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Abstract11

Traditional univariate genome-wide association studies generate false positives and negatives due to12

difficulties distinguishing associated variants from variants with spurious nonzero effects that do not13

directly influence the trait. Recent efforts have been directed at identifying genes or signaling pathways14

enriched for mutations in quantitative traits or case-control studies, but these can be computationally15

costly and hampered by strict model assumptions. Here, we present gene-ε, a new approach for identifying16

statistical associations between sets of variants and quantitative traits. Our key insight is that enrichment17

studies on the gene-level are improved when we reformulate the genome-wide SNP-level null hypothesis18

to identify spurious small-to-intermediate SNP effects and classify them as non-causal. gene-ε efficiently19

identifies enriched genes under a variety of simulated genetic architectures, achieving greater than a 90%20

true positive rate at 1% false positive rate for polygenic traits. Lastly, we apply gene-ε to summary21

statistics derived from six quantitative traits using European-ancestry individuals in the UK Biobank,22

and identify enriched genes that are in biologically relevant pathways.23

Author Summary24

Enrichment tests augment the standard univariate genome-wide association (GWA) framework by identi-25

fying groups of biologically interacting mutations that are enriched for associations with a trait of interest,26

beyond what is expected by chance. These analyses model local linkage disequilibrium (LD), allow many27

different mutations to be disease-causing across patients, and generate biologically interpretable hypothe-28

ses for disease mechanisms. However, existing enrichment analyses are hampered by high computational29

costs, and rely on GWA summary statistics despite the high false positive rate of the standard univariate30

GWA framework. Here, we present the gene-level association framework gene-ε (pronounced “genie”),31

an empirical Bayesian approach for identifying statistical associations between sets of mutations and32

quantitative traits. The central innovation of gene-ε is reformulating the GWA null model to distinguish33

between (i) mutations that are statistically associated with the disease but are unlikely to directly in-34

fluence it, and (ii) mutations that are most strongly associated with a disease of interest. We find that,35

with our reformulated SNP-level null hypothesis, our gene-level enrichment model outperforms existing36

enrichment methods in simulation studies and scales well for application to emerging biobank datasets.37

We apply gene-ε to six quantitative traits in the UK Biobank and recover novel and functionally validated38

gene-level associations.39
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Introduction40

Over the last decade, there has been an evolving debate about the types of insight genome-wide single-41

nucleotide polymorphism (SNP) genotype data offer into the genetic architecture of complex traits [1–5].42

In the traditional genome-wide association (GWA) framework, individual SNPs are tested independently43

for association with a trait of interest. While this approach can have drawbacks [2, 3, 6], more recent44

approaches that combine SNPs within a region have gained power to detect biologically relevant genes45

and pathways enriched for correlations with complex traits [7–14]. Reconciling these two observations is46

crucial for biomedical genomics.47

In the traditional GWA model, each SNP is assumed to either (i) directly influence (or perfectly tag a48

variant that directly influences) the trait of interest; or (ii) have no affect on the trait at all (see Fig. 1A).49

Throughout this manuscript, for simplicity, we refer to SNPs under the former as “associated” and those50

under latter as “non-associated”. These classifications are based on ordinary least squares (OLS) effect51

size estimates for each SNP in a regression framework, where the null hypothesis assumes that the true52

effects of non-associated SNPs are zero (H0 : βj = 0). The traditional GWA model is agnostic to trait53

architecture, and is underpowered with a high false-positive rate for “polygenic” traits or traits which54

are generated by many mutations of small effect [5, 15–17].55

Suppose that in truth each SNP in a GWA dataset instead belongs to one of three categories depending56

on the underlying distribution of their effects on the trait of interest: (i) associated SNPs; (ii) non-57

associated SNPs that emit spurious nonzero statistical signals; and (iii) non-associated SNPs with zero-58

effects (Fig. 1B) [18]. Associated SNPs may lie in enriched genes that directly influence the trait of59

interest. The phenomenon of a non-associated SNP emitting nonzero statistical signal can occur due60

to multiple reasons. For example, spurious nonzero SNP effects can be due to some varying degree of61

linkage disequilibrium (LD) with associated SNPs [19]; or alternatively, non-associated SNPs can have a62

trans-interaction effect with SNPs located within an enriched gene. In either setting, spurious SNPs can63

emit small-to-intermediate statistical noise (in some cases, even appearing indistinguishable from truly64

associated SNPs), thereby confounding traditional GWA tests (Fig. 1B). Hereafter, we refer to this noise65

as “epsilon-genic effects” (denoted in shorthand as “ε-genic effects”). There is a need for a computational66

framework that has the ability to identify mutations associated with a wide range of traits, regardless of67

whether narrow-sense heritability is sparsely or uniformly distributed across the genome.68

Here, we develop a new and scalable quantitative approach for testing aggregated sets of SNP-level69

GWA summary statistics for enrichment of associated mutations in a given quantitative trait. In practice,70

our approach can be applied to any user-specified set of genomic regions, such as regulatory elements,71

intergenic regions, or gene sets. In this study, for simplicity, we refer to our method as a gene-level72

test (i.e., an annotated collection of SNPs within the boundary of a gene). The key contribution of73

our approach is that gene-level association tests should treat spurious SNPs with ε-genic effects as non-74

associated variants. Conceptually, this requires assessing whether SNPs explain more than some “epsilon”75

proportion of the phenotypic variance. In this generalized model, we reformulate the GWA null hypothesis76

to assume approximately no association for spurious non-associated SNPs where77

H0 : βj ≈ 0, βj ∼ N (0, σ2
ε), j = 1, . . . , J SNPs.78

Here, σ2
ε denotes a “SNP-level null threshold” and represents the maximum proportion of phenotypic79

variance explained (PVE) that is contributed by spurious non-associated SNPs. This null hypothesis80

can be equivalently restated as H0 : E[β2
j ] ≤ σ2

ε (Fig. 1B). Non-enriched genes are then defined as genes81

that only contain SNPs with ε-genic effects (i.e., 0 ≤ E[β2
j ] ≤ σ2

ε for every j-th SNP within that region).82

Enriched genes, on the other hand, are genes that contain at least one associated SNP (i.e., E[β2
j ] > σ2

ε83

for at least one SNP j within that region). By accounting for the presence of spurious ε-genic effects (i.e.,84

through different values of σ2
ε which the user can subjectively control), our approach flexibly constructs85

an appropriate GWA SNP-level null hypothesis for a wide range of traits with genetic architectures that86

land anywhere on the polygenic spectrum (see Materials and Methods).87
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We refer to our gene-level association framework as “gene-ε” (pronounced “genie”). gene-ε leverages88

our modified SNP-level null hypothesis to lower false positive rates and increases power for identifying89

gene-level enrichment within GWA studies. This happens via two key conceptual insights. First, gene-90

ε regularizes observed (and inflated) GWA summary statistics so that SNP-level effect size estimates91

are positively correlated with the assumed generative model of complex traits. Second, it examines the92

distribution of regularized effect sizes to offer the user choices for an appropriate SNP-level null threshold93

σ2
ε to distinguish associated SNPs from spurious non-associated SNPs. This makes for an improved94

and refined hypothesis testing strategy for identifying enriched genes underlying complex traits. With95

detailed simulations, we assess the power of gene-ε to identify significant genes under a variety of genetic96

architectures, and compare its performance against multiple competing approaches [7, 10, 12, 14, 20]. We97

also apply gene-ε to the SNP-level summary statistics of six quantitative traits assayed in individuals of98

European ancestry from the UK Biobank [21].99

Results100

Overview of gene-ε101

The gene-ε framework requires two inputs: GWA SNP-level effect size estimates, and an empirical linkage102

disequilibrium (LD, or variance-covariance) matrix. The LD matrix can be estimated directly from103

genotype data, or from an ancestry-matched set of samples if genotype data are not available to the104

user. We use these inputs to both estimate gene-level contributions to narrow-sense heritability h2, and105

perform gene-level enrichment tests. After preparing the input data, there are three steps implemented106

in gene-ε, which are detailed below (Fig. 2).107

First, we shrink the observed GWA effect size estimates via regularized regression (Figs. 2A and108

B; Eq. (4) in Materials and Methods). This shrinkage step reduces the inflation of OLS effect sizes109

for spurious SNPs [22], and increases their correlation with the assumed generative model for the trait110

of interest (particularly for traits with high heritability; Fig. S1). When assessing the performance of111

gene-ε in simulations, we considered different types of regularization for the effect size estimates: the112

Least Absolute Shrinkage And Selection Operator (gene-ε-LASSO) [23], the Elastic Net solution (gene-113

ε-EN) [24], and Ridge Regression (gene-ε-RR) [25]. We also assessed our framework using the observed114

ordinary least squares (OLS) estimates without any shrinkage (gene-ε-OLS) to serve as motivation for115

having regularization as a step in the framework.116

Second, we fit a K-mixture Gaussian model to all regularized effect sizes genome-wide with the goal117

of classifying SNPs as associated, non-associated with spurious statistical signal, or non-associated with118

zero-effects (Figs. 1B and 2C; see also [18]). Each successive Gaussian mixture component has distinctly119

smaller variances (σ2
1 > · · · > σ2

K) with the K-th component fixed at σ2
K = 0. Estimating these variance120

components helps determine an appropriate k-th category to serve as the cutoff for SNPs with null effects121

(i.e., choosing some variance component σ2
k to be the null threshold σ2

ε). The gene-ε software allows users122

to determine this cutoff subjectively. Intuitively, enriched genes are likely to contain important variants123

with relatively larger effects that are categorized in the early-to-middle mixture components. Since the124

biological interpretation of the middle components may not be consistent across trait architectures, we125

take a conservative approach in our selection of a cutoff when determining associated SNPs. Without loss126

of generality, we assume non-null SNPs appear in the first mixture component with the largest variance,127

while null SNPs appear in the latter components. By this definition, non-associated SNPs with spurious128

ε-genic or zero-effects then have PVEs that fall at or below the variance of the second component (i.e.,129

σ2
ε = σ2

2 and H0 : E[β2
j ] ≤ σ2

2 for the j-th SNP). gene-ε allows for flexibility in the number of Gaussians130

that specify the range of null and non-null SNP effects. To achieve genome-wide scalability, we estimate131

parameters of the K-mixture model using an expectation-maximization (EM) algorithm.132

Third, we group the regularized GWA summary statistics according to gene boundaries (or user-133
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specified SNP-sets) and compute a gene-level enrichment statistic based on a commonly used quadratic134

form (Fig. 2D) [7, 12, 20]. In expectation, these test statistics can be naturally interpreted as the contri-135

bution of each gene to the narrow-sense heritability. We use Imhof’s method [26] to derive a P -value for136

assessing evidence in support of an association between a given gene and the trait of interest. Details for137

each of these steps can be found in Materials and Methods, as well as in Supporting Information.138

Performance Comparisons in Simulation Studies139

To assess the performance of gene-ε, we simulated complex traits under multiple genetic architectures140

using real genotype data on chromosome 1 from individuals of European ancestry in the UK Biobank141

(Materials and Methods). Following quality control procedures, our simulations included 36,518 SNPs142

(Supporting Information). Next, we used the NCBI’s Reference Sequence (RefSeq) database in the143

UCSC Genome Browser [27] to annotate SNPs with the appropriate genes. Simulations were conducted144

using two different SNP-to-gene assignments. In the first, we directly used the UCSC annotations which145

resulted in 1,408 genes to be used in the simulation study. In the second, we augmented the UCSC gene146

boundaries to include SNPs within ±50kb, which resulted in 1,916 genes in the simulation study. For both147

cases, we assumed a linear additive model for quantitative traits, while varying the following parameters:148

sample size (N = 5,000 or 10,000); narrow-sense heritability (h2 = 0.2 or 0.6); and the percentage of149

enriched genes (set to 1% or 10%). In each scenario, we considered traits being generated with and150

without additional population structure. In the latter setting, traits are simulated while also using the151

top ten principal components of the genotype matrix as covariates to create stratification. Regardless of152

the setting, GWA summary statistics were computed by fitting a single-SNP univariate linear model (via153

OLS) without any control for population structure. Comparisons were based on 100 different simulated154

runs for each parameter combination.155

We compared the performance of gene-ε against that of five competing gene-level association or156

enrichment methods: SKAT [20], VEGAS [7], MAGMA [10], PEGASUS [12], and RSS [14] (Supporting157

Information). As previously noted, we also explored the performance of gene-ε while using various degrees158

of regularization on effect size estimates, with gene-ε-OLS being treated as a baseline. SKAT, VEGAS,159

and PEGASUS are frequentist approaches, in which SNP-level GWA P -values are drawn from a correlated160

chi-squared distribution with covariance estimated using an empirical LD matrix [28]. MAGMA is also a161

frequentist approach in which gene-level P -values are derived from distributions of SNP-level effect sizes162

using an F -test [10]. RSS is a Bayesian model-based enrichment method which places a likelihood on163

the observed SNP-level GWA effect sizes (using their standard errors and LD estimates), and assumes164

a spike-and-slab shrinkage prior on the true SNP effects [29]. Conceptually, SKAT, MAGMA, VEGAS,165

and PEGASUS assume null models under the traditional GWA framework, while RSS and gene-ε allow166

for traits to have architectures with more complex SNP effect size distributions.167

For all methods, we assess the power and false discovery rates (FDR) for identifying correct genes168

at a Bonferroni-corrected threshold (P = 0.05/1408 genes = 3.55 × 10−5 and P = 0.05/1916 genes =169

2.61×10−5, depending on if the±50kb buffer was used) or median probability model (posterior enrichment170

probability > 0.5; see [30]) (Tables S1-S16). We also compare their ability to rank true positives over171

false positives via receiver operating characteristic (ROC) and precision-recall curves (Figs. 3 and S2-S16).172

While we find gene-ε and RSS have the best tradeoff between true and false positive rates, RSS does173

not scale well for genome-wide analyses (Table 1). In many settings, gene-ε has similar power to RSS174

(while maintaining a considerably lower FDR), and generally outperforms RSS in precision-versus-recall.175

gene-ε also stands out as the best approach in scenarios where the observed OLS summary statistics176

were produced without first controlling for confounding stratification effects in more heritable traits (i.e.,177

h2 = 0.6). Computationally, gene-ε gains speed by directly assessing evidence for rejecting the gene-level178

null hypothesis, whereas RSS must compute the posterior probability of being an enriched gene (which179

can suffer from convergence issues; Supporting Information). For context, an analysis of just 1,000 genes180

takes gene-ε an average of 140 seconds to run on a personal laptop, while RSS takes around 9,400 seconds181
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to complete.182

When using GWA summary statistics to identify genotype-phenotype associations, modeling the ap-183

propriate trait architecture is crucial. As expected, all methods we compared in this study have relatively184

more power for traits with high h2. However, our simulation studies confirm the expectation that the185

max utility for methods assuming the traditional GWA framework (i.e., SKAT, MAGMA, VEGAS, and186

PEGASUS) is limited to scenarios where heritability is low, phenotypic variance is dominated by just a187

few enriched genes with large effects, and summary statistics are not confounded by population structure188

(Figs. S2, S3, S9, and S10). RSS, gene-ε-EN, and gene-ε-LASSO robustly outperform these methods189

for the other trait architectures (Figs. 3, S4-S8, and S11-S16). One major reason for this result is that190

shrinkage and penalized regression methods appropriately correct for inflation in GWA summary statis-191

tics (Fig. S1). For example, we find that the regularization used by gene-ε-EN and gene-ε-LASSO is able192

to recover effect size estimates that are almost perfectly correlated (r2 > 0.9) with the true effect sizes193

used to simulate sparse architectures (e.g., simulations with 1% enriched genes). In Figs. S17-S24, we194

show a direct comparison between gene-ε with and without regularization to show how inflated SNP-level195

summary statistics directly affect the ability to identify enriched genes across different trait architectures.196

Regularization also allows gene-ε to preserve type 1 error when traits are generated under the null hy-197

pothesis of no gene enrichment. Importantly, our method is relatively conservative when GWA summary198

statistics are less precise and derived from studies with smaller sample sizes (e.g., N = 5,000; Table S17).199

Characterizing Genetic Architecture of Quantitative Traits in the UK Biobank200

We applied gene-ε to 1,070,306 genome-wide SNPs and six quantitative traits — height, body mass index201

(BMI), mean red blood cell volume (MCV), mean platelet volume (MPV), platelet count (PLC), waist-202

hip ratio (WHR) — assayed in 349,414 European-ancestry individuals in the UK Biobank (Supporting203

Information) [21]. After quality control, we regressed the top ten principal components of the genotype204

data onto each trait to control for population structure, and then we derived OLS SNP-level effect205

sizes using the traditional GWA framework. For completeness, we then analyzed these GWA effect size206

estimates with the four different implementations of gene-ε. In the main text, we highlight results under207

the Elastic Net solution; detailed findings with the other gene-ε approaches can be found in Supporting208

Information.209

While estimating ε-genic effects, gene-ε provides insight into to the genetic architecture of a trait (Ta-210

ble S18). For example, past studies have shown human height to have a higher narrow-sense heritability211

(estimates ranging from 45-80%; [6, 31–39]). Using Elastic Net regularized effect sizes, gene-ε estimated212

approximately 11% of SNPs in the UK Biobank to be statistically associated with height. This meant213

approximately 110,000 SNPs had marginal PVEs E[β2
j ] > 0 (Materials and Methods). This number is214

similar to the 93,000 and 100,000 height associated variants previously estimated by Goldstein [40] and215

Boyle et al. [4], respectively. Additionally, gene-ε identified approximately 2% of SNPs to be “causal”216

(meaning they had PVEs greater than the SNP-level null threshold, E[β2
j ] > σ2

2); again similar to the217

Boyle et al. [4] estimate of 3.8% causal SNPs for height using data from the GIANT Consortium [32],218

and the Lello et al. [41] estimate of 3.1% causal SNPs for height using European-ancestry individuals in219

the UK Biobank.220

Compared to body height, narrow-sense heritability estimates for BMI have been considered both221

high and low (estimates ranging from 25-60%; [31, 33, 34, 36, 37, 39, 42–45]). Such inconsistency is likely222

due to difference in study design (e.g., twin, family, population-based studies), many of which have been223

known to produce different levels of bias [44]. Here, our results suggest BMI to have a lower narrow-sense224

heritability than height, with a slightly different distribution of null and non-null SNP effects. Specifically,225

we found BMI to have 13% associated SNPs and 6% causal SNPs.226

In general, we found our genetic architecture characterizations in the UK Biobank to reflect the same227

general themes we saw in the simulation study. Less aggressive shrinkage approaches (e.g., OLS and228

Ridge) are subject to misclassifications of associated, spurious, and non-associated SNPs. As a result,229
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these methods struggle to reproduce well-known narrow-sense heritability estimates from the literature,230

across all six traits. This once again highlights the need for computational frameworks that are able to231

appropriately correct for inflation in summary statistics.232

gene-ε Identifies Refined List of Genetic Enrichments233

Next, we applied gene-ε to the summary statistics from the UK Biobank and generated genome-wide234

gene-level association P -values (panels A and B of Figs. 4 and S25-S29). As in the simulation study, we235

conducted two separate analyses using two different SNP-to-gene annotations: (i) we used the RefSeq236

database gene boundary definitions directly, or (b) we augmented the gene boundaries by adding SNPs237

within a ±50 kilobase (kb) buffer to account for possible regulatory elements. A total of 14,322 genes238

were analyzed when using the UCSC boundaries as defined, and a total of 17,680 genes were analyzed239

when including the 50kb buffer. The ultimate objective of gene-ε is to identify enriched genes, which we240

define as containing at least one associated SNP and achieving a gene-level association P -value below a241

Bonferroni-corrected significance threshold (in our two analyses, P = 0.05/14322 genes = 3.49×10−6 and242

P = 0.05/17680 genes 2.83×10−6, respectively; Tables S19-S24). As a validation step, we compared gene-243

ε P -values to RSS posterior enrichment probabilities for each gene. We also used the gene set enrichment244

analysis tool Enrichr [46] to identify dbGaP categories with an overrepresentation of significant genes245

reported by gene-ε (panels C and D of Figs. 4 and S25-S29). A comparison of gene-level associations and246

gene set enrichments between the different gene-ε approaches are also listed (Tables S25-S27).247

Many of the candidate enriched genes we identified by applying gene-ε were not previously annotated248

as having trait-specific associations in either dbGaP or the GWAS catalog (Fig. 4); however, many of these249

same candidate genes have been identified by past publications as related to the phenotype of interest250

(Table 2). It is worth noting that multiple genes would not have been identified by standard GWA251

approaches since the top SNP in the annotated region had a marginal association below a genome-wide252

threshold (see Table 2 and highlighted rows in Tables S19-S24). Additionally, 45% of the genes selected253

by gene-ε were also selected by RSS. For example, gene-ε reports C1orf150 as having a significant gene-254

level association with MPV (P = 1 × 10−20 and RSS posterior enrichment probability of 1), which is255

known to be associated with germinal center signaling and the differentiation of mature B cells that256

mutually activate platelets [47–49]. Importantly, nearly all of the genes reported by gene-ε had evidence257

of overrepresentation in gene set categories that were at least related to the trait of interest. As expected,258

the top categories with Enrichr Q-values smaller than 0.05 for height and MPV were ”Body Height” and259

“Platelet Count”, respectively. Even for the less heritable MCV, the top significant gene sets included260

hematological categories such as “Transferrin”, “Erythrocyte Indices”, “Hematocrit”, “Narcolepsy”, and261

“Iron” — all of which have verified and clinically relevant connections to trait [50–57].262

Lastly, gene-ε also identified genes with rare causal variants. For example, ZNF628 (which is not263

mapped to height in the GWAS catalog) was detected by gene-ε with a significant P -value of 1× 10−20264

(and P = 4.58× 10−8 when the gene annotation included a 50kb buffer). Previous studies have shown a265

rare variant rs147110934 within this gene to significantly affect adult height [38]. Rare and low-frequency266

variants are generally harder to detect under the traditional GWA framework. However, rare variants267

have been shown to be important for explaining the variation of complex traits [28, 39, 58–61]. With268

regularization and testing for spurious ε-genic effects, gene-ε is able to distinguish between rare variants269

that are causal and SNPs with larger effect sizes due various types of correlations. This only enhances270

the power of gene-ε to identify potential novel enriched genes.271

Discussion272

During the past decade, it has been repeatedly observed that the traditional GWA framework can struggle273

to accurately differentiate between associated and spurious SNPs (which we define as SNPs that covary274
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with associated SNPs but do not directly influence the trait of interest). As a result, the traditional275

GWA approach is prone to generating false positives, and detects variant-level associations spread widely276

across the genome rather than aggregated sets in disease-relevant pathways [4]. While this observation277

has spurred to many interesting lines of inquiry — such as investigating the role of rare variants in278

generating complex traits [9, 28, 58, 59], comparing the efficacy of tagging causal variants in different279

ancestries [62, 63], and integrating GWA data with functional -omics data [64–66] — the focus of GWA280

studies and studies integrating GWA data with other -omics data is still largely based on the role of281

individual variants, acting independently.282

Here, our objective is to identify biologically significant underpinnings of the genetic architecture of283

complex traits by modifying the traditional GWA null hypothesis from H0 : βj = 0 (i.e., the j-th SNP284

has zero statistical association with the trait of interest) to H0 : βj ≈ 0. We accomplish this by testing285

for ε-genic effects: spurious small-to-intermediate effect sizes emitted by truly non-associated SNPs. We286

use an empirical Bayesian approach to learn the effect size distributions of null and non-null SNP effects,287

and then we aggregate (regularized) SNP-level association signals into a gene-level test statistic that288

represents the gene’s contribution to the narrow-sense heritability of the trait of interest. Together, these289

two steps reduce false positives and increase power to identify the mutations, genes, and pathways that290

directly influence a trait’s genetic architecture. By considering different thresholds for what constitutes291

a null SNP effect (i.e., different values of σ2
ε for spurious non-associated SNPs; Figs. 1 and 2), gene-292

ε offers the flexibility to construct an appropriate null hypothesis for a wide range of traits with genetic293

architectures that land anywhere on the polygenic spectrum. It is important to stress that while we294

repeatedly point to our improved ability distinguish “causal” variants in enriched genes, gene-ε is by no295

means a causal inference procedure. Instead, it is an association test which highlights genes in enriched296

pathways that are most likely to be associated with the trait of interest.297

Through simulations, we showed the gene-ε framework outperforms other widely used gene-level asso-298

ciation methods (particularly for highly heritable traits), while also maintaining scalability for genome-299

wide analyses (Figs. 3 and S2-S24, and Tables 1 and S1-17). Indeed, all the approaches we compared in300

this study showed improved performance when they used summary statistics derived from studies with301

larger sample sizes (i.e., simulations with N = 10, 000). This is because the quality of summary statistics302

also improves in these settings (via the asymptotic properties of OLS estimates). Nonetheless, our results303

suggest that applying gene-ε to summary statistics from previously published studies will increase the304

return made on investments in GWA studies over the last decade.305

Like any aggregated SNP-set association method, gene-ε has its limitations. Perhaps the most obvi-306

ous limitation is that annotations can bias the interpretation of results and lead to erroneous scientific307

conclusions (i.e., might cause us to highlight the “wrong” gene [14,67,68]). We observed some instances308

of this during the UK Biobank analyses. For example, when studying MPV, CAPN10 only appeared309

to be a significant gene after its UCSC annotated boundary was augmented by a ±50kb buffer win-310

dow (P = 1.85 × 10−1 and P = 1.17 × 10−7 before and after the buffer was added, respectively; Table311

S22). After further investigation, this result occurred because the augmented definition of CAPN10312

included nearly all causal SNPs from the significant neighboring gene RNPEPL1 (P = 1 × 10−20 and313

P = 2.07× 10−9 before and after the buffer window was added, respectively). While this shows the need314

for careful biological interpretation of the results, it also highlights the power of gene-ε to prioritize true315

genetic signal effectively.316

Another limitation of gene-ε is that it relies on the user to determine an appropriate SNP-level null317

threshold σ2
ε to serve as a cutoff between null and non-null SNP effects. In the current study, we use a318

K-mixture Gaussian model to classify SNPs into different categories and then (without loss of generality)319

we subjectively assume that associated SNPs only appear in the component with the largest variance320

(i.e., we choose σ2
ε = σ2

2). Indeed, there can be many scenarios where this particular threshold choice is321

not optimal. For example, if there is one very strongly associated locus, the current implementation of322

the algorithm will assign it to its own mixture component and all other SNPs will be assumed to be not323
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associated with the trait, regardless of the size of their corresponding variances. As previously mentioned,324

one practical guideline would be to select σ2
ε based on some a priori knowledge about a trait’s architecture.325

However, a more robust approach would be to select the SNP-null hypothesis threshold based on the data326

at hand. One way to do this would be to take a fully Bayesian approach and allow posterior inference327

on σ2
ε to be dependent upon how much heritability is explained by SNPs placed in the top few largest328

components of the normal mixture. Recently, sparse Bayesian parametric [69] and nonparametric [70]329

Gaussian mixture models have been proposed for improved polygenic prediction with summary statistics.330

Combining these modeling strategies with our modified SNP-level null hypothesis could make for a more331

unified and data-driven implementation of the gene-ε framework.332

There are several other potential extensions for the gene-ε framework. First, in the current study,333

we only focused on applying gene-ε to quantitative traits (Figs. 4 and S25-S29, and Tables 2 and S18-334

S27). Future studies extending this approach to binary traits (e.g., case-control studies) should explore335

controlling for additional confounders that can occur within these phenotypes, such as ascertainment336

[71–73]. Second, we only focus on data consisting of common variants; however, it would be interesting337

to extend gene-ε for (i) rare variant association testing and (ii) studies that consider the combined338

effect between rare and common variants. A significant challenge, in either case, would be to adaptively339

adjust the strength of the regularization penalty on the observed OLS summary statistics for causal rare340

variants, so as to not misclassify them as spurious non-associated SNPs. Previous approaches with specific341

re-weighting functions for rare variants may help here [9,28,58] (Materials and Methods). A final related342

extension of gene-ε is to include information about standard errors when estimating ε-genic effects. In343

our analyses using the UK Biobank, some of the newly identified candidate genes contained SNPs that344

had large effect sizes but insignificant P -values in the original GWA analysis (after Bonferroni-correction;345

Tables 2 and S19-S24). While this could be attributed to the modified SNP-level null distribution346

assumed by gene-ε, it also motivates a regularization model that accounts for the standard error of effect347

size estimates from GWA studies [14,22,29].348
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Materials and Methods374

Traditional Association Tests using Summary Statistics375

gene-ε requires two inputs: genome-wide association (GWA) marginal effect size estimates β̂, and an376

empirical linkage disequilibrium (LD) matrix Σ. We assumed the following generative linear model for377

complex traits378

y = Xβ + e, e ∼ N (0, τ2I), (1)379

where y denotes an N -dimensional vector of phenotypic states for a quantitative trait of interest measured380

in N individuals; X is an N × J matrix of genotypes, with J denoting the number of single nucleotide381

polymorphisms (SNPs) encoded as {0, 1, 2} copies of a reference allele at each locus; β is a J-dimensional382

vector containing the additive effect sizes for an additional copy of the reference allele at each locus on y;383

e is a normally distributed error term with mean zero and scaled variance τ2; and I is an N ×N identity384

matrix. For convenience, we assumed that the genotype matrix (column-wise) and trait of interest have385

been mean-centered and standardized. We also treat β as a fixed effect. A central step in GWA studies is386

to infer β for each SNP, given both genotypic and phenotypic measurements for each individual sample.387

For every SNP j, gene-ε takes in the ordinary least squares (OLS) estimates based on Eq. (1)388

β̂j = (xᵀ
jxj)

−1xᵀ
jy, (2)389

where xj is the j-th column of the genotype matrix X, and β̂j is the j-th entry of the vector β̂. In390

traditional GWA studies, the null hypothesis for statistical association tests assumes H0 : βj = 0 for all391

j = 1, . . . , J SNPs. It can be shown that two genotypic variants xj and xj′ in linkage disequilibrium392

(LD) will produce effect size estimates β̂j and β̂j′ (j 6= j′) that are correlated [29]. This can lead to393

confounded statistical tests. For the applications considered here, the LD matrix is empirically estimated394

from external data (e.g., directly from GWA study data, or using an LD map from a population with395

similar genomic ancestry to that of the samples analyzed in the GWA study).396

Regularized Regression for GWA Summary Statistics397

gene-ε uses regularization on the observed GWA summary statistics to reduce inflation of SNP-level398

effect size estimates and increase their correlation with the assumed generative model of complex traits.399

For large sample size N , note that the asymptotic relationship between the observed GWA effect size400

estimates β̂ and the true coefficient values β is [18, 74,75]401

E[β̂j ] =
J∑

j′=1

ρ(xj ,xj′)βj′ ⇐⇒ E[β̂] = Σβ, (3)402

where Σjj′ = ρ(xj ,xj′) denotes the correlation coefficient between SNPs xj and xj′ . The above mirrors403

a high-dimensional regression model with the misestimated OLS summary statistics as the response404

variables and the LD matrix as the design matrix. Theoretically, the resulting output coefficients from405

this model are the desired true effect size estimates. Due to the multi-collinear structure of GWA data, we406

cannot reuse the ordinary least squares solution reliably [76]. Thus, we derive the general regularization407

β̃ = arg min
β

‖β̂ −Σβ‖2, subject to (1− α)‖β‖1 + α‖β‖22 ≤ t for some t, (4)408

where, in addition to previous notation, the solution β̃ is used to denote the regularized solution of the409

observed GWA effect sizes β̂; and ‖ • ‖1 and ‖ • ‖22 denote L1 and L2 penalties, respectively. The free410

regularization parameter t is chosen based off a grid [log tmin, log tmax] with 100 sequential steps of size411
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0.01. Here, tmax is the minimum value such that all summary statistics are shrunk to zero. We then412

select the t that results in a model with an R2 within one standard error of the best fitted model. In413

other words, we choose the t that (i) results in a more sparse solution than the best fitted model, but414

(ii) cannot be distinguished from the best fitted model in terms of overall variance explained.415

The term α in Eq. (4) distinguishes the type of regularization used, and can be chosen to induce various416

degrees of shrinkage on the effect size estimates. Specifically, α = 0 corresponds to the “Least Absolute417

Shrinkage and Selection Operator” or LASSO solution [23], α = 1 equates to Ridge Regression [25],418

while 0 < α < 1 results in the Elastic Net [24]. The LASSO solution forces some inflated coefficients419

to be zero; while the Ridge shrinks the magnitudes of all coefficients but does not set any of them to420

be exactly zero. Intuitively, the LASSO will create a regularized set of effect sizes where associated421

SNPs have larger effects, non-associated SNPs with spurious small-to-intermediate (or ε-genic) effects,422

and non-associated SNPs with zero-effects. It has been suggested that the L1-penalty can suffer from a423

lack of stability [77]. Therefore, in the main text, we also highlighted gene-ε using the Elastic Net (with424

α = 0.5). The Elastic Net is a convex combination of the LASSO and Ridge penalties, but still produces425

distinguishable sets of associated, spurious, and non-associated SNPs. Note that for large GWA studies426

(e.g., the UK Biobank analysis in the main text), it can be impractical to construct a genome-wide LD427

matrix; therefore, we regularize OLS effect size estimates based on partitioned chromosome specific LD428

matrices. Results comparing each of the gene-ε regularization implementations are given in the main429

text (Fig. 3) and Supporting Information (Figs. S2-S24 and Tables S1-18 and 25-27). We will describe430

how we approximate the null distribution for these regularized GWA summary statistics over the next431

two sections.432

Estimating the SNP-Level Null Threshold433

The main innovation of gene-ε is to treat spurious SNPs with ε-genic effects as non-associated. This434

leads to reformulating the GWA SNP-level null hypothesis to assume non-associated SNPs can make435

small-to-intermediate contributions to the phenotypic variance. Formally, we write this as436

H0 : βj ≈ 0, βj ∼ N (0, σ2
ε), j = 1, . . . , J (5)437

where σ2
ε denotes the “SNP-level null threshold” and represents the maximum proportion of phenotypic438

variance explained (PVE) that is contributed by spurious SNPs. Based on Eq. (5), we equivalently say439

H0 : E[β2
j ] ≤ σ2

ε . (6)440

To estimate the threshold σ2
ε for null SNP-level effects, we use an empirical Bayesian approach and fit a441

K-mixture of normal distributions over the (regularized) effect size estimates [18],442

β̃j | zj = k ∼ N (0, σ2
k), Pr[zj = k] = πk, (7)443

where zj ∈ {1, . . . ,K} is a latent variable representing the categorical membership for the j-th SNP.444

When summing over all components, Eq. (7) corresponds to the following marginal distribution445

β̃j ∼
K∑

k=1

πkN (0, σ2
k), (8)446

where πk is a mixture weight representing the marginal (unconditional) probability that a randomly447

selected SNP belongs to the k-th component, with
∑
k πk = 1. The above mixture allows for distinct448

clusters of nonzero effects through K different variance components (σ2
k, k = 1, . . . ,K) [18]. Here, we449

consider sequential fractions (π1, . . . , πK) of SNPs to correspond to distinctly smaller effects (σ2
1 > · · · >450

σ2
K = 0) [18]. The goal of the mixture model is to “bin” each of the (regularized) SNP-level effects451
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and determine an appropriate category k to serve as the cutoff for SNPs with null effects (i.e., choosing452

the threshold σ2
ε based on some σ2

k). Such a threshold can be chosen based on a priori knowledge453

about the phenotype of interest. It is intuitive to assume that enriched genes will contain non-null SNPs454

that classify within the early-to-middle mixture components; unfortunately, the biological interpretations455

of the middle components may not be consistent across trait architectures. Therefore, without loss of456

generality in this paper, we take a conservative approach in our definition of associated SNPs within457

enriched genes. Here, we subjectively set the SNP-level null threshold as σ2
ε = σ2

2 . Thus, non-null SNPs458

are assumed to appear in the largest fraction (i.e., the alternative HA : E[β2
j ] > σ2

2), while null SNPs with459

belong to the latter groups (i.e., the null H0 : E[β2
j ] ≤ σ2

2). Given Eqs. (7) and (8), we write the joint460

log-likelihood for all J SNPs as the following461

log p(β̃ |Θ) =
J∑

j=1

log p(β̃j |Θ) =
J∑

j=1

log

{
K∑

k=1

πkN (0, σ2
k)

}
, (9)462

where Θ = (π1, . . . , πK , σ
2
1 , . . . , σ

2
K) is the complete set of parameters for the mixture model. Since there463

is not a closed-form solution for the maximum likelihood estimate (MLE), so we use an expectation-464

maximization (EM) algorithm to estimate the parameters in Θ [78–80].465

Derivation of the EM Algorithm. To derive an EM solution, we use Eqs. (7) and (8) to write466

the joint distribution of the J-regularized SNP-level effect sizes and the J-latent random variables z =467

(z1, . . . , zJ), conditioned on the mixture parameters Θ,468

p(β̃, z |Θ) = p(β̃ | z,Θ)p(z) =

J∏

j=1

K∏

k=1

[
πkN (0, σ2

k)
]I(zj=k)

, (10)469

where I(zj = k) is an indicator function and equates to one if zj = k and zero otherwise. Taking the log470

of this distribution yields the following471

log p(β̃, z |Θ) =
J∑

j=1

log p(β̃j , zj |Θ) =
J∑

j=1

K∑

k=1

I(zj = k)
[
log πk + logN (0, σ2

k)
]
. (11)472

As opposed to Eq. (9), the augmented log-likelihood in Eq. (11) is a much simpler function for which to473

find a solution. The formal steps of the EM algorithm are now detailed below:474

1. E-Step: Update the Probability of Fraction Assignment. In the E-step of the EM algorithm,475

we estimate the probability that the j-th SNP belongs to one of the K fraction groups. To begin,476

we use Bayes theorem to find477

p(z | β̃,Θ) ∝ p(β̃ | z,Θ)p(z) =
J∏

j=1

K∏

k=1

[
πkN (0, σ2

k)
]I(zj=k)

. (12)478

Next, we take the expectation of the complete log-likelihood log p(β̃, z |Θ), with respect to the479

condtional distribution p(z | β̃,Θ), under current value of the mixture parameters Θ̂. This yields480

Ez | β̃,Θ̂[log p(β̃, z | Θ̂)] =
J∑

j=1

K∑

k=1

γ̂
(j)
k

[
log πk + logN (0, σ2

k)
]
, (13)481

where γ̂
(j)
k is referred to as the “responsibility of the k-th mixture component”, and is given as482

γ̂
(j)
k = Pr[zj = k | β̃j , Θ̂] =

π̂kN (0, σ̂2
k)

∑K
k′=1 π̂k′ N (0, σ̂2

k′)
. (14)483
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Intuitively, the EM algorithm uses the collection of these responsibility values to assign SNPs to484

one of the K fraction groups. This key step may be interpreted as determining the category of SNP485

effects (which is determined by identifying the k-th component with the largest γ
(j)
k for each j-th486

SNP).487

2. M-Step: Update the Component Variances and Mixture Weights. In the M-step of the488

EM algorithm, we now fix the responsibility values and maximize the expectation in Eq. (13), with489

respect to the parameters in Θ̂. Namely, we compute the following closed-form solutions:490

σ̂2
k =

1

Jk

J∑

j=1

γ̂
(j)
k β̃2

j , π̂k =
Jk
J

(15)491

where Jk =
∑
j γ̂

(j)
k is the sum of the membership weights for the k-th mixture component and492

represents the number of SNPs assigned to that component. The σ̂2
k estimates are used to set the493

SNP-level null threshold σ̂2
ε .494

The gene-ε software implements the above EM algorithm using the mclust [81] package in R. Results in495

the main text and Supporting Information are based on 100 iterations from 10 different parallel chains496

to ensure convergence. To implement the above algorithm, we use the mclust software package which497

can fit a Gaussian mixture with up to K = 10 distinct components (see Software Details). Here, the498

function will compare the Bayesian Information Criterion (BIC) approximation to the Bayes factor for499

each possible K [82], and produces a resulting output for the K value that has the largest BIC value.500

Note that since the EM updates do not involve any large LD matrices, the algorithm scales to be fit501

efficiently over all SNPs genome-wide.502

Regularized GWA Summary Statistics under the Null Hypothesis503

With an estimate of the SNP-level null threshold σ2
ε , we now describe the probabilistic distribution504

of the regularized GWA summary statistics under the null hypothesis. Without loss of generality, we505

demonstrate this property using the general regularization approach where we fix α ∈ [0, 1] and have the506

following (approximate) closed form solution for the regularized effect size estimates [23–25]507

β̃ ' Hβ̂, H = (Σ + ϑD−1)−1 (16)508

with ϑ ≥ 0 being a penalization parameter that has one-to-one correspondence with t in Eq. (4). Here, H is509

commonly referred to as the “linear shrinkage estimator” [citation], where D is a diagonal weight matrix510

with nonzero elements dictated by the type of regularization that is being used. For example, D = I while511

performing ridge regression [25], and D = diag(|β̃1|, . . . , |β̃p|) while using ridge-based approximations for512

the elastic net and lasso solutions [23, 24]. From Eq. (16), it is clear that β̃ may be interpreted as513

a marginal estimator of SNP-level effects after accounting for LD structure. Using Eqs. (2)-(3), it is514

straightforward to show the (approximate) relationship between the regularized effect size estimates and515

the true coefficient values516

E[β̃] ' HΣβ. (17)517

As described in the main text, the accuracy of this relationship is dependent upon both the sample size518

and narrow-sense heritability of the trait of interest (Fig. S1). Indeed, if Σ is full rank and regularization519

is no longer implemented (i.e., ϑ = 0), β̃ is simply the ordinary least squares solution for marginal GWA520

summary statistics with asymptotic variance-covariance V[β̃] ' Σ under the null model [18,74,75]. In the521

limiting case where the number of observations in a GWA study is large (i.e., N → ∞) and the trait of522

interest is highly heritable, β̃ converges onto β in expectation; and thus is assumed to be independently523
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and normally distributed under the null hypothesis with asymptotic variance σ2
εI (previously discussed524

in Eq. (5)). As empirically demonstrated for synthetic traits in the current study, we are rarely in525

situations where we expect the regularized effect size estimates to have completely converged onto the526

true generative SNP-level coefficients (again see Fig. S1). This effectively means that we cannot expect527

each β̃j to be completely independent under the null hypothesis in practice. We accommodate this528

realization by assuming that under the null model529

V[β̃] = σ2
εΣ, lim

σ2
ε→0

σ2
εΣ = σ2

εI (18)530

Our reasoning for the formulation above is that, for most quality controlled studies, SNPs in perfect LD531

will have been pruned such that ρ(xj ,xj′) < ρ(xj ,xj) for all j 6= j′ variants in the data. Therefore, when532

traits are generated under the idealized null scenario with large sample sizes and no genetic effects, the533

estimate of σ2
ε → 0 and the off-diagonals of σ2

εΣ will approach zero quicker than the diagonal elements;534

thus, allowing the regularized β̃ to asymptotically converge onto the true coefficients β. When this535

scenario does not occur, we are able to appropriately deal with the remaining correlation structure (e.g.,536

all the simulation scenarios explored in this work; see Figs. 3 and S2-S24, and Tables 1 and S1-17).537

Using the SNP-Level Null Threshold to Detect Enriched Genes538

We now formalize the hypothesis test for identifying significantly enriched genes conditioned on the539

SNP-level null threshold σ2
ε , which we compute using the variance component estimates from the EM540

algorithm detailed in the previous section. The gene-ε gene-level test statistic is based on a quadratic541

form using GWA summary statistics, which is a common approach for generating gene-level test statistics542

for complex traits. Let gene (or genomic region) g represent a known set of SNPs j ∈ Jg; for example, Jg543

may include SNPs within the boundaries of g and/or within its corresponding regulatory region. Here, we544

conformably partition the regularized GWA effect size estimates β̃ and define the gene-level test statistic545

Q̃g = β̃ᵀ
gAβ̃g, (19)546

where A is an arbitrary symmetric and positive semi-definite weight matrix. We set to A = I to be547

the identity matrix for all analyses in the current study; hence, Q̃g simplifies to a sum of squared SNP548

effects in the g-th gene. Indeed, similar quadratic forms have been implemented to assess the enrichment549

of mutations at the gene level [7, 12] and across general SNP-sets [9, 20, 28, 58]. A key feature of the550

gene-ε framework is to assess the statistics in Eq. (19) against a gene-level enrichment null hypothesis551

H0 : Qg = 0 that is dependent on the SNP-level null threshold σ2
ε . Due to the normality assumption for552

each SNP effect in Eq. (5), Qg is theoretically assumed to follow a mixture of chi-square distributions,553

Qg ∼
|Jg|∑

j=1

λjχ
2
1,j , (20)554

where |Jg| denotes the cardinality of the set of SNPs Jg; χ2
1,j are standard chi-square random variables555

with one degree of freedom; and (λ1, . . . , λ|Jg|) are the eigenvalues of the matrix [83,84]556

V[β̃g]
1/2AV[β̃g]

1/2 = σ2
εΣ

1/2
g AΣ1/2

g .557

Again, in the current study, σ2
ε = σ̂2

2 from the estimates in Eq. (15), and Σg denotes a subset of the LD558

matrix only containing SNPs annotated in the g-th SNP-set. Again, when A = I, the eigenvalues are559

based on a scaled version of the local gene-specific LD matrix. Several approximate and exact methods560

have been suggested to obtain P -values under a mixture of chi-square distributions. In this study, we561

use Imhof’s method [26] where we empirically compute an estimate of the weighted sum in Eq. (20) and562
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compare this distribution to the observed test statistic in Eq. (19) (see Software Details). It is important563

to note here that the gene-level null hypothesis is the same for gene-ε and other similar competing564

enrichment methods [9,12,20,28,58]; the defining characteristic that sets gene-ε apart is that it assumes565

a different null distribution for effects on the SNP-level.566

Estimating Gene Specific Contributions to the PVE. In the main text, we highlight some of the567

additional features of the gene-ε gene-level association test statistic. First, the expected enrichment for568

trait-associated mutations in a given gene is equal to the heritability explained by the SNPs contained in569

said gene. Formally, consider the expansion of Eq. (19) derived from the expectation of quadratic forms,570

E[Q̃g] =

|Jg|∑

j=1

|Jg|∑

j′=1

ajj′E[β̃j β̃j′ ] = h2g, (21)571

where denotes the heritability contributed by gene g. When A = I (as in the current study), the gene-572

ε hypothesis test for identifying enriched genes is based on the individual SNP contributions to the573

narrow-sense heritability (i.e., the sum of the expectation of squared SNP effects; see also [34])574

E[Q̃g] =

|Jg|∑

j=1

E[β̃2
j ] = h2g. (22)575

Alternatively, one could choose to re-weight these contributions by specifying A otherwise [12,20,83,85,576

86]. For example, if SNP j has a small effect size but is known to be functionally associated with the577

trait of interest, then increasing Ajj will reflect this knowledge. Specific weight functions have also been578

suggested for dealing with rarer variants [9, 28,58].579

Simulation Studies580

We used a simulation scheme to generate SNP-level summary statistics for GWA studies. First, we ran-581

domly select a set of enriched genes and assume that complex traits (under various genetic architectures)582

are generated via a linear model583

y = Wb +
∑

c∈C
xcβc + e, e ∼ N (0, τ2I), (23)584

where y is an N -dimensional vector containing all the phenotypes; C represents the set of causal SNPs585

contained within the associated genes; xc is the genotype for the c-th causal SNP encoded as 0, 1, or586

2 copies of a reference allele; βc is the additive effect size for the c-th SNP; W is an N ×M matrix of587

covariates representing additional population structure (e.g., the top ten principal components from the588

genotype matrix) with corresponding fixed effects b; and e is an N -dimensional vector of environmental589

noise. The phenotypic variance is assumed V[y] = 1. The effect sizes of SNPs in enriched genes are590

randomly drawn from standard normal distributions and then rescaled so they explain a fixed proportion591

of the narrow-sense heritability V[
∑

xcβc] = h2. The covariate coefficients are also drawn from standard592

normal distributions and then rescaled such that V[Wb] + V[e] = (1 − h2). GWA summary statistics593

are then computed by fitting a single-SNP univariate linear model via ordinary least squares (OLS):594

β̂j = (xᵀ
jxj)

−1xᵀ
jy for every SNP in the data j = 1, . . . J . These effect size estimates, along with an LD595

matrix Σ computed directly from the full N ×J genotype matrix X, are given to gene-ε . We also retain596

standard errors and P -values for implementation of the competing methods (VEGAS, PEGASUS, RSS,597

SKAT, and MAGMA). Given different model parameters, we simulate data mirroring a wide range of598

genetic architectures (Supporting Information).599
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Software Details600

Source code implementing gene-ε and tutorials are freely available at https://github.com/ramachandran-lab/601

genee and was written in R (version 3.3.3). Within this software, regularization of the OLS SNP-level602

effect sizes is done using the package glmnet (version 2.0-16) [87]. For large datasets, such as the UK603

Biobank, the software also offers regularization using the biglasso (version 1.3-6) [88] to help with604

memory and scalability requirements. Note that selection of the free parameter t is done the same way605

using both the glmnet and biglasso packages. Both packages also take in an α ∈ [0, 1] to specify fit-606

ting the Ridge, Elastic Net or Lasso regularization to the OLS SNP-level effect sizes. The fitting of a607

K-mixture of Gaussian distributions for the estimation of the SNP-level null threshold σ2
ε is done using608

the package mclust (version 5.4.3) [81]. Lastly, the package CompQuadForm (version 1.4.3) was used to609

compute gene-ε gene-level P -values with Imhof’s method [26, 89]. Comparisons in this work were made610

using software for MAGMA (version 1.07b; https://ctg.cncr.nl/software/magma), PEGASUS (ver-611

sion 1.3.0; https://github.com/ramachandran-lab/PEGASUS), RSS (version 1.0.0; https://github.612

com/stephenslab/rss), SKAT (version 1.3.2.1; https://www.hsph.harvard.edu/skat), VEGAS (ver-613

sion 2.0.0; https://vegas2.qimrberghofer.edu.au) which are also publicly available. See all other614

relevant URLs below.615

URLs616

gene-ε software, https://github.com/ramachandran-lab/genee; UK Biobank, https://www.ukbiobank.617

ac.uk; Database of Genotypes and Phenotypes (dbGaP), https://www.ncbi.nlm.nih.gov/gap; NHGRI-618

EBI GWAS Catalog, https://www.ebi.ac.uk/gwas/; UCSC Genome Browser, https://genome.ucsc.619

edu/index.html; Enrichr software, http://amp.pharm.mssm.edu/Enrichr/; SNP-set (Sequence) Ker-620

nel Association Test (SKAT) software, https://www.hsph.harvard.edu/skat; Multi-marker Analysis621

of GenoMic Annotation (MAGMA) software, https://ctg.cncr.nl/software/magma; Precise, Efficient622

Gene Association Score Using SNPs (PEGASUS) software, https://github.com/ramachandran-lab/623

PEGASUS; Regression with Summary Statistics (RSS) enrichment software, https://github.com/stephenslab/624

rss; Versatile Gene-based Association Study (VEGAS) version 2, https://vegas2.qimrberghofer.625

edu.au.626
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Figure 1. Illustration of null hypothesis assumptions for the distribution of GWA SNP-level effect sizes according to
different views on underlying genetic architectures. The effect sizes of “non-associated” (pink), “spurious non-associated” (red),
and “associated” (blue) SNPs were drawn from normal distributions with successively larger variances. (A) The traditional GWA model
of complex traits simply assumes SNPs are associated or non-associated. Under the corresponding null hypothesis, associated SNPs are
likely to emit nonzero effect sizes while non-associated SNPs will have effect sizes of zero. When there are many causal variants, we refer
to the traits as polygenic. (B) Under our reformulated GWA model, there are three categories: associated SNPs, non-associated SNPs
that emit spurious nonzero effect sizes, and non-associated SNPs with effect sizes of zero. We propose a multi-component framework (see
also [18]), in which null SNPs can emit different levels of statistical signals based on (i) different degrees of connectedness (e.g., through
linkage disequilibrium), or (ii) its regulated gene interacts with an enriched gene. While truly associated SNPs are still more likely to
emit large effect sizes than SNPs in the other categories, null SNPs can have intermediate effect sizes. Here, our goal is to treat spurious
SNPs with small-to-intermediate nonzero effects as being non-associated with the trait of interest.
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D. Gene Level Association

α = 0 : LASSO

0 < α < 1 : Elastic Net

α = 1 : Ridge Regression

0
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Gene Chr Start End
7 20174278 20257013
19 58858171 58864865
10 52566324 52645435

· · · · · · · · · · · ·

g = Set of SNPs Annotated for Gene g

H0 : E[β2] ≤ σ2
ε σ2

ε = σ2
2 ≡ Null SNP-Level Threshold

Figure 2. Schematic overview of gene-ε: our new gene-level association approach accounting for spurious nonzero SNP-
level effects. (A) gene-ε takes SNP-level GWA marginal effect sizes (OLS estimates β̂) and a linkage disequilibrium (LD) matrix (Σ) as
input. It is well-known that OLS effect size estimates are inflated due to LD (i.e., correlation structures) among genome-wide genotypes.

(B) gene-ε first uses its inputs to derive regularized effect size estimates (β̃) through shrinkage methods (LASSO, Elastic Net and Ridge
Regression; we explore performance of each solution under a variety of simulated trait architectures in Supporting Information). (C)
A unique feature of gene-ε is that it treats SNPs with spurious nonzero effects as non-associated. gene-ε assumes a reformulated null
distribution of SNP-level effects β̃j ∼ N (0, σ2

ε), where σ2
ε is the SNP-level null threshold and represents the maximum proportion of

phenotypic variance explained (PVE) by a spurious or non-associated SNP. This leads to the reformulated SNP-level null hypothesis
H0 : E[β2

j ] ≤ σ2
ε . To infer an appropriate σ2

ε , gene-ε fits a K-mixture of normal distributions over the regularized effect sizes with

successively smaller variances (σ2
1 > · · · > σ2

K ; with σ2
K = 0). In this study (without loss of generality), we assume that associated SNPs

will appear in the first set, while spurious and non-associated SNPs appear in the latter sets. By definition, the SNP-level null threshold
is then σ2

ε = σ2
2 . (D) Lastly, gene-ε computes gene-level association test statistics Q̃g using quadratic forms and corresponding P -values

using Imhof’s method. This assumes the common gene-level null H0 : Qg = 0, where the null distribution of Qg is dependent upon the
SNP-level null threshold σ2

ε . For more details, see Materials and Methods.
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Figure 3. Receiver operating characteristic (ROC) and precision-recall curves comparing
the performance of gene-ε and competing approaches in simulations (N = 10,000; h2 = 0.6).
We simulate complex traits under different genetic architectures and GWA study scenarios, varying
the following parameters: narrow sense heritability, proportion of associated genes, and sample size
(Supporting Information). Here, the sample size N = 10, 000 and the narrow-sense heritability h2 = 0.6.
We compute standard GWA SNP-level effect sizes (estimated using ordinary least squares). Results
for gene-ε are shown with LASSO (blue), Elastic Net (EN; red), and Ridge Regression (RR; purple)
regularizations. We also show the results of gene-ε without regularization to illustrate the importance
of this step (labeled OLS; orange). We further compare gene-ε with five existing methods: PEGASUS
(brown) [12], VEGAS (teal) [7], the Bayesian approach RSS (black) [14], SKAT (green) [20], and MAGMA
(peach) [10]. (A, C) ROC curves show power versus false positive rate for each approach of sparse (1%
associated genes) and polygenic (10% associated genes) architectures, respectively. Note that the upper
limit of the x-axis has been truncated at 0.1. (B, D) Precision-Recall curves for each method applied
to the simulations. Note that, in the sparse case (1% associated genes), the top ranked genes are always
true positives, and therefore the minimal recall is not 0. All results are based on 100 replicates.
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Average Time (sec)

# Total Genes # SNPs per Gene gene-ε PEGASUS VEGAS RSS MAGMA SKAT

250

5 2.18 2.99 39.18 3.33 <0.10 1.17

10 4.34 1.55 57.22 13.81 <0.10 1.90

20 12.94 1.22 85.54 55.49 <0.10 3.63

500

5 8.62 6.10 77.35 14.70 <0.10 2.25

10 16.00 3.37 106.05 56.38 <0.10 4.08

20 37.88 2.52 194.21 248.90 <0.10 7.07

1000

5 25.89 11.81 152.12 60.11 0.28 4.87

10 40.69 6.33 200.78 250.51 0.58 8.59

20 136.96 6.87 284.97 9410.37 1.19 14.21

Table 1. Computational time for running gene-ε and other gene-level association ap-
proaches, as a function of the total number genes analyzed and the number of SNPs within
each gene. Methods compared include: gene-ε, PEGASUS [12], VEGAS [7], RSS [14], MAGMA [10],
and SKAT [20]. Here, we simulated 10 datasets for each pair of parameter values (number of genes ana-
lyzed, and number of SNPs within each gene). Each table entry represents the average computation time
(in seconds) it takes each approach to analyze a dataset of the size indicated. Run times were measured
on a MacBook Pro (Processor: 3.1-gigahertz (GHz) Intel Core i5, Memory: 8GB 2133-megahertz (MHz)
LPDDR3). Only a single core on the machine was used. PEGASUS, SKAT, and MAGMA are score-
based methods and, thus, are expected to take the least amount of time to run. Both gene-ε and RSS are
regression-based methods, but gene-ε is scalable in both the number of genes and the number of SNPs
per gene. The increased computational burden of RSS results from its need to do Bayesian posterior
inference; however, gene-ε is able to scale because it leverages regularization and point estimation for
hypothesis testing.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2020. ; https://doi.org/10.1101/597484doi: bioRxiv preprint 

https://doi.org/10.1101/597484
http://creativecommons.org/licenses/by-nc-nd/4.0/


21
A B

DC
Chromosome

<
lo
g 1

0�
p	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

5

10

15

>20

ACAN

CDK6

ZBTB38

PTCH1

CEP250

GPR126
HMGA2

CABLES1
LCORL

JHQHï¡ï(1�VLJQLILFDQW�JHQHV PDSSHG�JHQHV�LQ�*W$6�&DWDORJ GE*D3�DVVRFLDWHG�JHQHV��%RG\�+HLJKW�

Body Height

Menopause

Prion Diseases

Intercellular Adhesion Molecule-1

Smoking

Menarche

Hippocampus

Respiratory Function Tests

Brain

Sleep

value p value q  Odds.ratio 
Combined 
   score 

# of sig. genes
   in dbGaP 

9.65e-06           3.33e-03       6.49             74.99                  9

5.55e-03           9.58e-01       17.92           93.07                  2

2.49e-02          1.00                 39.68          146.49                1

4.23e-02          1.00                 23.15          73.18                   1

4.23e-02          1.00                 23.15          73.18                   1

8.62e-02          1.00                 11.11          27.23                   1

9.94e-02          1.00                  9.58           22.12                    1

1.03e-01          1.00                  3.68             8.37                    2

1.15e-01          1.00                  8.17           17.64                    1

1.19e-01          1.00                  7.94           16.92                    1

Platelet Count

Face

Behcet Syndrome

Macular Degeneration

Hearing Loss

Erythrocytes

Sclerosis

Smoking

Body Mass Index

Natriuretic Peptide, Brain

value p value q  Odds.ratio 
Combined 
   score 

# of sig. genes
   in dbGaP 

1.93e-08             6.67e-06

6.02e-05            1.04e-02

8.94e-04            1.03e-01

6.42e-03            5.54e-01

9.57e-03            6.60e-01

1.21e-02            6.93e-01

1.90e-02            9.39e-01

3.77e-02            1.00

5.13e-02            1.00

5.61e-02            1.00

 34.72         616.70

156.25       1518.33

 15.89         111.54

  7.94           40.11

104.17        484.29

 12.02          53.10

 52.08          206.29

 26.04          85.34

  2.86            8.50

 17.36          50.02

  6

  2

  3

  3

  1

  2

  1

  1

  4

  1

Chromosome

<
lo
g 1

0�
p	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

5

10

15

>20

DNM3

TPM4

ARHGEF3

JMJD1C

TMCC2 WDR66REEP3

JHQHï¡ï(1�VLJQLILFDQW�JHQHV PDSSHG�JHQHV�LQ�*W$6�&DWDORJ GE*D3�DVVRFLDWHG�JHQHV��3ODWHOHW�&RXQW�

GE*D3�DVVRFLDWHG�JHQHV��FDFH�

Figure 4. Gene-level association results from applying gene-ε to body height (panels A and C) and mean platelet volume
(MPV; panels B and D), assayed in European-ancestry individuals in the UK Biobank. Body height has been estimated to
have a narrow-sense heritability h2 in the range of 0.45 to 0.80 [6, 31–39]; while, MPV has been estimated to have h2 between 0.50 and
0.70 [33, 34, 90]. Manhattan plots of gene-ε gene-level association P -values using Elastic Net regularized effect sizes for (A) body height
and (B) MPV. The purple dashed line indicates a log-transformed Bonferroni-corrected significance threshold (P = 3.49×10−6 correcting
for 14,322 autosomal genes analyzed). We color code all significant genes identified by gene-ε in orange, and annotate genes overlapping
with the database of Genotypes and Phenotypes (dbGaP). In (C) and (D), we conduct gene set enrichment analysis using Enrichr [46,91]
to identify dbGaP categories enriched for significant gene-level associations reported by gene-ε. We highlight categories with Q-values
(i.e., false discovery rates) less than 0.05 and annotate corresponding genes in the Manhattan plots in (A) and (B), respectively. For
height, the only significant dbGAP category is “Body Height”, with nine of the genes identified by gene-ε appearing in this category. For
MPV, the two significant dbGAP categories are “Platelet Count” and “Face” — the first of which is directly connected to trait [57,92,93].
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Trait Gene Chr gene-ε P -Value Rank h2
g Post. Prob. Biological Relevance to Trait Ref(s)

Height EZH2 7 9.34× 10−8 61 7.23× 10−3 1.000 Associated with diseases Adamantinoma of Long Bone and
Weaver Syndrome (characterized by rapid growth).

[94]

Height C17orf42 17 5.38× 10−9 52 4.54× 10−3 1.000 Known as the transcription elongation factor of mitochondria
(TEFM) which regulates transcription and can affect body height.

[95]

Height KISS1R 19 1× 10−20 1* 5.27× 10−4 0.970 Associated with disorders of puberty and final height. [96]

BMI ZC3H4 19 1.62× 10−14 20 7.84× 10−3 1.000 BMI-inducer known to be associated with adiposity and obesity. [97–100]

BMI PTOV1 19 1× 10−20 1* 2.26× 10−3 0.990 Found to be overexpressed in prostate adenocarcinomas which
can be induced by obesity.

[101]

BMI FBXO45♣ 3 6.52× 10−7 23 1.82× 10−3 0.029 Reported to be involved in children syndromic obesity. [102]

MCV SLC24A1 15 1.74× 10−7 50 4.66× 10−3 0.140 Encoded protein is involved in glucose transportation pathway
and MCV is reported to be associated with glucose level.

[101]

MCV PDX1♣ 13 1× 10−20 1* 2.31× 10−4 0.019 Associated with Glycated hemoglobin which is affected by MCV [103]

MCV RHOD 11 1× 10−20 1* 3.35× 10−4 0.002 Associated with Wiskott-Aldrich Syndrome which is characterized
by abnormal immune system function (immune deficiency) and a

reduced ability to form blood clots.

[101,104]

MPV C1orf150 1 1× 10−20 1* 3.44× 10−2 1.000 Known as GCSAML which is involved with germinal center
signaling and differentiation of mature B cells that mutually

activate platelets.

[47–49]

MPV KIAA0922 4 3.20× 10−6 64 7.17× 10−3 1.000 Known as TMEM131L which is associated with canonical Wnt
signaling and can effect platelet formation.

[105,106]

MPV TPT1♣ 13 1× 10−20 1* 3.25× 10−4 0.051 mRNA expression is identified in platelets. [101]

PLC C1orf150 1 1× 10−20 1* 2.51× 10−2 1.000 Known as GCSAML which is involved with germinal center
signaling and differentiation of mature B cells that mutually

activate platelets.

[47–49]

PLC PSMD2 3 1.42× 10−9 29 7.40× 10−3 1.000 Also known as the 26S proteasome which is found to be
important for platelet production.

[101]

PLC APOB48R 16 1× 10−20 1* 1.36× 10−3 0.003 Involved in Lipoprotein metabolism pathway which can affect
platelet.

[101]

WHR TFAP2B 6 3.92× 10−7 21 3.60× 10−3 1.000 Dietary protein associated with weight maintenance. [99,107]

WHR WDR68 17 1.05× 10−7 20 1.10× 10−3 0.990 Also known as DCAF7 which has been shown to bind
Huntingtin-associated protein 1 (HAP1) and affect weight.

[108]

WHR MLL 11 8.14× 10−8 19 2.43× 10−3 0.940 Orthologous gene in mice that affects skeleton, body size, and
growth.

[99,109–111]

Table 2. Top three newly identified candidate genes reported by gene-ε for the six quantitative traits studied in the
UK Biobank (using imputed genotypes with gene boundaries defined by the NCBI’s RefSeq database in the UCSC
Genome Browser [27]). We call these novel candidate genes because they are not listed as being associated with the trait of interest in
either the GWAS catalog or dbGaP, and they have top posterior enrichment probabilities with the trait using RSS analysis. Each gene is
annotated with past functional studies that link them to the trait of interest. We also report each gene’s overall trait-specific significance
rank (out of 14,322 autosomal genes analyzed for each trait), as well as their heritability estimates from gene-ε using Elastic Net to
regularize GWA SNP-level effect size estimates. The traits are: height; body mass index (BMI); mean corpuscular volume (MCV); mean
platelet volume (MPV); platelet count (PLC); and waist-hip ratio (WHR). ♣: Enriched genes whose top SNP is not marginally significant
according to a genome-wide Bonferroni-corrected threshold (P = 4.67×10−8 correcting for 1,070,306 SNPs analyzed; see highlighted rows
in Supplementary Tables S19-S24 for complete list). *: Multiple genes were tied for this ranking.
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