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Abstract 19 

Background: Changes in DNA methylation over the course of life may provide 20 

an indicator of risk for cancer. We explored longitudinal changes in CpG 21 

methylation from blood leukocytes, and likelihood of a future cancer diagnosis. 22 

Methods: Peripheral blood samples were obtained at baseline and at follow-up 23 

visit from 20 participants in the Health, Aging and Body Composition prospective 24 

cohort study. Genome-wide CpG methylation was assayed using the Illumina 25 

Infinium Human MethylationEPIC (HM850K) microarray. Results: Global 26 

patterns in DNA methylation from CpG-based analyses showed extensive 27 

changes in cell composition over time in participants who developed cancer.  By 28 

visit year 6, the proportion of CD8+ T-cells decreased (p-value = 0.02), while 29 

granulocytes cell levels increased (p-value = 0.04) among participants diagnosed 30 

with cancer compared to those who remained cancer-free (cancer-free vs. 31 

cancer-present: 0.03 ± 0.02 vs. 0.003 ± 0.005 for CD8+ T-cells; 0.52 ± 0.14 vs. 32 

0.66 ± 0.09 for granulocytes). Epigenome-wide analysis identified three CpGs 33 

with suggestive p-values ≤ 10-5 for differential methylation between cancer-free 34 

and cancer-present groups, including a CpG located in MTA3, a gene linked with 35 

metastasis. At a lenient statistical threshold (p-value ≤ 3 x 10-5), the top 10 36 

cancer-associated CpGs included a site near RPTOR that is involved in the 37 

mTOR pathway, and the candidate tumor suppressor genes REC8, KCNQ1, and 38 

ZSWIM5. However, only the CpG in RPTOR (cg08129331) was replicated in an 39 

independent data set. Analysis of within-individual change from baseline to Year 40 

6 found significant correlations between the rates of change in methylation in 41 
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RPTOR, REC8 and ZSWIM5, and time to cancer diagnosis. Conclusion: The 42 

results show that changes in cellular composition explains much of the cross-43 

sectional and longitudinal variation in CpG methylation. Additionally, differential 44 

methylation and longitudinal dynamics at specific CpGs could provide powerful 45 

indicators of cancer development and/or progression. In particular, we highlight 46 

CpG methylation in the RPTOR gene as a potential biomarker of cancer that 47 

awaits further validation. 48 

Keywords: Cancer, DNA methylation, biomarker, epigenetics 49 
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Background 59 

DNA methylation plays a central role in cell differentiation and in defining cellular 60 

phenotypes. Differences in DNA methylation have been associated with a 61 

growing list of morbidities, ranging from metabolic disorders and age-related 62 

decline in health, to developmental and neuropsychiatric conditions. The 63 

standard approach in an epigenome-wide association study (EWAS), which 64 

attempts to link DNA methylation to disease, involves collection of a single 65 

biospecimen from each participant (typically peripheral blood or saliva) and 66 

performing cross-sectional analyses to compare methylation patterns in cases 67 

against matched healthy controls [1, 2]. While differences in CpG methylation 68 

between cases and controls may be directly related to disease, these case-69 

control differences may also represent DNA sequence variation, differences in 70 

disease treatment, differences in behavior or environment, or differences in 71 

cellular composition [3, 4]. Despite these limitations in the interpretation of DNA 72 

methylation results, such epigenetic markers, if consistent and replicable, could 73 

serve as powerful biomarkers that can be assayed from minimally invasive 74 

tissues such as circulating blood.  75 

Cancer is fundamentally due to abnormal cell phenotype and proliferation, and 76 

historically, it was the first disease linked to aberrant DNA methylation [5-7]. The 77 

cancer epigenome often involves global hypomethylation at repetitive elements, 78 

while also potentially involving the hypermethylation at CpGs in the promoter 79 

regions of tumor suppressor genes and other cancer-related genes [8-10]. While 80 
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abnormal epigenomic changes within tumor cells would hold the most impact, 81 

there is developing evidence that methylation changes relevant to cancer 82 

progression can be detected in circulating blood. For example, global changes in 83 

repetitive elements as well as targeted CpG methylation found in DNA from blood 84 

cells have been reported for multiple cancer types [11-15]. This suggests the 85 

possibility of a pan-cancer biomarker panel detectable in blood that could 86 

precede the clinical detection and diagnosis of cancer [16].  87 

Few longitudinal studies have investigated the time-dependent dynamics in DNA 88 

methylation as a potentially important indicator of tumorigenesis [14, 15]. The 89 

present study examines the longitudinal restructuring of the methylome over five 90 

years and evaluates whether change in CpG methylation is a biomarker of 91 

cancer in older adults. Our approach involves dimension reduction techniques 92 

and evaluates leukocyte proportions and differential methylation at the level of 93 

individual CpGs. Overall, our study defined global and targeted changes in the 94 

blood methylome that were correlated to cellular composition, aging, and cancer 95 

in the Health ABC cohort. 96 

Methods 97 

Health, Aging and Body Composition Study (Health ABC Study) 98 

The Health ABC Study is a prospective, longitudinal cohort that was recruited in 99 

1997–1998 and consisted of 3,075 older men and women participants aged 70–100 

79 years at baseline. Participants resided in either the Memphis, TN or 101 

Pittsburgh, PA metropolitan areas, and were either of African American or 102 
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Caucasian ancestry [17]. Individuals with limited mobility, history of active 103 

treatment for cancer in the past 3 years, or with known life-threatening disease 104 

were excluded. More information on participant screening and recruitment can be 105 

found at the study website [18]. There were annual clinical visits to record health 106 

and function, and subjects were followed for up to 16 years. The study collected 107 

data on adjudicated health events, including cancer, and a biorepository was 108 

developed. All participants provided written informed consent and all sites 109 

received IRB approval. The present study leverages data on a small set of Health 110 

ABC participants who had DNA available from buffy coat collected at baseline 111 

and at follow-up visits (mostly at year 6 from baseline).  112 

DNA methylation microarray and data processing  113 

Due to low DNA quality/quantity, 3 participants had DNA from only one visit year, 114 

and in total, we generated DNA methylation data on 37 samples. Participant 115 

characteristics and DNA collection time-points are provided in Table 1. Seven of 116 

the 20 participants received adjudicated cancer diagnosis in following years with 117 

four between baseline and Year 6, and three after Year 6. 118 

DNA methylation assays were performed, as per the manufacturer’s standard 119 

protocol, using the Illumina Infinium Human MethylationEPIC BeadChips 120 

(HM850K) (http://www.illumina.com/). For this work, samples were shipped to the 121 

Genomic Services Lab at the HudsonAlpha Institute for Biotechnology 122 

(http://hudsonalpha.org). The HM850K arrays come in an 8-samples-per-array 123 

format; prior to hybridization, samples were randomized so that individuals were 124 
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randomly distributed across the arrays. Raw intensity data (idat files) were 125 

loaded to the R package, minfi (version 1.22) [19]. Methylation level at each CpG 126 

was estimated by the β-value, which is the ratio of fluorescent intensities 127 

between the methylated probe and unmethylated probe. For quality checks (QC), 128 

we compared the log median intensities between the methylated (M) and 129 

unmethylated (U) channels using the “plotQC” function and examined the density 130 

plots for the β-values (QC plots are provided in Additional file 1: Figure S1). All 131 

37 samples passed the initial QC (Additional file 1: Figure S1A). Participant 132 

sex, as determined by DNA methylation, matched the sex listed in the participant 133 

record.  134 

Methylation data was quantile-normalized using the minfi “preprocessQuantile” 135 

function. To evaluate sample clustering, we performed hierarchical cluster 136 

analysis and principal component analysis (PCA) using the full set of 866,836 137 

probes (Additional file 1: Figure S1B). Sex was a strong source of variance 138 

when the full set of probes was used. We therefore filtered out 19,681 probes 139 

that targeted CpGs on the sex chromosomes. An additional 2,558 probes were 140 

filtered out due to detection p-values > 0.01 in 3 or more samples. Finally, we 141 

excluded 104,949 probes that have been flagged as unreliable due to poor 142 

mapping quality or overlap with genetic sequence variants (MASK.general list of 143 

probes from [20]). This resulted in 739,648 probes that were considered for 144 

downstream analyses. The updated PC plot showed no clustering by sex or by 145 

the Illumina Sentrix ID, which indicated that there was no strong chip effect. 146 

However, there were two outlier samples from the same individual (Per13) 147 
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(Additional file 1: Figures S1B, S1C). Since the two samples were assayed on 148 

different Sentrix arrays, the outlier status is unlikely to be the result of technical 149 

artifact, but rather, flags Per13 as a biological outlier (excluded from downstream 150 

analyses). As an additional error checking step to confirm if samples from the 151 

same participants paired appropriately with self, we repeated the unsupervised 152 

cluster analysis using only 52,033 probes that were filtered out from the main set 153 

of probes due to overlap with common single nucleotide polymorphism (SNP) in 154 

the dbSNP database (Additional file 2: Figures S2). 155 

Table 1. Characteristics of participants  156 

ID Ancestry1 Sex1 Age1 Followup 
Year2 Cancer3 Time4 

Per1 EA Male 75 6 no  
Per2 AA Male 71 6 yesp 7 
Per3 AA Female 72 6 no  
Per4 EA Male 74 6 yesc 5 
Per5 EA Female 76 6 no  
Per6 EA Male 75 6 yesp 4 
Per7 AA Male 76 2 no  
Per8 AA Female 78 6 no  
Per9 EA Female 78 6 yesb 1 
Per10 AA Male 74 6 yeso 10 
Per11 AA Female 74 6 no  
Per12 AA Female 71 6 no  
Per13 EA Male 76 6 yesl 0.5 
Per14 EA Male 75 na no  
Per15 EA Female 73 6 no  
Per16 EA Male 73 6 no  
Per17 AA Female 76 na no  
Per18 AA Female 78 6 yess 11 

Per19 AA Female 72 
6 (no 

baseline 
DNA) 

no  

Per20 EA Female 70 6 no  
1Self-reported race, sex, and age at baseline; EA = European Americans or Caucasians and AA 157 
= African Americans 158 
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2Year from baseline when second DNA sample was collected; two participants had no follow-up 159 
DNA and one participant had no baseline (visit year 1) DNA due to low DNA quality/quantity. 160 
3Cancer diagnosis during following years; all participants were considered free of diagnosed 161 
cancer at time of screening and recruitment; p = prostate, c = colon; b = breast; l = leukemia; s = 162 
stomach; o = other 163 
4Time from baseline to cancer diagnosis in years 164 
 165 

Estimating cellular composition 166 

Cellular heterogeneity has a strong influence on DNA methylation, and methods 167 

have already been developed to estimate cellular composition of whole blood 168 

from genome-wide DNA methylation data [21-23]. We used the 169 

“estimateCellCounts” function in minfi, which implements a modified version of 170 

the algorithm by Houseman et al. [23] and relies on a panel of cell-type specific 171 

CpGs to serve as proxies for different types of white blood cells.  172 

Analyses of DNA methylation data 173 

Considering the small sample size of the genome-wide data, we first started with 174 

a dimension reduction approach and applied PCA to capture the major sources 175 

of global variance in the methylome. The top 5 principal components (PCs) were 176 

then related to baseline variables using chi-squared tests for categorical 177 

variables (sex and race), and analysis of variance for continuous variables (BMI 178 

and age). We also examined the time-dependent change in the PCs with visit 179 

year as the predictor variable. Correlations between leukocyte types and the PCs 180 

were examined using bivariate analysis. We considered adjudicated cancer 181 

diagnosis as the main outcome variable and examined whether methylome-182 
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based variables differed between those who developed cancer and those who 183 

remained cancer-free.  184 

Our primary analysis was to evaluate differential methylation at the CpG-level. As 185 

in Roos et al. [16], we first fitted a linear regression model on each probe for the 186 

first 5 PCs (β-value ~ PC1 + PC2 + PC3 + PC4 + PC5) to adjust for the effects of 187 

confounding variables such as cellular heterogeneity and additional unknown 188 

sources of variance. The adjusted β-values were then used to examine 189 

differential methylation between cancer-free and cancer-present groups using t-190 

tests. The t-tests were done with data only from visit Year 6. To evaluate the 191 

reliability of identified cancer-associated CpGs, we acquired the full results from 192 

Roos et al. [16], and compared the p-values and the direction of effect (i.e., 193 

increases or decreases in methylation in the cancer group relative to cancer-free 194 

group). To evaluate longitudinal trajectory, we considered only the top 10 CpGs 195 

associated with cancer and calculated the change in β-values from baseline to 196 

Year 6 (deltaβ = Year 6 – baseline), which was then correlated to time-to-197 

diagnosis (i.e., years from baseline to when participant received diagnosis).  198 

Data availability 199 

The deidentified raw data set with normalized β-values and EWAS statistics will 200 

be deposited to the NCBI NIH Gene Expression Omnibus (this will be made 201 

available upon acceptance by a peer-reviewed journal). 202 

 203 
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Results 204 

Participant characteristics 205 

The study sample included almost equal numbers of men and women, and equal 206 

numbers of African American and Caucasian participants (Table 1). Baseline age 207 

ranged from 70 to 78 years with an average age of 74 ± 2.4 years. Follow-up 208 

DNA collection occurred at Year 6, with the exception of one participant with 209 

follow up DNA collected at year 2 (Per7). Three participants had DNA from only 210 

one time point, and thus these were included in the cross-sectional analysis but 211 

not the time-dependent analysis.  212 

During the Health ABC follow-up period, 7 participants (35%) were diagnosed 213 

with cancer at times ranging from 6 months to 11 years from baseline (Table 1). 214 

Cancer diagnoses included cancer of the prostate, colon, breast, and stomach, 215 

as well as one case of leukemia. There were no differences in race, sex, or 216 

baseline age or body mass index (BMI) between participants diagnosed with 217 

cancer and those who remained cancer-free (Table 2).  218 

 219 

 220 

 221 

 222 

 223 
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Table 2. Baseline characteristics of participants by cancer diagnosis  224 

 Cancer1  
 no yes p-value2 
N 13 (65%) 7 (35%)  
Age 74 (±2.3) 75 (±2.5) 0.29 
Ancestry/race3   0.64 

AA 7 (35%) 3 (15%)  
EA 6 (30%) 4 (20%)  

Sex   0.08 
Female 9 (45%) 2 (10%)  

Male 4 (20%) 5 (25%)  
BMI 27.01 (±3.77) 27.75 (±5.42) 0.72 
1Counts (percent of total) for categorical variables and mean (SD) for continuous variables 225 
2P-values based on Chi-square test and ANOVA 226 
3Self-reported race identity; EA = European Americans or Caucasians, and AA = African 227 
Americans 228 
 229 

Quality of DNA methylation data and outlier identification  230 

Unsupervised hierarchical clustering using the full set of probes showed that 15 231 

of the individuals with longitudinal data paired within the same participant 232 

(Additional file 1: Figure S1B). The two exceptions, Per1 (cancer-free) and 233 

Per9 (received cancer diagnosis at year 1 from baseline), did not cluster with 234 

self, and this observation suggests potential intra-individual discordance in the 235 

epigenetic data or increased cellular heterogeneity over time [24, 25]. To verify 236 

that the non-pairing longitudinal samples are indeed from the same respective 237 

participants, we performed the cluster analysis using only probes that were 238 

flagged for overlap with SNPs, as these provide a signal for underlying genotype 239 

variation. Using these SNP probes, all individuals with longitudinal samples, 240 

including Per1 and Per9, paired appropriately with self (Additional file 2: 241 

Figures S2).  Overall, the PC and cluster plots showed no batched effects and a 242 
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generally stable methylation pattern over time, with the exception of the two 243 

participants. The QC analyses also identified Per13 as an outlier (Additional file 244 

1: Figures S1B, S1C). Since Per13 was diagnosed with leukemia within 6 245 

months of the first Health ABC visit, the distinct methylation pattern is consistent 246 

with disease-related changes in leukocyte composition, and Per13 was excluded 247 

from further analyses.   248 

Longitudinal changes in CpG-based blood cell composition  249 

We performed a CpG-based estimation of blood cell proportions [21-23] . We 250 

evaluated differences in blood composition between baseline and Year 6. The 251 

estimated proportion of CD8+ T-cells decreased, while the proportion of 252 

granulocytes increased (Figure 1A, 1B; Table 3). The proportions of the other 253 

blood leukocyte subtypes remained relatively stable with no significant 254 

differences between the two visits (estimates for all participants at both time 255 

points are in Additional file 3: Table S1).  We however note pronounced 256 

changes in cell composition for Per1, one of the two participants that did not pair 257 

with self in the hierarchical cluster; cellular heterogeneity partly explains the 258 

discordance in the longitudinal data. 259 

 260 

 261 

 262 
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Table 3. Association between cancer and CpG-based estimates of blood 263 

cells and PC1  264 

 Comparison between baseline and year 61 

 Baseline Year 6 
p 

(baseline 
vs 6) 

CD8T 0.07 ± 0.06 0.02 ± 0.02 0.006 
Gran 0.46 ± 0.14 0.57 ± 0.14 0.02 
PC1 -7.31 ± 15.7 8.51 ± 13.41 0.004 

 Baseline (cancer yes vs. no) Year 6 (cancer yes vs. no) 
Cancer No Yes p No Yes p 
CD8T 0.08 ± 0.07 0.04 ± 0.02 0.16 0.03 ± 0.02 0.003 ± 0.005 0.02 
Gran 0.43 ± 0.14 0.52 ± 0.12 0.17 0.52 ± 0.14 0.66 ± 0.09 0.04 
PC1 -12.19 ± 13.73 2.45 ± 15.87 0.06 2.13 ± 10.99 19.14 ± 10.23 0.008 
1Excludes Person 13 and data from Year 2 265 
CD8T: CD8+ T-cells; Gran: granulocytes; PC1: principal component 1 266 

Association between CpG-based blood cell estimates and cancer 267 

We next examined if variation in blood cell composition was associated with 268 

cancer diagnosis. We performed the analysis stratified by baseline and Year 6. 269 

At baseline, none of the blood cells differentiated between those who developed 270 

cancer and those who remained cancer-free. By Year 6, CD8+ T-cell proportion 271 

was lower and granulocyte proportion was higher in the cancer-present group 272 

with modest statistical significance (Figure 1A, B; Table 3). 273 

Global patterns in DNA methylation and association with cell composition  274 

To examine the global patterns of variation in the methylome, we performed PCA 275 

using the 739,648 probes. PC1 to PC5 captured 49% of the variance in the data 276 

(Additional file 4: Data S1). Age and BMI were not correlated with the top 5 277 

PCs. PC4 showed an association with race only at Year 6 (p-value = 0.02), and 278 
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PC5 with sex only at baseline (p-value = 0.02) (full results in Additional file 4: 279 

Data S1). 280 

Correlation with blood cell estimates showed that PC1, which accounts for 21% 281 

of the variance, had a strong positive correlation with granulocytes and negative 282 

correlations with lymphoid cells (T-cells, B-cells, and natural killer or NK cells) at 283 

both baseline and Year 6 (full correlation matrix is provided in Additional file 4: 284 

Data S1). PC5 was positively correlated with monocytes at both baseline and 285 

Year 6 (Additional file 4: Data S1). 286 

Global patterns in DNA methylation and association with cancer 287 

We next evaluated whether the PCs could differentiate between individuals who 288 

remained cancer-free compared to those who received a cancer diagnosis. PC1, 289 

which captured the variation in cellular composition, showed a modest 290 

association with cancer diagnosis at baseline and this became stronger by Year 291 

6 (Table 3; Figure 1C). The remaining 4 PCs were not associated with cancer 292 

(Additional file 4: Data S1).  293 

Differential CpG methylation between cancer and cancer-free groups 294 

Following the PC analysis, we explored differential methylation at the level of 295 

individual CpGs. Given the small sample size, we carried out simple t-tests to 296 

compare the cancer-present vs. cancer-free groups at Year 6, the time when 297 

PC1 showed a significant difference between the two groups. To control for 298 

cellular heterogeneity and unmeasured confounding variables, we performed the 299 
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EWAS using residual β-values adjusted for the first 5 PCs. No CpG reached the 300 

genome-wide significant threshold (p-value ≤ 5 x 10-8). However, three CpGs, 301 

including one located in an intronic CpG island of the metastasis associated gene 302 

(cg02162462, MTA3), were genome-wide suggestive (p-value ≤ 10-5) (Figure 2). 303 

We considered the top 10 cancer-associated CpGs and evaluated these for 304 

replication (Table 4). Among these top 10, 5 CpGs were associated with lower 305 

methylation in the cancer group (cancer-hypomethylated), and the remaining 5 306 

showed higher methylation in the cancer group (cancer-hypermethylated). To 307 

test for replication, we cross-checked our results with those from Roos et al., 308 

which evaluated for pan-cancer CpG biomarkers in blood using the previous 309 

version of the Illumina Human Methylation 450K (HM450K) array. [16]. Of the top 310 

10 CpGs in Table 4, 5 probes were also represented in the HM450K array. The 311 

CpG in the intron of RPTOR (cg08129331), which was cancer-hypomethylated in 312 

Health ABC, also showed a similar hypomethylation in the Roos cohort at p-value 313 

= 0.05. The CpG in the 3’ UTR of MRPL44, which showed cancer-314 

hypermethylation in Health ABC, showed hypermethylation in the Roos cohort at 315 

p-value = 0.08.  316 

Longitudinal changes in CpG methylation and diagnosis time  317 

Since these CpGs differentiated between those who developed cancer and those 318 

who remained cancer-free at Year 6, we then explored if the longitudinal changes 319 

in methylation over time (deltaβ = Year 6 – baseline) could be related to time to 320 

cancer diagnosis. For the 5 cancer-hypomethylated CpGs in Table 4, we 321 
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predicted that the within-individual decline in methylation at Year 6 (negative 322 

deltaβ) would be greater in those who were closer to diagnosis (positive 323 

correlation with years to diagnosis or YTD). Inversely, for the 5 cancer-324 

hypermethylated CpGs, we predicted that the within-individual increase in 325 

methylation at Year 6 (positive deltaβ) would be greater in those closer to 326 

diagnosis (negative correlation with YTD). With the exception of three probes that 327 

showed Pearson correlation near 0, the remaining seven CpGs showed a 328 

correlation pattern that was consistent with our predictions (Table 4). The CpGs 329 

in REC8 (cg07516252), RPTOR, and ZSWIMS (cg04429789) were statistically 330 

significant at p-value ≤ 0.05. Figure 3 shows the longitudinal plots for these 3 331 

CpGs and the correlation between deltaβ and YTD.  332 

Table 4. Top 10 cancer associated CpGs 333 

   

Residual β-
value 

Y6 ttest in 
HABC3 

 Replication 
in Roos. et 

al. 

 Correlation 
of Y6-Y1 

with YTD in 
HABC5 

ProbeID Chr (Mb) 

1 Location2 
Canc. yes-

no 
(pval) 

 Canc. yes-
no 

(pval)4 

 
R 

cg09608390 17(1.00) exon ABR 0.019 
(1.1E-06)   

 -0.42 
(0.41) 

cg01399430 5(6.52) intergenic -0.048 
(5.6E-06)   

 0.34 
(0.50) 

cg02162462 2(42.8) Intron1 MTA3; 
CGI 

-0.027 
(1.0E-05)  0.02 

(0.93) 
 0.63 

(0.18) 

cg25105842 2(224.83) 3'UTR MRPL44 0.016 
(1.6E-05)  0.37 

(0.08) 
 0.09 

(0.86) 

cg05808305 11(2.77) intron; KCNQ1 -0.016 
(1.8E-05)   

 0.30 
(0.57) 

cg25403416 19(30.19) 3'UTR; 
C19orf12 

0.019 
(1.8E-05)  -0.14 

(0.30) 
 -0.06 

(0.91) 

cg07516252 14(24.64) promoter 
REC8; CGI 

-0.038 
(2.0E-05)  0.08 

(0.37) 
 0.89 

(0.02) 
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cg08129331 17(78.56) Intron1 RPTOR -0.039 
(2.4E-05)  -0.13 

(0.05) 
 0.83 

(0.04) 

cg11784099 21(46.23) Intron1 SUMO3 0.035 
(2.4E-05)   

 -0.06 
(0.91) 

cg04429789 1(45.52) intron ZSWIM5 0.024 
(2.7E-05)   

 -0.81 
(0.05) 

CD8T   -0.027 
(0.02)    -0.202 

(0.70) 

Gran   0.14 
(0.04)    -0.05 

(0.93) 

PC1   17.01(0.008)    -0.21 
(0.69) 

1 GRCh37/hg19 334 
2 CGI is CpG island 335 
3 Mean difference between cancer-present and cancer-free groups of Health ABC at Year 6 and t-336 
test p-values 337 
4 Mean difference between cancer discordant twins in Roos et al. (yes – no) and t-test p-values  338 
5 Mean Correlation between years to diagnosis and longitudinal change in residual β-values 339 
(deltaβ = Year 6 – baseline) in cancer group of Health ABC 340 
 341 

Discussion 342 

Summary 343 

In this study, we evaluated two aspects of the aging methylome in an older group 344 

of participants: (1) differences in DNA methylation patterns between those who 345 

developed cancer and those who remained cancer-free, and (2) the longitudinal 346 

trajectory over time. We used DNA purified from peripheral blood cells collected 347 

from a subset of Health ABC Study participants who provided DNA samples 348 

separated by approximately 5 years. Overall, there was strong intra-individual 349 

stability from baseline to Year 6, and with the exception of two participants, all 350 

other participants with longitudinal samples paired with self when grouped by 351 

unsupervised hierarchical clustering. When a large number of random CpGs or 352 

genome-wide data are used in such clustering analysis, samples generally group 353 
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by age and shared genotype (i.e., either monozygotic twins or with self), with few 354 

exceptions [26-28]. The few exceptions likely reflect individual discordance and 355 

epigenetic drift that occurs within a person, particularly at old age [24, 25]. We 356 

found that cellular composition is a major source of variation and significantly 357 

contributed to the variance explained by the primary principal component (PC1). 358 

In terms of the biomarker utility of DNA methylation, our study highlighted a few 359 

CpGs as potential biomarkers, and the dynamic changes over time at these 360 

CpGs were correlated with time to cancer diagnosis.  361 

Cellular heterogeneity as both informative and a potential confounder 362 

Cellular composition is clearly a major correlate of DNA methylation and can be a 363 

confounding variable when we attempt to relate the methylome derived from 364 

heterogeneous tissue to aging and disease [29]. The composition of cells in 365 

circulating blood can be influenced by natural immune aging and also by 366 

numerous correlated health variables including lifestyle, infectious disease, 367 

leukemia or similar cancers, and environmental exposures. For example, one of 368 

the most consistent features of the aging immune system involves thymic 369 

involution and the time-dependent decline in both the absolute number and the 370 

relative percent of naïve CD8+ T-cells [30-33]. A strategy to estimate the 371 

composition of cells from DNA methylation data is to rely on specific CpGs that 372 

are known to be strong cell-specific markers and can serve as surrogate 373 

measures of cellular sub-types [21-23]. With the current data, we applied this in 374 

silico approach to estimate the relative proportions of CD8+ T-cells, CD4+ T-375 

cells, B-cells, NK cells, granulocytes, and monocytes. The DNA methylation-376 
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based estimates of cell proportions showed a decrease in CD8+ T-cells and an 377 

increase in granulocytes over the course of 5 years. By Year 6 from baseline, the 378 

proportion of CD8+ T-cells was lower and proportion of granulocytes higher in the 379 

cancer-present group relative to the cancer-free group. Since the first few PCs 380 

captured the variance due to cellular composition, PC1 also showed a similar 381 

change over time. PC1 showed a slight distinction between the cancer-present 382 

vs. cancer-free groups even at baseline, and this became more pronounced by 383 

Year 6. These differences are likely because PC1 summarized the changes in 384 

the composition of multiple cell subtypes including those that were not estimated 385 

using the reference set of cell-specific CpGs. PCA may therefore be more 386 

effective at capturing the composite changes arising from different cellular 387 

subtypes and may also be more disease-informative than the estimated 388 

proportion of major cell types.  389 

Our observations are consistent with the general decrease in lymphoid cells and 390 

increase in myeloid cells during aging [30-32]. In line with the lower lymphocytes 391 

and higher granulocytes in the cancer group, work from both model organisms 392 

and humans have shown an inverse relationship between lymphocytes and 393 

granulocytes with lower B-cells and T-cells, and higher neutrophils being 394 

associated with higher mortality risk [34-36]. While we cannot disentangle the 395 

inter-correlations between aging, cell composition, and methylation patterns, our 396 

results do demonstrate that DNA methylation data derived from peripheral blood 397 

in older participants can be used to glean information on their cellular profiles, 398 

and this in turn can be related to their health and disease status. 399 
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Identifying (pan)cancer CpGs 400 

Following the cell estimation and PC analysis, we took an EWAS approach to 401 

examine differential methylation at the level of individual CpGs. Previous studies 402 

have already demonstrated that DNA methylation patterns can provide a 403 

powerful “pan-cancer” biomarker—i.e., an epigenetic signature of cancer that can 404 

serve as a general biomarker for the presence of cancer, and possibly different 405 

cancer types as well [37, 38]. The majority of these studies have involved 406 

comparisons between normal vs. tumor tissue, or are dependent on the shedding 407 

of cell-free DNA from the primary site of cancer and therefore are indicators of in 408 

situ changes that occur in tumor cells [37, 39-43]. Relatively few studies have 409 

taken a prospective approach that involves sample collection prior to disease 410 

diagnosis [44, 45], and even fewer have attempted to track longitudinal changes 411 

across multiple timepoints [14, 15]. Nevertheless, these few prospective studies 412 

have shown that both the global patterns and DNA methylation at specific CpG 413 

sites can be indicators of cancer, and even more strikingly, that some of these 414 

generalized changes can be detected in circulating blood cells [14, 15, 44, 45]. 415 

Given this background, our goal was to examine if we can also detect similar 416 

“pan-cancer” CpG biomarkers. We used a simple approach and contrasted DNA 417 

methylation between the cancer-present and cancer-free groups at Year 6, the 418 

time when we expect the differences to be more pronounced. Despite the small 419 

sample size, 3 CpGs passed the conventional genome-wide suggestive 420 

threshold of 10−5 [46], and the suggestive hits included a CpG located in the first 421 

intron and overlapping a CpG island within the metastasis associated 1 family 422 
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member 3 (MTA3), a gene known to play a role in tumorigenesis and metastasis. 423 

To incorporate the longitudinal information, we then focused on the top 10 424 

differentially methylated CpGs and examined whether the within-individual 425 

longitudinal changes in β-values in the cancer group were correlated with time to 426 

diagnosis. Due to the small sample size, it was not feasible to evaluate 427 

correlations with cancer stage or progression, and the correlations were 428 

examined only for the time to the first adjudicated diagnosis. The overall trend 429 

indicated that the magnitude of change over five years, with greater negative 430 

slope for cancer-hypomethylated CpGs and correspondingly greater positive 431 

slope for cancer-hypermethylated CpGs, was correlated with the time to cancer 432 

diagnosis. Although this analysis was carried out in only the 6 cancer cases, the 433 

correlations between deltaβ and time to diagnosis were significant for the CpGs 434 

in the promoter region of REC8, and introns of RPTOR and ZSWIM5. 435 

To gather additional lines of evidence, we examined if the association with 436 

cancer for these CpGs can be replicated in an independent dataset, and if the 437 

cognate genes have been previously related to cancer or tumorigenesis. For 438 

replication we referred to the work by Roos et al. [16]. While the study by Roos et 439 

al. compared cancer-discordant monozygotic twins and involved a much wider 440 

age range, some design features common to our study are: (1) the cancer group 441 

included samples collected from individuals who had already received cancer 442 

diagnosis (post-diagnosis) and from individuals within 5 years to diagnosis (pre-443 

diagnosis), (2) a variety of cancer types were represented, and (3) genome-wide 444 

DNA methylation was measured using peripheral blood cells. In the Health ABC 445 
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Study set, 3 participants (excluding Per13 with leukemia) had been diagnosed by 446 

Year 6, and the remaining participants received a diagnosis 1–5 years after Year 447 

6. Since the Roos dataset was generated on the previous version of the Illumina 448 

DNA methylation arrays (HM450K), only 5 of the top 10 probes were represented 449 

on that array and could be evaluated for replication. Only the CpG in the intron of 450 

RPTOR (cg08129331) was replicated and was also associated with a 451 

consistently lower methylation in the cancer group (p-value = 0.05 in Roos 452 

study). The 3’UTR CpG in MRPL44 (cg25105842) showed a consistent increase 453 

in methylation in the Roos study, but this did not reach statistical significance (p-454 

value = 0.08). 455 

Cancer associated CpGs in tumor suppressor genes 456 

Eight of the top ten cancer CpGs were located within annotated gene features 457 

including the top CpG, cg09608390, located in the exon of RhoGEF and GTPase 458 

activating protein gene, ABR. We did not find a clear-cut link between ABR and 459 

cancer in the existing literature. However, among the eight genes in the list, 460 

REC8 (meiotic recombination protein) is a known tumor suppressor. There is 461 

also evidence that KCNQ1 (potassium voltage-gated channel member), MTA3, 462 

and ZSWIM5 (zinc finger SWIM-type 5) have tumor suppressive roles.  463 

MTA3 is a chromatin remodeling protein that has a complex association with 464 

cancer [47, 48]. In certain types of malignant tumors such as glioma, certain 465 

breast cancers, and adenocarcinomas, MTA3 is under-expressed and is 466 

implicated as a tumor suppressor [48-51]. In other carcinomas such as 467 
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hepatocellular, lung, gastric, and colorectal cancers, MTA3 is reported to be 468 

overexpressed, with higher expression correlated with tumor progression and 469 

poorer prognosis [52-56]. In the Health ABC samples, the CpG (cg02162462) 470 

located in the first intron of MTA3 and overlapping a CpG island had lower 471 

methylation in the cancer-present group at Year 6. At baseline, there was no 472 

significant difference between the groups. The negative deltaβ, though not 473 

statistically significant, was greater in participants closer to receiving a clinical 474 

cancer diagnosis (Pearson correlation R = 0.63). While we could not replicate 475 

this CpG in the Roos dataset, the collective evidence suggests that methylation 476 

changes in the CpG island of MTA3 may be associated with tumor development 477 

and progression. 478 

REC8 has a more consistent tumor suppressive role and promoter 479 

hypermethylation and suppression of its expression occurs in tumor cells [57-60]. 480 

In the Health ABC samples, the CpG in the promoter (cg07516252) was 481 

hypomethylated and not hypermethylated in the group that received cancer 482 

diagnosis. The rate of promoter hypomethylation was also significantly correlated 483 

with time to diagnosis (R = 0.89). Since our study is blood-based and does not 484 

stem from the primary tumor site, the hypomethylation may indicate aberrant 485 

methylation over time in individuals, with greater changes observed in those 486 

individuals who are closer to clinical manifestations. However, this promoter CpG 487 

did not replicate in the Roos data.  488 

KCNQ1 is another tumor suppressor gene, and loss of its expression is 489 

considered to be an indicator of metastasis and poor prognosis [61-63]. There is 490 
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also evidence that the reduction in KCNQ1 expression in cancer cells may be 491 

mediated by promoter hypermethylation [62, 64]. In the Health ABC samples, the 492 

intronic CpG (cg05808305) had much lower methylation in the cancer group and 493 

was significant only at Year 6. Among the known and potential tumor suppressive 494 

genes, only the intronic CpG in ZSWIM5 (cg04429789) was associated with 495 

hypermethylation in the Health ABC cancer diagnosed group; for this CpG, the 496 

positive deltaβ was significantly correlated with time to diagnosis with greater 497 

positive change in those closer to receiving a diagnosis (R = -0.81). So far, we  498 

have found only one study showing that the expression of ZSWIM5 inhibits 499 

malignant progression [65]. We could not test replication for the CpG in ZSWIM5 500 

since this was not a probe that was included in the HM450K array. 501 

Based on the multiple lines of evidence, we highlight the CpG in the first intron of 502 

RPTOR (cg08129331) as a stronger potential pan-cancer biomarker as this 503 

specific CpG was replicated in the Roos data. This gene codes for a member of 504 

the mTOR protein complex, which plays a key role in cell growth and 505 

proliferation, and dysregulation of this signaling pathway is a common feature in 506 

cancers [66]. The lower methylation of this CpG in cancer-free individuals in 507 

Health ABC was significant only in Year 6. For the longitudinal change, the 508 

correlation between the deltaβ and time to diagnosis was significant for 509 

cg08129331. This specific CpG has been previously presented as a marker to 510 

differentiate between different medulloblastoma subtypes [67]. Another study has 511 

also indicated that the decrease in methylation in RPTOR measured in peripheral 512 

blood may be a biomarker for breast cancer, although this failed replication in a 513 
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follow-up study [68, 69]. Similar to REC8, there was more negative change in β-514 

value from Year 1 to 6 in individuals closer to receiving a cancer diagnosis.  515 

Limitations 516 

The present work was carried out in a very small and heterogenous group of 517 

participants. The cancer-present group consisted of different types of cancers, 518 

and there was a combination of individuals who received the diagnosis before 519 

and after Year 6. The differences in DNA methylation should therefore be 520 

interpreted as potential correlates rather than predictive indicators of disease. 521 

Due to the limitation in sample number, we performed simple t-test comparisons 522 

rather than more complex regressions such as mixed modeling. Furthermore, we 523 

considered the cancer diagnosis as the main outcome variable and did not 524 

account for cancer type, stage or progression. Additionally, while we took steps 525 

to statistically correct for immune cell composition, the data was derived from 526 

white blood cells from older participants. The in-silico approach to estimate cell 527 

composition cannot discern the finer repertoire of cellular subtypes that are 528 

known to change particularly in older individuals. The results we present 529 

therefore require further replication in a larger cohort. Our study is mainly a 530 

demonstration of concept that highlights the utility of longitudinal blood collection 531 

and the potential information on health and disease that can be gained by 532 

tracking dynamic changes in the methylome.  533 

 534 

 535 
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Conclusion 536 

Taken together, our analysis detected global changes in the methylome that are 537 

partly due to cellular heterogeneity and also due to changes at specific CpGs that 538 

could indicate cancer development and progression. From the multiple lines of 539 

evidence, we posit methylation in RPTOR as a potential biomarker of cancer that 540 

justifies further investigation and validation. 541 
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Figure titles and legends: 816 

Figure 1. Longitudinal plots for DNA methylation-based estimates 817 

The line plots (left) show the individual trajectory over time and the box plots 818 

(right) show the data averaged by visit year (baseline = 1, and Year 6) in cancer-819 

free (no) or cancer-present (yes) groups. (A) Estimated proportions of CD8+ T-820 

cells show a significant decline over time (baseline vs Year 6, solid line above 821 

boxplots) and are lower in the cancer-present group relative to the cancer-free 822 

group at Year 6 (cancer-free vs cancer-present, dashed line above boxplots). (B) 823 

Granulocyte proportions generally increase over time and are higher in the 824 

cancer-present group by Year 6. (C) The first principal component (PC1) 825 

computed from genome-wide methylation shows significant change over time as 826 

well as significant cross-sectional difference between the cancer-free and 827 

cancer-present groups by Year 6. In the line plots, red lines identify individuals 828 

who received a cancer diagnosis, and black lines identify those who remained 829 

cancer-free. Significance codes are *p-value < 0.05, **p-value < 0.01.  830 

Figure 2: Epigenome-wide association plot 831 

The Manhattan plot shows the association between the CpGs and cancer at Year 832 

6. The x-axis represents the chromosomal locations, and each point depicts a 833 

CpG probe. The y-axis is the –log10(p-value) of differential methylation between 834 

those who received cancer diagnosis vs. those who remained cancer-free. The 835 

red horizontal line indicates the genome-wide significant threshold (p-value ≤ 5 x 836 
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10-8) and the blue horizontal line indicates the suggestive threshold (p-value ≤ 10-837 

5). 838 

Figure 3: Longitudinal rate of change in CpG methylation  839 

The line plots (left) show the individual DNA methylation β-values from baseline 840 

to Year 6 for CpGs in (A) REC8 (cg07516252), (B) RPTOR (cg08129331), and 841 

(C) ZSWIM5 (cg04429789). Red lines identify individuals who received a cancer 842 

diagnosis, and black lines identify those who remained cancer-free. Longitudinal 843 

changes in DNA methylation were calculated as deltaβ =Year 6 – baseline, and 844 

the correlations between deltaβ and years to cancer diagnosis are shown for the 845 

respective CpGs (right). Higher magnitude of change is seen in individuals closer 846 

to clinical diagnosis. 847 

List and description of additional files: 848 

Additional file 1: Figure S1. Microarray data quality checks 849 

(A) The density plots for β-values using the full set of 866,836 probes show the 850 

expected bimodal distribution. (B) Unsupervised hierarchical clustering using the 851 

full set of probes shows that, with the exception of two participants (Per1 and 852 

Per9), all samples with longitudinal data pair appropriately with self. This cluster 853 

tree identifies Per13 as an outlier at both baseline and visit year 6. (C) Principal 854 

component analysis was done using a filtered set of 739,648 autosomal probes. 855 

The scatter plot between principal component 1 (PC1) and PC2 identifies Per13 856 

as an outlier. 857 
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Additional file 2: Figures S2. Samples pair by participant ID. 858 

Unsupervised hierarchical clustering using probes that were flagged due to 859 

overlap with SNPs shows that samples collected longitudinally from the same 860 

participant pair perfectly.  861 

Additional file 3: Table S1. DNA methylation-based estimation of blood cell 862 

proportions 863 

Additional file 4: Data S1. Analysis of top 5 principal components and 864 

association with demographics, blood cell estimates, and cancer diagnosis  865 
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