
Identification of viruses with the potential to infect human

Zheng Zhang1, #, Zena Cai1, #, Zhiying Tan1, Congyu Lu1, Gaihua Zhang2, Yousong
Peng1, *

1 College of Biology, Hunan University, Changsha, China

2 College of Life Sciences, Hunan Normal University, Changsha 410081, China

# These authors contributed equally to this work

* To whom correspondence should be addressed. Email: pys2013@hnu.edu.cn

Abstract

The virus has caused much mortality and morbidity to humans, and still posed a

serious threat to the global public health. The virome with the human-infection

potential is far from complete. Novel viruses have been discovered at an

unprecedented pace as the rapid development of viral metagenomics. However, there

is still a lack of a method for rapidly identifying the virus with the human-infection

potential. This study built several machine learning models for discriminating the

human-infecting viruses from other viruses based on the frequency of k-mers in the

viral genomic sequences. The k-nearest neighbor (KNN) model could predict the

human-infecting virus with an accuracy of over 90%. Even for the KNN models built

on the contigs as short as 1kb, they performed comparably to those built on the viral

genomes, suggesting that the models could be used to identify the human-infecting

virus from the viral metagenomic sequences. This work could help for discovery of

novel human-infecting virus in metagenomics studies.

Introduction

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/597963doi: bioRxiv preprint 

https://doi.org/10.1101/597963
http://creativecommons.org/licenses/by-nc-nd/4.0/


Viruses are the most abundant biological entities on Earth and exist in all habitats of

the world (Paez-Espino, Eloe-Fadrosh et al. 2016). They can infect all kinds of

organisms ranging from the bacteria to animals, including the human. Humans are

constantly exposed to a large diversity of viruses, and over two-thirds of all human

pathogens belong to viruses (Woolhouse and Gaunt 2007). The viruses have caused

huge mortality and morbidity to the human society in human history, such as the

devastating smallpox and Spanish flu. Although much progress have been made in

prevention and control of viral infectious disease, recent serial outbreaks caused by

the Middle East Respiratory Syndrome coronavirus (Breban, Riou et al. 2013), avian

influenza H7N9 virus (Gao, Cao et al. 2013), Ebola virus (Maganga, Kapetshi et al.

2014) and Zika virus (Mlakar, Korva et al. 2016) indicate that the viruses still pose a

serious threat to the global public health.

The virome which could infect humans is far from complete. Generally speaking, a

new pathogen would not be identified until it caused epidemics or pandemics. Many

viruses may remain undiscovered, even if they have already entered into human

populations (Rosenberg 2015). Traditional diagnostic methods such as polymerase

chain reaction, immunological assays and pan-viral microarrays are limited in their

ability to identify novel viruses with the potential to infect humans. Rapid

development of viral metagenomic sequencing in recent years provides a powerful

high-throughput and culture-independent means to identify new viruses, which leads

to accumulation of new viruses at an unprecedented pace (Alavandi and Poornima

2012). The Global Virome Project (GVP), which was proposed and initiated in the

beginning of 2018, estimated that there were over 1.67 million yet-to-be-discovered

viruses in animal reservoirs, and between 631,000 to 827,000 of these unknown

viruses have the capacity to infect humans (Carroll, Daszak et al. 2018). Therefore, it

is in great need to develop rapid methods for identifying viruses with the potential to

infect humans.

Two kinds of methods, the sequence alignment-based and alignment-free methods,

have been developed to predict the host for viruses. For example, several methods

based on k-mers, which were extracted from viral genomes (Ahlgren, Ren et al. 2016,
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Li and Sun 2018), and several methods based on sequence blast, have been developed

to predict the host of the phage (Bolotin, Quinquis et al. 2005, Edwards, McNair et al.

2015). Some studies have also attempted to identify the human virus with these

methods. For example, Xu et al. (Xu, Tan et al. 2017) developed SVM models to

predict the host of influenza viruses based on word vectors. However, all these studies

have focused some type of viruses, such as coronavirus and influenza virus. The

methods they developed were not suitable for identification of novel human-infecting

viruses from the viral metagenomic sequences. Here, we attempted to build machine

learning models for rapid identification of viruses with the potential to infect human.

Materials and Methods

Virus-host interactions and viral genomes

The virus with specific hosts and the viral genomic sequences were obtained from the

database of Virus-Host DB (available at https://www.genome.jp/virushostdb/) on July

15, 2018 (Mihara, Nishimura et al. 2016). After removing the viroid and satellites,

and the viruses with genomic sequence less than 1kb, a total of 9428 viruses were

kept for further analysis, which included 1236 viruses infecting humans, which were

defined as human-infecting viruses, and 8192 viruses infecting other species.

Machine learning models

The machine learning models of k-nearest neighbor (KNN) (k=1), support vector

machine (SVM) (using the linear kernel function), gaussian naive bayes classifier

(GNBC), random forest (RF) (with default settings) and logistic regression (LR) (with

default settings) were built with the default parameters using the package “scikit-learn”

(version 0.20.2) (Pedregosa, Varoquaux et al. 2011) in Python (version 3.6.2).

Because the number of human-infecting viruses was much smaller than that of other

viruses, the functions of “BalanceBaggingClassifier” (Breiman 1996, Barandiaran

1998) and “BalanceRandomForest” (Chen, Liaw et al. 2004)in the package of

“imbalanced-learn” (version 0.4.3) in Python were used to deal with the imbalance
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between the human-infecting virus and other viruses in the modeling, with the

parameter of “n_estimators” set to be 100.

Ten-fold cross-validations were used to evaluate the predictive performances of the

machine learning models, and were conducted using the functions of ‘StratifiedKFold’

in the package “scikit-learn” in Python. To measure the predictive performances of

the machine learning models, the area under the receiver operating characteristics

(ROC) curve (AUC), the accuracy, recall rate, specificity and predictive precision

were calculated for each model.

Statistical analysis

All the statistical analysis was conducted in R (version 3.5.0).

Results

Taxonomy distribution of viruses

A total of 9428 viruses were used in the study. Among them, 1236 viruses were

reported to infect humans, which were defined as the human-infecting virus. They

included 1043 viruses exclusively infecting humans and 193 viruses both infecting

humans and other species. The human-infecting virus covered all groups of viruses in

the Baltimore classification (Figure 1A). Over 60% of the human-infecting virus

belonged to single-stranded RNA (ssRNA) viruses, which also had the highest ratio of

human-infecting viruses (28%). The second largest component (25%) of the

human-infecting virus was the double-stranded DNA (dsDNA) virus. On the level of

family, the human-infecting virus comprised of viruses from 30 viral families. Among

them, the families of Caliciviridae (ssRNA), Picornaviridae (ssRNA) and

Papillomaviridae (dsDNA) were the three most abundant ones, which accounted for

nearly 60% of the human-infecting virus.

Besides the human-infecting virus, there were a total of 8192 viruses which infect

other species except the human, including the archaea, bacteria, fungi, plant, animal,
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and so on. They also covered all groups of viruses in the Baltimore classification

(Figure 1A), and comprised of viruses from 91 viral families.
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Figure 1. Analysis of the taxonomy distribution of all viruses used. (A) Taxonomy

distribution of the human-infecting and other viruses in the Baltimore classification.

(B) Taxonomy distribution of the human-infecting virus by viral family.

Machine-learning models for identifying the human-infecting virus based on

k-mer frequencies in the genome

To discriminating the human-infecting virus from other viruses, several

machine-learning models, including k-nearest neighbor (KNN), random forest (RF),

gaussian naive bayes classifier (GNBC), support-vector machine (SVM) and logistic

regression (LR), were built based on k-mer frequencies in the viral genome. K-mers

of one to six nucleotides were used in the models to evaluating the influence of the

k-mer length on the model performance (Table S1). Figure 2 showed that the AUC of

GNBC, SVM and LR models increased as the increase of the k-mer length from one

to six. While for KNN and RF, the AUCs of them peaked at k-mer length of 4 and 3,

respectively; then, they began to decrease as the increase of k-mer length. The AUCs

of KNN and RF were much larger than those of other models, including GNBC, SVM

and LR, at all length of k-mers, suggesting that the KNN and RF outperformed other

models in discriminating the human-infecting virus from other viruses. The best
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performance was achieved on the KNN model with the k-mers of four nucleotides.

The model not only had the best overall performance, with accuracy of 0.90 and AUC

of 0.92, respectively, but also had the best ability of capturing the human-infecting

virus, with recall rate of 0.94.
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Figure 2. The AUCs for machine learning models with k-mer length ranging from one
to six.

Table 1. Best performance of each kind of machine learning model.
KNN RF GNBC SVM LR

kmer 4 3 6 6 6
Accuracy 0.90 0.91 0.84 0.84 0.85
Recall 0.94 0.91 0.91 0.88 0.87
Specificity 0.90 0.91 0.83 0.83 0.85
Precision 0.58 0.59 0.45 0.45 0.46
AUC 0.92 0.91 0.87 0.86 0.86

Identifying the human-infecting virus based on contigs of varying length

In the metagenomics studies, contigs of varying length were assembled, which range

from several hundreds to several thousands of nucleotides. Rapid determination of the

human-infecting virus from metagenomic sequences is important for early warnings

of newly emerging viruses. To mimic the metagenomic sequences, viral genomes
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were split into non-overlapping contigs of 500, 1,000, 3,000, 5,000 and 10,000

nucleotides long. The number of contigs of varying length in the human-infecting

virus and other viruses were listed in Table S2.

Since the KNN model performed best in discriminating the human-infecting virus

from other viruses, it was used to identify the human-infecting virus based on contigs

of varying length. For the contigs of a given length, KNN models for discriminating

the human-infecting virus and other viruses were built with k-mers of different size

(Table S3). As was shown in Figure 3, for contigs of all length, the AUC of KNN

models increased as the increase of k-mer length from one to four. The best

performance was achieved for all models with k-mers of four nucleotides long. The

longer the contigs were, the better the models performed in identifying the

human-infecting virus (Figure 3 and Table 2). The model built on the contigs of

10,000 nucleotides had an AUC of 0.96 and a recall rate of 0.99, suggesting the model

could capture most human-infecting viruses. While on the contig of 500 nucleotides,

the model only had an AUC of 0.86 and a recall rate of 0.88. Attention to note, for

models built on the contigs of 1000 nucleotides or longer, they performed similarly to

those built on the viral genome.

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5

500bp
1000bp
3000bp
5000bp
10000bp

A
U

C

k-mer lengths

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/597963doi: bioRxiv preprint 

https://doi.org/10.1101/597963
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. The AUCs for KNN models built on contigs of varying length, with k-mer
length ranging from one to five.

Table 2. Best performance of KNN models built on contigs of varying length with
k-mers of four nucleotides used in modeling.

500 bp 1000 bp 3000 bp 5000 bp 10000 bp
Accuracy 0.85 0.87 0.91 0.92 0.92
Recall 0.88 0.93 0.96 0.98 0.99
Specificity 0.85 0.86 0.90 0.92 0.92
Precision 0.25 0.28 0.35 0.38 0.32
AUC 0.86 0.90 0.93 0.95 0.96

Discussion

Identification of human-infecting viruses is important for early warnings of newly

emerging viruses. As the rapid accumulation of viral metagenomic sequences, more

and more novel viruses have been discovered. Unfortunately, there is currently a lack

of rapid methods for identification of viruses with the potential to infect humans. As

far as we know, this study for the first time attempted to discriminate the

human-infecting virus from non-human-infecting virus in the perspective of virome.

The KNN model could predict the human-infecting virus with high accuracy and

sensitivity. Even for the KNN models built on the contigs as short as 1kb, they

performed comparably to those built on the viral genomes. This suggested that the

models built here could be used in metagenomics for identifying the viruses with the

potential of infecting humans.

The human-infecting virus used here has different ability of infecting humans. Some

of them are human viruses and have been circulating in human populations for a long

time, such as the human papillomavirus (Baseman and Koutsky 2005) and yellow

fever virus (Akondy, Monson et al. 2009); while some of them were zoonotic and

only infect humans rarely, such as the avian influenza virus and coronavirus. As was

shown in numerous studies, the zoonotic viruses are very likely to cause epidemics or

even pandemics after adaptive mutations. The most recent example is the Zika virus.

It rarely caused wide-spread epidemics in humans, even in highly enzootic areas, in

the 20th century. However, a few mutations on the viral genome facilitated its rapid
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spread in human populations. The virus has caused epidemics in more than 50

countries and has infected more than one million people since 2014 (Prevention and

Control 2016, de Oliveira Garcia 2019). Taken together, it is difficult to distinguish

between viruses with different extent of infecting humans. Therefore, the

human-infecting virus with varying ability of infecting humans were considered

equally in the modeling.

There are some limitations to this study. Firstly, the human-infecting virus is far from

complete when compared to that estimated by the GVP. But they covered viruses of

30 families in all groups of the Baltimore classification, which was similar to that

estimated by the GVP. Besides, the machine learning models had excellent

performances in discriminating the human-infecting virus from other viruses. They

could help much in discovering novel human-infecting viruses. infect humans after

adaptive mutations. Secondly, the number of human-infecting virus is much smaller

than that of other viruses. Such a large imbalance may hinder accurate modeling. Here,

the under-sampling method was used to deal with the imbalance problem. The KNN

model not only achieved excellent overall performances, but also had high sensitivity

in identifying the human-infecting virus.

In conclusion, this study for the first time built the computational models to predict

the human-infecting virus in the perspective of virome. The high accuracy and

sensitivity of the KNN model built on the viral contigs of varying length suggests that

the model could be used to identify the human-infecting virus from the viral

metagenomic sequences. This work could help for discovery of novel

human-infecting virus in metagenomics studies.
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