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Abstract

We present PEAX, a novel feature-based technique for interactive visual
pattern search in sequential data, like time series or data mapped to a genome
sequence. Visually searching for patterns by similarity is often challenging
because of the large search space, the visual complexity of patterns, and
the user’s perception of similarity. For example, in genomics, researchers
try to link patterns in multivariate sequential data to cellular or pathogenic
processes, but a lack of ground truth and high variance makes automatic
pattern detection unreliable. We have developed a convolutional autoencoder
for unsupervised representation learning of regions in sequential data that can
capture more visual details of complex patterns compared to existing similarity
measures. Using this learned representation as features of the sequential data,
our accompanying visual query system enables interactive feedback-driven
adjustments of the pattern search to adapt to the users’ perceived similarity.
Using an active learning sampling strategy, PEAX collects user-generated
binary relevance feedback. This feedback is used to train a model for binary
classification, to ultimately find other regions that exhibit patterns similar to
the search target. We demonstrate PEAX’s features through a case study in
genomics and report on a user study with eight domain experts to assess the
usability and usefulness of PEAX. Moreover, we evaluate the effectiveness of
the learned feature representation for visual similarity search in two additional
user studies. We find that our models retrieve significantly more similar
patterns than other commonly used techniques.
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Figure 1: The PEAX System. Using an autoencoder model (1), regions of sequential data
are encoded into a compressed latent representation. Using this encoding, PEAX employs
an active learning strategy (2) to focus the labeling (3) on regions that are useful for training
a classifier. This classifier is then iteratively trained on the user’s binary labels ( ) to
predict the interestingness of other regions in the data.

1 Introduction
Visually searching for patterns in sequential data can be challenging when the
search space is large, the data is complex, or the search query is difficult to
formalize. Visual query systems simplify the query formalization by allowing
analysts to find regions in the data given a visual description of the pattern,
often in the form of a sketch [32,50,67] or an example [7]. Using the query, the
system retrieves regions that are most similar given some notion of similarity.
But the search can fail when the analyst’s subjectively perceived similarity
does not match the system’s similarity measure [17]. The larger the query
region, the more likely it is that the query contains several distinct visual
features, such as peaks, trends, or troughs, which can be hard to capture with
current techniques (Figure 2). Not knowing what visual feature is important
to the user makes similarity search even more challenging.

While well-known distance metrics, like Euclidean distance (ED) and
dynamic time warping (DTW), in combination with one-nearest neighbor
search are traditionally used for classification of sequential data [16], Cor-
rell and Gleicher have found that “no single algorithm accounts for human
judgments of time series similarity” [12]. They instead suggest to combine
several metrics and let the analyst choose which one to use for pattern search.
To this end, the distance measures act as a feature representation of the se-
quential data. Such an approach has been used before [24, 25, 34], as a first
step to address the issue. However, it assumes that the handcrafted distance
metrics are able to capture many important pattern variations [12], that the
analyst is aware of the visual features in the query pattern that they care about,
and that the analyst knows which individual distance metric can identify or
ignore the variations of interest. If the latter two do not hold, the visual query
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Figure 2: Similarity Search. Given the query (blue), the two nearest neighbors of the six
methods on the left fail to capture many salient peaks (pink dots). While our autoencoder-
based technique (CAE) also misses the small left-most peak it finds more similar instances.

system can become inefficient and confuse the analysts rather than leading to
successful exploration—known as the gulf of execution and evaluation [56].
Prior work on natural image search [21] has shown that user-provided binary
relevance feedback can be a powerful approach to interactively learn which
visual aspects are important without introducing a complicated user interface.

To address these challenges, we propose a novel feature-based approach
for assessing the similarity of visual patterns in sequential data using convolu-
tional autoencoder models. An autoencoder is a type of neural network that
learns an identity function of some data. By introducing a lower-dimensional
layer during the encoding step, the neural network is forced to find a com-
pressed latent representation of the input data that captures as many visual
details of the input data as possible (Figure 1.1). We use this learned latent rep-
resentation as features to compare the similarity between patterns. Since the
subjectively perceived similarity of an analyst is not known upfront we have
developed PEAX, a visual query system that interactively learns a classifier
for pattern search through binary relevance feedback (Figure 1.3). After the
analyst defines a query by example, PEAX samples potentially interesting re-
gions based on their distance in the learned latent space from the autoencoder
models. We employ a sliding window approach with a user-defined window
size and resolution to limit the search space. The analyst has to label the
sampled windows as either interesting or not interesting to provide training
data for a random forest classifier. After the classifier is trained, we employ
an active learning strategy (Figure 1.2) to focus the labeling process on the
windows that are close to the query window, located in dense areas in the
latent space, and hard to predict by the classifier. PEAX supports exploration
of multivariate sequential data by concatenating multiple latent representa-
tions provided by potentially different autoencoders. This enables the analyst
to adjust the combination data to be explored on the fly without having to
re-train the autoencoder.

We apply our technique on two epigenomic datasets and demonstrate
how PEAX can be used to explore biological phenomena (section 8). In
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epigenomics, biomedical researchers study how the genome of an organism is
regulated through various modifications of the DNA and associated proteins
that do not change the underlying DNA sequence. A better understanding of
epigenomic modifications is crucial as, for example, genome-wide association
studies have found that over 90% of all disease-associated DNA sequence
variants are located in non-coding regions [39, 52, 63] that are most likely
acting on gene regulation. Finding epigenomic patterns is challenging [23,59]
as the inter- and intra-dataset variance is high, the data is typically very
noisy, and ground truth is missing in almost all cases. Furthermore, formally
describing biological phenomena is often challenging due to the complexity
of datasets or different interpretations of the same biological mechanism [22].

To evaluate our approach, we first assess the autoencoder’s ability to
reconstruct visual features in sequential patterns and measure how the learned
latent representation can be used for similarity search in two Mechanical
Turk user studies. Compared to six commonly used techniques for similarity
search, we find that our model retrieves patterns that are perceived significantly
more similar by the participants than any other technique. Additionally, we
evaluated the usability and usefulness of PEAX through an in-person user
study with eight domain experts in epigenomics. The results show that PEAX
is easy to learn and use, and that it offers a new and effective way of exploring
epigenomic patterns. To the best of our knowledge, we present the first deep-
learning-based approach for interactive visual pattern search in sequential
data. The source code for PEAX, instructions on how our autoencoder models
are trained, and a set of 6 autoencoders [42] for two types of epigenomic data
are available online at https://github.com/Novartis/peax/.

Supplementary Figure and Table references are prefixed with an “S”.

2 Related Work

Similarity Measures for pattern search in sequential data have been studied
extensively [72]. Techniques for similarity search include distance-based
and feature-based methods. Distance-based methods provide a single value
for how different patterns are compared to each other. The two most widely
used distance measures with consistently strong performance [16, 66] are
Euclidean distance [19] (ED) and dynamic time warping [5] (DTW). Feature-
based methods use a set of features describing the data in conjunction with a
distance-based method or machine learning technique for comparison and clas-
sification [9, 12, 25, 34–36, 44]. Widely-used feature-based methods include,
for example, piecewise aggregate approximation [35] (PAA) and symbolic
aggregate approximation [44] (SAX), which are part of a class called symbolic
representations. Both methods discretize sequential data into segments of
equal size and aggregate these segments into a new representation. We apply
PAA (Figure 4.1c) to downsample the segmented data as a preprocessing step.
Other feature-based approaches combine several distance metrics [12, 34]
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into a feature representation assuming that a combination will capture more
variations. Fulcher and Jones [24, 25] took this approach to an extreme and
proposed a supervised feature extraction technique that represents a time series
by a combination of over 9000 analysis algorithms. Christ et al. [10] extended
this approach but we find that it does not provide comparable performance
in an unsupervised setting (subsection 9.2). General purpose dimensionality
reduction techniques such as t-SNE [49] or UMAP [53] can also be used to
learn a lower-dimensional embedding as a feature representation. But while
they are useful for visualization purposes, we show that their embedding is
not effective for visual pattern search (Figure 8).

Finally, autoencoder [4] (AE) models provide a data-driven approach
to learn a feature presentation. It was shown that AEs can extract a hierar-
chy of features from natural images [51], textual data like electronic health
records [54], or scatter plot visualizations [48]. AEs have also been applied
on time series data for classification [20] and predictions [27, 47, 60]. Fur-
thermore, AEs are also used in genomics for general feature learning [68]
and prediction [71] of gene expression data. In this paper, we extend upon
these works and leverage AEs to learn feature representations for interactive
similarity search in sequential data.

Visual Query Systems (VQS) can be divided into two general approaches
that let the user query for patterns by example or by sketching. Time-
Searcher [29, 30] is an early instance of a query-by-example system that
supports value-based filtering and similarity search [7] using rectangular
boxes drawn on top of a time series visualization. QueryLines [62] is a sketch-
based filtering technique for defining strict or fuzzy value limits based on
multiple straight lines. Time series that conflict with a limit are either filtered
or de-emphasized visually. QuerySketch [67] is one of the first systems that
supports similarity search by sketching. The user can directly draw onto
the visualized time series to find similar instances using the ED. Holz and
Feiner [32] combined the ideas of QuerySketch and QueryLines and developed
a tolerance-aware sketch-based system. Their technique measures shape and
time deviation during sketching to determine which parts of the sketched query
should be relaxed. Recently, Mannino and Abouzied presented Qetch [50] for
querying time series data based on scale-free hand-drawn sketches. Qetch ig-
nores global scaling differences and instead determines the best hit according
to local scale and shape distortions. However, Lee et al. [40] find that sketch-
based systems are rarely used in real-world situations as users are often unable
to articulate precisely what they are looking for and, therefore, have a hard
time sketching the correct query. PEAX does not use a sketch-based strategy
as it is hard to to accurately draw complex patterns as shown in Figure 2.

Apart from the query interface, Keogh and Pazzani [36, 37] show that the
notion of similarity can heavily depend on the user’s mental model and might
not be captured well with an objective similarity measure. Eichmann and
Zgraggen [17] extend this line of work and show that the objective similarity
can differ markedly from the perceived similarity, even for simple patterns.
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Corell and Gleicher [12] build upon these findings and define a set of ten
invariants, i.e., visual variations or distortions that a user might want to ignore
during pattern search. They evaluate three distance measures and find that “no
single algorithm accounts for human judgments of time series similarity” [12].
This indicates that it might be impossible to develop a single distance metric
that captures all perceived notions of similarity.

Interactive Visual Machine Learning is a powerful technique to adjust
the results of a VQS through user interactions. For example, Keogh and
Pazzani [36, 37] propose relevance-feedback driven query adjustments for
time series. Given a query, their system asks the user to rank the three
nearest neighbors. The ranking is then used to change the query using a
weighted average of the original query and the ranked nearest neighbors. A
similar approach has been proposed by Behrisch et al. [3] for scatter plots,
where the user interactively trains a classifier based on the user’s feedback to
learn to capture the interestingness of scatter plot views. Recently, Dennig
et al. [15] proposed a system to interactively learn the best combination of
feature descriptors and a distance function for pattern separability, assuming
the existence and user’s knowledge about the feature descriptors. In contrast,
CueFlik [21] is a tool for interactive concept learning in image search, which
allows the user to rank the results of a text-based image search using simple
binary feedback. CueFlik employs an active learning strategy to speed up the
learning process by finding images that potentially help to separate interesting
from non-interesting images. In our work we use an active learning sampling
strategy for interactive binary labeling based on uncertainty sampling [64]. We
extend this strategy with a distance-dependent term (section 5) to ensure that
more similar regions are labeled before the exploration space is broadened.

3 Goals and Tasks
The primary goal of PEAX is to find regions in sequential data that show an
instance of the target pattern. The target pattern can either be defined manually
by example or by a set of already existing labels derived elsewhere. In both
cases, the user might either be interested in finding the k most similar matches
or in retrieving all windows that exhibit a pattern matching the target. The
main difference between the two goals is whether recall is negligible (first
case) or essential (second case). To achieve either goal, the user needs to
know which windows are predicted to match the target pattern. Therefore, it is
crucial that the user understands what concept the classifier has learned. Since
the classifier is interactively trained based on the user’s subjective labels, there
is no objective metric for when to stop the training process. Thus, the user
needs to be aware of the training progress to decide when to stop training.

As summarized in Figure 3, the user might either start with a query by
example or a set of labeled data. To arrive at a set of matching windows the
user has to provide labels in order to train the classifier and steer the pattern
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Figure 3: Workflow. A new search can be started with a query by example or already
labeled data. The user then needs to provide and adjust labels to steer the classifier’s learning
process.

search. We identified four main avenues for training the classifier. First,
users need to be able to explore unlabeled windows, ideally with a sampling
strategy that chooses windows intelligently to reduce the labeling efforts. It
also needs to be possible to manually select windows for targeted labeling.
Once a classifier is trained, the user needs to be allowed to provide immediate
feedback on the results to confirm or correct what the classifier assumes is
interesting. Finally, examining and potentially re-labeling already-labeled
windows is important to resolve conflicts between the user’s and predicted
labels. We assume that the first two labeling strategies are more common
when building a classifier from scratch. The latter two strategies seem more
relevant when starting with already labeled data.

Following these goals and this workflow (Figure 3), we have identified a
set of high-level interaction tasks that underlie the design of PEAX (section 6):

T1 Freely browse and explore to be able to gain an overview of the data
and to find search queries.

T2 Identify the classifier’s predictions to be able to understand what the
currently matching pattern is.

T3 Compare windows to identify similarities or dissimilarities among
potentially related windows.

T4 Contextualize windows to understand the broader impact of a pattern,
to improve confidence of the manually assigned labels, and to find
related windows.

T5 Visualize the learning progress to highlight the impact of labeling and
inform about the status of the trained classifier.

T6 Show the capabilities of the latent representation to realize if the
visual features of the query pattern were captured.

4 Representation Learning
Instead of relying on handcrafted feature descriptors that do not always capture
complex patterns well (Figure 8), we learn the feature representation in an
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Figure 4: Data Processing and Encoding Pipeline. (1) We employ a sliding window ap-
proach for pattern search on (1a) piecewise (1b) aggregated (1c) windows. (2) The windows
are encoded with our convolutional autoencoder (CAE) to obtain the latent representation.
The CAE consists of a 4-layer convolutional encoder with an increasing number of filters
and kernel size followed by two dense layers.

unsupervised fashion using a convolutional autoencoder (CAE) model. To
limit the search space and improve learnability, we employ a sliding window
approach with a fixed window size and resolution as shown in Figure 4.1.

4.1 Data Preprocessing
We cap values at the 99.9th percentile to remove rare outliers and then scale
the data to [0,1]. Then we split the data into overlapping windows w of fixed
length l. The overlap is controlled by the step size s and step frequency f ,
where f = l

s . The step frequency f can be adjusted during the search process
but the window length l is fixed. Therefore, l is critical and depends on the
application (see section 8 for an in-depth example) as the CAE will only be
able to recognize co-located patterns that appear within the window. Ideally
one would want to use the highest possible l to capture more context but in
practice the level of detail that the CAE can capture decreases with larger l
(Figure 7). Thus, we suggest l to be slightly bigger than the largest pattern that
is expected to be found. After segmentation, we downsample each window by
a factor of r to allow the CAE to learn on data that looks similar to what a user
would see when visualizing the data on a common computer screen. Also,
downsampling has been shown to be an effective similarity search strategy
on its own [35]. Finally, depending on the type of sequential data it might be
necessary to filter out windows that contain very little to no visual features or
that are highly overrepresented (section 8).

4.2 Convolutional Autoencoder
The preprocessed windows are used to train a CAE. The CAE consists of
an encoder and a decoder model, where the encoder is trying to learn a
transformation of the input data that the decoder is able to reconstruct into the
original input as best as possible. Having the encoder output a vector that has
fewer dimensions than the input forces the encoder to compress redundant
information and to effectively learn features that are useful for reconstruction.
Our encoder model (Figure 4.2) consists of four convolutional layers followed
by two fully-connected layers. The four convolutional layers have 128, 192,
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288, and 432 filters with kernel sizes of 3, 5, 7, and 9 respectively. Following
Springenberg et al.’s approach [65] we use a striding of 2 instead of max
pooling to shrink the convolved output per layer. Such architectures have
previously been shown to enable hierarchical feature learning [51]. While
the kernel size is typically unchanged in models for natural images, we found
that larger kernel sizes lower the reconstruction error for sequential data
(Supplementary Table S5). The two fully-connected layers consist of 1024
and 256 units. The final layer consists of 10 units and outputs the latent
representation. All layers use the ReLu activation function. The CAE’s
decoder model consists of the same layers just in reverse order and features
an additional final layer with a sigmoid activation function to ensure that the
output is within [0,1].

5 Active Learning
PEAX employs two sampling strategies to select unlabeled windows that are
subsequently shown to the analysts for labeling. Both strategies operate in the
learned latent space of the CAE (subsection 4.2). The first sampling strategy
is only used upon starting a new search when no classifier has been trained
yet. Supplementary Figure S1 illustrates this initial sampling strategy. As
classifier-related metrics such as uncertainty are unknown, the initial sampling
strategy only relies on the average distance of a window w to its k nearest
neighbors (default: 5) and the windows’ distance to the query in the latent
space. Formally the average distance is defined as follows where nn is a
function returning the ith nearest neighbor, and norm scales the input to [0,1].

avgdist(w,k) = norm(
k

∑
i
(‖w−nn

i
(w)‖)/k). (1)

During the initial sampling strategy, we gradually increase the search
radius such that positive and negative windows are sampled. The search
radius r (default: 10) is defined as the number of r nearest neighbors that are
taken into account in each initial sampling round. To sample from a relevant
but also broad spectrum, we double the radius r in each of the m sampling
rounds (default: 5). To not sample twice from the same neighborhood, we
exclude windows from the previous search radii. In each round, we iteratively
sample n windows (default: 5). We select the ones with lowest average
distance to k nearest neighbors that maximize the distance from the already
chosen samples S. Formally, we select the unlabeled window u from S, the
complement of S, with the lowest following score:

avgdist(u,k)+norm(max(‖S−S‖)−‖S−u‖) (2)

Sampling positive and negative windows is essential because we need both
types of labels for the first training; otherwise, the initial classifier could be
highly biased towards negative or positive windows. We include the average
distance term to avoid sampling outliers, and we maximize the pairwise
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Figure 5: User Interface. The sequential data is visualized as blue bar charts (1&2), which
can be superimposed with the CAE’s reconstruction as gray bars (2e). Additionally, the
query view (1) can show metadata (1a-d) as region-based annotations. The list view (2)
shows windows for comparison and labeling. The embedding view (3) represents windows
as dots on a 2D canvas. The progress view (4) visualizes training metrics of the classifiers
as composed bar charts (4), where the dark and light bars are relative to the labeled and all
windows respectively.

distance between sampled windows to let the user annotate diverse samples.
After the first classifier has been trained, PEAX switches to an active learning
sampling strategy. This strategy extends the previous sampling approach with
a distance-to-query and an uncertainty term. See Supplementary Figure S2
for a visual example. The distance-to-query term stands for the distance of a
window w to the search query q. The uncertainty term, which is inspired by
uncertainty sampling [64], is defined as

uncertainty(w) = 1−|2pw−1|, (3)

with the classifier’s prediction probability pw of a window w.
Finally, our active learning sampling strategy iteratively selects na (default:

10) unlabeled windows. In each step, the unlabeled window u with the lowest
following score is selected:

uncertainty(u)+ avgdist(u,k)+norm(‖q−u‖)
+norm(max(‖S−S‖)−‖S−u‖) (4)

We sample uncertain windows that are within dense neighborhoods of
the latent space to reduce the overall uncertainty of the classifier after the
next training. The distance-to-query term is added to balance exploration and
exploitation during the sampling strategy. Sampling highly uncertain regions
broadens the exploration, especially at the beginning, when the classifier is
generally more uncertain. On the other hand, sampling windows that are close
to the query are expected to retrieve similar windows (subsection 9.2). Default
values are derived from experience with our use cases (section 8).
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5.1 Classifier
Given the small number of labels when training a new classifier from scratch
and the repeatedly online training during the search, we choose to use a
random forest classifier. Also, the random forest classifier shows superior
performance compared to other popular binary classifiers (Supplementary
Figure S49). This allows for efficient re-training each time the labels have
changed or after requesting a new set of unlabeled windows based on the
active learning sampling strategy. For searching across multiple sequential
datasets, as shown in Figure 6, we concatenate the windows’ feature vectors
from each datasets to avoid having to train a new CAE. Ultimately, we use
the predicted classes to define the resulting set of matching windows.

5.2 Training Progress
To measure the classification process, we record overall uncertainty, the total
change in prediction probability, and the divergence of prediction probabilities.
The overall uncertainty is defined as the arithmetic mean of the class prediction
uncertainty (Equation 3). The classifier’s uncertainty can indicate if the classi-
fier learned to reliably detect a certain pattern type and if any progress is made
over several iterations. The prediction probability change, which is defined
as the arithmetic mean of the difference between the per-window prediction
probability of the current and previous classifier, can provide insights about
the impact of a training iteration. Finally, convergence is determined as the
overall number of windows for which the prediction probability consecutively
decreases or increases over the last 3 classifiers. All non-converging windows
are considered diverging if the change in the prediction probability is larger
than 0.01. The convergence and divergence rate can inform the user about the
overall stability of the classifier. For formal definitions see Supplementary
Table S1.

6 The User Interface
Based on the identified tasks T1–T6 (section 3), we have developed PEAX to
provide a visual interface for feedback-driven interactive visual pattern search
and exploration of sequential data. The user interface consists of four main
components shown in Figure 5.

Query View. The system shows the selected search query or the highest
ranked window by default in the query view (Figure 1) to provide content to
the targeted pattern search (T4). This view is not static but allows the user to
interactively browse the entire dataset (T1) for contextualization (Figure 5.1).
The user can also choose to visualize additional metadata (Figure 5.1a) such as
gene annotations to add further context (T4) during exploration. Additionally,
after having trained a classifier for the first time, the view features a one-
dimensional heatmap track (Figure 5.1b) that color-encodes the prediction
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probability for regions in the data (T2). The main focus during navigation is on
positive hits and we use a max-binning approach to show positively classified
regions even when the user is zoomed out to view an entire chromosome
(Figure 5.1a). In addition to the prediction probability, the query view shows
two more types of region-based annotations: blue and pink rectangles indicate
positive and negative labels (Figure 5.1c) that were defined by the user and
yellow highlights selected windows (Figure 5.1d). Finally, the sequential data
track can be superimposed with the reconstruction of the CAE model (Figure 1
and Figure 5.2e) for understanding which visual features are captured by the
CAE (T6). Knowing how well the learned features represent the data can
inform the user whether a search for a specific pattern is feasible. Therefore,
this feature can be used for debugging when a pattern search fails. It is also
useful during the development and testing of new (auto)encoder models.

List View. The list view (Figure 5.2) visualizes several independent win-
dows for labeling and comparison (T3). These windows are stacked vertically
and are aligned to the query view for visual comparisons (Figure 1). Each
window has three buttons (Figure 5.2g) to label it as interesting , not inter-
esting , or inconclusive . The two buttons on the left side of each window
(Figure 5.2d) allow the user to select a window ( ) for separate comparison
and to re-scale ( ) all currently visible windows to the associated window
such that the y-scales of all windows are the same for value-based comparison
(T3). By default, each window and the query view are individually scaled to
the window’s minimum and maximum value to emphasize the pattern shapes.
The list view consists of three permanent and one temporary set of windows
that are organized under different tabs (Figure 5.2a). The new samples tab on
the left is selected upon starting a new search and contains unlabeled windows
that are sampled by the active learning strategy (section 5). The results tab in
the middle lists the windows that are predicted by the classifier to match the
query. The results tab includes two additional features to improve recall and
debug data. First, it allows to dynamically adjust the probability threshold at
which a window is considered a positive hit (Figure 5.2b). And in case the
classifier and the user’s labels disagree, a pink button appears (Figure 5.2f) to
inform the user about the potential conflicts. The labels tab on the right holds
the set of already labeled windows. Additionally, when the user selects some
windows a fourth tab is shown to the right of the labels tab allowing the user
to compare the selected windows (T3).

Embedding View. To provide an overview of the entire dataset and allow
users to contextualize (T4) windows by their similarity in the latent space,
PEAX provides a view of the 2D-embedded windows (Figure 5.3). The
embedding is realized with UMAP [53]. It takes into account the window’s
latent representation and the user’s labels. Windows are represented as points
that are either color-encoded by their label (Figure 5.3a) or by their prediction
probability (Figure 5.3b). The view supports pan and zoom interaction as well
as dynamic selection via a click on a dot or a lasso selection that is activated
by holding down the shift key and the left mouse button while dragging over
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points (Figure 5.3a). Selecting windows is important for comparing (T3)
local neighborhoods during exploration and for debugging already labeled
windows.

Progress View. To inform the user of the training progress and provide
guidance on when to stop the training (T5), we visualize metrics for the
uncertainty and stability (Figure 5.4) as defined in subsection 5.2. Each metric
is applied separately to the entire set of windows and to the labeled windows.
Visually this information is encoded as superimposed bars where the smaller
but more saturated bars (Figure 5.4a) represent the metric in regards to the
labeled windows. The wider bar represents all windows (Figure 5.4b), to
indicate how well the trained classifier generalizes to the entire dataset. The
y-scale is normalized to [0,1] and the x-scale stands for the number of labeled
windows that were used to train a classifier. The diverging bar plot for the
convergence metric simultaneously visualizes the convergence score in the
upper part and the divergence score in the lower part. In general, as the
training progresses one would expect each score to decrease. Large bars either
indicate that the classifier is still uncertain or unstable. It is also possible
that the target pattern changed or that the latent representation is not able to
properly represent the features of the query.

View Linking. The query, list, and embedding view are highly interlinked
to foster contextualization (T4) and comparison (T3) of windows. For instance,
moving the mouse over a window in the list view (Figure 5.2c) highlights the
same location in the query view (Figure 5.1e) and the corresponding point in
the embedding view (Figure 5.3d). The highlighted position of a window in
the embedding view informs the user how windows compare to each other in
terms of their latent representations and the shared mouse location highlights
the windows’ spatial locality in terms of the underlying sequence.

7 Implementation
PEAX’s code base is highly modular. The frontend application is imple-
mented in JavaScript and uses React [18]. The bar charts are visualized with
HiGlass [38]. The embedding view [41] uses Regl [46] for WebGL render-
ing. The Python-based backend server is built upon Flask [61] and can be
configured via a JSON file. We use Scikit-Learn’s implementation [57] of the
random forest classifier and persistently stored search results in a Sqlite [28]
database. For training the CAEs we use Keras [8] with TensorFlow [1]. Docu-
mentation on how we trained our CAEs is provided in the form of iPython
Notebooks [58]. All of the source code and detailed instructions on how to
get started are available at https://github.com/Novartis/peax/.
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8 Use Cases: Epigenomics
The human genome is a sequence of roughly 3.3 billion chemical units, called
base pairs (bp), which encode for protein and RNA genes. But genes make up
only less than 2% of the human genome, the remaining fraction contains the
regulatory information for when and where genes are expressed. The regula-
tory information consists of genomic regions, called regulatory elements [55],
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Figure 6: Findings from the Use Cases. (1) shows the result and progress of our asym-
metrical peak detector training. In (2) we refined existing labels to build a differential peak
detector (2a) after resolving an initially high uncertainty in the existing labels (2b-c).

120 kb12 kb3 kbDNase-seq: 120 kb12 kb3 kbChIP-seq:

Figure 7: Example Reconstructions. The black bars represent the input and the blue bars
visualize the reconstruction. The third chart plots the differences, where blue indicates
missing data and pink indicates over-estimation of the reconstruction. As the window size
increases the reconstruction gets less accurate. Since DNase-seq data contains less frequent
peaks the reconstruction is more accurate.
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and associated protein complexes. Gene expression is then controlled by
modification of the degree of compaction of DNA and modification of the
core proteins of the DNA and protein complex, called histones. These mod-
ifications are collectively called the “epigenome”. Studying the epigenome
involves, for example, the genome-wide measurement of DNA accessibility
(e.g., DNase-seq [13]), DNA protein binding and histone modifications (e.g.,
ChIP-seq [2]), gene expression (e.g., RNA-seq [45]), or spatial chromatin
conformation (e.g., Hi-C [43]). Consortia like ENCODE [11], Roadmap
Epigenomics [6], or 4D Nucleome [14] provide a large collection of these
assays across many cell types and tissues. But while strict protocols and
processing pipelines are applied, the variance between measurements and
biological samples remains high and detecting regulatory elements is highly
challenging [23, 59].

As our driving use case, we focus on the exploration of regulatory el-
ements [55] . DNA accessibility and histone modifications are often used
as proxies for detecting these elements, where peak-like patterns (Figure 6)
show the strength of the epigenomic marks. Multiple datasets are typically
explored in parallel, as multivariate sequential data, since no single method
provides enough evidence to confirm the presence of a regulatory function.
To explore such data we trained six CAEs [42] for 100 epochs on 343 hi-
stone ChIP-seq (modifications H3K4me1, H3K4me3, H3K27ac, H3K9ac,
H3K27me3, H3K9me3, and H3K36me3) and 120 DNase-seq datasets, on 3
kilobase pairs (kb), 12 kb, and 120 kb windows, with bin sizes of 25, 100,
and 1000 bp respectively. We chose the above mentioned window sizes (l) to
capture local regulatory interactions as well as long-range regulatory domains.
See Supplementary Tables S3–S5 for details.

8.1 Finding Peaks
We demonstrate how PEAX can be used to find regulatory regions in epige-
nomic data. In recent work exploiting epigenomic data to detect regulatory
enhancer patterns, Fu et al. [23] found that DNase-seq and histone mark
ChIP-seq peak callers retrieve and rank peak patterns very differently and that
the overall accuracy for finding regulatory elements is still quite low. Inspired
by their findings, we first show how PEAX can be used to build a classifier for
asymmetrically co-occurring peak patterns from scratch. We then illustrate
how existing peak annotations can be used as a starting point to find patterns
of differentially activated regulatory regions.

Building a Classifier From Scratch. We choose a lung DNase-seq and
H3K27ac histone mark ChIP-seq dataset from ENCODE and encode it with
our 3 kb DNase and ChIP-seq CAEs. We begin by selecting an asymmetrically
co-occurring peak through brushing to start the search (Figure 6.1a) See our
supplementary video and Supplementary Figure S22–S33 for complementary
screenshots. We follow the left side of our workflow (Figure 3) and use our
active learning strategy (section 5) to label 65 windows. The progress view
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(Figure 6.1c-f) shows that the uncertainty first increases (Figure 6.1c) and then
gradually decreases (Figure 6.1d) before it stabilizes (Figure 6.1e), indicating
that the classifier is learning to detect a certain pattern type. To get an overview
of all windows, we compute the 2D embedding, which shows several clusters.
Next, we switch the results, exclude our own positive labels, and find the
classifier is able to detect patterns similar to our target. To assess the recall
of our classifier, we invert the sort order of the results to find windows with
a prediction probability close to 0.5. We find that these windows still match
our target pattern and lower the threshold to 0.35. PEAX now warns us about
potential false-negative and false-positive conflicts, which we subsequently
inspect and fix. Finally, we manually identify neighborhoods of windows
showing instances of our query pattern using the embedding view. Using the
prediction probability color encoding, we find a neighborhood of windows
that are predicted to match our search target and select these windows using
the lasso tool to improve the labeling further.

Refine Existing Labels to Build an Improved Classifier. PEAX also
supports interactive refinement of existing labels. This time we search for
differentially-accessible peaks in two DNase-seq datasets from face and hind-
brain. Such peaks are shown [23] to be highly predictive of tissue-specific
regulatory elements. Using algorithmically-derived peak annotations, we de-
fine positive labels as regions that have a reported peak annotation in the face
dataset but not the hindbrain dataset and negative labels as regions that share
peak annotations. See Supplementary Figure S34–S48 for complementary
screenshots. We start by training a classifier with our pre-loaded labels. Since
we have not specified a query region, PEAX shows the region with the highest
prediction probability in the query view. We find that the top results indeed
show a pronounced peak in the top track and no peak in the bottom track
(Figure 6.2a). Given the surprisingly high number of positive matches, we
investigate the prediction probability landscape in the embedding view and
see that almost every window has a probability higher than 0.5 (Figure 6.2c).
After realizing that most results with a probability threshold close to 0.5
do not contain a differentially-accessible peak, we increase the probability
threshold to 0.85. As a consequence, several incorrect labels appear as con-
flicts, which shows that the pre-loaded peak annotations are far from perfect.
After resolving the conflicts and retraining the classifier, we observe a strong
change in the average prediction probability and notice that the uncertainty for
labeled windows decreased while the uncertainty for unlabeled data increased
(Figure 6.2f), which is also reflected in the embedding view (Figure 6.2d
dark-gray dots). Using the embedding view’s lasso tool, we assign labels local
neighborhoods with high uncertainty, which leads to a notable reduction in
the overall uncertainty (Figure 6.2e). Finally, using query view we explore the
entire dataset to assess the spatial location of the found windows (Figure 6.2g).
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9 Evaluation

9.1 Reconstruction
First, we study the reconstruction quality with data from our use case (sec-
tion 8) to assess the general performance of our CAE models. While the
reconstruction is not expected to be perfect given the 12-fold compression,
it should capture the main visual properties to be useful for visual similarity
search. Figure 7 exemplifies the reconstruction quality of the six CAEs from
our use case (section 8). More example reconstructions are available in Sup-
plementary Figure S3–6. It appears that the model is able to learn the visual
properties of the epigenomic datasets. Most of the salient peaks are captured
by the CAEs. As the window size and resolution increase from 3 kb over 12
kb to 120 kb (with a binning of 25 bp, 100 bp, and 1000 bp) the reconstruction
quality decreases. Hence, the model is not able to encode high-frequency
variations. Numerically this is captured by an increase in the reconstruction
loss for larger window sizes. Since absolute loss is hard to interpret, we report
R2 scores to assess how much variability is captured by the reconstruction,
where a score of 1 stands for a perfect reconstruction. All scores are computed
on the test data. For the CAEs trained on DNase-seq data the R2 is .98, .90,
and .78 for 3 kb, 12 kb, and 120 kb windows respectively. Similarly, the R2
scores for the CAE trained on histone mark ChIP-seq data are .84, .69, and
.73 for 3 kb, 12 kb, and 120 kb windows respectively.

9.2 Similarity Comparison
Knowing that the CAEs are able to successfully reconstruct most of the
visual features, we wanted to know whether the learned representation is
more effective for visual similarity search in terms of the perceived similarity

1 2 3 4 5 6 7 8 9

CA
E

PAA/ED SAX DTWXCORRUMAP TSFRESH ALL ALL ALL

! ! ! ! !!

Figure 8: Similarity Comparison. Given a query ( ) at 12 kb, we ran a 5-nearest neigh-
bors search with our model (CAE), four distance-based methods (PAA/ED, SAX, DTW, and
zero-normalized cross-correlation (XCORR)), and two feature-based methods (UMAP and
TSFRESH). All techniques are able to detect the most distinct visual feature but many fail
to match secondary features, as highlighted with (!). For simple patterns (4) many methods
are equally good and we only show the top results. See Supplementary Figure S15 for all
results.

17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2020. ; https://doi.org/10.1101/597518doi: bioRxiv preprint 

https://doi.org/10.1101/597518
http://creativecommons.org/licenses/by/4.0/


compared to other techniques. Given a DNase-seq dataset from our use
case, we manually identified 9 diverse query patterns. Using a 5-nearest
neighbor search, we subsequently retrieved the 5 windows that are closest
to the queries using the latent representation of our CAEs and six other
techniques (Supplementary Table S6). ED [19], SAX [44], DTW [5], and
zero-normalized cross-correlation (XCORR) are four distance-methods we
compare against. Additionally, we included UMAP [53] and TSFRESH [9]
as two feature-based techniques. Figure 8 and S15 shows the nine queries
for 12 kb windows together with the 5-nearest neighbors of every method.
Subjectively, the results from our model consistently find more similar patterns
on average. While simple pattern, like Figure 8.4, are well captured by
several techniques, every other method has at least one instance where the
five 5-neighbors are missing important visual features compared to our CAE
(Figure 8 “!”). Supplementary Figure S16 and S17 show the comparison for 3
kb and 120 kb windows.

To determine whether our subjective findings hold true, we evaluated the
similarity in an online user study on Amazon Mechanical Turk. For each of
the 27 patterns (9 patterns× 3 window sizes), we generated an image showing
the 5-nearest neighbors for each technique together with the query pattern
(Supplementary Figure S18). We asked the participants to “select the group
of patterns that on average looks most similar and second most similar to the
target pattern”. The order of target patterns and search results were fixed but
we randomized the order in which techniques were shown. We asked for the
most and second most similar group as a pilot study revealed that the task
can be hard when there are two or more groups with similarly good results.
In total, participants had to make 18 choices by comparing 7 × 9 groups of
patterns. We paid $1 for an estimated workload of 6 minutes. Participation
was restricted to master workers with a HIT approval rate higher than 97%
and at least 1000 approved finished HITs. In total, we collected 75 responses.
We hypothesize (H1) that our CAEs outperform other techniques by finding
more similar patterns on average.

Using a Pearson’s chi-squared test, we find significant differences between
the techniques (3 kb: χ2(1,N=25)=206.4, p<.001; 12 kb: χ2(1,N=25)=284.5,
p<.001; 120kb: χ2(1,N=25)=319.0, p<.001). In a post-hoc analysis using
Holm-Bonferroni-corrected [31] pairwise Pearson’s chi-squared tests between
our and the other six methods (Figure 9 and S20), we find that our CAEs
retrieves significantly more often patterns that are perceived most or second
most similar to the target compared to SAX (3 kb: χ2(1,N=25)=19.8, p<.001;
12 kb: χ2(1,N=25)=44.6, p<.001; 120kb: χ2(1,N=25)=76.8, p<.001), DTW
(3 kb: χ2(1,N=25)=57.3, p<.001; 12 kb: χ2(1,N=25)=49.5, p<.001; 120kb:
χ2(1,N=25)=41.4, p<.001), UMAP (3 kb: χ2(1,N=25)=23.6, p<.001; 12 kb:
χ2(1,N=25)=53.4, p<.001; 120kb: χ2(1,N=25)=100.3, p<.001), TSFRESH
(3 kb: χ2(1,N=25)=126.2, p<.001; 12 kb: χ2(1,N=25)=134.4, p<.001;
120kb: χ2(1,N=25)=117.4, p<.001), and XCORR (3 kb: χ2(1,N=25)=72.0,
p<.001; 12 kb: χ2(1,N=25)=97.7, p<.001; 120kb: χ2(1,N=25)=122.0,
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p<.001). We find no significant differences between CAE and ED. Therefore,
H1 does not hold true given the strong performance of ED. In general, we
found that for simple patterns it is more likely that any method performs well.

We were surprised by some results where ED outperformed our model,
e.g., Supplementary Figure S15.8. We hypothesize that for complex patterns
groupwise comparison can be too challenging. To gain a more detailed picture,
we conducted a follow-up study on pairwise similarity search between the
5-nearest neighbors of just our model and ED. For each of the 27 patterns, we
generated images showing the target pattern together with one pattern found
with CAE and ED. The pairing of patterns is determined by the order in which
they were found, e.g., the first nearest neighbor from CAE is paired with
the first nearest neighbor from ED, etc. The order in which the patterns are
drawn was randomized but the order of targets was fixed as in the first study
(Supplementary Figure S19). We asked the participants to “select the pattern
that looks more similar to the target” for each of the 5-nearest neighbor pairs.
This resulted in a total of 45 comparisons (9 patterns × 5 pairs). We paid
participants $1 for an estimated workload of 6 minutes. Participation was
limited to the same population as in the first user study and we again collected
75 responses. We hypothesize (H2) that our CAE model outperforms ED in
pairwise comparisons on average. However, we also expect mixed results for
simple patterns. Using the same analysis from the first user study, we found
that across all 5-nearest neighbors, our model retrieves significantly more
similar patterns compared to ED for 3 kb (χ2(1,N=25)=70.3, p<.001), 12
kb (χ2(1,N=25)=171.5, p<.001), and 120 kb (χ2(1,N=25)=85.2, p<.001)
window sizes. Thus, we can accept H2. See Supplementary Figure S20 and
S21 for detailed votes.

9.3 Usability & Usefulness
We conducted an in-person user study with 8 domain experts (P1-8) to inves-
tigate the usability and usefulness of PEAX. All experts are computational
biologists who work with epigenomic data on a regular basis (Supplemen-
tary Table S9). In each individual one hour-long session, we first introduced
PEAX using our supplementary video, summarized the primary use cases for
genomics, and provided a brief demo of features not covered in the video
(15 minutes). Afterward, each expert completed two tasks on building and
evaluating pattern classifiers. The experts had 15–20 minutes to complete
each task, and we asked them to think aloud while we recorded the screen
and audio. See Supplementary Table S8 for a detailed description of the
procedure.

Task 1. We asked the participants to build a classifier to find windows that
contain a peak pattern in the first two out of three datasets (Supplementary
Figure S50). To assess the performance of the classifiers, we simulated three
ChIP-seq experiments (Supplementary Table S7) with ChIPsim [33] and used
our 3kb ChIP-seq CAE for encoding. As a guideline, we mentioned that
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Figure 9: Results of the Similarity Comparison. Bars show the votes per technique per
target pattern for 12 kb patterns. More votes are better. The highest votes are indicated by a
dot. Results for our method (CAE) are drawn in blue.

50–100 labels are typically needed to produce reasonable results. See Supple-
mentary Table S11 for the participants’ actions. All but one expert started by
sampling and labeling windows for the first 5-10 minutes before they switched
to the results. In the results tab, they typically labeled windows of the first
few pages. Six experts also labeled windows that were close to the predic-
tion probability threshold. While assessing the results, six experts noticed
potential conflicts highlighted by PEAX (Figure 5.2f) and adjusted the labels
if necessary. Also, two experts increased the prediction probability threshold
(Figure 5.2b) after inspecting the conflicts. Finally, six experts computed the
embedding view and explored windows within this view. Interestingly, one
expert (P2) switched to the results after only one round of training. As the
results were not good yet, P2 continued labeling and retraining the classifier
in the results tab.

We compared the ground-truth labels from our simulated data against the
expert-generated labels and found (Supplementary Figure S51) high sensitivity
of 0.98 (SD=0.02) and specificity of 0.95 (SD=0.07) on average. P2 and
P5 had a relatively high number of false-positive labels, which indicates
that their imagined target pattern might have differed from ours. Next, we
evaluated the performance of the classifiers in terms of the area under the
receiver operating characteristic curve (AUC-ROC), average precision (AP),
and Matthews correlation coefficient (MCC) with a probability threshold of
0.5. When training the classifiers on our experts’ labels, we found an average
AUC-ROC of 0.93 (SD=0.04), AP of 0.56 (SD=0.09), and MCC of 0.49
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(SD=0.12) (Figure 10). The MCC scores for classifiers trained on P2’s and
P5’s labels are significantly lower, as their search targets diverged. We then
compared the performance against classifiers trained on ground truth labels
sampled with our active learning strategy to study the impact of a human-
in-the-loop. Interestingly, we found that on average, AUC-ROC (+0.13) and
AP (+0.14) are higher for classifiers trained on the experts’ labels (see blue
versus gray bars in Figure 10), which indicates that the expert-steered training
process is more effective. The differences for the MCC scores are minor,
except for P2 and P5, which indicates that a probability threshold of 0.5 might
not be ideal.

Task 2. We asked the participants to evaluate and improve a classifier
trained on a set of pre-loaded labels. The dataset and labels were taken from
our second use case scenario (section 8) to assess PEAX’s usability on a real-
world dataset. See Supplementary Table S12 for the participants’ actions. In
the beginning, all experts acknowledged that the classifier correctly predicts
differentially-accessible peaks and that they don’t have to label new samples.
Subsequently, all experts assigned labels to the top results and noticed that the
number of matching windows was too high. Interestingly, different actions
made the experts question the number of results. Three experts noticed that
results with a prediction probability close to the threshold did not match the
target pattern. Two experts discovered that a lot of regions had a prediction
probability close to 0.5 after examining the embedding view. Another two
experts investigated the threshold after inspecting conflicts. Finally, one
expert decided to retrieve new samples and realized that the classifier is
uncertain about regions with low signal, that typically appear in high numbers.
Eventually, all experts increased the threshold to reduce false positives results.

In general, through the two tasks and the post-study questionnaire (Q7
and Q9) we found that PEAX’s interactive pattern search is an effective and
useful new exploration approach. None of the experts is aware of any tool that
supports a similar pattern exploration approach. P6 and P8 mentioned that
they currently have to browse and annotate their data manually. We also found

AUC-ROC

0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0

8
7
6
5

4
3
2
1

Pa
rt

ic
ip

an
ts

Average Precision MCC

Figure 10: User Study Task 1 Classifier Performance. We trained our classifier 10 times
on the experts’ labels (blue) and on ground-truth labels sampled with our active-learning
strategy (black). Vertical and horizontal bars show the mean and standard error.
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that PEAX is easy to learn and use. The 15-minute introduction was sufficient
to enable the experts to successfully build and refine pattern classifiers. Expert
P1 mentioned that “for having just seen a quick video and a couple of quick
instructions, it’s pretty easy to work through”. After the study, we addressed
smaller usability issues that were mentioned by the experts (Supplementary
Table S13). However, use case-specific guidelines would be helpful to lower
the initial learning curve, as mentioned by P2, P3, and P8. While the manual
labeling and training process requires more work than a purely computational
search, the classifier comparison from Task 1 suggests that a human-in-the-
loop can make the labeling process more effective. Also, P8 noted that the
labeling “is really awesome to play around with. It’s like playing a game.”,
and we also see increasing trust in the results of PEAX compared to fully
automatic peak and feature detectors (see Figure S52 Pre-Study Q5 versus
Post-Study Q5).

10 Discussion
Instead of using deep learning techniques to predict the presence of a specific
pattern type in a fixed combination of datasets, we use deep learning to
augment human intelligence to search for patterns in multivariate sequential
data. Our approach improves the performance of visual pattern search by
providing a learned latent representation together with an actively-learned
classifier. Having a tool for general exploration of large sequential datasets by
pattern similarity allows to ask new questions and find previously undetectable
patterns, and complements efforts for highly specialized pattern detectors.

While the overall results of our user study suggest that the user-steered
learning process leads to more effective classifier training, subjective interpre-
tation of the target pattern can influence the classifier’s performance strongly.
Visualizing the impact of a label on the classifier might help to stabilize the
labeling between users. Despite its complexity, we show that PEAX is easy to
learn and use, given a short introduction to PEAX’s general search approach.
While all participants actively used at least two different labeling strategies to
broaden the exploration, more in-depth training might be required to utilize
all functionality of PEAX. Carefully-designed notifications could also inform
the user if their exploration strategy is too narrow.

PEAX is not limited to any of the specific autoencoders that we presented
in this paper. In fact, the system is explicitly designed to facilitate extension
with custom encoders, and we hope that analysts will use PEAX as a tool to
evaluate their own (auto)encoders for pattern search. Thus, it is up to the user
to normalize the data before loading the data into PEAX. Moreover, while
the use case presented in this paper is about epigenomic data, the ideas apply
equally to other sequential or time series data, given that the autoencoder is
purely data-driven and does not require any prior knowledge. For other use
cases, the most important consideration is the window size. The windows need
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to fully include the target pattern to allow the CAE to extract relevant features.
In our current implementation, we use a random forest classifier given its
superior performance (Supplementary Figure S49). But PEAX supports any
classifier that implements Scikit-Learn’s API [57].

While we found that the reconstruction is not perfect, it is hard to tell
what a “perfect” reconstruction in regards to visual pattern search might be.
In general, our CAEs work best at encoding distinct patterns, e.g., medium-
frequent peaks with a noticeable difference in magnitude compared to the
background signal. High-frequency patterns are smoothed out by the CAE,
which can be beneficial when the underlying phenomena is independent
of the background noise. While there are legitimate reasons to assess the
“randomness” of the background noise, like in anomaly detection, systems
supporting such use cases should not be steered visually by humans, as judging
randomness is a hard task [69, 70] for humans. In general, PEAX’s ability to
find patterns is bound by the extracted features of the input data. As we aim
for generic search, the unsupervised feature learning employs a general loss
function, which emphasizes high compared to low-magnitude differences. As
a consequence, a feature that is not visible with our eyes stays undetected by
the CAEs. To address specific search scenarios, the user can provide a custom
(auto)encoder model.

Currently, PEAX scales well to up to one million windows. To ensure
interactivity, PEAX preprocesses the data, which takes about 25–30 minutes
for one million windows on a regular laptop. The main limiting factor is the
computation of the nearest neighbors and UMAP embedding. For datasets
with more than 100,000 windows, we switch to an approximate nearest-
neighbor algorithm. Cluster-based data preprocessing can further reduce the
startup time for larger datasets. Visually, the main limitation is the embedding
view, which works smoothly until one million dots but can slow down above
1.5 million dots. For larger datasets, interactive filtering techniques could
alleviate overplotting and rendering issues. Finally, the amount of labels
needed to train a reasonable classifier depends on the complexity of the
search query. As an example, roughly 25–50 labels can be enough to retrieve
reasonable results if the latent representation effectively captures a single-
dataset query for a distinct pattern. This number can increase linearly in a
multi-dataset search but ultimately depends on the complexity of the datasets.

Finally, the choice of the similarity search metric should depend on the
data type and search goals. The larger the data, the more likely it is that
different instances of the same pattern type exist. If the goal is to find the top
k hits than many different techniques will likely yield equally good results. If,
on the other hand, one seeks to find all pattern instances or the data are highly
variable then a feature-based approach can be more effective as shown by our
evaluations and similarity comparisons.
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11 Conclusions and Future Work
We have presented PEAX, a novel technique and tool for interactive visual
pattern search in sequential data. We found that our convolutional autoencoder
models learn a latent representation that is more effective at similarity search
than existing techniques.

In future work we want to compare the performance of different autoen-
coders such as different variational autoencoders, recurrent autoencoders,
and other deep learning approaches such as generative adversarial networks.
Especially the latter would allow visual judging of the encodings to improve
debugging and sensemaking. In addition to the encoding efforts, there are
several avenues to extend the active learning strategy. For example, when
training a classifier from an existing set of peak annotations, a deep-learning-
based strategy similar to Gonda et al. [26] might prove to be superior. Finally,
in our in-person user study, we found that the articulated and imagined target
pattern can differ between people. An exciting avenue for future work is to
systematically test the variance of human labels within and between different
subjects. Also, it would be interesting to expand PEAX to a multi-user system
and study the impact of multiple users on the labeling and learning process.

Acknowledgement
We wish to thank all participants from our user studies who helped us evaluate
PEAX. We also like to express our gratitude to Mark Borowsky for his ideas
and support. This work was supported in part by Novartis Institutes for
BioMedical Research and the National Institutes of Health (U01 CA200059
and R00 HG007583).

References
[1] M. Abadi et al. TensorFlow: Large-scale machine learning on heteroge-

neous systems, 2015.

[2] A. Barski, S. Cuddapah, K. Cui, T.-Y. Roh, D. E. Schones, Z. Wang,
G. Wei, I. Chepelev, and K. Zhao. High-resolution profiling of histone
methylations in the human genome. Cell, 129(4):823–837, 2007.

[3] M. Behrisch, F. Korkmaz, L. Shao, and T. Schreck. Feedback-driven
interactive exploration of large multidimensional data supported by
visual classifier. In IEEE Conference on Visual Analytics Science and
Technology, pp. 43–52. IEEE, 2014.

[4] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis and
machine intelligence, 35(8):1798–1828, 2013.

24

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2020. ; https://doi.org/10.1101/597518doi: bioRxiv preprint 

https://doi.org/10.1101/597518
http://creativecommons.org/licenses/by/4.0/


[5] D. J. Berndt and J. Clifford. Using dynamic time warping to find patterns
in time series. In KDD workshop, vol. 10, pp. 359–370. Seattle, WA,
1994.

[6] B. E. Bernstein, J. A. Stamatoyannopoulos, J. F. Costello, B. Ren,
A. Milosavljevic, A. Meissner, M. Kellis, M. A. Marra, A. L. Beaudet,
J. R. Ecker, et al. The NIH roadmap epigenomics mapping consortium.
Nature biotechnology, 28(10):1045, 2010.

[7] P. Buono, A. Aris, C. Plaisant, A. Khella, and B. Shneiderman. Inter-
active pattern search in time series. In Visualization and Data Analysis
2005, vol. 5669, pp. 175–187. International Society for Optics and
Photonics, 2005.

[8] F. Chollet et al. Keras, 2015.
[9] M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-Liehr. Time series

feature extraction on basis of scalable hypothesis tests (tsfresh–a python
package). Neurocomputing, 307:72–77, 2018.

[10] M. Christ, A. W. Kempa-Liehr, and M. Feindt. Distributed and parallel
time series feature extraction for industrial big data applications. arXiv
e-prints, 2016.

[11] E. P. Consortium et al. An integrated encyclopedia of dna elements in
the human genome. Nature, 489(7414):57, 2012.

[12] M. Correll and M. Gleicher. The semantics of sketch: Flexibility in
visual query systems for time series data. In 2016 IEEE Conference on
Visual Analytics Science and Technology (VAST), pp. 131–140. IEEE,
2016.

[13] G. E. Crawford, I. E. Holt, J. Whittle, B. D. Webb, D. Tai, S. Davis,
E. H. Margulies, Y. Chen, J. A. Bernat, D. Ginsburg, et al. Genome-
wide mapping of DNase hypersensitive sites using massively parallel
signature sequencing (MPSS). Genome research, 16(1):123–131, 2006.

[14] J. Dekker, A. S. Belmont, M. Guttman, V. O. Leshyk, J. T. Lis, S. Lom-
vardas, L. A. Mirny, C. C. O’shea, P. J. Park, B. Ren, et al. The 4D
nucleome project. Nature, 549(7671):219, 2017.

[15] F. Dennig, T. Polk, Z. Lin, T. Schreck, H. Pfister, and M. Behrisch.
FDive: Learning relevance models using pattern-based similarity mea-
sures. To appear in IEEE Transactions on Visualization and Computer
Graphics, 2019.

[16] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Query-
ing and mining of time series data: experimental comparison of repre-
sentations and distance measures. Proceedings of the VLDB Endowment,
1(2):1542–1552, 2008.

[17] P. Eichmann and E. Zgraggen. Evaluating subjective accuracy in time
series pattern-matching using human-annotated rankings. In Proceed-
ings of the 20th International Conference on Intelligent User Interfaces,
pp. 28–37. ACM, 2015.

25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2020. ; https://doi.org/10.1101/597518doi: bioRxiv preprint 

https://doi.org/10.1101/597518
http://creativecommons.org/licenses/by/4.0/


[18] Facebook, Inc. React - a JavaScript library for building user interfaces,
2018.

[19] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence
matching in time-series databases, vol. 23. ACM, 1994.

[20] M. Fiterau, J. Fries, E. Halilaj, N. Siranart, S. Bhooshan, and C. Re.
Similarity-based lstms for time series representation learning in the pres-
ence of structured covariates. In 29th Conference on Neural Information
Processing Systems, 2016.

[21] J. Fogarty, D. Tan, A. Kapoor, and S. Winder. Cueflik: interactive con-
cept learning in image search. In Proceedings of the sigchi conference
on human factors in computing systems, pp. 29–38. ACM, 2008.

[22] M. Forcato, C. Nicoletti, K. Pal, C. M. Livi, F. Ferrari, and S. Bicciato.
Comparison of computational methods for hi-c data analysis. Nature
methods, 14(7):679, 2017.

[23] S. Fu, Q. Wang, J. E. Moore, M. J. Purcaro, H. E. Pratt, K. Fan, C. Gu,
C. Jiang, R. Zhu, A. Kundaje, et al. Differential analysis of chromatin
accessibility and histone modifications for predicting mouse develop-
mental enhancers. Nucleic acids research, 46(21):11184–11201, 2018.

[24] B. D. Fulcher and N. S. Jones. Highly comparative feature-based time-
series classification. IEEE Transactions on Knowledge and Data Engi-
neering, 26(12):3026–3037, 2014.

[25] B. D. Fulcher, M. A. Little, and N. S. Jones. Highly comparative time-
series analysis: the empirical structure of time series and their methods.
Journal of the Royal Society Interface, 10(83):20130048, 2013.

[26] F. Gonda, V. Kaynig, T. R. Jones, D. Haehn, J. W. Lichtman, T. Parag,
and H. Pfister. Icon: An interactive approach to train deep neural
networks for segmentation of neuronal structures. In 2017 IEEE 14th
International Symposium on Biomedical Imaging, pp. 327–331. IEEE,
2017.

[27] Y. Guo, Z. Wu, and Y. Ji. A hybrid deep representation learning model
for time series classification and prediction. In International Conference
on Big Data Computing and Communications, pp. 226–231. IEEE, 2017.

[28] R. Hipp et al. Sqlite - a self-contained, high-reliability, embedded, SQL
database engine., 2018.

[29] H. Hochheiser and B. Shneiderman. Interactive exploration of time
series data. In The Craft of Information Visualization, pp. 313–315.
Elsevier, 2003.

[30] H. Hochheiser and B. Shneiderman. Dynamic query tools for time series
data sets: timebox widgets for interactive exploration. Information
Visualization, 3(1):1–18, 2004.

[31] S. Holm. A simple sequentially rejective multiple test procedure. Scan-
dinavian journal of statistics, pp. 65–70, 1979.

26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2020. ; https://doi.org/10.1101/597518doi: bioRxiv preprint 

https://doi.org/10.1101/597518
http://creativecommons.org/licenses/by/4.0/


[32] C. Holz and S. Feiner. Relaxed selection techniques for querying time-
series graphs. In Proceedings of the 22Nd Annual ACM Symposium on
User Interface Software and Technology, pp. 213–222. ACM, 2009.

[33] P. Humburg. ChIPsim: Simulation of ChIP-seq experiments, 2018. R
package version 1.36.0.

[34] R. J. Kate. Using dynamic time warping distances as features for im-
proved time series classification. Data Mining and Knowledge Discov-
ery, 30(2):283–312, 2016.

[35] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimension-
ality reduction for fast similarity search in large time series databases.
Knowledge and information Systems, 3(3):263–286, 2001.

[36] E. J. Keogh and M. J. Pazzani. An enhanced representation of time series
which allows fast and accurate classification, clustering and relevance
feedback. In Kdd, vol. 98, pp. 239–243, 1998.

[37] E. J. Keogh and M. J. Pazzani. Relevance feedback retrieval of time
series data. In SIGIR, vol. 99, pp. 183–190. Citeseer, 1999.

[38] P. Kerpedjiev, N. Abdennur, F. Lekschas, C. McCallum, K. Dinkla,
H. Strobelt, J. M. Luber, S. B. Ouellette, A. Azhir, N. Kumar, J. Hwang,
S. Lee, B. H. Alver, H. Pfister, L. A. Mirny, P. J. Park, and N. Gehlen-
borg. HiGlass: web-based visual exploration and analysis of genome
interaction maps. Genome Biology, 19(1):125, Aug 2018.

[39] E. Khurana, Y. Fu, D. Chakravarty, F. Demichelis, M. A. Rubin, and
M. Gerstein. Role of non-coding sequence variants in cancer. Nature
Reviews Genetics, 17(2):93, 2016.

[40] D. J.-L. Lee, J. Lee, T. Siddiqui, J. Kim, K. Karahalios, and
A. Parameswaran. You can’t always sketch what you want: Under-
standing sensemaking in visual query systems. arXiv e-prints, 2018.

[41] F. Lekschas. Regl Scatterplot - a scalable scatterplot, 2018.

[42] F. Lekschas, B. Peterson, D. Haehn, E. Ma, N. Gehlenborg, and H. Pfis-
ter. DNase-seq and histone mark ChIP-seq convolutional autoencoders,
2019. doi: 10.5281/zenodo.2609763

[43] E. Lieberman-Aiden, N. L. Van Berkum, L. Williams, et al. Compre-
hensive mapping of long-range interactions reveals folding principles of
the human genome. science, 326(5950):289–293, 2009.

[44] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing sax: a novel
symbolic representation of time series. Data Mining and knowledge
discovery, 15(2):107–144, 2007.

[45] R. Lister, R. C. O’Malley, J. Tonti-Filippini, B. D. Gregory, C. C. Berry,
A. H. Millar, and J. R. Ecker. Highly integrated single-base resolution
maps of the epigenome in Arabidopsis. Cell, 133(3):523–536, 2008.

[46] M. Lysenko et al. Regl - fast functional WebGL, 2018.

27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2020. ; https://doi.org/10.1101/597518doi: bioRxiv preprint 

https://doi.org/10.1101/597518
http://creativecommons.org/licenses/by/4.0/


[47] X. Lyu, M. Hueser, S. L. Hyland, G. Zerveas, and G. Raetsch. Improving
clinical predictions through unsupervised time series representation
learning. arXiv e-prints, 2018.

[48] Y. Ma, A. K. Tung, W. Wang, X. Gao, Z. Pan, and W. Chen. Scatternet:
A deep subjective similarity model for visual analysis of scatterplots.
IEEE transactions on visualization and computer graphics, 2018.

[49] L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. Journal of
machine learning research, 9(Nov):2579–2605, 2008.

[50] M. Mannino and A. Abouzied. Expressive time series querying with
hand-drawn scale-free sketches. In Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems, p. 388. ACM, 2018.
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