); (5) 
where the time shift, tau, was selected to 
produce 10-ms increments of the delay for the 
neurons in the sequence (Figure 6). Neither the 
width of the response not the amplitude 
(uniformly distributed from 0.2 to 1.2 in 
equation 5) were critical for the rotations to 
occur. However, to cope with the ill-
conditioning of the population responses highly 
correlated across conditions, it was important to 
introduce temporal variability to the simulated 
PETHs. This was done by offsetting tau for all 
neurons by the same amount of time for several 
groups of conditions (Figure 6C,D). 

Multiple linear regressions (Figure 8) were 
implemented in MATLAB (regress function). 
Here, neuronal activity was transformed into 
Lissajous curves. Fitting (Figure 8A,B,E,F) was 
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conducted by using the same conditions as the 
training and test data. Predictions (Figure 
8C,D,G,H) were computed by using half of the 
trials to train the regression model and the other 
half to test. 
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