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Abstract

A central goal in systems neuroscience is to understand the functions performed by
neural circuits. Previous top-down models addressed this question by comparing the
behaviour of an ideal model circuit, optimised to perform a given function, with neural
recordings. However, this requires guessing in advance what function is being performed,
which may not be possible for many neural systems. To address this, we propose a new
framework for optimising a recurrent network using multi-agent reinforcement learning
(RL). In this framework, a reward function quantifies how desirable each state of the
network is for performing a given function. Each neuron is treated as an ‘agent’, which
optimises its responses so as to drive the network towards rewarded states. Three
applications follow from this. First, one can use multi-agent RL algorithms to optimise
a recurrent neural network to perform diverse functions (e.g. efficient sensory coding or
motor control). Second, one could use inverse RL to infer the function of a recorded
neural network from data. Third, the theory predicts how neural networks should adapt
their dynamics to maintain the same function when the external environment or network
structure changes. This could lead to theoretical predictions about how neural network
dynamics adapt to deal with cell death and/or varying sensory stimulus statistics.

Introduction

Neural circuits have evolved to perform a range of different functions, from sensory
coding to muscle control and decision making. A central goal of systems neuroscience is
to elucidate what these functions are and how neural circuits implement them. A
common ‘top-down’ approach starts by formulating a hypothesis about the function
performed by a given neural system (e.g. efficient coding/decision making), which can
be formalised via an objective function [1–10]. This hypothesis is then tested by
comparing the predicted behaviour of a model circuit that maximises the assumed
objective function (possibly given constraints, such as noise/metabolic costs etc.) with
recorded responses.

One of the earliest applications of this approach was sensory coding, where neural
circuits are thought to efficiently encode sensory stimuli, with limited information
loss [7–13]. Over the years, top-down models have also been proposed for many central
functions performed by neural circuits, such as generating the complex patterns of
activity necessary for initiating motor commands [3], detecting predictive features in the
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environment [4], or memory storage [5]. Nevertheless, it has remained difficult to make
quantitative contact between top-down model predictions and data, in particular, to
rigorously test which (if any) of the proposed functions is actually being carried out by
a real neural circuit.

The first problem is that a pure top-down approach requires us to hypothesise the
function performed by a given neural circuit, which is often not possible. Second, even if
our hypothesis is correct, there may be multiple ways for a neural circuit to perform the
same function, so that the predictions of the top-down model may not match the data.

Here we propose a new framework for considering optimal coding by a recurrent
neural network, that aims to overcome these problems. First, we show how optimal
coding by a recurrent neural network can be re-cast as a multi-agent reinforcement
learning (RL) problem [14–18] (Fig 1). In this framework, a reward function quantifies
how desirable each state of the network is for performing a given computation. Each
neuron is then treated as a separate ‘agent’, which optimises its responses (i.e. when to
fire a spike) so as to drive the network towards rewarded states, given a constraint on
the information each neuron encodes about its inputs. This framework is very general –
different choices of reward function result in the network performing diverse functions,
from efficient coding to decision making and optimal control – and thus has the
potential to unify many previous theories of neural coding.

Next, we show how our proposed framework could be used to tackle the inverse
problem, of inferring the reward function from the observed network dynamics.
Previous work has proposed ‘inverse RL’ algorithms for inferring the original reward
function from an agent’s actions [20–24]. Here we show how this framework can be
adapted to infer the reward function optimised by a recurrent neural network. Further,
given certain conditions we show that the reward function can be expressed as a
closed-form expression of the observed network dynamics.

We hypothesise that the inferred reward function, rather than e.g. the properties of
individual neurons, is the most succinct mathematical summary of the network, that
generalises across different contexts and conditions. Thus we could use our framework
to quantitatively predict how the network will adapt or learn in order to perform the
same function when the external context (e.g. stimulus statistics), constraints (e.g. noise
level) or the structure of the network (e.g. due to cell death or experimental
manipulation) change. Our framework could thus not only allows RL to be used to
train neural networks and use inverse RL to infer their function, but also could generate
predictions for a wide range of experimental manipulations.

Results

General approach

We can quantify how well a network performs a specific function (e.g. sensory
coding/decision making) via an objective function Lπ (where π denotes the parameters
that determine the network dynamics) (Fig 1A). There is a large literature describing
how to optimise the dynamics of a neural network, π, to maximise specific objective
functions, Lπ, given constraints (e.g. metabolic cost/wiring constraints etc.) [1–10].
However, it is generally much harder to go in the opposite direction, to infer the
objective function, Lπ, from observations of the network dynamics.

To address this question, we looked to the field of reinforcement learning
(RL) [14–18], which describes how an agent should choose actions so as to maximise the
reward they receive from their environment (Fig 1B). Conversely, another paradigm,
called inverse RL [20–24], explains how to go in the opposite direction, to infer the
reward associated with different states of the environment from observations of the
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agent’s actions. We reasoned that, if we could establish a mapping between optimising
neural network dynamics (Fig 1A) and optimising an agent’s actions via RL (Fig 1B),
then we could use inverse RL to infer the objective function optimised by a neural
network from its observed dynamics.

To illustrate this, let us compare the problem faced by a single neuron embedded
within a recurrent neural network (Fig 1C) to the textbook RL problem of an agent
navigating a maze (Fig 1D). The neuron’s environment is determined by the activity of
other neurons in the network and its external input; the agent’s environment is
determined by the walls of the maze. At each time, the neuron can choose whether to
fire a spike, so as to drive the network towards states that are ‘desirable’ for performing
a given function; at each time, the agent in the maze can choose which direction to
move in, so as to reach ‘desirable’ locations, associated with a high reward.

Both problems can be formulated mathematically as Markov Decision Processes
(MDPs) (Fig 1E). Each state of the system, s (i.e. the agent’s position in the maze, or
the state of the network and external input), is associated with a reward, r(s). At each
time, the agent can choose to perform an action, a (i.e. moving in a particular direction,
or firing a spike), so as to reach a new state s′ with probability, p(s′|a, s). The
probability that the agent performs a given action in each state, π(a|s), is called their
policy.

We assume that the agent (or neuron) optimises their policy to maximise their
average reward, 〈r (s)〉pπ(s) (where 〈·〉pπ(s) denotes the average over the steady state

distribution, pπ (s), with a policy π (a|s)), given a constraint on the information they
can encode about their state, Iπ(a; s) (this corresponds, for example, to constraining
how much a neuron can encode about the rest of the network and external input). This
can be achieved by maximising the following objective function:

Lπ = 〈r(s)〉pπ(s) − λIπ (a; s) (1)

where λ is a constant that controls the strength of the constraint. Note that in the
special case where the agent’s state does not depend on previous actions
(i.e. p (s′|a, s) = p (s′|s)) and the reward depends on their current state and action, this
is the same as the objective function used in rate-distortion theory [25, 26]. We can also
write the objective function as:

Lπ = 〈r(s)− λcπ(s)〉pπ(s) (2)

where cπ(s) is a ‘coding cost’, equal to the Kullback-Leibler divergence between the
agent’s policy and the steady-state distribution over actions, DKL [π (a|s)‖pπ (a)]. We
hereon refer to the difference, r(s)− λcπ(s), as the ‘return’ associated with each state.

In Methods section we show how this objective function can be maximised via
entropy-regularised RL [15,18] to obtain the optimal policy, which satisfies the relation:

π(a|s) ∝ pπ (a) e
1
λ 〈vπ(s′)〉

p(s′|s,a) , (3)

where vπ (s) is the ‘value’ associated with each state, defined as the total return
predicted in the future if the agent starts in a given state, minus the average return, Lπ:

vπ (s) = r (s)− λcπ (s)− Lπ (4)

+ 〈r (s′)− λcπ (s′)〉pπ(s′|s) − Lπ
+ 〈r (s′′)− λcπ (s′′)〉pπ(s′′|s′)pπ(s′|s) − Lπ + . . .

where s, s′ and s′′ denote three consecutive states of the agent. Subtracting the average
return, Lπ, from each term in the sum ensures that this series converges to a finite
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Fig 1. General approach. (A) Top-down models use an assumed objective function
to derive the optimal neural dynamics. The inverse problem is to infer the objective
function from observed neural responses. (B) RL uses an assumed reward function to
derive an optimal set of actions that an agent should perform in a given environment.
Inverse RL infers the reward function from the agent’s actions. (C-D) A mapping
between the neural network and textbook RL setup. (E) Both problems can be
formulated as MDPs, where an agent (or neuron) can choose which actions, a, to
perform to alter their state, s, and increase their reward. (F) Given a reward function
and coding cost (which penalises complex policies), we can use entropy-regularised RL
to derive the optimal policy (left). Here we plot a single trajectory sampled from the
optimal policy (red), as well as how often the agent visits each location (shaded).
Conversely, we can use inverse RL to infer the reward function from the agent’s policy
(centre). We can then use the inferred reward to predict how the agent’s policy will
change when we increase the coding cost to favour simpler (but less rewarded)
trajectories (top right), or move the walls of the maze (bottom right).

value [19]. Thus, actions that drive the agent towards high-value states are preferred
over actions that drive the agent towards low value states. Note the difference between
a state’s value, v (s), and its return, r (s)− λcπ (s): a state with low return can
nonetheless have a high-value if it allows the agent to transition to other states
associated with a high return in the future.

Let us return to our toy example of the agent in a maze. Figure 1F (left) shows the
agent’s trajectory through the maze after optimising their policy using entropy
regularized RL to maximise Lπ (Methods, section ). In this example, a single location,
in the lower-right corner of the maze, has a non-zero reward (Fig 1F, centre). However,
suppose we didn’t know this; could we infer the reward at each location just by
observing the agent’s trajectory in the maze? In Methods section we show that this can
be done by finding the reward function that maximises the log-likelihood of the optimal
policy, averaged over observed actions and states, 〈log π∗ (a|s)〉data. If the coding cost is
non-zero (λ > 0), this problem is generally well-posed, meaning there is a unique
solution for r(s).

Once we have inferred the reward function optimised by the agent, we can then use
it to predict how their behaviour will change when we alter their external environment
or internal constraints. For example, we can predict how the agent’s trajectory through
the maze will change when we move the position of the walls (Fig 1F, lower right), or
increase the coding cost so as to favour simpler (but less rewarded) trajectories (Fig 1F,
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Fig 2. Training and inferring the function performed by a neural
network.(A) A recurrent neural network receives a binary input, x. (B) The reward
function equals 1 if the network fires 2 spikes when x = −1, or 6 spikes when x = 1. (C)
After optimisation, neural tuning curves depend on the input, x, and total spike count.
(D) Simulated dynamics of the network with 8 neurons (left). The total spike count
(below) is tightly peaked around the rewarded values. (E) Using inverse RL on the
observed network dynamics, we infer the original reward function used to optimise the
network from its observed dynamics. (F) The inferred reward function is used to
predict how neural tuning curves will adapt depending on contextual changes, such as
varying the input statistics (e.g. decreasing p(x = 1)) (top right), or cell death (bottom
right). Thick/thin lines show adapted/original tuning curves, respectively.

upper right).

Optimising neural network dynamics

We used these principles to infer the function performed by a recurrent neural network.
We considered a model network of n neurons, each described by a binary variable,
σi = −1/1, denoting whether the neuron is silent or spiking respectively (Methods
section ). The network receives an external input, x. The network state is described by

an n-dimensional vector of binary values, σ = (σ1, σ2, . . . , σn)
T

. Both the network and
external input have Markov dynamics. Neurons are updated asynchronously: at each
time-step a neuron is selected at random, and its state updated by sampling from
πi (σ̃i|σ,x). The dynamics of the network are fully specified by the set of response
probabilities, πi (σ̃i|σ,x), and input statistics, p(x′|x).

As before, we use a reward function, r (σ,x), to express how desirable each state of
the network is to perform a given functional objective. For example, if the objective of
the network is to faithfully encode the external input, then an appropriate reward
function might be the negative squared error: r(x,σ) = − (x− x̂ (σ))

2
, where x̂ (σ)

denotes an estimate of x, inferred from the network state, σ. More generally, different
choices of reward function can be used to describe a large range of functions that may
be performed by the network.

The dynamics of the network, π, are said to be optimal if they maximise the average
reward, 〈r (σ,x)〉pπ(σ,x), given a constraint on the information each neuron encodes

about the rest of the network and external inputs,
∑n
i=1 Iπ (σ̃i;σ,x). This corresponds
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Fig 3. Inferring the reward from limited data. (A) The r2-goodness of fit
between the true reward, and the reward inferred using a finite number of samples (a
sample is defined as an observation of the network state at a single time-point). The
solid line indicates the r2 value averaged over 20 different simulations, while the shaded
areas indicate the standard error on the mean. (B) Distribution of rewards inferred
from a variable numbers of data samples. As the number of data samples is increased,
the distribution of inferred rewards becomes more sharply peaked around 0 and 1
(reflecting the fact that the true reward was binary). (C) The KL-divergence between
the optimal response distribution with altered input statistics (see Fig 2F, upper) and
the response distribution predicted using the reward inferred in the initial condition
from a variable number of samples. The solid line indicates the KL-divergence averaged
over 20 different simulations, while the shaded areas indicate the standard error on the
mean. A horizontal dashed line indicates the KL-divergence between the response
distribution with biased input and the original condition (that was used to infer the
reward). (D) Same as panel (C), but where instead of altering the input statistics, we
remove cells from the network (see Fig 2F, lower).

to maximising the objective function:

Lπ = 〈r (σ,x)〉pπ(σ,x) − λ
n∑
i=1

Iπ (σ̃i;σ,x) . (5)

where λ controls the strength of the constraint. For each neuron, we can frame this
optimisation problem as an MDP, where the state, action, and policy correspond to the
network state and external input {σ,x}, the neuron’s proposed update σ̃i, and the
response probability πi (σ̃i|σ,x), respectively. Thus, we can optimise the network
dynamics, by treating each neuron as an agent, and optimising its response probability,
πi (σ̃i|σ,x), via entropy-regularised RL, as we did for the agent in the maze. Further,
as each update increases the objective function Lπ, we can alternate updates for
different neurons to optimise the dynamics of the entire network (as in multi-agent RL).
In Methods section , we show that this results in optimal response probabilities that
satisfy the relation:

πi
(
σ̃i = 1|σ/i,x

)
=

(
1 +

pπ (σi)

1− pπ (σi)
e

1
nλ

∑
σi=−1,1 σi〈vπ(σ,x′)〉

p(x′|x)

)−1

, (6)

where σ/i denotes the state of all neurons except for neuron i, and vπ (σ,x) is the value
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associated with each state:

vπ (σ,x) = r (σ,x)− λcπ (σ,x)− Lπ (7)

+ 〈r (x′,σ′)− λcπ (σ′,x′)〉pπ(σ′|x,σ)p(x′|x) − Lπ
+ 〈r (x′′,σ′′)− λcπ (σ′′,x′′)〉pπ(σ′′|x,σ)p(x′′|x) − Lπ + . . .

The coding cost, cπ (σ,x) =
∑n
i=1DKL [πi (σ̃i|σ,x)‖pπ (σ̃i)] penalises deviations from

each neuron’s average firing rate. The network dynamics are optimised by alternately
updating the value function and neural response probabilities until convergence
(Methods section ).

To see how this works in practice, we simulated a network of 8 neurons that receive
a binary input x (Fig 2A). The assumed goal of the network is to fire exactly 2 spikes
when x = −1, and 6 spikes when x = 1, while minimising the coding cost. To achieve
this, the reward was set to unity when the network fired the desired number of spikes,
and zero otherwise (Fig 2B). Using entropy-regularised RL, we derived optimal tuning
curves for each neuron, which show how their spiking probability should optimally vary
depending on the input, x, and number of spikes fired by other neurons (Fig 2C). We
confirmed that after optimisation the number of spikes fired by the network was tightly
peaked around the target values (Fig 2D). Decreasing the coding cost reduced noise in
the network, decreasing variability in the total spike count.

Inferring the objective function from the neural dynamics

We next asked if we could use inverse RL to infer the reward function optimised by a
neural network, just from its observed dynamics (Fig 2D). For simplicity, let us first
consider a recurrent network that receives no external input. In this case, the optimal
dynamics (Eqn 6) correspond to Gibbs sampling from a steady-state distribution:
p (σ) ∝

∏
i p (σi) exp

(
1
λnvπ (σ)

)
. We can combine this with the Bellmann equality,

which relates the reward, value and cost functions (according to:
r (σ) = vπ (σ) + λcπ (σ)− 〈vπ (σ′)〉p(σ′|σ) + Lπ; see Methods) to derive an expression
for the reward function:

r (σ) = nλ

n∑
i=1

log

(
p
(
σi|σ/i

)
p (σi)

)
+ C, (8)

where p
(
σi|σ/i

)
denotes the probability that neuron i is in state σi, given the current

state of all the other neurons and C is an irrelevant constant (see Methods). Without
loss of generality, we can set the coding cost, λ, to 1 (since altering λ rescales the
inferred reward and coding cost by the same factor, rescaling the objective function
without changing its shape). In the Methods, we show how we can recover the reward
function when there is an external input. In this case, we do not obtain a closed-form
expression for the reward function, but must instead infer it via maximum likelihood.

Figure 2E shows how we can use inverse RL to infer the reward function optimised
by a model network from its observed dynamics, in the presence of an external input.
Note, that our method did not make any a priori assumptions about the parametric
form of the reward function, which was allowed to vary freely as a function of the
network state and input, (σ,x). Nonetheless, we can use a simple clustering algorithm
(e.g. k-means) to recover the fact that the inferred reward took two binary values;
further analysis reveals that the reward is only non-zero when the network fired exactly
2 spikes when x = −1, and 6 spikes when x = 1. As for the agent in the maze, we can
use this inferred reward function to predict how the network dynamics will vary
depending on the internal/external constraints. For example, we can predict how neural
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tuning curves will vary if we alter the input statistics (Fig 2F, upper), or remove a cell
from the network (Fig 2F, lower).

Our ability to correctly infer the reward function optimised by the network will be
fundamentally limited by the amount of available data. Fig 3A shows how the
correlation between the inferred and true reward increases with the amount of data
samples used to infer the reward. (Note that each discrete time-step is considered to be
one data sample.) As the number of samples is increased, the distribution of inferred
rewards becomes more tightly peaked around two values (Fig 3B), reflecting the fact
that the true reward function was binary. Of course, with real neural data we will not
have access to the ‘true’ reward function. In this case, we can test how well our inferred
reward function is able to predict neural responses in different conditions. Figure 3C-D
shows how the predicted response distribution (when we alter the input statistics,
Fig 3C, or remove cells, Fig 3D) becomes more accurate as we increase the number of
samples used to estimate the reward function.

Inferring efficiently encoded stimulus features

An influential hypothesis, called ‘efficient coding’, posits that sensory neural circuits
have evolved to encode maximal information about sensory stimuli, given internal
constraints [7–13]. However, the theory does not specify which stimulus features are
relevant to the organism, and thus should be encoded. Here we show how one could use
inverse RL to: (i) infer which stimulus features are encoded by a recorded neural
network, and (ii) test whether these features are encoded efficiently.

Efficient coding posits that neurons maximise information encoded about some
relevant feature, y (x), given constraints on the information encoded by each neuron
about their inputs, x (Fig 4A). This corresponds to maximising:

Lπ = Iπ (y (x) ;σ)− λ
n∑
i=1

Iπ (σ̃i;σ,x) , (9)

where λ controls the strength of the constraint. Noting that the second term is equal to
the coding cost we used previously (Eqn 5), we can rewrite this objective function as:

Lπ = 〈log pπ (y (x) |σ)− λcπ (σ,x)〉pπ(σ|x)p(x) (10)

where we have omitted terms which don’t depend on π. Now this is exactly the same as
the objective function we have been using so far (Eqn 5), in the special case where the
reward function, r (σ,x), is equal to the log-posterior, log pπ (y (x)|σ). As a result we
can maximise Lπ via an iterative algorithm, where on each iteration we update the
reward function by setting r (x,σ)← log pπ(y (x) |σ), before then optimising the
network dynamics, via entropy-regularised RL. Thus, thanks to the correspondence
between entropy-regularised RL and efficient coding we could derive an algorithm to
optimise the dynamics of a recurrent network to perform efficient coding [28].

As an illustration, we simulated a network of 7 neurons that receive a sensory input
consisting of 7 binary pixels (Fig 4B, top). In this example, the ‘relevant feature’, y (x)
was a single binary variable, which was equal to 1 if 4 or more pixels were active, and -1
otherwise (Fig 4B, bottom). Using the efficient-coding algorithm described above, we
derived optimal tuning curves, showing how each neuron’s spiking probability should
vary with both the number of active pixels and number of spikes fired by other neurons
(Fig 4C). We also derived how the optimal readout, p (y|σ), should depend on the
number of spiking neurons (Fig 4D). Finally, we verified that the optimised network
encodes significantly more information about the relevant feature than a network of
independent neurons, over a large range of coding costs (Fig 4E).
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Fig 4. Efficient coding and inverse RL. (A) The neural code was optimised to
efficiently encode an external input, x, so as to maximise information about a relevant
stimulus feature y (x). (B) The input, x consisted of 7 binary pixels. The relevant
feature, y (x), was equal to 1 if >3x pixels were active, and -1 otherwise. (C)
Optimising a network of 7 neurons to efficiently encode y (x) resulted in all neurons
having identical tuning curves, which depended on the number of active pixels and total
spike count. (D) The posterior probability that y = 1 varied monotonically with the
spike count. (E) The optimised network encoded significantly more information about
y (x) than a network of independent neurons with matching stimulus-dependent spiking
probabilities, p (σi = 1|x). The coding cost used for the simulations in the other panels
is indicated by a red circle. (F-G) We use the observed responses of the network (F) to
infer the reward function optimised by the network, r (σ,x) (G). If the network
efficiently encodes a relevant feature, y (x), then the inferred reward (solid lines) should
be proportional to the log-posterior, log p (y (x)|σ) (empty circles). This allows us to (i)
recover y (x) from observed neural responses, (ii) test whether this feature is encoded
efficiently by the network. (H) We can use the inferred objective to predict how varying
the input statistics, by reducing the probability that pixels are active, causes the
population to split into two cell types, with different tuning curves and mean firing
rates (right).
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Now, imagine that we just observe the stimulus and neural responses (Fig 4F). Can
we recover the relevant feature, y (x)? To do this, we first use inverse RL to infer the
reward function from observed neural responses (in exactly the same way as described
in the previous section) (Fig 4G). As before, we made no a priori assumptions about
the parametric form of the reward function, which was allowed to vary freely as a
function of the network state and input, (σ,x). Now, as described above, if the network
is performing efficient coding then the inferred reward, r (σ,x) should be proportional
to the log-posterior, log p (y (x)|σ). Thus, given σ, the inferred reward, r (σ,x) should
only depend on changes to the input, x, that alter y (x). As a result, we can use the
inferred reward to uncover all inputs, x, that map onto the same value of y (x). In our
example, we see that the inferred reward collapses onto two curves only (blue and red in
Fig 4G), depending on the total number of pixels in the stimulus. This allows us to
deduce that the relevant coded variable, y (x), must be a sharp threshold on the number
of simultaneously active pixels. In contrast, the neural tuning curves vary smoothly
with the number of active pixels (Fig 4C). Next, having recovered y (x), we can check
whether it is encoded efficiently by seeing whether the inferred reward, r (σ,x) is
proportional to the log-posterior, log p (y (x)|σ).

Note that our general approach could also generalise to more complex efficient
coding models, where the encoded variable, y, is not a binary function of the input, x.
In this case, we can perform a cluster analysis (e.g. k-means) to reveal which inputs, x,
map onto similar reward. If the network is performing efficient coding then these inputs
should also map onto the same encoded feature, y (x).

Finally, once we have inferred the function performed by the network, we can predict
how its dynamics will vary with context, such as when we alter the input statistics. For
example, in our simulation, reducing the probability that input pixels are active causes
the neural population to split into two cell-types, with distinct tuning curves and mean
firing rates (Fig 4H) [13].

Parametric model of neural responses

The basic framework described above is limited by the fact that the number of states,
ns, scales exponentially with the number of neurons (ns = 2n). Thus, it will quickly
become infeasible to compute the optimal dynamics as the number of neurons increases.
Likewise, we will need an exponential amount of data to reliably estimate the sufficient
statistics of the network, required to infer the reward function (Fig 3).

For larger networks, this problem can be circumvented by using tractable parametric
approximation of the value function and reward functions. As an illustration, let us
consider a network with no external input. If we approximate the value function by a
quadratic function of the responses, our framework predicts a steady-state response

distribution of the form: p (σ) ∝ exp
(∑

i,j 6=i Jijσiσj +
∑
i hiσi

)
, where Jij denotes the

pairwise couplings between neurons, and hi is the bias. This corresponds to a pairwise
Ising model, which has been used previously to model recorded neural responses [27, 28].
(Note that different value functions could be used to give different neural models;
e.g. choosing v (x) = f (w · x), where x is the feed-forward input, results in a
linear-nonlinear neural model.) In Methods section we derive an algorithm to optimise
the coupling matrix, J , for a given reward function and coding cost.

To illustrate this, we simulated a network of 12 neurons arranged in a ring, with
reward function equal to 1 if exactly 4 adjacent neurons are active together, and 0
otherwise. After optimisation, nearby neurons were found to have positive couplings,
while distant neurons had negative couplings (Fig 5A). The network dynamics generate
a single hill of activity which drifts smoothly in time. This is reminiscent of ring
attractor models, which have been influential in modeling neural functions such as the
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Fig 5. Pairwise coupled network. (A) We optimized the parameters of a pairwise
coupled network, using a reward function that was equal to 1 when exactly 4 adjacent
neurons were simultaneously active, and 0 otherwise. The resulting couplings between
neurons are schematized on the left, with positive couplings in red and negative
couplings in blue. The exact coupling strengths are plotted in the centre. On the right
we show an example of the network dynamics. Using inverse RL, we can infer the
original reward function used to optimise the network from its observed dynamics. We
can then use this inferred reward to predict how the network dynamics will vary when
we increase the coding cost (B), remove connections between distant neurons (C) or
selectively activate certain neurons (D).
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Fig 6. Effect of assuming different types of reward function. We compared
the inferred reward when we assumed a sparse model (i.e. a small number of states
associated with non-zero positive reward) a pairwise model (i.e. the reward depends on
the first and second-order response statistics) and a global model (i.e. the reward
depends on the total number of active neurons only). (A) r2 goodness of fit between
the true and the inferred reward, assuming a sparse, pairwise, or global model. (B) The
KL-divergence between the optimal response distribution with high coding cost (see Fig
5B) and the response distribution predicted using the reward inferred in the initial
condition, assuming a sparse, pairwise, or global model. A horizontal dashed line
indicates the KL-divergence between the response distribution with high-coding cost
and the original condition (that was used to infer the reward).

rodent and fly head direction system [29–31]. (Indeed, eqn. 6 suggests why our
framework generally leads to attractor dynamics, as each transition will tend to drive
the network to higher-value ‘attractor states’.)

As before, we can then use inverse RL to infer the reward function from the observed
network dynamics. However, note that when we use a parametric approximation of the
value function this problem is not well-posed, and we have to make additional
assumptions about the form of the reward function. We first assumed a ‘sparse’ reward
function, where only a small number of states, σ, are assumed to be associated with
non-zero positive reward (see Methods). Using this assumption, we could well recover
the true reward function from observations of the optimised neural responses (with an
r2 value greater than 0.9).

Having inferred the reward function optimised by the network, we can then use it to
predict how the coupling matrix, J , and network dynamics will vary if we alter the
internal/external constraints. For example, we can use the inferred reward to predict
how increasing the coding cost will result in stronger positive couplings between nearby
neurons and a hill of activity that sometimes jumps discontinuously between locations
(Fig 5B); removing connections between distant neurons will result in two
uncoordinated peaks of activity (Fig 5C); finally, selectively activating certain neurons
will ‘pin’ the hill of activity to a single location (Fig 5D).

To illustrate the effect of assuming different reward functions, we considered two
different sets of assumptions (in addition to the sparse model, described above): a
‘pairwise model’, where the reward is assumed to be a quadratic function of the network
state, and a ‘global model’ where the reward is assumed to depend only on global spike
count (see Methods). In all three cases, the inferred reward function provided a
reasonable fit to the true reward function, (averaged over states visited by the network;
Fig 6A). However, only the sparse and pairwise models were able to predict how neural
responses changed when, for example, we optimised the network with a higher
coding-cost (Fig 6B).
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Discussion

A large research effort has been devoted to developing ‘top-down’ models, which
describe the network dynamics required to optimally perform a given function
(e.g. decision making [6], control [3], efficient sensory coding [8] etc.). Here we show that
optimising a recurrent neural network can often be formulated as a multi-agent RL
problem. This insight can provide new ways to: (i) train recurrent networks to perform
a given function; (ii) infer the function optimised by a network from recorded data; (iii)
predict the dynamics of a network upon perturbation.

An alternative ‘bottom-up’ approach is to construct phenomenological models
describing how neurons respond to given sensory stimuli and/or neural
inputs [27,28,32,33]. In common with our work, such models are directly fitted to
neural data. However, these models generally do not set out to reveal the function
performed by the network. Further, they are often poor at predicting neural responses
in different contexts (e.g. varying stimulus statistics). Here we hypothesize that it is the
function performed by a neural circuit that remains invariant, not its dynamics or
individual cell properties. Thus, if we can infer what this function is, we should be able
to predict how the network dynamics will adapt depending on the context, so as to
perform the same function under different constraints. As a result, our theory could
predict how the dynamics of a recorded network will adapt in response to a large range
of experimental manipulations, such as varying the stimulus statistics, blocking
connections, knocking out/stimulating cells etc. (Note however, that to predict how the
network adapts to these changes, we will need to infer the ‘full’ reward function; in some
cases, this may require measuring neural responses in multiple environments.)

Another approach is to use statistical methods, such as dimensionality reduction
techniques, to infer information about the network dynamics (such as which states are
most frequently visited), which can then be used to try and gain insight about the
function it performs [34–37]. For example, in the context of sensory coding, an approach
called ‘maximally informative dimensions’ seeks to find a low-dimensional projection of
the stimulus that is most informative about a neuron’s responses [38]. However, in
contrast to our approach, such approaches do not allow us to recover the objective
function optimised by the network. As a result, they do not predict how neural
responses will alter depending on the the internal/external constraints. It is also not
clear how to relate existing dimensionality reduction methods, such as PCA, to the
dynamics of a recurrent neural network (e.g. are certain states visited frequently
because of the reward, external stimulus, or internal dynamics?). Nonetheless, in future
work it could be interesting to see if dimensionality reduction techniques could be used
to first recover a compressed version of the data, from which we could more easily use
inverse RL methods to infer the objective function.

There is an extensive literature on how neural networks could perform RL [39–41].
Our focus here was different: we sought to use tools from RL and inverse RL to infer
the function performed by a recurrent neural network. Thus, we do not assume the
network receives an explicit reward signal: the reward function is simply a way of
expressing which states of the network are useful for performing a given function. In
contrast to previous work, we treat each neuron as an independent agent, which
optimises their responses to maximise the reward achieved by the network, given a
constraint on how much they can encode about their inputs. As well as being required
for biological realism, the coding constraint has the benefit of making the inverse RL
problem well-posed. Indeed, under certain assumptions, we show that it is possible to
write a closed form expression for the reward function optimised by the network, given
its steady-state distribution (Eqn 40).

Our framework relies on several assumptions about the network dynamics. First, we
assume that the network has Markov dynamics, such that its state depends only on the
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preceding time-step. To relax this assumption, we could redefine the network state to
include spiking activity in several time-steps. For example, we could thus include the
fact that neurons are unlikely to fire two spikes within a given temporal window, called
their refractory period. Of course, this increase in complexity would come at the
expense of decreased computational tractability, which may necessitate approximations.
Second, we assume the only constraint that neurons face is a ‘coding cost’, which limits
how much information they encode about other neurons and external inputs. In reality,
biological networks face many other constraints, such as the metabolic cost of spiking
and constraints on the wiring between cells. Some of these constraints could be included
explicitly as part of the inference process. For example, by assuming a specific form of
approximate value function (e.g. a quadratic function of the neural responses), we can
include explicit constraints about the network connectivity (e.g. pairwise connections
between neurons). Other constraints (e.g. the metabolic cost of firing a spike), that are
not assumed explicitly can be incorporated implicitly as part of the inferred reward
function (e.g. a lower inferred reward for metabolically costly states, associated with
high firing rates).

In addition to assumptions about the network dynamics, for large networks we will
also need to assume a particular parametric form for the reward function. For example,
in the context of efficient coding (Fig 4), this is equivalent to assuming a particular
form for the decoder model (e.g. a linear decoder) that ‘reads-out’ the encoded variable
from neural responses [10]. To test the validity of such assumptions, we could see how
well the reward function, inferred in one context, was able to generalise to predict
neural responses in other contexts.

For our framework to make predictions, the network must adapt its dynamics to
perform the same function under different internal/external constraints. Previous work
suggests that this may hold in certain cases, in response to changes in stimulus
statistics [42, 43], or optogonetic perturbations [44]. Even so, it may be that real neural
networks only partially adapt to their new environments. It would thus be interesting,
in the future, to extend our framework to deal with this. For example, we could assess
whether contextual changes in the neural responses enable the network to ascend the
gradient of the objective function (given the new constraints) as predicted by our model.

A central tenet of our work is that the neural network has evolved to perform a
specific function optimally, given constraints. As such, we could obtain misleading
results if the recorded network is only approximately optimal. To deal with this, recent
work by one of the present authors [45] proposed a framework in which the neural
network is assumed to satisfy a known optimality criterion approximately. In this work,
the optimality criterion is formulated as a Bayesian prior, which serves to nudge the
network towards desirable solutions. This contrasts with the work presented here, where
the network is assumed to satisfy an unknown optimality criterion exactly. Future work
could explore the intersection between these two approaches, where the network is
assumed to perform an unknown optimality criterion approximately. In this case, one
will likely need to limit the space of possible reward functions, so that inference problem
remains well-posed.

Our work unifies several influential theories of neural coding, that were considered
separately in previous work. For example, we show a direct link between
entropy-regularised RL [15–18] (Fig 1), ring-attractor networks [29–31] (Fig 5), and
efficient sensory coding [7–13] (Fig 4). Further, given a static network without
dynamics, our framework is directly equivalent to rate-distortion theory [25,26]. Many
of these connections are non-trivial. For example, the problem of how to train a network
to efficiently code its inputs remains an open avenue of research. Thus, the realisation
that efficient sensory coding by a recurrent network can be formulated as a multi-agent
RL problem could help develop of future algorithms for learning efficient sensory
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representations (e.g., in contrast with brute force numerical optimization as in [9]).
Indeed, recent work has shown how, by treating a feed-forward neural network as a
multi-agent RL system, one can efficiently train the network to perform certain using
only local learning rules [46]. However, while interesting in its own right, the generality
of our framework means that we could potentially apply our theory to infer the function
performed by diverse neural circuits, that have evolved to perform a broad range of
different functional objectives. This contrasts with previous work, where neural data is
often used to test a single top-down hypothesis, formulated in advance.

Methods

Entropy-regularised RL

We consider a Markov Decision Process (MDP) where each state of the agent s, is
associated with a reward, r(s). At each time, the agent performs an action, a, sampled
from a probability distribution, π(a|s), called their policy. A new state, s′, then occurs
with a probability, p(s′|s, a).

We seek a policy, π (a|s), that maximises the average reward, constrained on the
mutual information between between actions and states. This corresponds to
maximising the Lagrangian:

Lπ = 〈r (s)〉pπ(s) − λIπ (A;S) (11)

= 〈r (s)− λcπ (s)〉pπ(s) (12)

where λ is a lagrange-multiplier that determines the strength of the constraint, and
cπ (s) = DKL [π (a|s)‖p(a)].

Note that while in the rest of the paper we consider continuous tasks, where the
Lagrangian is obtained by averaging over the steady-state distribution, our framework
can also be applied without little changes to finite tasks, which occur within a time
window, and where the Lagrangian is given by:
Lπ = 1

T

∑T
t=1 pπ (st|s0, a0) (r (st)− cπ (st)). Unlike the continuous task described

above, the optimal network dynamics may not have a corresponding equilibrium
distribution [14].

Now, let us can define a value function:

vπ (s) = r (s)− λcπ (s)− Lπ (13)

+ 〈r (s′)− λcπ (s′)〉pπ(s′|s) − Lπ
+ 〈r (s′′)− λcπ (s′′)〉pπ(s′′|s) − Lπ + . . .

where s, s′ and s′′ denote the agent’s state in three consecutive time-steps. We can
write the following Bellmann equality for the value function:

vπ(s) = r(s)− λcπ(s)− Lπ + 〈vπ (s′)〉pπ(s′|s) . (14)

Now, consider the following greedy update of the policy, π (a|s):

π∗ (a|s) = arg max
π′

(
r (s)− Lπ − λcπ′(s) + 〈vπ (s′)〉pπ′ (s′|s)

)
(15)

= arg max
π′

(
−λcπ′(s) + 〈vπ (s′)〉pπ′ (s′|s)

)
(16)

To preform this maximisation, we write the following Lagrangian:

Lπ′ = −λ
∑
a

π′ (a|s) log
π′ (a|s)
pπ (a)

+
∑
a,s′

π′ (a|s) p(s′|s, a)vπ (s′)+
∑
s

γ (s)

(∑
a

π′ (a|s)− 1

)
(17)
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where the last term is required to enforce the constraint that
∑
a π (a|s) = 1. Setting

the derivative to zero with respect to γ (s) and π (a|s), we have:

0 = −λ log
π∗ (a|s)
pπ (a)

− λ+ 〈vπ (s′)〉p(s′|s,a) + γ(s) (18)

0 = 1−
∑
a

π∗ (a|s) (19)

We can solve these equations to obtain the optimal greedy update:

π∗ (a|s) =
1

Zπ (s)
pπ(a)e

1
λ 〈vπ(s′)〉

p(s′|s,a) . (20)

where Zπ (s) is a normalisation constant.
Using the policy improvement theorem [14], we can show that this greedy policy

update is guaranteed to increase Lπ. To see this, we can substitute π∗ into the
Bellmann equation to give the following inequality:

vπ(s) ≤ r(s)− λcπ∗(s)− Lπ + 〈vπ (s′)〉pπ∗ (s′|s) (21)

Lπ ≤ r(s)− λcπ∗(s) + 〈vπ (s′)〉pπ∗ (s′|s) − vπ (s) (22)

Next, we take the average of both sides with respect to the steady-state distribution,
pπ∗ (s):

Lπ ≤ 〈r(s)− λcπ∗(s)〉pπ∗(s) + 〈vπ (s′)〉pπ∗ (s′|s)pπ∗ (s) − 〈vπ (s)〉pπ∗ (s) (23)

≤ 〈r(s)− λcπ∗(s)〉pπ∗(s) ≤ L
∗
π. (24)

Thus, repeated application of the Bellmann recursion (Eqn 14) and greedy policy
update (Eqn 20) will return the optimal policy, π∗(a|s), which maximises Lπ.

Inverse entropy-regularized RL

We can write the Bellmann recursion in Eqn 14 in vector form:

v = r − r01− λ (c− c01) + Pv (25)

where v, c and r are vectors with elements, vs ≡ v (s), cs ≡ c (s), and rs ≡ r (s). P is a
matrix with elements Pss′ = pπ (s′|s). We have defined r0 ≡ 〈r (s)〉pπ(s) and

c0 ≡ 〈c (s)〉pπ(s) (and thus Lπ = r0 − λc0). Rearranging:

(I − P )v = (r − r01)− λ (c− c01) (26)

We can solve this system of equations (up to an arbitrary constant, v0) to find an
expression for v as a linear function of the reward:

v = A (r − r01) + λb+ v01 (27)

Substituting into Eqn 20, we can express the agent’s policy directly as a function of the
reward:

πa ∝ pae
1
λP av ∝ pae

1
λP aA(r−r0)+P ab (28)

where πa is a vector with elements, (πa)s ≡ π (a|s) and P a is a matrix, with elements
(P a)ss′ ≡ p (s′|a, s).

To infer the reward function, r (s) (up to an irrelevant constant and multiplicative
factor, λ), we use the observed policy, π (a|s) and transition probabilities, p (s′|a, s), to
estimate b, A, P a and pa. We then perform numerical optimisation to find the reward
that maximises the log-likelihood of the optimal policy in Eqn 28, 〈log π∗ (a|s)〉D,
averaged over observed data, D.
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Optimising a neural network via RL

We consider a recurrent neural network, with n neurons, each described by a binary
variable, σi = −1/1, denoting whether a given neuron is silent/fires a spike in each
temporal window. The network receives an external input, x. The network state is
described by a vector of n binary values, σ = (σ1, σ2, . . . , σn)

T
. Both the network and

input are assumed to have Markov dynamics. Neurons are updated asynchronously, by
updating a random neuron at each time-step with probability πi (σ′i|σ). The network
dynamics are thus described by:

p (σ′|σ,x) =
1

n

n∑
i=1

πi (σ′i|σ,x)
∏
j 6=i

δ(σ′j , σj). (29)

where δ
(
σ′j , σj

)
= 1 if σ′j = σj and 0 otherwise.

Equivalently, we can say that at each time, a set of proposed updates, σ̃, are
independently sampled from σ̃i ∼

∏
i πi (σ̃i|σ), and then a neuron i is selected at

random to be updated, such that σ′i ← σ̃i.
We define a reward function, r (σ,x), describing which states are ‘desirable’ for the

network to perform a given function. The network dynamics are said to be optimal if
they maximise the average reward, 〈r (σ,x)〉p(σ,x) given a constraint on how much each

neuron encodes about its inputs
∑n
i I (σ̃i;σ,x). This corresponds to maximising the

objective function:

L = 〈r (σ,x)〉p(σ,x) − λ
n∑
i=1

I (σ̃i;σ,x) (30)

= 〈r (σ,x)− λc (σ,x)〉p(σ,x) (31)

where c (σ,x) =
∑n
i=1DKL [πi (σ̃i|σ,x)‖pi (σ̃i)] is the coding cost associated with each

state, and penalises deviations from each neuron’s average firing rate.
We can decompose the transition probability for the network (Eqn 29), into the

probability that a given neuron proposes an update, σ̃i, given the network state, σ, and
the probability of the new network state, σ′, given σ̃i and σ:

p (σ̃i|σ) = πi (σ̃i|σ,x) (32)

p (σ′|σ, σ̃i,x) =
1

n

(
δ (σ′i, σ̃i)

∏
k 6=i

δ(σ′k, σk) +
∑
j 6=i

πj
(
σ′j |σ,x

)∏
k 6=j

δ(σ′k, σk)
)

(33)

Thus, the problem faced by each neuron, of optimising πi (σ̃i|σ,x) so as to maximise L,
is equivalent to the MDP described in Methods section , where the action a, and state s
correspond to the neuron’s proposed update σ̃i and state of the network and external
inputs {σ,x}. Thus, we can follow the exact same steps as in Methods section , to show
that πi (σ̃i|σ) is optimised via the following updates:

v (σ,x) ← r (σ,x)− λc (σ,x) + 〈v (σ′,x′)〉p(σ′,x′|σ,x) − L (34)

πi
(
σ̃i = 1|σ/i,x

)
←

(
1 +

pπ (σi)

1− pπ (σi)
e

1
nλ

∑
σi=−1,1 σi〈vπ(σ,x′)〉

p(x′|x)

)−1

(35)

where σ/i denotes the state of all neurons except for neuron i. As updating the policy
for any given neuron increases the objective function, L, we can alternate updates for
different neurons to optimise the dynamics of the network.
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Inferring network function via inverse RL

After convergence, we can substitute the expression for the optimal policy into the
Bellman equality, to obtain:

v (σ,x) = r (σ,x) + λ
n∑
i=1

log
∑
σi

p (σi) e
1
λn 〈v(σ,x′)〉p(x′|x) − L (36)

Rearranging, we have:

r (σ,x) = v (σ,x)− λ
n∑
i=1

log
∑
σi

p (σi) e
1
λn 〈v(σ,x′)〉p(x′|x) + L (37)

Thus, if we can infer the value function from the observed neural responses, then we can
recover the associated reward function through Eqn 37.

To derive an expression for the reward, we first consider the case where there is no
external input. In this case, the optimal neural dynamics (Eqn 35) correspond to Gibbs
sampling from:

p (σ) ∝

(
n∏
i=1

p (σi)

)
e

1
λn v(σ). (38)

Rearranging, we have a closed-form expression for the value function, v (σ), in terms of
the steady-state distribution:

v (σ) = nλ log

(
p (σ)∏n
i=1 p (σi)

)
+ const. (39)

We can then combine Eqn 39 and Eqn 37 to obtain a closed-form expression for the
reward function (up to an irrelevant constant):

r (σ) = nλ
n∑
i=1

log

(
p
(
σi|σ/i

)
p (σi)

)
+ const. (40)

Since we don’t know the true value of λ, we can simply set it to unity. In this case, our
inferred reward will differ from the true reward by a factor of 1

λ . However, since
dividing both the reward and coding cost by the same factor has no effect on the shape
of the objective function, L (but only alters its magnitude), this will not effect any
predictions we make using the inferred reward.

With an external input, there is no closed-form solution for the value function.
Instead, we can infer v (σ,x) numerically by maximising the log-likelihood,

〈log p∗ (σ′|σ,x)〉D =
〈

log
∑n
i=1 π

∗
i (σ′i|σ,x) δ

(
σ′/i,σ/i

)〉
D

, where π∗i (σ′i|σ,x) denote

optimal response probabilities. Once we know v (σ,x) we can compute the reward from
Eqn 37.

Approximate method for larger networks

RL model

To scale our framework to larger networks we approximate the value function, v (σ,x),
by a parametric function of the network activity, σ and input, x. Without loss of
generality, we can parameterise the value function as a linear combination of basis
functions: vφ (σ,x) ≡ φTf (σ,x). From Eqn 36, if the network is optimal, then the
value function equals:

v̂φ (σ,x) = r (σ,x) + λ
n∑
i=1

log
∑
σi

p (σi) e
1
nλ 〈φT f(σ,x′)〉

p(x′|x) . (41)
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In the exact algorithm, we updated the value function by setting it equal to v̂ (σ,x)
(Eqn 34). Since in the parametric case this is not possible, we can instead update φ to
minimise:

Gφ̄ (φ) =
1

2

〈(
vφ (σ,x)− v̂φ̄ (σ,x)

)2〉
p(σ,x)

, (42)

where v̂φ̄ (σ,x) is the target value function, defined as in Eqn 41, with parameters, φ̄.
We follow the procedure set out in [16,17] to transform this into a stochastic

gradient descent algorithm. First, we perform nbatch samples from the current policy.
Next, we perform a stochastic gradient descent update:

φ← φ− η

nbatch

nbatch∑
l=1

f (σl,xl)
(
vφ (σl,xl)− v̂φ̄ (σl,xl)

)
(43)

where η is a constant that determines the learning rate. Finally, after doing this nepoch
times, we update the target parameters, φ̄← φ. These steps are repeated until
convergence.

Inverse RL

We can infer the parameters of the value function, φ, by maximising the log-likelihood:
〈log pφ (σ′|σ,x)〉D. We can choose the form of the value function to ensure that this is
tractable. For example, if the value function is quadratic in the responses, then this
corresponds to inferring the parameters of a pairwise Ising model [27,28].

After inferring φ, we want to infer the reward function. At convergence,
∇φF (φ) = 0 and φ̄ = φ, so that:

0 = 〈f (σ,x) (vφ (σ,x)− v̂φ (σ,x))〉D (44)

= 〈f (σ,x) (r (σ,x)− r̂φ (σ,x))〉D (45)

where

r̂φ (σ,x) = f (σ,x)
T
φ− λ

n∑
i=1

log
∑
σi

p (σi) e
1
nλφ

T 〈f(σ,x)〉p(x′|x) . (46)

In the exact case, where vφ (σ,x) = v̂φ (σ,x) (and thus, Gφ̄ (φ) = 0), then the inferred
reward equals r̂φ (σ,x). However, this is not necessarily true when we assume an
approximate value function.

Just as we did for the value function, we can express the reward function as a linear
combination of basis functions: r (σ,x) = θTg (σ,x). Thus, Eqn 45 becomes:〈

f (σ) g (σ)
T
〉
D
θ = 〈f (σ,x) r̂φ (σ,x)〉D . (47)

If the reward function has the same number of parameters than the approximate value
function (i.e. f (σ) and g (σ) have the same size), then we can solve this equation to
find θ. Alternatively, if the reward function has more parameters than the value
function, then we require additional assumptions to unambiguously infer the reward.

Simulation details

Agent navigating a maze

We considered an agent navigating a 15× 15 maze. The agent’s state corresponded to
their position in the maze. The agent could choose to move up, down, left or right in
the maze. At each time there was a 5% probability that the agent moved in a random
direction, independent of their selected action. Moving in the direction of a barrier
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(shown in blue in Fig 1D) would result in the agent remaining in the same location.
After reaching the ‘rewarded’ location (bottom right of the maze), the agent was
immediately transported to a starting location in the top left of the maze. We optimised
the agent’s policy at both low and high coding cost (λ = 0.013/0.13 respectively) using
the entropy-regularised RL algorithm described in Methods section . The reward was
inferred from the agent’s policy after optimisation as described in Methods section .

Network with single binary input

We simulated a network of 8 neurons that receive a single binary input, x. The stimulus
has a transition probability: p (x′ = 1|x = −1) = p (x′ = −1|x = 1) = 0.02. The reward
function was unity when x = 1 and the network fired exactly 2 spikes, or when x = −1
and the network fired exactly 6 spikes. We set λ = 0.114.

To avoid trivial solutions where a subset of neurons spike continuously while other
neurons are silent, we defined the coding cost to penalise deviations from the population
averaged firing rate (rather than the average firing rate for each neuron). Thus, the
coding cost was defined as c(σ) =

∑n
i=1 〈log πi (σ̃i|σ) /p (σ̃i)〉πi(σ̃i|σ), where p (σ̃i) is the

average spiking probability, across all neurons.
We inferred the reward r (σ) from neural responses as described in Methods

section .Note that, when inferring the reward, it did not matter if we assumed that the
constraint included the population averaged firing rate or the average firing rate for
each neuron individually, since after optimisation all neurons had the same mean firing
rate. In Fig 2E we rescaled and shifted the inferred reward to have the same mean and
variance as the true reward.

We used the inferred reward to predict how neural tuning curves should adapt when
we alter the stimulus statistics (Fig 2F, upper) or remove a cell (Fig 2F, lower). For fig
2F (upper), we altered the stimulus statistics by setting p (x′ = 1|x = −1) = 0.01 and
p (x′ = −1|x = 1) = 0.03. For figure 2C (lower), we removed one cell from the network.
In both cases, we manually adjusted λ to keep the average coding cost constant.

Efficient coding

We considered a stimulus consisting of m = 7 binary variables, xi = −1/1. The stimulus
had Markov dynamics, with each unit updated asynchronously. The stimulus dynamics
were given by:

p (x′|x) =
1

m

m∑
i=1

(
1 + eJ

∑m
j=1 xj

)−1

δ
(
x′/i,x

)
, (48)

where J = 1.5 is a coupling constant. A ‘relevant’ variable, y (x) was equal to 1 if 4 or
more inputs equalled 1, and equal to -1 otherwise.

We optimised a network of n = 7 neurons to efficiently code the relevant variable
y (x), using the algorithm described in the main text. For Fig 4B-C we set λ = 0.167.
For Fig 4D we varied λ between 0.1 and 0.5. For Fig 4E we altered the stimulus
statistics so that,

p (x′|x) =
1

m

m∑
i=1

(
1 + eJ0+J

∑m
j=1 xj

)−1

δ
(
x′/i,x

)
, (49)

where J0 was a bias term that we varied between 0 and 0.4. For each value of J0 we
adjust λ so as to keep the average coding cost constant.

February 6, 2020 20/24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2020. ; https://doi.org/10.1101/598086doi: bioRxiv preprint 

https://doi.org/10.1101/598086
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pairwise coupled network

We considered a network of 12 neurons arranged in a ring. We defined a reward
function that was equal to 1 if exactly 4 adjacent neurons were active, and 0 otherwise.
We defined the coding cost as described in the previous section, to penalise deviations
from the population averaged mean firing rate.

We approximated the value function by a quadratic function,
v (σ) =

∑
i,j 6=i Jijσiσj +

∑
i hiσi. We optimised the parameters of this value function

using the algorithm described in Methods section , with λ = 0.05. We used batches of
nbatch = 40 samples, and updated the target parameters after every nepoch = 100
batches.

We inferred the reward function from the inferred network couplings, J and h. As
described in Methods section , this problem is only well-posed if we assume a low-d
parametric form for the reward function, or add additional assumptions. We therefore
considered several different sets of assumptions. For our initial ‘sparse model’, we set up
a linear programming problem in which we minimised l1 =

∑
σ r (σ), under the

constraint that the reward was always greater than 0 while satisfying the optimality
criterion given by Eqn 47. For the ‘pairwise model’ we assumed that r =

∑
i,jWijσiσj .

We fitted the parameters, Wij , so as to minimise the squared difference between the left
and right hand side of Eqn Eqn 47. Finally, for the ‘global model’ we assumed that
r =

∑
j δj,mWj , where m is the total number of active neurons and δij is the

kronecker-delta. Parameters, Wj were fitted to the data as for the pairwise model.
Finally, for the simulations shown in Figure 5, panels B-D, we ran the optimisation

with λ = 0.1, 0.01 and 0.1, respectively. For panel 3C we removed connections between
neurons separated by a distance of 3 or more on the ring. For panel 3D we forced two of
the neurons to be continuously active.
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