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Abstract11

Traditional univariate genome-wide association studies generate false positives and negatives due to dif-12

ficulties distinguishing causal variants from “interactive” variants (i.e., variants correlated with causal13

variants without directly influencing the trait). Recent efforts have been directed at identifying gene or14

pathway associations, but these are often computationally costly and hampered by strict model assump-15

tions. Here, we present gene-ε, a new approach for identifying statistical associations between sets of16

variants and quantitative traits. Our key innovation is a recalibration of the genome-wide null model17

to include small-yet-nonzero associations emitted by interactive variants, which we refer to as “epsilon-18

genic” effects. gene-ε efficiently identifies core genes under a variety of simulated genetic architectures,19

achieving up to ∼90% true positive rate at 1% false positive rate for polygenic traits. Lastly, we apply20

gene-ε to summary statistics derived from six quantitative traits using European-ancestry individuals in21

the UK Biobank, and identify gene sets that are enriched in biological relevant pathways.22

Introduction23

Over the last decade, there has been considerable debate surrounding whether genome-wide single-24

nucleotide polymorphism (SNP) genotype data can offer insight into the genetic architecture of complex25

traits [1–5]. Although the traditional genome-wide association (GWA) framework, in which individual26

SNPs are tested independently for association with a trait of interest, has largely been regarded as a27

failure when applied to complex traits [2,3,6], recent approaches that combine SNPs within a region have28

gained power to detect biologically relevant genes and pathways enriched for correlations with complex29

traits [7–14]. Reconciling these two observations is crucial for biomedical genomics.30

In the traditional GWA model, each SNP is assumed to either (i) directly influence (or perfectly tag31

a variant that directly influences) the trait of interest, which we refer to as “causal”; or (ii) be non-causal32

(see Fig. 1a). This classification is based on ordinary least squares (OLS) effect size estimates β̂j for each33

j-th SNP in a regression framework, where the null hypothesis assumes no association for non-causal34

SNPs (H0 : βj = 0). The traditional GWA model is agnostic to trait architecture, and is underpowered35

with a high false-positive rate for “polygenic” traits or traits which are generated by many mutations of36

small effect [5, 15–17].37

Suppose instead that each SNP in a GWA dataset in truth belongs to one of three categories: (i)38

causal; (ii) statistically associated with the trait but not causal, which we refer to as “interactive”; and39

(iii) non-causal (Fig. 1b) [18]. As Boyle et al. [4] noted in their recent “omnigenic” model of complex40

traits, causal SNPs lie in core genes that directly influence the trait of interest, while interactive SNPs may41

lie in core genes or covary with causal SNPs due to various degrees of linkage disequilibrium (LD), spurious42
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correlations, or through trans-interactions [19]. For complex traits under the omnigenic model (Fig. 1b),43

interactive SNPs will emit intermediate statistical noise (in some cases, even appearing indistinguishable44

from causal SNPs), thereby confounding traditional GWA tests. We refer to this noise as “epsilon-genic45

effects” (denoted hereafter as “ε-genic effects”).46

Here, we develop a new and scalable quantitative approach for testing aggregated sets of SNP-level
GWA summary statistics. In practice, our approach can be applied to any user-specified set of genomic
regions, such as regulatory elements, intergenic regions, or gene sets; in this study, for simplicity, we refer
to our method as a gene-level test. The key motivation for our approaches is that gene-level association
tests should treat interactive SNPs with ε-genic effects as non-causal. Conceptually, this requires assessing
whether a given SNP explains more than an “epsilon” proportion of narrow-sense heritability, h2. In this
generalized model, we assume a modified null hypothesis of approximately no association for interactive
and non-causal SNPs (H0 : βj ≈ 0) and

β̃ ∼ N (0, Σ̃), Σ̃jj = σ2
j , Σ̃jl = σjρ(xj ,xl)σl, (1)

where ρ denotes the correlation coefficient between the j-th and l-th SNPs, and σ2
j denotes the proportion47

of h2 contributed by j-th SNP (with the constraint
∑
σ2
j = h2). Equivalently, we can restate this same48

hypothesis testing framework using the variance-component-based null hypothesis H0 : σ2
j ≤ σ2, where σ2

49

represents the maximum proportion-of-variance-explained (PVE) that is explained by an interactive or50

non-causal SNP (Fig. 1b). Non-core genes are then defined as genes that only contain SNPs with ε-genic51

effects (i.e. 0 ≤ σ2
j ≤ σ2 for every j-th SNP in that region). Core genes, on the other hand, are genes that52

contain at least one causal SNP (i.e. σ2
j > σ2 for at least one SNP j in that region). By modeling ε-genic53

effects (i.e., different values of σ2 for interactive SNPs), our approach flexibly constructs an appropriate54

null hypothesis for a wide range of traits with genetic architectures that land anywhere on the polygenic55

to omnigenic spectrum (see Methods).56

We refer to our gene-level association framework as “gene-ε” (pronounced “genie”). gene-ε lowers57

false positive rates and increases power for identifying gene-level associations from GWA studies via two58

key conceptual insights. First, gene-ε regularizes observed (inflated) GWA summary statistics so that59

SNP-level effect size estimates are positively correlated with the assumed generative model of complex60

traits. Second, it examines the distribution of regularized effect sizes to determine the ε-genic threshold61

σ2 of interactive and non-causal SNPs. This makes for an improved hypothesis testing strategy for62

identifying core genes associated with complex traits. With detailed simulations, we assess the power of63

gene-ε to identify core genes under a variety of genetic architectures, and compare its performance against64

multiple competing approaches [7, 12, 14]. We also apply gene-ε to the SNP-level summary statistics of65

six quantitative traits assayed in individuals of European ancestry from the UK Biobank [20].66

Results67

Overview of gene-ε68

The gene-ε framework requires two inputs: GWA SNP-level effect size estimates, and an empirical linkage69

disequilibrium (LD, or variance-covariance) matrix. The LD matrix can be estimated directly from70

genotype data, or from an ancestry-matched set of samples if genotype data are not available to the71

user. We use these inputs to both estimate gene-level contributions to narrow-sense heritability h2, and72

perform gene-level association tests. After preparing the input data, there are three steps implemented73

in gene-ε, which are detailed below (Fig. 2).74

First, we shrink the GWA effect size estimators via regularized regression (Figs. 2a,b; Equation 575

in Methods). This shrinkage step reduces the inflation of effect sizes for SNPs covarying with causal76

SNPs [21], and increases their correlation with the assumed generative model for the trait of interest77
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(particularly for traits with high heritability; Supplementary Fig. 1). When assessing the performance78

of gene-ε in simulations, we considered different types of regularization for the effect size estimates: the79

Least Absolute Shrinkage And Selection Operator (gene-ε-LASSO) [22], the Elastic Net solution (gene-80

ε-EN) [23], and Ridge Regression (gene-ε-RR) [24]. We also assessed our framework using the observed81

ordinary least squares (OLS) estimates without any shrinkage (gene-ε-OLS) to serve as motivation for82

having regularization as a step in the framework.83

Second, we fit a K-mixture Gaussian model to the regularized effect sizes with the goal of classifying84

SNPs as causal, intermediate, or non-causal. Each successive Gaussian mixture component has distinc-85

tively smaller variances (σ2
1 > · · · > σ2

K) with the K-th component fixed at σ2
K = 0. In this study,86

causal SNPs are assumed to be in the first mixture component with the largest variance σ2
1 , while non-87

causal SNPs appear in the last component σ2
K . By definition, SNPs with ε-genic effects then have PVEs88

that fall at or below the variance of the second component (i.e., σ2
j ≤ σ2

2 for the j-th SNP). Figs. 1b89

and 2c illustrate this concept with a three-component mixture model (see also [18]). Intuitively, the90

intermediate mixture components may represent varying degrees of connectivity to core genes via LD or91

trans-interactions. Thus, gene-ε allows for flexibility in the number of Gaussians that specify the range92

of null and non-null SNP effects. For scalability, we estimate parameters of the K-mixture model using93

an expectation-maximization (EM) algorithm.94

Third, we group the regularized GWA summary statistics according to gene boundaries (or user-95

specified regions) and compute a gene-level association statistic using a quadratic form (Fig. 2d). In96

expectation, these test statistics can be naturally interpreted as the contribution of each gene to the97

narrow-sense heritability. We use Imhof’s method [25] to derive a P -value for assessing evidence in98

support of an association between a given gene and the trait of interest. Details for each of these steps99

can be found in Methods and Supplementary Note.100

Performance Comparisons in Simulation Studies101

To assess the performance of gene-ε, we simulated complex traits under multiple genetic architectures102

using real genotype data on chromosome 19 from individuals of European ancestry in the UK Biobank103

(Methods). Following quality control procedures, our simulations included 11,263 SNPs distributed across104

1,303 genes (Supplementary Note). We assumed a linear additive model for quantitative traits, while105

varying the following parameters: sample size (N = 5, 000 or 10,000); narrow-sense heritability (h2 = 0.2106

or 0.6); the percentage of core genes (set to 1% or 10%); and number of causal intergenic SNPs (drawn107

uniformly from {5, 15, 30}). In each scenario, we considered traits being generated with and without108

additional population structure. In the latter setting, traits are simulated while also using the top five109

principal components of the genotype matrix as covariates to create stratification. Regardless of the110

setting, GWA summary statistics were computed by fitting a single-SNP univariate linear model (via111

OLS) without any control for population structure. Comparisons are based on 100 different simulated112

runs for each parameter combination.113

We compared the performance of gene-ε against that of three competing gene-level association or114

enrichment methods: VEGAS [7], PEGASUS [12], and RSS [14]. As previously noted, we also explored115

the performance of gene-ε while using various degrees of regularization on effect size estimates, with gene-116

ε-OLS being treated as a baseline. Both VEGAS and PEGASUS are frequentist approaches, in which117

SNP-level GWA P -values are drawn from a correlated chi-squared distribution with covariance estimated118

using an empirical LD matrix [26]. RSS is a Bayesian model-based enrichment method which places a119

likelihood on the observed SNP-level GWA effect sizes (using their standard errors and LD estimates),120

and assumes a spike-and-slab shrinkage prior on the true SNP effects [27]. Conceptually, VEGAS and121

PEGASUS assume null models under the traditional GWA framework, while RSS and gene-ε allow for122

traits to also have omnigenic architectures.123

For all methods, we assess the power and false discovery rates (FDR) for identifying core genes at a124

Bonferroni-corrected or median probability threshold (P = 0.05/1303 genes = 3.83 × 10−5 or posterior125
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enrichment probability > 0.5; Supplementary Tables 1-8). We also compare their ability to rank true126

positives over false positives via receiver operating characteristic (ROC) and precision-recall curves (Fig. 3127

and Supplementary Figs. 2-8). While we find RSS to have the overall best tradeoff between true and128

false positive rates, RSS does not scale well for genome-wide analyses (Supplementary Table 9). In many129

settings, gene-ε has similar power to RSS (while maintaining a considerably lower FDR), and generally130

outperforms RSS in precision-versus-recall. gene-ε also stands out as the best approach in scenarios131

where the observed OLS summary statistics were produced without first controlling for confounding132

stratification effects. Computationally, gene-ε gains speed by directly assessing evidence for rejecting the133

null hypothesis, whereas RSS must compute the posterior probability of being a core gene. For context,134

an analysis of just 1,000 genes takes gene-ε an average of 140 seconds to run on a personal laptop, while135

RSS takes around 9,400 seconds to complete.136

When using GWA summary statistics to identify genotype-phenotype associations, modeling the ap-137

propriate trait architecture is crucial. As expected, all methods we compare in this study have relatively138

more power for traits with high h2. However, our simulation studies confirm the expectation that the139

max utility for methods assuming the traditional GWA framework (i.e., VEGAS and PEGASUS) is lim-140

ited to scenarios where the phenotypic variance is dominated by just a few core genes with large effects141

(Supplementary Figs. 2 and 3). RSS, gene-ε-EN, and gene-ε-LASSO robustly outperform these methods142

for the other trait architectures (Fig. 3 and Supplementary Figs. 4-8). One major reason for this result143

is that shrinkage and penalized regression methods appropriately correct for inflation in GWA summary144

statistics (Supplementary Fig. 1). For example, we find that the regularization used by gene-ε-EN and145

gene-ε-LASSO is able to recover effect size estimators that are almost perfectly correlated (r2 > 0.9) with146

the true effect sizes used to simulate sparse architectures (e.g., simulations with 1% core genes).147

Characterizing Genetic Architecture of Quantitative Traits in the UK Biobank148

We applied gene-ε to 410,172 genome-wide SNPs and six quantitative traits — height, body mass index149

(BMI), mean red blood cell volume (MCV), mean platelet volume (MPV), platelet count (PLC), waist-hip150

ratio (WHR) — assayed in 349,468 European-ancestry individuals in the UK Biobank (Supplementary151

Note) [20]. After quality control, there were a total of 17,652 genes analyzed. First, we regressed the top152

five principal components of the genotype data onto each trait to control for population structure, and153

then we derived OLS SNP-level effect sizes using the traditional GWA framework. For completeness, we154

then analyzed these GWA effect size estimates with the four different implementations of gene-ε. In the155

main text, we highlight results under the Elastic Net solution; findings with the other approaches can be156

found in Supplementary Figures and Tables.157

While estimating ε-genic effects, gene-ε provides insight into to the genetic architecture of a trait158

(Supplementary Table 10). For example, past studies have shown human height to have a higher narrow-159

sense heritability (estimates ranging from 45-80%; [6, 28–36]). Using Elastic Net regularized effect sizes,160

gene-ε estimated approximately 68% of SNPs in the UK Biobank to be associated with height. This161

meant approximately 68% SNPs had marginal PVEs σ2
j > 0 (Methods). This number is similar to the162

Boyle et al. [4] result, which estimated 62% SNPs in the 1000 Genomes Project data to be associated163

with height. Additionally, gene-ε identified approximately 4.55% SNPs to be causal (meaning they had164

PVEs greater than the ε-genic threshold, σ2
j > σ2

2); again similar to the Boyle et al. [4] estimate of 3.8%165

causal SNPs for height using data from the 1000 Genomes Project.166

Compared to height, narrow-sense heritability estimates for BMI have been considered both high167

and low (estimates ranging from 25-60%; [28, 30, 31, 33, 34, 36–40]). Such inconsistency is likely due to168

difference in study design (e.g., twin, family, population-based studies), many of which have been known169

to produce different levels of bias [39]. Here, our results suggest BMI to have a narrow-sense heritability170

similar to height, but with a slightly different distribution of null and non-null SNP effects. Specifically,171

we found BMI to have 66.7% associated SNPs and 5.35% causal SNPs.172

In general, we found our genetic architecture characterizations in the UK Biobank to reflect the173
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same general themes we saw in the simulation study. Less aggressive shrinkage approaches (e.g., OLS174

and Ridge) are subject to misclassifications of causal, interactive, and non-causal SNPs. As result,175

these methods struggle to reproduce well-known narrow-sense heritability estimates from the literature,176

across all six traits. This once again highlights the need for computational frameworks that are able to177

appropriately correct for inflation in summary statistics.178

gene-ε Identifies New Core Genes and Novel Genetic Associations179

Next, we applied gene-ε to the summary statistics from the UK Biobank and generated genome-wide180

gene-level association P -values (Figs. 4a,b and Supplementary Figs. 9a-12a). The ultimate objective of181

gene-ε is to identify core genes, which we define as containing at least one causal SNP and achieving182

a gene-level association P -value below a Bonferroni-corrected significance threshold (in our analyses,183

P = 0.05/17652 autosomal genes = 2.83× 10−6; Supplementary Tables 11-16). As a validation step, we184

used the gene set enrichment analysis tool Enrichr [41] to identify dbGaP categories with an overrepre-185

sentation of core genes reported by gene-ε (Figs. 4c,d and Supplementary Figs. 9b-12b). A comparison of186

gene-level associations and gene set enrichments between the different gene-ε approaches are also listed187

(Supplementary Table 17).188

Many of the candidate core genes we identified by applying gene-ε were not previously annotated189

as having trait-specific associations in either dbGaP or the GWAS catalog (Fig. 4); however many of190

these same candidate core genes have been identified by past publications as related to the phenotype of191

interest (Table 1). For example, gene-ε reports HTF9C as having a significant gene-level association with192

BMI (P = 5.13× 10−7). Although the protein encoded by HTF9C has an unknown function, HTF9C is193

orthologous to TRMT2A in mice, which is known to effect mouse lean body mass and metabolism [42].194

Additionally, nearly all of the core genes reported by gene-ε had evidence of overrepresentation in195

gene set categories that were at least related to the trait of interest. The top four categories with Q-196

values smaller than 0.05 for BMI are “Macular Degeneration”, “Cholesterol”, “Stroke”, and “Glucose”.197

While there has been much debate about the exact relationship between BMI and age-related macular198

degeneration [43–46], there have been many studies verifying the connection between BMI and cholesterol199

[47–49], blood glucose levels [50], and risk of stroke [51,52].200

Importantly, gene-ε can also identify genes with rare causal variants. For example, ZNF628 (which is201

not mapped to height in the GWAS catalog) was detected by gene-ε with a significant P -value of 9.65×202

10−14. Previous studies have shown a rare variant rs147110934 within this gene to significantly affect203

adult height [35]. Rare and low-frequency variants are generally harder to detect under the traditional204

GWA framework. However, rare variants have been shown to be important for explaining the variation205

of complex traits [26, 36, 53–56]. With regularization and testing for ε-genic effects, gene-ε is able to206

distinguish between rare variants that are causal and SNPs with larger effect sizes due various types of207

correlations. This only enhances the power of gene-ε to identify potential novel core genes.208

Discussion209

During the past decade, it has been repeatedly observed that the traditional GWA framework struggles210

to accurately differentiate between causal and interactive SNPs, which we define as SNPs that covary211

with causal SNPs but do not directly influence the trait of interest. As a result, the traditional GWA212

approach is prone to generating false positives, and detects variant-level associations spread widely across213

the genome rather than aggregated sets in disease-relevant pathways [4]. While this observation has214

spurred to many interesting lines of inquiry — such as investigating the role of rare variants in generating215

complex traits [9,26,53,54], comparing the efficacy of tagging causal variants in different ancestries [57,58],216

integrating GWA data with functional -omics data [59–61] — the focus of GWA studies and studies217
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integrating GWA data with other -omics data is still largely based on the role of individual variants,218

acting independently.219

Here, we challenge the view that signals in GWA datasets cannot reveal the architecture of complex220

traits by modifying the traditional GWA null hypothesis from H0 : βj = 0 (i.e., the j-th SNP has221

zero statistical association with the trait of interest) to H0 : βj ≈ 0. We accomplish this by testing222

for ε-genic effects: small-yet-nonzero effect sizes emitted by interactive SNPs. We use an empirical223

Bayesian approach to learn the distributions of ε-genic effects, and then we aggregate regularized SNP-224

level association signals into a gene-level test statistic that represents the gene’s contribution to the225

narrow-sense heritability of the trait of interest. Together, these two steps reduce false positives and226

increase power to identify the mutations, genes, and pathways that directly influence a trait’s genetic227

architecture. By considering different levels of ε-genic effects (i.e., different values of σ2 for interactive228

SNPs; Figs. 1 and 2), gene-ε offers the flexibility to construct an appropriate null hypothesis for a wide229

range of traits with genetic architectures that land anywhere on the polygenic to omnigenic spectrum.230

Through simulations, we showed the gene-ε framework outperforms other widely used gene-level asso-231

ciation methods (particularly for highly heritable traits), while also maintaining scalability for genome-232

wide analyses (Fig. 3, Supplementary Figs. 1-8, and Supplementary Table 9). Indeed, all the approaches233

we compared in this study showed improved performance when they used summary statistics derived234

from studies with larger sample sizes (i.e., simulations with N = 10, 000). This is because the quality235

of summary statistics also improves in these settings (via the asymptotic properties of OLS estimators).236

Nonetheless, our results suggest that applying gene-ε to summary statistics from previously published237

studies will increase the return made on investments in GWA studies over the last decade.238

There are several potential extensions for the gene-ε framework described here. For example, in the239

current study, we only focused on applying gene-ε to quantitative traits (Fig. 4 and Supplementary Figs. 9-240

12). Future studies extending this approach to binary traits (e.g. case-control studies) should explore241

controlling for additional confounders that can occur within these phenotypes, such as ascertainment242

[62–64]. Another possible extension of gene-ε is to include information about standard errors when243

estimating ε-genic effects. In our analyses using the UK Biobank, some of the newly identified core244

genes contained SNPs that had nonsignificant P -values in the original GWA analysis (after Bonferroni-245

correction; Supplementary Tables 11-16). While this could be attributed to the improved hypothesis246

test in gene-ε, it also motivates a regularization model that accounts for the standard error of effect size247

estimates from GWA studies [14,21,27].248
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Methods273

Traditional Association Tests using Summary Statistics274

gene-ε requires two inputs: GWA marginal effect size estimates β̂, and an empirical linkage disequilibrium
(i.e., variance-covariance) matrix Σ. We assumed the following generative linear model for complex
phenotypes

y = Xβ + e, e ∼ N (0, τ2I), (2)

where y denotes an N -dimensional vector of phenotypic states for a quantitative trait of interest measured
in N individuals; X is an N × J matrix of genotypes, with J denoting the number of single nucleotide
polymorphisms (SNPs) encoded as {0, 1, 2} copies of a reference allele at each marker; β is a J-dimensional
vector containing the additive effect sizes for an additional copy of the reference allele on y; e is a normally
distributed error term with mean zero and scaled variance τ2; and I is an N × N identity matrix. For
convenience, we assume that the genotype matrix (column-wise) and trait of interest have been mean-
centered and standardized. A central step in GWA studies is to infer β for each SNP, given both genotypic
and phenotypic measurements for each individual sample. For every SNP j, gene-ε takes in the ordinary
least squares (OLS) estimates based on Equation (2)

β̂j = (xᵀ
j xj)

−1xᵀ
j y, (3)

where xj is the j-th column of the genotype matrix X, and β̂j is the j-th entry of the vector β̂.275

In traditional GWA studies, the null hypothesis tested is H0 : βj = 0 for all j = 1, . . . , J . When276

both the trait and SNP measurements are standardized, it can be shown that the correlation between277

any two regression coefficients β̂j and β̂l (j 6= l) is proportional to the correlation between genotypic278

variants xj and xl. Therefore, under the null hypothesis, β is assumed to follow a multivariate normal279

distribution with mean vector zero and a correlation structure defined by the pairwise SNP-by-SNP280

linkage disequilibrium (LD) matrix. For the applications considered here, the LD matrix is empirically281

estimated from external data (e.g., directly from GWA study data, or using an LD map from a population282

with similar genomic ancestry to that of the samples analyzed in the GWA study).283

Regularization of GWA Effect Size Estimators284

gene-ε uses regularization on the observed GWA summary statistics to reduce inflation of SNP-level effect
size estimates and increase their correlation with the assumed generative model of complex traits. For
large sample size N , note that the asymptotic relationship between GWA effect size estimates and the
true coefficient values is

E[β̂l] =
J∑

j=1

ρ(xj ,xl)βj = Σβ, (4)

where ρ denotes the correlation coefficient between SNPs xj and xl, and Σ is the corresponding LD
matrix. The above mirrors a high-dimensional regression model with the misestimated OLS summary
statistics as the response variables and the LD matrix as the design matrix. Theoretically, the resulting
output coefficients from this model are the desired effect size estimators. Due to the multi-collinear
structure of GWA data, we cannot reuse the ordinary least squares solution reliably [65]. Thus, we derive
the general regularized solution

β̃ = arg min
β

‖β̂ −Σβ‖2, subject to (1− α)‖β‖1 + α‖β‖22 ≤ t for some t, (5)
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where in addition to previous notation, the solution β̃ is used to denote the regularized effect sizes;285

and ‖ • ‖1 and ‖ • ‖22 denote L1 and L2 penalties, respectively. The term α distinguishes the type of286

regularization used, and can be chosen to induce various degrees of shrinkage on the effect size estimators.287

Specifically, α = 0 corresponds to the “Least Absolute Shrinkage and Selection Operator” or LASSO288

solution [22], α = 1 equates to Ridge Regression [24], while 0 < α < 1 results in the combined Elastic289

Net [23]. The LASSO solution forces some inflated coefficients to be zero; while the Ridge shrinks the290

magnitudes of all coefficients but does not set any of them to be exactly zero. Intuitively, the LASSO291

will create a regularized set of effect sizes where causal SNPs have larger effects, interactive SNPs have292

small-yet-nonzero effects, and non-causal SNPs are set zero. It has been suggested that the L1-penalty293

can suffer from a lack of stability [66]. Therefore, in the main text, we also highlighted gene-ε using the294

Elastic Net (with α = 0.5). The Elastic Net is a convex combination of the LASSO and Ridge penalties,295

but still results in distinguishable sets of causal, interactive, and non-causal SNPs. Results for each of296

the gene-ε regularization implementations are given in the main text and Supplementary Note.297

Estimating ε-Genic Effects298

In contrast, to the traditional association tests described earlier, the gene-ε model assumes a (SNP-level)
null hypothesis H0 : βj ≈ 0 with

β̃ ∼ N (0, Σ̃), Σ̃jj = σ2
j , Σ̃jl = σjρ(xj ,xl)σl, (6)

where σ2
j denotes the proportion of narrow-sense heritability h2 contributed by the j-th SNP (with the

constraint
∑
σ2
j = h2). To infer σ2

j for each SNP, gene-ε uses an empirical Bayes approach by fitting a
K-mixture of normal distributions over the regularized effect sizes,

β̃j ∼ π
K−1∑

k=1

γkN (0, σ2
k) + (1− π)δ0, (7)

where δ0 is the Dirac delta function with fixed variance σ2
K = 0, and indicates the (1 − π) fraction of

SNPs that do not directly influence the trait of interest (i.e., non-causal). Equivalently, we say

β̃j ∼
K∑

k=1

γkN (0, σ2
k) (8)

The above mixture allows for distinct clusters of nonzero effects through K different variance components
(σ2

k, k = 1, . . . ,K) [18]. Here, we consider sequential fractions (γ1, . . . , γK−1) of SNPs to have distinctively
smaller effects (σ2

1 > · · · > σ2
K = 0) [18]. Intuitively, causal SNPs will appear in the first set of fraction

groups, while SNPs with ε-genic effects will belong to the latter groups. Throughout this study, we use
an ε-genic threshold σ2 = σ2

2 . This means that we consider SNP j to be causal if it is grouped in the
largest fraction (i.e., σ2

j > σ2
2), and interactive or non-causal otherwise. Given Equations (7) and (8), we

fit the mixtures for all J SNPs by aiming to maximize the joint log-likelihood

log p(β̃ |Θ) =

J∑

j=1

log p(β̃j |θj), (9)

where θj = (γ1, . . . , γK , σ
2
1 , . . . , σ

2
K) is the set of mixture parameters to be estimated for the j-th SNP, and299

Θ = (θ1, . . . ,θJ). In the gene-ε framework, estimation is done using an expectation-maximization (EM)300

algorithm to maximize the joint distribution in Equation (9). The number of components K is chosen via301

a Bayesian Information Criterion (BIC). Details of this algorithm are given in the Supplementary Note.302
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The gene-ε Gene-level Association Test Statistic303

We now derive the gene-ε gene-level association test statistic for complex traits using GWA summary
statistics. Denote gene (or genomic region) g with a known set of SNPs j ∈ Jg — where, in practice,
Jg may include SNPs within the boundaries of g and/or within its corresponding regulatory region. We
conformably partition the regularized SNP-level effect sizes and define a gene-level test statistic

Q̃g = β̃ᵀ
gAβ̃g, (10)

where A is a predefined symmetric and positive semi-definite weight matrix. Each Q̃g is used to test
for significant enrichment of associated mutations at the gene level. This leads to an ε-genic inspired
(gene-level) null hypothesis H0 : Q̃g ≈ 0 where, because of the normality assumption in Equation (6), Q̃g

is assumed to follow a mixture of chi-square distributions,

Q̃g ∼
|Jg|∑

j=1

λjχ
2
1,j , (11)

and |Jg| denotes the cardinality of the set of SNPs Jg, χ2
1,j are standard chi-square random variables

with one degree of freedom, and (λ1, . . . , λ|Jg|) are the eigenvalues of the matrix

Σ̃
1/2
g,0 AΣ̃

1/2
g,0 ,

where Σ̃g,0 = σ2
2Σg is the covariance structure of gene g with only SNPs emitting ε-genic effects under304

the null hypothesis. Several approximate and exact methods have been suggested to obtain P -values305

under this distribution. In this study, we use Imhof’s method [25].306

We highlighted some of the additional features of the gene-ε association test statistics. First, the
expected enrichment for trait-associated mutations in a given gene is equal to the heritability explained
by the SNPs contained in said gene. To see this more formally, consider the expansion of Equation (10)
derived from the expectation of quadratic forms,

E[Q̃g] = tr(Σ̃gA) =
∑

r

∑

s

(Σ̃g ◦A)rs = h2g, (12)

where tr(•) denotes the matrix trace function, (Σ̃g ◦ A) represents the Hadamard (i.e. element-wise)
product between the two matrices, r and s are row and column indices, and h2g denotes the heritability
contributed by gene g. When A = I (as in the current study), the gene-ε hypothesis test is based on the
LD map between SNPs within the gene of interest, scaled by the individual SNP contributions to the
narrow-sense heritability. Alternatively, one could choose to re-weight these contributions by specifying
A otherwise [9, 12,26,53,67–69]. The variances of the gene-ε gene-level test statistics are given by

V[Qg] = 2tr(AΣ̃gAΣ̃g) (13)

and can be used to derive measures of uncertainty regarding the strength of gene associations (e.g.,307

building confidence intervals).308

Simulation Studies309

We used a simulation scheme to generate SNP-level summary statistics for GWA studies. First, we
randomly select core genes and assume that complex traits (under various genetic architectures) are
generated via a linear model

y = Wα+
∑

c∈C
xcβc + e, e ∼ N (0, τ2I), (14)
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where y is an N -dimensional vector containing all the phenotypes; C represents the set of causal SNPs310

contained within the core genes; xc is the genotype for the c-th causal SNP encoded as 0, 1, or 2 copies311

of a reference allele; βc is the additive effect size for the c-th SNP; W is an N ×M matrix of covariates312

representing additional population structure (e.g., the top five principal components from the genotype313

matrix) with corresponding fixed effects α; and e is an N -dimensional vector of environmental noise. The314

phenotypic variance is assumed V[y] = 1. The effect sizes of SNPs in core genes are randomly drawn from315

standard normal distributions and then rescaled so they explain a fixed proportion of the narrow-sense316

heritability V[
∑

xcβc] = h2. The covariate coefficients are also drawn from standard normal distributions317

and then rescaled such that V[Wα] + V[e] = (1− h2). GWA summary statistics are then computed by318

fitting a single-SNP univariate linear model via ordinary least squares (OLS): β̂j = (xᵀ
j xj)

−1xᵀ
j y for every319

SNP in the data j = 1, . . . J . These effect size estimates, along with an LD matrix Σ computed directly320

from the full N×J genotype matrix X, are given to gene-ε . We also retain standard errors and P -values321

for implementation of the competing methods (VEGAS, PEGASUS, and RSS). Given different model322

parameters, we simulate data mirroring a wide range of genetic architectures (Supplementary Note).323

Data Availability324

Source code implementing gene-ε and tutorials are available on line (https://github.com/ramachandran-lab/325

genee). Links to the other competing methods and UK Biobank data are also provided (See URLs).326
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Figure 1. Null hypothesis assumptions for the distribution of GWA SNP-level effect sizes according to different views
on underlying genetic architectures. The effect sizes of “non-causal” (pink), “intermediate” (red), and “causal” (blue) SNPs were
drawn from normal distributions with successively larger variances. The black dashed line represents the distribution of estimated
marginal effect sizes from a single-SNP univariate linear model (ordinary least squares, or “OLS”, summary statistics). (a) The
traditional model of complex traits simply assumes SNPs are causal or non-causal. Under this null model, causal SNPs are more likely
to emit large effect sizes while non-causal SNPs will have effect sizes of zero. When there are many causal variants, we refer to the traits
as polygenic traits. (b) Under the omnigenic model [4], there are causal SNPs, non-causal SNPs, and interactive SNPs. We propose a
multi-component framework (see also [18]), in which interactive SNPs can emit different levels of statistical signals based on different
degrees of connectedness (e.g., through linkage disequilibrium) or interactions with core genes. While causal SNPs are still more likely to
emit large effect sizes than SNPs in the other categories, interactive SNPs can emit intermediate effect sizes. Here, our goal here is to
classify interactive SNPs as non-causal.
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(i): GWAS Summary Statistics

a. Input Data 

(ii): Inflation of GWAS Effect Size 

−0.10 0.00 0.10

0
20

40
60

80
True causal SNPs

True noncausal SNPs

OLS e�ect size

D
en

si
ty

Effect size

OLS effect size: β̂ := (β̂1, β̂2, ..., β̂J)
T

Σ := [ρjl]J×J , ρjl := LD between SNPs j & l

 Derive Regularized Effect 
Size

b. Regularized Regression 

D
en

si
ty

−0.10 0.00 0.10

0
20

40
60

80

True causal SNPs

True noncausal SNPs

OLS e�ect size

Regularized e�ect
 size (Elastic Net)

Effect size

β̃ = argmin
β

|β̂ −Σβ|2,

subject to (1− α)||β||1 + α||β||22 ≤ t for some t

−0.10 0.00 0.10

0
20

40
60

80

c. Recalibrated Null Model

Effect size

D
en

si
ty

Regularized e�ect 
size (Elastic Net)

Est. Non-causal SNPs

Est. Interactive SNPs

Est. Causal SNPs

(i): EM Algorithm for Finding 
Normal Mixture Components

(ii): Null Assumption
 (i.e: interactive SNPs are noncausal)

σ2
1

σ2
2

σ2
3

Variance 

(i): Predefined Genes

(ii): Test Statistics
Q̃g = β̃T

g Aβ̃
T
g

(iii): Hypothesis Testing

Genes

 -l
og

10
(P

)

●●●●●●●
●
●●
●
●●●●
●●●●●

●
●
●

●

●

●
●●●●
●●●●●
●
●●●●●●●
●

●

●●●●●●●●●●●●●●●●
●
●●
●
●●

●

●●
●●●
●
●●●●
●
●
●●
●

●●
●
●
●
●●

●
●●●●●
●
●●●●

●

●●
●
●

●

●

●
●●●●●●
●
●●●
●●●●●●●●
●
●●●●●●
●●●●●●

●
●●

●
●

●●●●
●
●
●
●
●
●●
●●●●●●
●●●●
●●
●●●●●●●

●

●

●

●●●
●●●●●
●
●
●
●
●●●●●●●●●●●
●●●

●

●●●●●●●●●●●●●
●
●

●
●
●
●

●●●
●
●●

●
●●●●
●●●●

●

●●●●●●

●

●●●●

●

●

●

●●●
●

●●●●
●●
●
●
●●●●
●●●
●●
●●

●

●●●●●
●
●●●
●●●●●●●●●
●
●●●
●●
●●●
●
●

●
●
●

●

●
●●
●●●●●●
●
●●●
●
●●●●●●●●●●
●●
●●●●
●●●●●●●●
●
●

●

●
●
●
●●
●
●●●●●
●●●●●●
●
●

●

●●
●
●●
●
●●
●
●●●
●●●
●●●●●●●●●
●
●●●●
●●●
●●●
●
●●●●●●●●●
●●
●●●●●●●●●●●●●●●
●●
●
●
●
●
●●
●
●
●●●●●
●●●

●●
●●
●●●●●
●●●●●●●
●
●●●●●●●●●●
●
●
●
●●●●●●
●
●●●●●●
●
●
●
●
●●●●●
●●●
●●●●●●●

●
●
●
●
●
●
●●●●

●

●
●
●●●
●●●
●●
●
●●●●
●
●●
●●●●●●●●
●
●●●●●●●
●●●

●

●
●●
●

●
●●
●

●
●●

●●●●●

●

●●●●●●●
●
●●●
●●●●●

●

●●
●
●
●●
●●
●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●
●●
●
●
●
●
●
●
●
●
●●●●●●●●●
●●
●●

●

●
●●●
●●●●
●

●

●
●
●

●●●
●●●●●
●●●●●●

●

●
●
●
●
●●●●
●

●●●●
●
●●
●
●

●●●●●●●●
●●

●

●
●
●●
●●
●●
●●●●

●●●
●●
●●●●●●●●
●
●

●
●
●

●●
●●
●●
●●
●
●●●●●●●●●●●
●●●●

●

●

●
●●

●
●●●●●●●●●●
●●●●●●
●
●●●●
●●
●●
●
●●●●●●
●
●

●

●●●
●●●
●●●●●

●

●
●
●

●

●●
●●●●
●

●●●

●

●
●●

●

●●●●
●
●●●●●
●●●●●●●
●●●●●●●●●●
●
●

●

●
●
●●
●●●●●
●●●●●●●

●●
●●
●
●
●
●
●●●
●●●●●

●
●●
●●●●●●●

●

●
●●●●●●
●
●●●●●●●●●●●●
●
●

●

●
●●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●●

●

●●
●●
●
●
●
●
●●●●●●

●

●●
●
●●

●
●●●●●●
●●
●●

●
●●

●

●
●●●●●●
●
●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●

●●
●●●●●●●●●
●
●

●

●
●
●
●
●●
●

●
●
●●
●●

●

●
●
●●
●●
●●●●●●●●
●
●●
●
●
●●
●

●●●●●●
●●
●
●●●
●
●●●●●●
●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●
●
●●●
●●●●●●
●
●●
●●●●
●
●●
●
●●●●●●●
●

●

●●
●
●
●

●
●●
●
●

●
●
●
●
●
●●●
●●
●

●●●●●
●●●●●
●
●
●

●
●
●

●●●●

●

●●●●

●

●
●
●●●

●

●
●

●
●

●

●

●

●
●●

●
●●

●

●
●●●

●

●●●●●●
●●
●
●
●●
●
●
●●●●
●

●●●●●●
●●
●
●●
●●

●

●●
●
●●●●
●●●●●●●●●●
●
●
●●●●
●●●
●
●
●●●●●

●

●●
●
●●

●
●●●●●
●
●●
●
●●
●
●●●
●●●●●
●
●●●●●
●
●●●●
●
●●
●
●●●●●●●●●●●●
●
●●●●●
●●

●

●
●●
●
●
●
●
●●
●
●●●●●●●●●●

●

●●●●●●●●●●
●
●
●
●●
●
●
●●
●●●●●

●

●●●●●
●●
●●●

●●
●
●
●●●●●
●

●●●●●●
●
●
●
●●●●
●●
●●●●
●

●●●●●●
●●
●
●
●●
●●●●
●●
●
●
●
●
●

●●●●●●●
●●
●●
●
●
●●●●●●●●●●●●
●

●●●●●

●

●●●●●●●●●●●●●●
●
●
●●●●
●●
●●●
●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●●●●●●
●
●
●●
●●
●
●

●

●
●●
●
●●●
●
●
●●●●
●●●●●●
●●●●
●
●
●
●
●●
●
●●●●●

●

●●
●
●●●●●●●●
●
●●●●
●●
●
●
●
●
●

●

●
●
●

●●●●●
●
●
●
●●●●
●
●●●●
●●

●

●
●●

●●

●●●●

●●
●●
●
●●●●●

●

●●●●●●
●
●●

●

●
●
●●
●●●●●●●●●
●●●●
●●●●●●●
●●●●
●

●
●
●
●●●●●●●●●●●
●●
●
●
●●●●●
●●●●●●●●

●
●
●
●

●

●●●●●
●
●●●●
●●●
●●●

●
●
●●●●
●
●●●
●●●●
●
●●●●
●●

●

●●●
●●
●

●

●
●●
●●

●

●●●
●
●●
●●
●●●
●●●
●●●●
●
●●

●
●●●●●
●
●●●●●
●
●●●●●●●●
●●●●●●●
●●●●●●
●
●●●
●
●●●
●●

●

●●
●●●
●
●
●
●●●●●
●●●●●●

●

●●●
●●●●●

●

●●●●●
●
●●●
●●●●
●●●●●●●●
●●
●●
●
●●●●●●●●●●●●●●●●●●
●●●●●
●●
●●
●
●●●
●●
●
●●●●●●
●●●●
●●●●●
●●●●

●
●●●
●●●●●●●●●●●●●●

●

●●●●●
●
●●
●●●●●●
●
●
●
●●
●●●●●●●●●●●●●●●
●●●●
●
●
●●●
●
●●●●
●●●●●●●●●●●
●●●●●●
●
●●
●●●●●
●●●
●
●●●

●

●●●●●●●●●
●
●●●
●●
●●●●●●
●
●●●●●●●●
●●
●
●●●●
●
●●●●
●●●
●
●●●
●
●●
●
●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●
●●●●●●●●
●●●
●
●
●●
●●●
●
●●
●●
●

●
●
●●

●
●

●

●●

●

●

●

●●●●●●●

●
●●
●●

●●

●●●●●
●
●

●
●●●
●●
●
●
●●
●●●●●
●
●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●
●●●●●
●
●●●●●
●●●●●

●
●
●
●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●
●●●●●●●
●●
●
●●●●
●
●●
●●●
●
●●●●●●●●●
●●●●●●
●
●●●●●●●●●●
●●●
●●●●●●●

●

●●●
●
●●●●
●●●●●●●
●●
●●
●
●●●
●

●●
●
●●●
●
●
●
●●●
●
●●●●●●●●
●●●●
●●●
●●
●●●
●
●●●●●●●

●
●

●●

●
●●

●
●
●●●
●●
●●
●●●

●

●●
●
●●●●●●●●
●●●●●●
●●●●●
●
●
●●●●●
●
●●
●●
●
●●●●●●●●●●●●●●●●●
●●
●
●
●●●●●●

●
●●●●●
●
●●●●
●
●
●●●●
●●●●●
●
●
●
●
●
●
●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●●●●●●●
●
●●
●●
●
●
●●●●●●
●●●●●●●

●

●
●
●●●●●
●●●●●●
●●
●●
●●●
●
●●
●
●●●●

●
●●●●●●●●●
●●
●
●●●
●
●
●
●●

●
●
●

●●●●●●●●●
●●
●●●●●●
●
●

●●

●

●●●●●●●●
●●
●●●●●
●
●
●●●●●●●●●●●●●
●●●●●●●●
●●●●

●

●●●●●●●●●●
●●●●●
●●
●
●●●
●●
●●
●●●●●●●●●●●●●●●●
●
●●
●●

●

●
●
●●●●
●●●●●●
●
●●
●
●●●●●
●
●
●
●●●
●
●●●●●●●●
●
●●
●
●

●●

●

●

●●

●
●
●●
●

●

●
●●

●

●●

●●●
●
●
●●●
●●
●

●

●
●●●●●●

●
●
●●●●●●●●●●●●●●
●●●
●
●●●
●
●

●

●●●●
●
●●●●
●
●●●
●●●
●
●●●●●●●●●●●●●
●
●●●
●

●

●
●
●
●●
●●●●●●
●
●●●

●

●
●
●
●●●●
●●●
●

●

●●●●●

●

●●●

●

●
●
●●
●
●●●

●

●●
●●
●●●●●●●●

●
●●
●
●●●
●●●●●●●
●●
●●●●
●
●●●
●●●●●
●
●●●●●●●●●
●●
●●
●
●
●
●●●●
●
●●
●●
●●●
●
●
●
●●
●
●●●●●
●
●●●●●
●●●●

●

●●●●●●●
●●
●●

●

●●●
●●
●●
●
●●
●●

●●
●
●●●
●●●

●

●●
●
●
●
●
●
●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●

●
●●
●
●
●
●
●●●
●●●
●●
●
●●●
●
●
●●●●
●
●●●
●●●
●
●●●●●●●
●
●●●●●●
●●●●
●●
●●●●●
●
●●●
●
●
●●●●●●●●●
●●●

●

●
●
●
●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●
●
●●
●
●
●●●●●●●●
●●
●
●●●
●
●●●
●●●●●
●●
●
●●●●
●
●

●●
●●●●●●●
●●●●●
●●●●●●●
●
●●●●●●●●●
●
●●
●●●●●●●●●
●●●
●●●●●●●
●
●●
●●●●
●
●●●●●●●●●●●●●
●
●●●●●
●
●●

●
●●●●●●●●●
●
●●●●
●●
●●●●●●●●●

●●

●●

●
●●
●
●

●
●●
●

●●●●
●
●
●●●●
●●●
●●
●
●
●●●●●●●
●●●●
●●●●
●
●●●●●
●●●●●
●
●●●●●●
●
●
●●●●●●●

●

●●
●
●●●●●
●
●
●●●●●●

●●
●

●●●●●●
●
●●●●●●
●●●●●●●
●●●
●●
●●
●●●●●●
●
●●●
●●●●
●
●●●●
●

●●●●●●
●
●●●
●
●●●●●●●●●●
●●●●●●
●●●●
●●
●
●●●●●
●
●●●
●
●
●●●

●●●●●
●
●●●●●●
●
●●●●●●●●
●
●●●

●
●
●

●

●●
●
●●●
●●●●●
●
●●●●
●
●
●●●●
●●●
●
●●
●
●
●●●●●●●
●●●
●
●●
●

●

●●●●●
●
●●●●●●●●●●●●●●
●●●●●
●

●●●●●●

●

●●
●●

●

●●●●●
●●●●●●●
●●●●●●●
●

●●●●●●●
●
●●●●●●●●●●●●●
●
●●
●●
●●●●●●●●●●●●●●●●●
●●
●●●●●●●
●
●●●●
●
●
●
●●●●
●
●
●●●●●●●
●
●●●●●
●
●

●
●●●●●●

●
●●●●●●●
●
●
●
●●●●

●

●●●
●

●

●
●●●●
●
●
●
●●●
●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●
●●
●

●

●

●
●
●●
●●●●

●

●
●
●●●
●
●●
●●●●

●

●●●

●
●●
●
●●
●●●
●
●●●●
●
●●
●●●

●

●●●●●

●

●●

●
●●●●
●
●●●●●
●●
●
●●●●●●
●●●●●●●●
●
●●
●
●
●●●
●●●●●●●●
●●
●●●●

●●
●

●
●
●●●
●●●●●●●●●●●
●

●●●
●●●●●●●
●●●
●●●●●
●●●
●●●
●
●●●●●
●●●●●

●●●

●●
●

●
●●
●
●
●●●●●
●

●

●
●
●●●●●●●●●●●
●
●●●●
●
●
●●●●●●●●●●●●●●●●
●●●

●

●●●●

●

●●●●●●●●●
●●
●
●

●●
●●●●●●●●●●●●●
●
●
●
●●
●

●

●●
●
●●●●●●
●●●

●
●

●
●
●

●
●●
●●●●
●●
●
●

●

●

●
●

●
●●●●●●

●

●●●●
●
●

●

●
●

●
●
●

●

●●●●●●
●
●●●

●

●●●
●
●●
●●●●

●

●
●

●

●●

●

●
●

●

●

●

●●●

●
●

●

●
●

●

●

●●
●●

●

●●
●●

●

●

●

●●●

●
●●●
●●
●●●
●
●
●

●

●

●

●

●●
●
●●

●●
●

●

●
●●
●●●
●
●●
●
●●●

●

●
●
●●
●

●
●

●
●●
●●●●●

●

●
●
●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●●
●●
●●●●●●●●●●●
●●

●

●●
●●●●●●●●●

●

●

●
●●●●
●
●
●●●●●●●
●

●

●●●

●

●
●
●●

●●
●
●●●●

●●

●●

●
●●

●

●

●●●
●●
●
●
●●●●

●
●
●

●

●●●●●●

●

●

●

●●●●

●●
●●
●

●●●●
●●
●

●

●

●●●

●●●●●●●●

●
●●
●
●●●
●●●●

●
●●●
●●
●

●
●●
●●●
●
●
●●●

●

●
●●●●
●
●
●●
●
●●

●

●●●●

●

●●●●●●●
●●●●
●●●●●●●●●
●

●●●●●●

●
●

●●●●●●
●
●

●●
●●●
●
●
●
●
●●●●●●●●
●
●●●
●●●●●●
●
●●
●
●●
●
●●
●●●●●●●
●

●●

●

●●●
●
●●●●
●
●●●
●
●●

●

●●●●●●

●

●●●
●●●

●

●●●●●
●
●
●

●
●
●●

●

●●
●

●

●●
●●●
●

●

●

●

●

●

●●●
●
●●

●

●●
●
●●●●●●
●●●●●
●●

●●

●

●●
●
●
●●●●
●●●●●
●●
●
●
●
●●●●●●●●●●●●●●●●●

●

●
●
●●

●

●●

●

●
●

●●●
●
●●
●
●●

●

●
●●●●●●
●●●●

●

●●●●●
●
●●
●
●●●●
●●
●
●●●
●●●●●●
●
●●●●
●●●●
●●

●

●●●●●●●●
●●

●
●
●
●
●
●
●●●
●
●●●●●●●
●●
●
●
●●●
●●●●●●
●●
●
●●
●
●●●●
●
●
●●●
●
●
●

●

●●●●●
●
●●

●

●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●
●●
●●
●●●

●
●●
●●●
●
●●●●

●

●

●
●
●●
●
●●
●
●●●●●●●●●●●
●●
●●●●●
●●●
●
●●●●

●
●
●

●

●●
●

●

●
●
●
●
●
●
●●●●●●●●●●●●●●●●
●●
●●

●
●●
●
●

●
●●
●●
●●●

●

●●●
●
●
●
●
●●●

●●

●●●
●
●●●●
●●●

●
●

●

●●
●●●

●
●
●

●
●●●●●●●●●●●●●●●

●

●●●●●●●
●●●
●●
●●●●●●●●●●●
●
●
●
●
●●
●●
●

●

●●●●●●●●●●●●●
●
●
●
●●
●●●●●
●●●●
●
●
●
●
●●

●●
●●●●●●
●
●●
●●●
●●
●●●●●

●
●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●

●

●
●●
●
●
●●
●

●●●●●
●
●●●●
●●●●●●●
●
●●
●
●●●
●●
●●
●
●●

●
●●●●●●●●●●●
●●
●
●●
●●
●●●

●

●●●
●●●

●●
●●
●
●●●●●●
●●●●●
●
●●●●●●●
●
●

●●●●●

●

●●●●●
●●●●●●●
●
●●●
●●●
●●●●●

●

●●●

●
●
●
●●
●●●●●
●●●
●
●
●●●●●
●
●●●●●●●
●●
●●●●
●
●●

●

●●
●
●

●

●

●

●

●
●●
●●●●
●
●●●●●

●
●●●●●

●

●●
●

●●●

●

●
●
●●●
●●●●●
●●●●
●
●
●●●
●●●
●
●●●●●●●●
●
●●●
●
●
●●●●●●●●●●●●●●●●●●●
●
●●
●●
●●●●
●●
●
●
●●
●
●●
●●●
●
●

●
●
●●●●●●
●●
●
●●
●●
●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●
●●
●
●●●
●
●●●●

●

●●●●●●●●
●●●●●●●●●●●●
●
●
●
●●●●
●●●●●●●●
●
●
●●
●
●
●●
●●
●●
●
●

●●●

●
●

●

●
●●●

●●
●

●
●
●●
●●●●●
●●●●●
●●●●●
●●●
●●●●●●●●●●●

●
●●●●●

●
●●
●●●●●●●●●●●
●●●●
●●
●●●●●●●●

●

●●●●●
●●●●
●●
●●
●●
●
●
●
●●●●●●●●●●
●●
●●
●●
●●●
●
●●●●
●
●●●●
●●●●●●●●●●●●●●
●
●●
●
●●●●
●
●●
●●
●●●
●●●●●●●●●●●●●
●●

●

●
●●●●●
●
●●●●●●
●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●●
●●
●
●
●●●●●●●
●●●
●
●

●
●

●

●●●
●●●●
●
●●●●
●
●

●●●●
●●●●●

●
●
●

●●

●●
●
●●
●

●

●
●
●●
●●

●
●

●

●

●●●

●

●●●●

●

●
●
●●●●

●
●
●
●
●●

●

●

●●●
●
●
●
●

●

●

●

●●●
●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●
●
●●●●

●

●●●

●
●●●

●

●
●●
●
●
●

●

●●●●●

●

●
●
●

●●

●
●●

●●

●

●●
●●●●●

●

●
●
●

●

●●●●●●

●●

●●●●●
●●
●●●
●
●●●●●●●
●
●●●
●
●●
●●
●
●●
●
●●

●

●
●
●●

●

●●●●●●
●●●●●●●●
●
●●●●●●
●●●●●●●●
●
●●
●●●●●
●

●

●

●

●
●

●

●●●
●●
●
●●
●●●
●●●●●●●●●●
●●●●

●

●
●●●●●
●
●●●●●●●●
●●
●

●●●●●●
●●●
●●
●●●●●●●●●●●
●
●●●●●●
●●
●●●●●●●
●●●●●

●

●●●●●●●●
●●

●

●●●
●●●●●
●
●
●●●
●
●●
●
●
●
●●●●●●●●●●
●
●●●
●●●●

●
●●
●
●
●●●●●
●
●●
●
●

●
●●●
●●●●●●
●
●●

●
●
●●
●●●

●
●

●

●●

●●
●
●●●

●●
●
●
●●●
●
●●●
●
●●
●
●●●●●●●
●●●●●●●●
●●●●●●●
●●

●
●●
●

●
●
●●
●

●

●●●
●●

●
●

●
●●
●●●●●●

●●

●●
●
●●●
●
●●●●
●
●●
●
●
●●
●●●

●
●

●●

●

●

●

●
●●●●●
●
●
●●●
●
●●
●
●●●

●

●●●●●●●●●

●

●●●●
●●●
●●●●●●●●●●●●●
●●●●●●
●●●●●

●

●●●●
●

●

●●

●●●●●●●●
●
●●
●●●
●
●
●

●

●
●●●●●
●●●●●
●●
●
●●●
●
●●
●

●
●
●●
●●●●●
●
●
●●●●●●●
●
●

●

●●●●●●●
●●●●●●●●●●●●●●●●

●

●

●

●●●●
●
●●
●
●●●●●●●
●●●●●
●●●●
●●●
●●●●●●●●●●
●●●●●●●
●●●●●
●

●
●
●

●●
●●
●
●●●
●

●●●

●●
●●
●
●●●
●●
●●●●●

●

●●●●
●
●

●

●●
●●●●
●
●

●

●●●●●
●●●
●
●●
●●●●●

●●●
●●●●
●
●
●●

●

●
●
●●

●
●
●
●
●
●●●●●●●
●
●●

●

●●●●●

●

●
●●●●●●

●

●
●

●●●●●●
●
●●●●●

●

●●
●●●●●

●

●

●●

●
●●●
●
●●●●●●
●
●●

●

●
●●●●●●●●
●
●●●
●
●
●
●●●
●
●●●●●
●
●
●
●●●●●●●
●
●●●●●●●●
●
●●

●●●●
●
●●
●
●
●●●
●●●●●●
●
●●
●
●●●
●●
●●
●
●

●●
●
●●●
●●
●
●

●●●

●

●●
●

●●
●●

●●●●●●●●●
●
●●
●
●●●
●
●●●●
●
●
●
●

●

●●●

●●

●●●●●●●●●●●●

●
●●
●●●●●

●

●

●
●

●

●

●
●
●
●
●

●●●
●●
●
●●●
●●●●
●●

●

●●●
●
●●●●●
●●
●●●●●●
●●●●●
●
●●

●

●

●●

●●
●
●
●●●●●●●●●●
●●
●
●●●●●●●●●●●●
●
●
●●●
●●

●●
●
●
●●
●
●●
●
●●
●
●
●●
●

●●●●
●●●●●
●●●

●
●●●●
●●●●●●●●●●

●
●●●●●●●●●●●
●●
●●●●●●●
●
●●●
●●
●●●
●●

●
●

●

●●
●●
●
●
●●

●

●

●●
●●●
●
●●
●●●
●

●
●
●
●●
●●
●●●●●●●●
●●

●
●
●●●●●●
●●●
●
●
●●
●
●●●●●●●●●
●●●
●●
●●

●

●●●
●
●●●●●●●●●●●●●
●●●●
●
●●
●
●●●

●

●●●●
●●
●
●
●●●
●
●●●●●
●
●●●
●●●●●
●
●

●

●
●
●●●●●●●●●
●●●●
●●●●
●
●●
●
●●
●●●●●●
●●
●
●
●●●
●●
●
●
●
●
●●●
●
●

●●●●

●●
●
●●

●

●
●
●
●
●●
●●●●●●
●
●●●
●●●●
●●●●

●

●●●●●●●●
●●●●●●●●●●
●

●●
●●
●●●●●●●●●
●●●●●●●
●
●
●

●●●●●
●●●●●
●●●●
●
●●●●●●●●●●●●
●●

●

●●●
●●●●●●●●●●
●
●
●

●
●
●●●●
●
●●●
●●●●●●
●●

●

●
●●●●●●●●●●●●●
●●●●
●
●●●
●●

●●●

●

●
●●●●
●●
●
●
●●
●●
●●●●

●
●●●
●
●●●●●
●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●
●
●●

●

●●●●
●●●
●

●●●
●
●

●

●●●●●●
●●●

●

●●●●●
●
●●
●
●

●●
●

●

●●●●
●
●●●
●
●●●●●

●

●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●
●
●●●

●

●
●
●

●●
●●●●
●
●●
●
●
●
●●
●●
●

●

●
●●
●●
●●●
●
●
●
●
●●
●
●
●
●●
●
●
●
●
●●●●
●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●

●

●●●●●●●●●●
●●●●●●

●

●●●●●●
●
●●●●●

●

●
●
●●●●●●●●●●●●●
●●●●●●
●

●
●
●

●●
●
●

●●●
●
●
●●
●
●●
●
●●●

●

●●
●
●●●●●●
●
●●●●●
●
●●
●

●

●●
●
●●●
●●●

●

●●●●●
●●●●●●●●●
●
●
●●●●
●
●●●●●●●●●
●
●●●●●●●●
●●
●●
●●●●●●●●
●●●●●●●●●●●
●
●
●
●
●●●
●
●●●●●●
●
●
●●●●●●●
●
●●
●
●●●●●●●●●
●
●●●
●
●●●●●●
●
●●●●●
●●
●

●●
●
●●
●
●
●
●●●●
●
●●●●●●●●●●
●
●
●●●●●
●●●●●●

●

●
●●●●●
●●●●●●
●●●
●

●●

●

●●●

●

●●

●

●
●●●●●●
●
●●●●●
●
●●

●

●
●●
●●●●●●

●
●●
●
●●●
●●
●
●
●

●

●●●
●●
●●●●●

●
●
●●●●●●●●
●●●●●
●●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●

●
●
●●●●
●
●

●
●
●
●●
●●

●

●
●●●●
●●●●●
●
●●●●●●●●●●●●●●
●●●●●●

●

●

●

●●●●●

●

●●●

●
●
●
●
●
●
●●●●●
●●●●●●●●
●●●
●●●●●
●
●●●●
●
●●●●●
●
●●

●
●●
●
●●●●●●●●●
●●
●●
●●●●
●●
●
●●
●●●●●
●
●

●
●●●●●
●●
●
●
●●●●
●●
●●●●●●●
●
●●●●●●●●●
●
●●●
●●●●●●
●●●

●
●●●●
●●●●
●
●●●●●
●
●●●
●●●

●

●●
●
●●●
●
●●●●●
●●●●
●
●●●
●
●●●●●
●
●●●●
●●
●
●
●●
●
●●●
●●●●●

●

●
●

●

●
●●●
●●
●
●

●

●●
●
●●

●
●
●●●●●●●●●

●
●
●●●●●●
●
●●●●
●●●●
●
●●●
●
●●●
●
●●●●●

●

●●
●
●●

●

●●●●●●●●●
●●●●●●
●
●●●
●
●●
●●
●
●●
●
●●●
●●●
●●●
●●
●●●
●
●

●
●

●●●●●●●●●●●●●●
●
●●●●●
●
●●●●●●●●
●
●●●●●
●
●●
●
●●

●

●●●●
●●
●●
●●●●
●
●
●●●●
●
●●●

●

●●●●●●

●

●●●●●●●●●●
●●
●
●●●●●●●●●●●●●●●
●
●●●●●
●
●●
●
●●●●●●●●●●
●
●
●●●●
●●●●
●
●●●●●●●
●●●

●
●
●●●●●
●
●●●●●●●●
●●
●
●●●
●
●●●

●

●●●●●●●●●●●●●●
●●●●●
●
●
●●●●●●●●●●●●

●
●●
●
●●●
●●●●●●●
●
●●●●
●
●

●
●●●
●●●●●
●●●
●●
●
●●
●●●●●●
●
●●●●●●
●
●
●●
●●●●
●
●●
●●●
●
●●
●
●

●
●

●●●●
●●●
●
●●
●
●●●
●
●●
●
●
●
●
●●●●●●●●●●●
●●●
●●●
●●●●●●●●●
●
●●●●●●●
●
●●●●

●
●●●●●●
●●
●
●
●
●●●●●●●
●

●
●
●●●●●●●●
●●●

●
●●●●●
●
●●

●
●●●●●●●●●
●
●●●●
●●●
●●
●
●●●●
●
●●●
●
●●●●●●●●
●
●●●●

●
●
●●
●
●
●●
●●●●●●●●
●●●

●

●

●

●●●●●●
●
●●●●
●
●●●
●
●●●●●●●●●●●
●●●●●●●●●
●
●●●
●

●●●●●●●●●
●●●●●
●
●
●●●●●●●●●●●
●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●
●●●●●
●●●●
●●●●
●
●●●
●●●
●
●●
●●●●●●
●
●●●●●●●●●●
●
●●●●
●●●
●
●●●
●●●●

●

●●●●
●
●
●●●●●●●
●
●
●
●●●
●
●●●●
●
●

●
●●●●●●
●
●●
●
●
●
●●●
●●●●●●
●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●
●●
●●
●●
●

●
●
●
●
●●●●
●●
●●●

●

●

●●

●●●
●●●

●

●●●●
●
●
●
●●
●
●●●●
●
●●
●
●●●

●

●
●●
●●●●●
●
●
●●●●●●●●
●●
●
●●
●●
●
●
●●●●●●

●

●●●
●●
●
●
●●
●●
●
●●●●
●●●●●●●●●●●●●●
●●●
●●●●●
●●●●●●

●

●●●●●●●●●●
●●●●●●
●
●●●●●●●
●
●●●●●●

●
●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●
●
●●
●●●
●
●
●●●
●
●
●●●●●●●
●●●●
●●●●
●●●
●
●●●●
●
●
●●●●●●●●●●
●●●●●
●
●●●●●
●
●
●
●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●
●
●●
●
●●●●●
●●●●●
●
●

●●●●●

●

●●●●●●

●●
●●●●●●●●
●
●●●●
●
●
●
●
●●
●●●
●
●●●●●●●

●●
●

●●●
●●●●
●

●●●
●
●●●

●

●●●
●
●
●●
●●●●●

●

●●●●
●
●

●●●

●

●

●

●●●●
●
●
●●
●
●
●
●

●●
●●●●●●●
●
●●●●
●
●●●
●
●
●
●
●
●
●
●●
●●●
●●
●
●●
●
●●
●●●●

●

●
●
●●●●●
●
●●
●

●●
●●●●●●●●
●
●●●●

●

●
●
●●
●
●●
●
●●
●●●●●●●●
●
●
●●●●●●●
●●
●
●●
●●
●
●●●
●
●●
●●
●●●●●
●
●
●
●●●●
●
●●
●
●●
●●
●
●●●●
●
●●●●
●●●●●●●
●
●●
●●
●●●●
●
●●
●●●●
●

●●●●●●●●●●●
●●
●●

●
●●●●●●●●●●●

●

●●●●●●●●●●●●●
●●●●●●●●●
●●●
●
●●●●●●
●
●●
●
●●●

●●
●●●●

●
●
●
●
●
●
●

●

●●
●●●
●●●●
●
●●
●
●●●●

●

●●●

●

●
●
●●

●●●●
●
●●●●●

●

●●●●●
●●●●●●●●

●
●

●
●
●

●●●●●●●●●●●●●

●

●
●●●
●
●
●●●
●
●●
●●●
●
●●●●

●

●●●●●●●●●
●●●●●●●●●●
●
●●
●●●●●
●●●●
●●●
●
●●●●●●
●
●
●
●●●●●
●
●●●
●●
●●

●

●●
●

●

●
●

●

●

●

●
●

●●

●
●
●

●

●
●●
●

●
●
●●
●●
●

●

●
●
●
●

●●

●

●

●

●

●●

●

●

●●
●●
●
●●●●
●●●
●
●●
●●●
●●●●●●●●
●
●●●●●
●●●●
●
●●●●●
●
●
●
●●●●
●
●●
●
●
●●
●●●
●●●●

●
●●●●
●
●●●
●
●●●●

●

●

●
●●●●●●
●

●

●●●

●

●●●●●●●●●

●●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●●●
●●
●
●●●
●●●
●
●

●

●

●●●

●

●●●●●●●
●
●●●●●●●●●●

●
●●●●●●
●
●
●●●●●●●●●●●
●
●
●
●
●●
●●
●●
●
●●●●●●●●●
●●●
●●●●●
●●●●●●●●●●●●●●●
●
●

●
●●

●

●
●●

●

●
●
●●●●●●
●●
●
●
●●
●●
●
●
●
●●

●
●●●
●
●
●
●
●
●●

●●

●
●●

●●
●
●

●

●●

●

●
●●

●

●●●

●

●
●

●

●

●●

●●

●

●●
●
●●

●

●
●

●

●●●●●●●●●●●●
●●●●●
●●
●

●
●
●●●●●
●
●
●
●●●
●
●
●
●●●●●
●
●●
●●
●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●

●

●●●
●●●●
●
●

●

●

●●●●●●
●
●●●
●
●●●●
●
●●●●●
●
●
●●
●●
●●
●
●●

●

●●●●●●●●●●
●●●●●●●●●●
●●
●●●●●
●
●●●●●
●●●●●●●
●
●
●
●
●●

●
●
●●●●●●
●●●●
●●
●●●●
●●●●

●●
●
●●●
●
●
●●

●

●

●

●
●
●●●●●●●
●
●
●●
●●●
●●
●
●
●●●●●●●●●●
●●●●
●●●●
●●
●
●●●
●
●
●
●
●

●●
●●●
●
●●
●
●
●
●●●●
●●●
●
●●●●●●●●
●
●●●●●
●
●●●●
●

●

●●

●●●●
●
●
●
●●●●●●●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●
●●●●●●●
●●●●
●
●
●●
●
●●

●

●●●●

●●
●●●
●●
●

●

●●
●
●●●

●

●●●

●
●
●●

●
●
●●●
●
●

●●●●

●

●
●

●

●

●●

●

●

●

●●●●
●●
●●●●
●
●
●
●
●
●●
●
●●●
●●
●
●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●
●
●

●

●●
●●●●●●●●
●●●●●●
●
●●
●●●●●

●

●
●
●●
●
●
●●●
●
●●●
●●●

●
●●●●
●●●●
●
●
●

●●
●
●●●●

●

●

●
●
●●●●

●
●
●
●
●
●
●
●●●●●●●●●
●

●
●●●●
●
●●
●●●●●
●
●●
●

●
●●
●
●●●●
●

●●●

●

●

●

●●●
●
●●●●●●●●

●

●●
●
●

●●●●●●●

●

●
●●
●●●

●

●●●●●

●●●
●●●
●●●
●●
●●
●●
●
●●●●
●
●●●●●●●●
●●●●●●
●
●
●
●●●●●●●

●
●
●

●
●●●

●
●●●
●
●●●●●●●
●
●
●●●●●●
●●●●●●●●
●
●●●●●●●
●
●
●●●●●●●●●
●
●
●
●●
●●●●●●●●●●●●●●●●●●
●
●●●●
●

●●●
●
●
●●●●
●
●●●●●●
●
●●●●●●●●●●●
●
●
●
●●●●●●●●●●●
●●●●●●
●●●
●●
●●
●
●●●
●
●●●
●
●
●●●●

●
●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●

●

●●●●●●●●
●●●●
●●●●●●●●●●●●●●
●
●●●
●●
●●●●●
●●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●●●●●●●●●●
●
●●●
●
●●●
●●●●●●
●●●
●
●●●●
●
●●

●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●
●
●
●
●

●
●
●●
●●
●●
●●
●
●●
●
●

●
●●●
●
●●
●●●●●●●●
●
●●●●●●●●

●

●●●
●
●

●
●●●●●●
●●
●●

●
●●

●

●
●●●●●●
●
●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●

●●
●●●●●●●●●
●
●

●

●
●
●
●
●●
●

●
●
●●
●●

●

●
●
●●
●●
●●●●●●●●
●
●●
●
●
●●
●

●●●●●●
●●
●
●●●
●
●●●●●●
●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●
●
●●●
●●●●●●
●
●●
●●●●
●
●●
●
●●●●●●●
●

●

●●
●
●
●

●
●●
●
●

●
●
●
●
●
●●●
●●
●

●●●●●
●●●●●
●
●
●

●
●
●

●●●●

●

●●●●

●

●
●
●●●

●

●
●

●
●

●

●

●

●
●●

●
●●

●

●
●●●

●

●●●●●●
●●
●
●
●●
●
●
●●●●
●

●●●●●●
●●
●
●●
●●

●

●●
●
●●●●
●●●●●●●●●●
●
●
●●●●
●●●
●
●
●●●●●

●

●●
●
●●

●
●●●●●
●
●●
●
●●
●
●●●
●●●●●
●
●●●●●
●
●●●●
●
●●
●
●●●●●●●●●●●●
●
●●●●●
●●

●

●
●●
●
●
●
●
●●
●
●●●●●●●●●●

●

●●●●●●●●●●
●
●
●
●●
●
●
●●
●●●●●

●

●●●●●
●●
●●●

●●
●
●
●●●●●
●

●●●●●●
●
●
●
●●●●
●●
●●●●
●

●●●●●●
●●
●
●
●●
●●●●
●●
●
●
●
●
●

●●●●●●●
●●
●●
●
●
●●●●●●●●●●●●
●

●●●●●

●

●●●●●●●●●●●●●●
●
●
●●●●
●●
●●●
●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●●●●●●
●
●
●●
●●
●
●

●

●
●●
●
●●●
●
●
●●●●
●●●●●●
●●●●
●
●
●
●
●●
●
●●●●●

●

●●
●
●●●●●●●●
●
●●●●
●●
●
●
●
●
●

●

●
●
●

●●●●●
●
●
●
●●●●
●
●●●●
●●

●

●
●●

●●

●●●●

●●
●●
●
●●●●●

●

●●●●●●
●
●●

●

●
●
●●
●●●●●●●●●
●●●●
●●●●●●●
●●●●
●

●
●
●
●●●●●●●●●●●
●●
●
●
●●●●●
●●●●●●●●

●
●
●
●

●

●●●●●
●
●●●●
●●●
●●●

●
●

●●●●●●
●●●●
●●●
●●
●●●
●
●●●●●●●

●
●

●●

●
●●

●
●
●●●
●●
●●
●●●

●

●●
●
●●●●●●●●
●●●●●●
●●●●●
●
●
●●●●●
●
●●
●●
●
●●●●●●●●●●●●●●●●●
●●
●
●
●●●●●●

●
●●●●●
●
●●●●
●
●
●●●●
●●●●●
●
●
●
●
●
●
●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●●●●●●●
●
●●
●●
●
●
●●●●●●
●●●●●●●

●

●
●
●●●●●
●●●●●●
●●
●●
●●●
●
●●
●
●●●●

●
●●●●●●●●●
●●
●
●●●
●
●
●
●●

●
●
●

●●●●●●●●●
●●
●●●●●●
●
●

●●

●

●●●●●●●●
●●
●●●●●
●
●
●●●●●●●●●●●●●
●●●●●●●●
●●●●

●

●●●●●●●●●●
●●●●●
●●
●
●●●
●●
●●
●●●●●●●●●●●●●●●●
●
●●
●●

●

●
●
●●●●
●●●●●●
●
●●
●
●●●●●
●
●
●
●●●
●
●●●●●●●●
●
●●
●
●

●●

●

●

●●

●
●
●●
●

●

●
●●

●

●●

●●●
●
●
●●●
●●
●

●

●
●●●●●●

●
●
●●●●●●●●●●●●●●
●●●
●
●●●
●
●

●

●●●●
●
●●●●
●
●●●
●●●
●
●●●●●●●●●●●●●
●
●●●
●

●

●
●
●
●●
●●●●●●
●
●●●

●

●
●
●
●●●●
●●●
●

●

●●●●●

●

●●●

●

●
●
●●
●
●●●

●

●●
●●
●●●●●●●●

●
●●
●
●●●
●●●●●●●
●●
●●●●
●
●●●
●●●●●
●
●●●●●●●●●
●●
●●
●
●
●
●● ●

●

●●●●●●
●
●●●
●
●●●●●●●●●●
●●●●●●
●●●●
●●
●
●●●●●
●
●●●
●
●
●●●

●●●●●
●
●●●●●●
●
●●●●●●●●
●
●●●

●
●
●

●

●●
●
●●●
●●●●●
●
●●●●
●
●
●●●●
●●●
●
●●
●
●
●●●●●●●
●●●
●
●●
●

●

●●●●●
●
●●●●●●●●●●●●●●
●●●●●
●

●●●●●●

●

●●
●●

●

●●●●●
●●●●●●●
●●●●●●●
●

●●●●●●●
●
●●●●●●●●●●●●●
●
●●
●●
●●●●●●●●●●●●●●●●●
●●
●●●●●●●
●
●●●●
●
●
●
●●●●
●
●
●●●●●●●
●
●●●●●
●
●

●
●●●●●●

●
●●●●●●●
●
●
●
●●●●

●

●●●
●

●

●
●●●●
●
●
●
●●●
●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●
●●
●

●

●

●
●
●●
●●●●

●

●
●
●●●
●
●●
●●●●

●

●●●

●
●●
●
●●
●●●
●
●●●●
●
●●
●●●

●

●●●●●

●

●●

●
●●●●
●
●●●●●
●●
●
●●●●●●
●●●●●●●●
●
●●
●
●
●●●
●●●●●●●●
●●
●●●●

●●
●

●
●
●●●
●●●●●●●●●●●
●

●●●
●●●●●●●
●●●
●●●●●
●●●
●●●
●
●●●●●
●●●●●

●●●

●●
●

●
●

●
●
●
●
●●●●●●●●
●
●●●
●●●●●●
●
●●
●
●●
●
●●
●●●●●●●
●

●●

●

●●●
●
●●●●
●
●●●
●
●●

●

●●●●●●

●

●●●
●●●

●

●●●●●
●
●
●

●
●
●●

●

●●
●

●

●●
●●●
●

●

●

●

●

●

●●●
●
●●

●

●●
●
●●●●●●
●●●●●
●●

●●

●

●●
●
●
●●●●
●●●●●
●●
●
●
●
●●●●●●●●●●●●●●●●●

●

●
●
●●

●

●●

●

●
●

●●●
●
●●
●
●●

●

●
●●●●●●
●●●●

●

●●●●●
●
●●
●
●●●●
●●
●
●●●
●●●●●●
●
●●●●
●●●●
●●

●

●●●●●●●●
●●

●
●
●
●
●
●
●●●
●
●●●●●●●
●●
●
●
●●●
●●●●●●
●●
●
●●
●
●●●●
●
●
●●●
●
●
●

●

●●●●●
●
●●

●

●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●
●●
●●
●●●

●
●●
●●●
●
●●●●

●

●

●
●
●●
●
●●
●
●●●●●●●●●●●
●●
●●●●●
●●●
●
●●●●

●
●
●

●

●●
●

●

●
●
●
●
●
●
●●●●●●●●●●●●●●●●
●●
●●

●
●●
●
●

●
●●
●●
●●●

●

●●●
●
●
●
●
●●●

●●

●●●
●
●●●●
●●●

●
●

●

●●
●●●

●
●
●

●
●●●●●●●●●●●●●●●

●

●●●●●●●
●●●
●●
●●●●●●●●● ●●●●●●

●●●●●
●●●●●
●●●
●●●●●●●●●●●

●
●●●●●

●
●●
●●●●●●●●●●●
●●●●
●●
●●●●●●●●

●

●●●●●
●●●●
●●
●●
●●
●
●
●
●●●●●●●●●●
●●
●●
●●
●●●
●
●●●●
●
●●●●
●●●●●●●●●●●●●●
●
●●
●
●●●●
●
●●
●●
●●●
●●●●●●●●●●●●●
●●

●

●
●●●●●
●
●●●●●●
●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●●
●●
●
●
●●●●●●●
●●●
●
●

●
●

●

●●●
●●●●
●
●●●●
●
●

●●●●
●●●●●

●
●
●

●●

●●
●
●●
●

●

●
●
●●
●●

●
●

●

●

●●●

●

●●●●

●

●
●
●●●●

●
●
●
●
●●

●

●

●●●
●
●
●
●

●

●

●

●●●
●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●
●
●●●●

●

●●●

●
●●●

●

●
●●
●
●
●

●

●●●●●

●

●
●
●

●●

●
●●

●●

●

●●
●●●●●

●

●
●
●

●

●●●●●●

●●

●●●●●
●●
●●●
●
●●●●●●●
●
●●●
●
●●
●●
●
●●
●
●●

●

●
●
●●

●

●●●●●●
●●●●●●●●
●
●●●●●●
●●●●●●●●
●
●●
●●●●●
●

●

●

●

●
●

●

●●●
●●
●
●●
●●●
●●●●●●●●●●
●●●●

●

●
●●●●●
●
●●●●●●●● ●

●●●●●

●●●
●●●●
●
●
●●

●

●
●
●●

●
●
●
●
●
●●●●●●●
●
●●

●

●●●●●

●

●
●●●●●●

●

●
●

●●●●●●
●
●●●●●

●

●●
●●●●●

●

●

●●

●
●●●
●
●●●●●●
●
●●

●

●
●●●●●●●●
●
●●●
●
●
●
●●●
●
●●●●●
●
●
●
●●●●●●●
●
●●●●●●●●
●
●●

●●●●
●
●●
●
●
●●●
●●●●●●
●
●●
●
●●●
●●
●●
●
●

●●
●
●●●
●●
●
●

●●●

●

●●
●

●●
●●

●●●●●●●●●
●
●●
●
●●●
●
●●●●
●
●
●
●

●

●●●

●●

●●●●●●●●●●●●

●
●●
●●●●●

●

●

●
●

●

●

●
●
●
●
●

●●●
●●
●
●●●
●●●●
●●

●

●●●
●
●●●●●
●●
●●●●●●
●●●●●
●
●●

●

●

●●

●●
●
●
●●●●●●●●●●
●●
●
●●●●●●●●●●●●
●
●
●●●
●●

●●
●
●
●●
●
●●
●
●●
●
●
●●
●

●●●●
●●●●●
●●●

●
●●●●
●●●●●●●●●●

●
●●●●●●●●●●●
●●
●●●●●●●
●

●
●●●
●
●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●
●
●●

●

●●●●
●●●
●

●●●
●
●

●

●●●●●●
●●●

●

●●●●●
●
●●
●
●

●●
●

●

●●●●
●
●●●
●
●●●●●

●

●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●
●
●●●

●

●
●
●

●●
●●●●
●
●●
●
●
●
●●
●●
●

●

●
●●
●●
●●●
●
●
●
●
●●
●
●
●
●●
●
●
●
●
●●●●
●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●

●

●●●●●●●●●●
●●●●●●

●

●●●●●●
●
●●●●●

●

●
●
●●●●●●●●●●●●●
●●●●●●
●

●
●
●

●●
●
●

●●●
●
●
●●
●
●●
●
●●●

●

●●
●
●●●●●●
●
●●●●●
●
●●
●

●

●●
●
●●●
●●●

●

●●●●●
●●●●●●●●●
●
●
●●●●
●
●●●●●●●●●
●
●●●●●●●●
●●
●●
●●●●●●●●
●●●●●●●●●●●
●
●
●
●
●●●
●
●●●●●●
●
●
● ●●

●
●●●●
●●●●
●
●●●●●
●
●●●
●●●

●

●●
●
●●●
●
●●●●●
●●●●
●
●●●
●
●●●●●
●
●●●●
●●
●
●
●●
●
●●●
●●●●●

●

●
●

●

●
●●●
●●
●
●

●

●●
●
●●

●
●
●●●●●●●●●

●
●
●●●●●●
●
●●●●
●●●●
●
●●●
●
●●●
●
●●●●●

●

●●
●
●●

●

●●●●●●●●●
●●●●●●
●
●●●
●
●●
●●
●
●●
●
●●●
●●●
●●●
●●
●●●
●
●

●
●

●●●●●●●●●●●●●●
●
●●●●●
●
●●●●●●●●
●
●●●●●
●
●●
●
●●

●

●●●●
●●
●●
●●●●
●
●
●●●●
●
●●●

●

●●●●●●

●

●●●●●●●●●●
●●
●
●●●●●●●●●●●●●●●
●
●●●●●
●
●●
●
●●●●●●●●●●
●
●
●●●●
●●●●
●
●●●●●●●
●●●

●
●
●●●●●
●
●●●●●●●●
●●
●
●●●
●
●●●

●

●●●●●●●●●●●●●●
●●●●●
●
●
●●●●●●●●●●●●

●
●●
●
●●●
●●●●●●●
●
● ●●●

●

●
●●
●●●●●
●
●
●●●●●●●●
●●
●
●●
●●
●
●
●●●●●●

●

●●●
●●
●
●
●●
●●
●
●●●●
●●●●●●●●●●●●●●
●●●
●●●●●
●●●●●●

●

●●●●●●●●●●
●●●●●●
●
●●●●●●●
●
●●●●●●

●
●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●
●
●●
●●●
●
●
●●●
●
●
●●●●●●●
●●●●
●●●●
●●●
●
●●●●
●
●
●●●●●●●●●●
●●●●●
●
●●●●●
●
●
●
●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●
●
●●
●
●●●●●
●●●●●
●
●

●●●●●

●

●●●●●●

●●
●●●●●●●●
●
●●●●
●
●
●
●
●●
●●●
●
●●●●●●●

●●
●

●●●
●●●●
●

●●●
●
●●●

●

●●●
●
●
●●
●●●●●

●

●●●●
●
●

●●●

●

●

●

●●●●
●
●
●●
●
●
●
●

●●
●●●●●●●
●
●●●●
●
●●●
●
●
●
●
●
●
●
●●
●●●
●●
●
●●
●
●●
●●●●

●

●
●
●●●●●
●
●●
●

●●
●●●●●●●●
●
●●●●

●

●
●
●●
●
●●
●
●●
●●●●●●●●
●
●
●●●●●●●
●●
●
●●
●●
●
●●●
●
●●
●●
●●●●●
●
●
●
●●●●
●
●●
●
●●
●●
●
●●●●
●
●●●●
●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●●●
●●
●
●●●
●●●
●
●

●

●

●●●

●

●●●●●●●
●
●●●●●●●●●●

●
●●●●●●
●
●
●●●●●●●●●●●
●
●
●
●
●●
●●
●●
●
●●●●●●●●●
●●●
●●●●●
●●●●●●●●●●●●●●●
●
●

●
●●

●

●
●●

●

●
●
●●●●●●
●●
●
●
●●
●●
●
●
●
●●

●
●●●
●
●
●
●
●
●●

●●

●
●●

●●
●
●

●

●●

●

●
●●

●

●●●

●

●
●

●

●

●●

●●

●

●●
●
●●

●

●
●

●

●●●●●●●●●●●●
●●●●●
●●
●

●
●
●●●●●
●
●
●
●●●
●
●
●
●●●●●
●
●●
●●
●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●

●

●●●
●●●●
●
●

●

●

●●●●●●
●
●●●
●
●●●●
●
●●●●●
●
●
●●
●●
●●
●
●●

●

●●●●●●●●●●
●●●●●●●●●●
●●
●●●●●
●
●●●●●
●●●●●●●
●
●
●
●
●●

●
●
●●●●●●
●●●●
● ●●●

●

●●●

●

●

●

●●●
●
●●●●●●●●

●

●●
●
●

●●●●●●●

●

●
●●
●●●

●

●●●●●

●●●
●●●
●●●
●●
●●
●●
●
●●●●
●
●●●●●●●●
●●●●●●
●
●
●
●●●●●●●

●
●
●

●
●●●

●
●●●
●
●●●●●●●
●
●
●●●●●●
●●●●●●●●
●
●●●●●●●
●
●
●●●●●●●●●
●
●
●
●●
●●●●●●●●●●●●●●●●●●
●
●●●●
●

●●●
●
●
●●●●
●
●●●●●●
●
●●●●●●●●●●●
●
●
●
●●●●●●●●●●●
●●●●●●
●●●
●●
●●
●
●●●
●
●●●
●
●
●●●●

●
●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●

●

●●●●●●●●
●●●●
●●●●●●●●●●●●●●
●
●●●
●●
●●●●●
●●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●●●●●●●●●●
●
●●●
●
●●●
●●●●●●
●●●
●
●●●●
●
●●

●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●
●
●
●
●

●
●
●●
●●
●●
●●
●
●●
●
●

●
●●●
●
●●
●●●●●●●●
●
●●●●●●●●

●

●●●
●
●●●●●●●●

●
●●
●
●●●●
●●●●●

●
●
●

●

●

●
●●●●
●●●●●
●
●●●●●●●
●

●

●●●●●●●●●●●●●●●●
●
●●
●
●●

●

●●
●●●
●
●●●●
●
●
●●
●

●●
●
●
●
●●

●
●●●●●
●
●●●●

●

●●
●
●

●

●

●
●●●●●●
●
●●●
●●●●●●●●
●
●●●●●●
●●●●●●

●
●●

●
●

●●●●
●
●
●
●
●
●●
●●●●●●
●●●●
●●
●●●●●●●

●

●

●

●●●
●●●●●
●
●
●
●
●●●●●●●●●●●
●●●

●

●●●●●●●●●●●●●
●
●

●
●
●
●

●●●
●
●●

●
●●●●
●●●●

●

●●●●●●

●

●●●●

●

●

●

●●●
●

●●●●
●●
●
●
●●●●
●●●
●●
●●

●

●●●●●
●
●●●
●●●●●●●●●
●
●●●
●●
●●●
●
●

●
●
●

●

●
●●
●●●●●●
●
●●●
●
●●●●●●●●●●
●●
●●●●
●●●●●●●●
●
●

●

●
●
●
●●
●
●●●●●
●●●●●●
●
●

●

●●
●
●●
●
●●
●
●●●
●●●
●●●●●●●●●
●
●●●●
●●●
●●●
●
●●●●●●●●●
●●
●●●●●●●●●●●●●●●
●●
●
●
●
●
●●
●
●
●●●●●
●●●

●●
●●
●●●●●
●●●●●●●
●
●●●●●●●●●●
●
●
●
●●●●●●
●
●●●●●●
●
●
●
●
●●●●●
●●●
●●●●●●●

●
●
●
●
●
●
●●●●

●

●
●
●●●
●●●
●●
●
●●●●
●
●●
●●●●●●●●
●
●●●●●●●
●●●

●

●
●●
●

●
●●
●

●
●●

●●●●●

●

●●●●●●●
●
●●●
●●●●●

●

●●
●
●
●●
●●
●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●
●●
●
●
●
●
●
●
●
●
●●●●●●●●●
●●
●●

●

●
●●●
●●●●
●

●

●
●
●

●●●
●●●●●
●●●●●●

●

●
●
●
●
●●●●
●

●●●●
●
●●
●
●

●●●●●●●●
●●

●

●
●
●●
●●
●●
●●●●

●●●
●●
●●●●●●●●
●
●

●
●
●

●●
●●
●●
●●
●
●●●●●●●●●●●
●●●●

●

●

●
●●

●
●●●●●●●●●●
●●●●●●
●
●●●●
●●
●●
●
●●●●●●
●
●

●

●●●
●●●
●●●●●

●

●
●
●

●

●●
●●●●
●

●●●

●

●
●●

●

●●●●
●
●●●●●
●●●●●●●
●●●●●●●●●●
●
●

●

●
●
●●
●●●●●
●●●●●●●

●●
●●
●
●
●
●
●●●
●●●●●

●
●●
●●●●●●●

●

●
●●●●●●
●
●●●●●●●●●●●●
●
●

●

●
●●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●●

●

●●
●●
●
●
●
●
●●●●●●

●

●●
●
●● ●●●●

●
●●●
●●●●
●
●●●●
●●

●

●●●
●●
●

●

●
●●
●●

●

●●●
●
●●
●●
●●●
●●●
●●●●
●
●●

●
●●●●●
●
●●●●●
●
●●●●●●●●
●●●●●●●
●●●●●●
●
●●●
●
●●●
●●

●

●●
●●●
●
●
●
●●●●●
●●●●●●

●

●●●
●●●●●

●

●●●●●
●
●●●
●●●●
●●●●●●●●
●●
●●
●
●●●●●●●●●●●●●●●●●●
●●●●●
●●
●●
●
●●●
●●
●
●●●●●●
●●●●
●●●●●
●●●●

●
●●●
●●●●●●●●●●●●●●

●

●●●●●
●
●●
●●●●●●
●
●
●
●●
●●●●●●●●●●●●●●●
●●●●
●
●
●●●
●
●●●●
●●●●●●●●●●●
●●●●●●
●
●●
●●●●●
●●●
●
●●●

●

●●●●●●●●●
●
●●●
●●
●●●●●●
●
●●●●●●●●
●●
●
●●●●
●
●●●●
●●●
●
●●●
●
●●
●
●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●
●●●●●●●●
●●●
●
●
●●
●●●
●
●●
●●
●

●
●
●●

●
●

●

●●

●

●

●

●●●●●●●

●
●●
●●

●●

●●●●●
●
●

●
●●●
●●
●
●
●●
●●●●●
●
●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●
●●●●●
●
●●●●●
●●●●●

●
●
●
●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●
●●●●●●●
●●
●
●●●●
●
●●
●●●
●
●●●●●●●●●
●●●●●●
●
●●●●●●●●●●
●●●
●●●●●●●

●

●●●
●
●●●●
●●●●●●●
●●
●●
●
●●●
●

●●
●
●●●
●
●
●
●●●
●
●● ●●

●
●●
●●
●●●
●
●
●
●●
●
●●●●●
●
●●●●●
●●●●

●

●●●●●●●
●●
●●

●

●●●
●●
●●
●
●●
●●

●●
●
●●●
●●●

●

●●
●
●
●
●
●
●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●

●
●●
●
●
●
●
●●●
●●●
●●
●
●●●
●
●
●●●●
●
●●●
●●●
●
●●●●●●●
●
●●●●●●
●●●●
●●
●●●●●
●
●●●
●
●
●●●●●●●●●
●●●

●

●
●
●
●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●
●
●●
●
●
●●●●●●●●
●●
●
●●●
●
●●●
●●●●●
●●
●
●●●●
●
●

●●
●●●●●●●
●●●●●
●●●●●●●
●
●●●●●●●●●
●
●●
●●●●●●●●●
●●●
●●●●●●●
●
●●
●●●●
●
●●●●●●●●●●●●●
●
●●●●●
●
●●

●
●●●●●●●●●
●
●●●●
●●
●●●●●●●●●

●●

●●

●
●●
●
●

●
●●
●

●●●●
●
●
●●●●
●●●
●●
●
●
●●●●●●●
●●●●
●●●●
●
●●●●●
●●●●●
●
●●●●●●
●
●
●●●●●●●

●

●●
●
●●●●●
●
●
●●●●●●

●●
●

●●●●●●
●
●●●●●●
●●●●●●●
●●●
●●
●●
●●●●●●
●
●●●
●●●●
●
●●●

●
●
●
●●●●●
●

●

●
●
●●●●●●●●●●●
●
●●●●
●
●
●●●●●●●●●●●●●●●●
●●●

●

●●●●

●

●●●●●●●●●
●●
●
●

●●
●●●●●●●●●●●●●
●
●
●
●●
●

●

●●
●
●●●●●●
●●●

●
●

●
●
●

●
●●
●●●●
●●
●
●

●

●

●
●

●
●●●●●●

●

●●●●
●
●

●

●
●

●
●
●

●

●●●●●●
●
●●●

●

●●●
●
●●
●●●●

●

●
●

●

●●

●

●
●

●

●

●

●●●

●
●

●

●
●

●

●

●●
●●

●

●●
●●

●

●

●

●●●

●
●●●
●●
●●●
●
●
●

●

●

●

●

●●
●
●●

●●
●

●

●
●●
●●●
●
●●
●
●●●

●

●
●
●●
●

●
●

●
●●
●●●●●

●

●
●
●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●●
●●
●●●●●●●●●●●
●●

●

●●
●●●●●●●●●

●

●

●
●●●●
●
●
●●●●●●●
●

●

●●●

●

●
●
●●

●●
●
●●●●

●●

●●

●
●●

●

●

●●●
●●
●
●
●●●●

●
●
●

●

●●●●●●

●

●

●

●●●●

●●
●●
●

●●●●
●●
●

●

●

●●●

●●●●●●●●

●
●●
●
●●●
●●●●

●
●●●
●●
●

●
●●
●●●
●
●
●●●

●

●
●●●●
●
●
●●
●
●●

●

●●●●

●

●●●●●●●
●●●●
●●●●●●●●●
●

●●●●●●

●
●

●●●●●●
●
●

●●
●●●

●●
●
●
●
●
●●
●●
●

●

●●●●●●●●●●●●●
●
●
●
●●
●●●●●
●●●●
●
●
●
●
●●

●●
●●●●●●
●
●●
●●●
●●
●●●●●

●
●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●

●

●
●●
●
●
●●
●

●●●●●
●
●●●●
●●●●●●●
●
●●
●
●●●
●●
●●
●
●●

●
●●●●●●●●●●●
●●
●
●●
●●
●●●

●

●●●
●●●

●●
●●
●
●●●●●●
●●●●●
●
●●●●●●●
●
●

●●●●●

●

●●●●●
●●●●●●●
●
●●●
●●●
●●●●●

●

●●●

●
●
●
●●
●●●●●
●●●
●
●
●●●●●
●
●●●●●●●
●●
●●●●
●
●●

●

●●
●
●

●

●

●

●

●
●●
●●●●
●
●●●●●

●
●●●●●

●

●●
●

●●●

●

●
●
●●●
●●●●●
●●●●
●
●
●●●
●●●
●
●●●●●●●●
●
●●●
●
●
●●●●●●●●●●●●●●●●●●●
●
●●
●●
●●●●
●●
●
●
●●
●
●●
●●●
●
●

●
●
●●●●●●
●●
●
●●
●●
●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●
●●
●
●●●
●
●●●●

●

●●●●●●●●
●●●●●●●●●●●●
●
●
●
●●●●
●●●●●●●●
●
●
●●
●
●
●●
●●
●●
●
●

●●●

●
●

●

●
●●●

●●
●

●
●
●

●●
●

●●●●●●
●●●
●●
●●●●●●●●●●●
●
●●●●●●
●●
●●●●●●●
●●●●●

●

●●●●●●●●
●●

●

●●●
●●●●●
●
●
●●●
●
●●
●
●
●
●●●●●●●●●●
●
●●●
●●●●

●
●●
●
●
●●●●●
●
●●
●
●

●
●●●
●●●●●●
●
●●

●
●
●●
●●●

●
●

●

●●

●●
●
●●●

●●
●
●
●●●
●
●●●
●
●●
●
●●●●●●●
●●●●●●●●
●●●●●●●
●●

●
●●
●

●
●
●●
●

●

●●●
●●

●
●

●
●●
●●●●●●

●●

●●
●
●●●
●
●●●●
●
●●
●
●
●●
●●●

●
●

●●

●

●

●

●
●●●●●
●
●
●●●
●
●●
●
●●●

●

●●●●●●●●●

●

●●●●
●●●
●●●●●●●●●●●●●
●●●●●●
●●●●●

●

●●●●
●

●

●●

●●●●●●●●
●
●●
●●●
●
●
●

●

●
●●●●●
●●●●●
●●
●
●●●
●
●●
●

●
●
●●
●●●●●
●
●
●●●●●●●
●
●

●

●●●●●●●
●●●●●●●●●●●●●●●●

●

●

●

●●●●
●
●●
●
●●●●●●●
●●●●●
●●●●
●●●
●●●●●●●●●●
●●●●●●●
●●●●●
●

●
●
●

●●
●●
●
●●●
●

●●●

●●
●●
●
●●●
●●
●●●●●

●

●●●●
●
●

●

●●
●●●●
●
●

●

●●●●●
●●●
●
● ●●●

●●
●●●
●●

●
●

●

●●
●●
●
●
●●

●

●

●●
●●●
●
●●
●●●
●

●
●
●
●●
●●
●●●●●●●●
●●

●
●
●●●●●●
●●●
●
●
●●
●
●●●●●●●●●
●●●
●●
●●

●

●●●
●
●●●●●●●●●●●●●
●●●●
●
●●
●
●●●

●

●●●●
●●
●
●
●●●
●
●●●●●
●
●●●
●●●●●
●
●

●

●
●
●●●●●●●●●
●●●●
●●●●
●
●●
●
●●
●●●●●●
●●
●
●
●●●
●●
●
●
●
●
●●●
●
●

●●●●

●●
●
●●

●

●
●
●
●
●●
●●●●●●
●
●●●
●●●●
●●●●

●

●●●●●●●●
●●●●●●●●●●
●

●●
●●
●●●●●●●●●
●●●●●●●
●
●
●

●●●●●
●●●●●
●●●●
●
●●●●●●●●●●●●
●●

●

●●●
●●●●●●●●●●
●
●
●

●
●
●●●●
●
●●●
●●●●●●
●●

●

●
●●●●●●●●●●●●●
●●●●
●
●●●
●●

●●●

●

●
●●●●
●●
●
●
●●
●●
●●●●

●
●●●
●
●●●●●
●●●●●●●
●●● ●●●●●●

●
●●
●
●●●●●●●●●
●
●●●
●
●●●●●●
●
●●●●●
●●
●

●●
●
●●
●
●
●
●●●●
●
●●●●●●●●●●
●
●
●●●●●
●●●●●●

●

●
●●●●●
●●●●●●
●●●
●

●●

●

●●●

●

●●

●

●
●●●●●●
●
●●●●●
●
●●

●

●
●●
●●●●●●

●
●●
●
●●●
●●
●
●
●

●

●●●
●●
●●●●●

●
●
●●●●●●●●
●●●●●
●●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●

●
●
●●●●
●
●

●
●
●
●●
●●

●

●
●●●●
●●●●●
●
●●●●●●●●●●●●●●
●●●●●●

●

●

●

●●●●●

●

●●●

●
●
●
●
●
●
●●●●●
●●●●●●●●
●●●
●●●●●
●
●●●●
●
●●●●●
●
●●

●
●●
●
●●●●●●●●●
●●
●●
●●●●
●●
●
●●
●●●●●
●
●

●
●●●●●
●●
●
●
●●●●
●●
●●●●●●●
●
●●●●●●●●●
●
●●●
●●●●●●
● ●

●●
●
●

●
●●●
●●●●●
●●●
●●
●
●●
●●●●●●
●
●●●●●●
●
●
●●
●●●●
●
●●
●●●
●
●●
●
●

●
●

●●●●
●●●
●
●●
●
●●●
●
●●
●
●
●
●
●●●●●●●●●●●
●●●
●●●
●●●●●●●●●
●
●●●●●●●
●
●●●●

●
●●●●●●
●●
●
●
●
●●●●●●●
●

●
●
●●●●●●●●
●●●

●
●●●●●
●
●●

●
●●●●●●●●●
●
●●●●
●●●
●●
●
●●●●
●
●●●
●
●●●●●●●●
●
●●●●

●
●
●●
●
●
●●
●●●●●●●●
●●●

●

●

●

●●●●●●
●
●●●●
●
●●●
●
●●●●●●●●●●●
●●●●●●●●●
●
●●●
●

●●●●●●●●●
●●●●●
●
●
●●●●●●●●●●●
●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●
●●●●●
●●●●
●●●●
●
●●●
●●●
●
●●
●●●●●●
●
●●●●●●●●●●
●
●●●●
●●●
●
●●●
●●●●

●

●●●●
●
●
●●●●●●●
●
●
●
●●●
●
●●●●
●
●

●
●●●●●●
●
●●
●
●
●
●●●
●●●●●●
●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●
●●
●●
●●
●

●
●
●
●
●●●●
●●
●●●

●

●

●●

●●●
●●●

●

●●●●
●
●
●
●●
●
●●●●
●
●●
●

●●●●●●
●
●●
●●
●●●●
●
●●
●●●●
●

●●●●●●●●●●●
●●
●●

●
●●●●●●●●●●●

●

●●●●●●●●●●●●●
●●●●●●●●●
●●●
●
●●●●●●
●
●●
●
●●●

●●
●●●●

●
●
●
●
●
●
●

●

●●
●●●
●●●●
●
●●
●
●●●●

●

●●●

●

●
●
●●

●●●●
●
●●●●●

●

●●●●●
●●●●●●●●

●
●

●
●
●

●●●●●●●●●●●●●

●

●
●●●
●
●
●●●
●
●●
●●●
●
●●●●

●

●●●●●●●●●
●●●●●●●●●●
●
●●
●●●●●
●●●●
●●●
●
●●●●●●
●
●
●
●●●●●
●
●●●
●●
●●

●

●●
●

●

●
●

●

●

●

●
●

●●

●
●
●

●

●
●●
●

●
●
●●
●●
●

●

●
●
●
●

●●

●

●

●

●

●●

●

●

●●
●●
●
●●●●
●●●
●
●●
●●●
●●●●●●●●
●
●●●●●
●●●●
●
●●●●●
●
●
●
●●●●
●
●●
●
●
●●
●●●
●●●●

●
●●●●
●
●●●
●
●●●●

●

●

●
●●●●●●
●

●

●●●

●

●●●●●●●●●

●

●
●●●●
●●●●

●●
●
●●●
●
●
●●

●

●

●

●
●
●●●●●●●
●
●
●●
●●●
●●
●
●
●●●●●●●●●●
●●●●
●●●●
●●
●
●●●
●
●
●
●
●

●●
●●●
●
●●
●
●
●
●●●●
●●●
●
●●●●●●●●
●
●●●●●
●
●●●●
●

●

●●

●●●●
●
●
●
●●●●●●●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●
●●●●●●●
●●●●
●
●
●●
●
●●

●

●●●●

●●
●●●
●●
●

●

●●
●
●●●

●

●●●

●
●
●●

●
●
●●●
●
●

●●●●

●

●
●

●

●

●●

●

●

●

●●●●
●●
●●●●
●
●
●
●
●
●●
●
●●●
●●
●
●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●
●
●

●

●●
●●●●●●●●
●●●●●●
●
●●
●●●●●

●

●
●
●●
●
●
●●●
●
●●●
●●●

●
●●●●
●●●●
●
●
●

●●
●
●●●●

●

●

●
●
●●●●

●
●
●
●
●
●
●
●●●●●●●●●
●

●
●●●●
●
●●
●●●●●
●
●●
●

●
●●
●
●

7A5

A1BG

A1CF7A5
A1BG
A1CF
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α = 0 : LASSO

0 < α < 1 : Elastic Net

α = 1 : Ridge Regression

0
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g = Set of SNPs user assigns to gene g

Gene Chr Start End
7 20174278 20257013
19 58858171 58864865
10 52566324 52645435

· · · · · · · · · · · ·

H0 : σ
2
j ≤ σ2

2 ; σ2
j := PVE of the j-th SNP

Figure 2. Schematic overview of gene-ε: our new gene-level association approach modeling ε-genic effects. (a)

gene-ε takes SNP-level GWA marginal effect sizes (OLS estimates β̂) and a linkage disequilibrium (LD) matrix (Σ) as input. It is
well-known that OLS effect size estimates are inflated due to LD (i.e., correlation structures) among genome-wide genotypes. (b)

gene-ε first uses its inputs to derive regularized effect size estimators (β̃) through shrinkage methods (LASSO, Elastic Net and Ridge
Regression; we explore performance of each solution under a variety of simulated trait architectures, Supplementary Note and Figures).

Marginally, β̃j ∼ N (0, σ2
j ), where σ2

j denotes the proportion of narrow-sense heritability h2 contributed by the j-th SNP. (c) A unique

feature of gene-ε is that it treats interactive SNPs as non-causal. gene-ε assumes a (SNP-level) null hypothesis H0 : σ2
j ≤ σ2, where σ2 is

the ε-genic threshold and represents the maximum proportion-of-variance-explained (PVE) that is explained by an interactive or
non-causal SNP. To infer σ2

j , gene-ε fits a K-mixture of normal distributions over the regularized effect sizes with successively smaller

variances (σ2
1 > · · · > σ2

K ; with σ2
K = 0). In this study, we assume that causal SNPs will appear in the first set, while non-causal SNPs

appear in the last set. By definition, the ε-genic threshold is then σ2 = σ2
2 . (d) Lastly, gene-ε computes gene-level association test

statistics using quadratic forms, and estimates corresponding P -values using Imhof’s method. For more details, see Methods.
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(c) 10% Core Genes
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(d) 10% Core Genes

Figure 3. Receiver operating characteristic (ROC) and precision-recall curves comparing
the performance of gene-ε and competing approaches in simulations (N = 10,000;
h2 = 0.6). We simulate complex traits under different genetic architectures and GWA study scenarios,
varying the following parameters: narrow sense heritability, proportion of core genes, and sample size
(Supplementary Note). Here, the sample size N = 10, 000 and the narrow-sense heritability h2 = 0.6.
We compute standard GWA SNP-level effect sizes (estimated using ordinary least squares). Results for
gene-ε are shown with LASSO (blue), Elastic Net (EN; red), and Ridge Regression (RR; purple)
regularizations. We also show the results of gene-ε without regularization to illustrate the importance of
this step (labeled OLS; orange). We further compare gene-ε with three existing methods: PEGASUS
(brown) [12], VEGAS (teal) [7], and the Bayesian approach RSS (black) [14]. (a, c) ROC curves show
power versus false positive rate for each approach of sparse (1% core genes) and polygenic (10% core
genes) architectures, respectively. Note that the upper limit of the x-axis has been truncated at 0.1. (b,
d). Precision-Recall curves for each method applied to the simulations. Note that, in the sparse case
(1% core genes), the top ranked genes are always true positives, and therefore the minimal recall is not
0. All results are based on 100 replicates.
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value p value q value z 
Combined 
   score 

# of genes
in dbGap 

6.239e-11           2.059e-9            -2.36              55.44              15    
0.2577                0.3194               -2.23               8.16                 3    
0.2904                0.3194               -1.60               5.65                 1    
0.05833              0.3770               -1.97               5.60                 2    
0.04927              0.3770               -1.68               5.07                 1    
0.1219                0.3770               -2.00               4.20                 3    
0.09993              0.3770               -1.70               3.92                 1    
0.1255                0.3770               -1.78               3.69                 2    
0.1150                0.3770               -1.63               3.53                 1    
0.1368                0.3770               -1.68               3.34                 2    

Smoking

Body Height

Stroke

Alcoholism

Prion Diseases

Respiratory Function Tests

Leprosy

Waist Circumference

Hippocampus

Iron

6.239e-11           2.059e-9            -2.36               55.44              15    Macular Degeneration

Cholesterol, LDL

Stroke

Glucose

Cholesterol, HDL

Coronary Artery Disease

Alzheimer Disease

Cholesterol

C-Reactive Protein

Lipoproteins, VLDL

value p value q value z 
Combined 
   score 

# of genes
in dbGap 

0.001687             0.04567            -2.23               14.23                 3    
0.003109             0.04567            -2.43               14.01                 4    
0.002592             0.04567            -2.33               13.89                 4    
0.003150             0.04567             -2.13              12.28                 3   
0.005497             0.05258             -2.15               11.19                4    
0.007934             0.05258             -1.93               9.34                  3    
0.01117               0.05258              -1.54               6.94                  2     
0.01632               0.05258              -1.56               6.41                  3    
0.01340               0.05258              -1.44               6.20                  2    
0.01282               0.05258              -1.39               6.04                  2    

(a) (b)

(c) (d)

Figure 4. Gene-level association results from applying gene-ε to Height (panels a and c) and Body Mass Index (BMI;
panels b and d), assayed in European-ancestry individuals in the UK Biobank. Manhattan plots of gene-ε gene-level
association P -values using Elastic Net regularized effect sizes for (a) Body Height and (b) BMI. The purple dashed line indicates a
log-transformed Bonferroni-corrected significance threshold (P = 2.83× 10−6 correcting for 17652 autosomal genes analyzed). We color
code all significant genes identified by gene-ε in orange, and annotate genes overlapping with the Database of Genotypes and
Phenotypes (dbGAP). In (c) and (d), we conduct gene set enrichment analysis using Enrichr [41,70] to identify dbGaP categories
enriched for significant gene-level associations reported by gene-ε. We highlight categories with Q-values (i.e., false discovery rates) less
than 0.05 and annotate corresponding genes in the Manhattan plots in (a) and (b), respectively. For height, the only significant dbGAP
category is “Body Height”, with 15 of the genes identified by gene-ε appearing in this category. For BMI, the four significant dbGAP
categories are Macular Degeneration, Cholesterol, Stroke, and Glucose — all of which have been connected to BMI [47,51,71–74].
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Trait Gene Chr gene-ε P-Value Rank h2
g Biological Relevance to Trait Ref(s)

Height CHD8 14 2.45× 10−14 5 1.09× 10−2 Disruption in zebrafish recapitulates features of the human
phenotype, including increased head size.

[75]

Height ZNF628 19 9.65× 10−14 7 2.58× 10−2 Rare variants within the gene have been associated with adult
height.

[35]

Height MATN3 2 1.63× 10−11 15 9.70× 10−3 Mutations in MATN3 can cause Multiple epiphyseal dysplasia
(MED) and affect bone length.

[76]

BMI C1orf91 1 4.24× 10−8 6 3.66× 10−3 Associated with nonalcoholic fatty liver disease (NAFLD) which
has risk of affecting BMI.

[77]

BMI HTF9C 22 5.13× 10−7 26 2.34× 10−3 Orthologous gene in mice affects lean body mass. [42, 78–80]

BMI USPL1 13 1.02× 10−6 36 3.03× 10−3 USPL1 is a member of a short region in which deletions can
cause obesity.

[81]

MCV LRCH4 7 1× 10−20 1* 1.71× 10−2 Involved in ligand binding which can affect deformability of red
blood cell surface necessary for merozoite invasion.

[82]

MCV FAM21B-2 10 1× 10−20 1* 3.28× 10−3 Involved in the endocytosis pathway, which can affect risks of
megaloblastic anaemia (i.e., unusually large red blood cells).

[83–86]

MCV LOC284194 17 1× 10−20 1* 1.65× 10−3 — —

MPV ZNF385A 12 1× 10−20 1* 1.56× 10−2 Mutations in mouse orthologue can cause gastrointestinal and
intracranial hemorrhages.

[78–80]

MPV EXDL2 14 1× 10−20 1* 4.55× 10−2 Identified as an important enhancer of the gene DCAF5, which
affects MPV.

[87]

MPV GIT1 17 1× 10−20 1* 3.18× 10−2 Identified as an important enhancer of the gene
ENSG00000266111, which affects MPV.

[87]

PLC A26B3 21 1× 10−20 1* 2.22× 10−4 Indicated as being important for attachment of integral
membrane proteins to the spectrin-actin based membrane

skeleton, which affects platelet formation.

[88]

PLC CD302 2 6.55× 10−15 13 1.91× 10−2 Identified as an important enhancer of the gene MARCH7, which
affects platelet counts.

[87]

PLC FAM131A 3 5.33× 10−14 17 2.33× 10−2 Identified as an important enhancer of the gene POLR2H, which
affects platelet counts.

[87]

WHR LRFN4 11 1.09× 10−7 6* 2.86× 10−3 Promotes neurite outgrowth and affects cognitive function,
possibly impairing abdominal obesity.

[89]

WHR C1orf91 1 2.12× 10−7 9 4.4× 10−3 Involved in formation of transmembrane proteins, such as insulin
receptor, which affect central (i.e., intra-abdominal) obesity.

[83, 85,86,90]

WHR PTRHD1 2 2.64× 10−7 11 6.08× 10−3 Previously associated with BMI, diabetes, and height. [87]

Table 1. Top three novel candidate core genes reported by gene-ε for the six quantitative traits studied in the UK
Biobank. We call these novel candidate core genes because they are not listed as being associated with the trait of interest in either the
GWAS catalog or dbGaP; here, they are annotated with past functional studies that link them to the trait of interest. We also report
each gene’s overall trait-specific significance rank (out of 17652 autosomal genes analyzed for each trait), as well as their heritability
estimates from gene-ε using Elastic Net to regularize GWA SNP-level effect size estimates. The traits are: height; body mass index
(BMI); mean corpuscular volume (MCV); mean platelet volume (MPV); platelet count (PLC); and waist-hip ratio (WHR). *: Multiple
genes were tied for this ranking.
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