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Abstract 

Within biological networks, genes associated with human diseases likely map to modules whose 

identification facilitates etiology studies but remains challenging. We describe a systematic approach to 

identify such disease-associated gene modules. A gene co-expression network was constructed using GTEx 

dataset and assembled into 652 gene modules. Screening these modules identified those with disease genes 

enrichment for obesity, cardiomyopathy, hypertension, and autism, which revealed the pathways involved 

in their pathogenesis. Using mammalian phenotypes derived from mouse models, potential disease 

candidate genes were identified from these modules. Also analyzed were epilepsy, schizophrenia, bipolar 

disorder, and depressive disorder, revealing shared and distinct disease modules among brain disorders. 

Thus disease genes converge on modules within our network, which provides a general framework to 

dissect genetic basis of human diseases. 

Main Text 

Human diseases often have genetic basis and their corresponding gene-disease associations are 

widely documented, with many of them possessing multiple disease genes (1-3). Within biological 

networks, disease genes usually do not distribute randomly but map to modules that include subsets of 

genes functioning together in the same or similar pathways (4, 5). It is of great interest to identify such 

disease gene modules due to their values in elucidating disease etiologies (6-8). Yet for most diseases, such 

modules have not been detected. We describe a systematic approach to identify gene modules associated 

with human diseases (Fig. 1A). Our analysis revealed modules for obesity, cardiomyopathy, hypertension, 

autism, and other diseases with major impacts on public health worldwide.  

A human gene co-expression network based on the graphical Gaussian model (GGM) was 

constructed using publicly available transcriptome data from the Genotype-Tissue Expression (GTEx) 

project (9). The project has created a resource of gene expression data from ‘normal’, non-diseased tissues, 

which supported a range of studies, including co-expression analysis (10, 11). Our work used GTEx V7 

release that contains transcriptome data for 11688 samples spanning 53 tissues from 714 postmortem donors 
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(9). The analysis followed a procedure we published previously (12, 13), which employed partial correlation 

coefficient (pcor) for co-expression measurement (14). The resulted network, HsGGM2019, contains 

166980 co-expressed gene pairs among 18425 protein-coding genes (table S1). Via the MCL algorithm 

(15), 652 gene co-expression modules with 9 or more genes were identified from the network. Considering 

some genes might participate in multiple pathways, the modules were expanded by including outside genes 

connected with >= 3 genes within the original modules. Accordingly, 14391 genes assembled into 652 

modules containing 9 to 285 genes each, with 2668 genes belonging to multiple modules (Fig. 1B and table 

S2). The rest 4034 genes organized into smaller modules that were not considered hereafter.  

The modules contain co-expressed genes that, according to guilt-by-association, might function in 

the same or similar pathways. Gene Ontology (GO) analysis identified 341 of them with enriched GO terms 

(Benjamini-Hochberg adjusted pValue [P]<=1E-2) (table S3). Their biological relevance are exemplified 

by three modules involved in lipid biosynthesis, transport, and storage. Module #71, expressed broadly in 

various tissues (fig. S1), is enriched with 23 cholesterol biosynthesis genes (P=1.92E-42) (Fig. 1C), 

including genes for enzymes catalyzing 23 of all 24 reaction steps for synthesizing cholesterol from acetyl-

CoA (fig. S2). It also contains LDLR, PCSK9, SREBF2, and INSIG1, encoding components of the PCSK9-

LDLR and SREBP-SCAP-Insig complexes that regulate cholesterol homeostasis (16). Module #30, 

containing genes with restricted expression towards liver (fig. S1), is enriched with high-density lipoprotein 

(HDL) particle genes (P=5.29E-14), such as APOA1, APOA2, and APOA5. This module could function in 

HDL-mediated reverse cholesterol transport. Module #18, expressed biasedly in fat (fig. S1), is enriched 

with lipid storage genes (P=3.37E-12). It contains PPARG, encoding a key transcription factor regulator of 

adipogenesis, and its target genes involved in adipocyte differentiation and metabolism, like PLIN1, FABP4, 

LEP, and ADIPOQ (17). Modules were also revealed for other processes, such as those functioning in 

specific organelles or tissues (#1, #27, #50), metabolism pathways (#54, #126, #288), immunity pathways 

(#6, #8, #15), or general cellular pathways (#3, #28, #29) (see Fig. 1D and table S3 for these modules’ 

enriched GO, same as below).  
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The modules were then screened for association with diseases. A module is considered as disease-

associated if it has disease genes enrichment (permutation-based False Discovery Rate [FDR]<=0.05). 

Curated gene-disease associations for obesity, autism, and other diseases, retrieved from obesity gene map, 

SFARI, and DisGeNET (1-3), were queried against the modules to identify those associated with diseases 

(Fig. 2A and table S4). As an example, Module #18 for lipid storage is associated with obesity, a disease 

involving excessive body fat that affects 12% adults worldwide (18). Besides environment, genetic factors 

influence obesity susceptibility. According to obesity gene map, 21 out of the 113 genes within Module 

#18 are obesity genes (Fig. 2B), including ADIPOQ and LEP, whose genetic polymorphisms are risk factors 

for obesity (19). Comparing to the whole network, obesity genes are 10.2 fold enriched (Odd Ratio, OR) 

within the module (FDR<0.0001). We examined phenotypes of transgenic or null mouse models developed 

for the genes within the module, using Mammalian Phenotype (MP) Ontology assignments from MGI (20), 

to investigate if other genes also relate to obesity. The MP abnormal body weight is associated with 33 

genes and significantly enriched within the module (P=3.02E-07) (Fig. 2B, and see table S5 for MP 

enrichment analysis results for all modules, and refer to Materials and Methods for analysis details). Among 

them are 14 obesity genes, and the rest 19 might represent additional candidate genes. Note that these 

candidate genes derived from mouse models need to be further verified by, i.e., human population genetics 

studies. Additionally, Module #16 contains 7 genes for insulin resistance (OR=17.7, FDR<0.0001), a 

syndrome that could result from obesity (21). It also has 13 genes with the MP insulin resistance (P=1.66E-

10), again expanding the disease’s candidate gene list. Also discovered are 8 additional obesity modules 

(Fig. 2A and table S4), 7 of which function in lipid transport (#30), extracellular matrix organization (#101), 

neuropeptide signaling pathway (#277), feeding behavior regulation (#546), dopamine metabolism (#288), 

circulatory system development (#34), and apoptotic process (#60), respectively. Among them, dopamine 

relates to obesity via modulating appetite, while within Module #277 are also genes regulating feeding 

behavior, such as HCRT and PMCH (22, 23). 
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Besides obesity, modules were identified for diseases affecting specific tissues or organs. 

Cardiomyopathy is a heart muscle disease, where the heart muscle becomes enlarged, thick or stiff (24). 

Dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) are among the major types of 

cardiomyopathy. Five gene modules are associated with DCM and/or HCM (Fig. 2A and table S4). All top 

3 DCM modules, #85, #92, #39 (OR>=19.2, FDR<0.0001), have enriched GO muscle contraction 

(P<=5.41E-20), indicating their muscle-related functions. While Module #85 and #92 are specifically 

expressed in heart and skeletal muscles, #39 is also expressed in tissues with smooth muscles like artery, 

colon, and esophagus (fig. S3). Pathway analysis (25) indicated that #85 and #92 function in striated muscle 

contraction and #39 in smooth muscle contraction. Module #70 for mitochondrial fatty acid beta-oxidation 

is also associated with DCM (OR=22.4, FDR=0.0001). HCM is associated with Modules #85, #39, #70, 

and another mitochondrial Module #2 (OR=19.4, FDR<0.0001), consistent with that cardiomyopathy could 

result from mitochondrial dysfunction (26). Contained within Module #85, #92 and #39 are 42 genes with 

the MP enlarged heart, including 27 as novel potential candidate genes for cardiomyopathy (Fig. 2C and 

fig. S4). Other examples of tissue-specific disease modules include those for ciliary motility disorders (#1 

and #67), pulmonary alveolar proteinosis (#154), akinesia (#56), hereditary pancreatitis (#105), congenital 

hypothyroidism (#51), and night blindness (#114) (table S4). 

Also identified were modules for hypertension, a complex and multifactorial disease that affects 

nearly one billion people worldwide (27). Using curated gene-disease associations from DisGeNET, 10 

hypertension modules were identified (Fig. 2A and table S4), 7 of which form two large categories.  First 

are 2 modules regulating sodium or ion homeostasis. Module #281, expressed specifically in kidneys (fig. 

S5), is enriched with 7 ion transmembrane transporter genes (P=2.90E-04). It contains 5 hypertension 

genes (OR=20.7, FDR=0.0001) (Fig. 3A), including UMOD that encodes uromodulin, the major secreted 

protein in normal urine. Noncoding risk variants increase UMOD expression, which causes abnormal 

activation of renal sodium cotransporter SLC12A1 and leads to hypertension (28). Interestingly, SLC12A1 

is also in Module #281, together with TMEM72. Both genes were identified as blood pressure loci in a 
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GWAS study based on genetic analysis of over 1 million people (29), but not in DisGeNET. The module 

contains additional genes with the MP abnormal kidney physiology, among which might include novel 

candidate genes for hypertension, as kidneys are important for blood pressure control (30).  Module #305, 

expressed more broadly than #281 (fig. S5), is enriched with 4 hypertension genes (OR=16.5, FDR=0.0022) 

like SCNN1B and SCNN1G, which also modulate renal sodium homeostasis (31). Second are 5 modules 

involved in vascular tone regulation. Module #66, over-represented with extracellular matrix genes 

(P=1.03E-54), contains 8 hypertension genes (OR=7.1, FDR=0.0006), such as ELN and FBN1 (Fig. 3B). 

Its enriched MPs include abnormal blood vessel morphology and abnormal blood circulation, indicating 

that, similar to ELN and FBN1 (32), genes in the module could determine vascular extracellular matrix 

composition and regulate arterial compliance. Similarly, Module #101 is also enriched with 35 extracellular 

matrix genes as well as 6 hypertension genes (OR=5.1, FDR=0.0314). Module #39, functioning in smooth 

muscle contraction, encompasses 13 hypertension genes (OR=7.4, FDR<0.0001), among which are 

KCNMB1 and PRKG1, encoding key modulators of smooth muscle tone (33, 34). Genes within the module, 

enriched with MPs abnormal vascular smooth muscle physiology and impaired smooth muscle contractility, 

could regulate arterial wall elasticity. Module #54, for glucocorticoids metabolism, contains 6 hypertension 

genes (OR=7.2, FDR=0.0037), and #126 (Fig. 3C), participating in cGMP metabolism, includes 4 

hypertension genes (OR=9.4, FDR=0.0231). Glucocorticoids and cGMP modulate blood pressure via 

regulating peripheral vascular resistance and blood vessel relaxation respectively (35, 36). The relevance 

of these 5 modules are further supported by that, besides the hypertension genes in DisGeNET, Module 

#39, #54, #66, #101, and #126 contain 8, 3, 6, 6, and 3 additional blood pressure loci respectively (Fig. 3, 

B and C, and fig. S6), as revealed by the above mentioned GWAS study (29). The rest 3 hypertension 

modules, #95, #30, #374 (Fig. 3D) function in inflammatory response, HDL-mediated lipid transport, and 

mitochondrial ATP synthesis, respectively. 

Our approach also identified modules associated with brain disorders, among which is autism, a 

development disorder characterized by impaired social interaction and by restricted and repetitive behaviors 
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(37). Using SFARI autism genes (2), 14 autism modules were detected (Fig. 2A and table S4), 8 of which 

form three large categories. First is a module involved in chromatin modification (#7), which contains 194 

genes, including 42 autism genes (OR=5.9, FDR<0.0001) (Fig. 4A), such as ASH1L, CHD8, and KMT2C 

(38). The module has 35 genes with the MP abnormal brain morphology, among which 11 are autism genes. 

It is also over-represented with MPs abnormal heart morphology, abnormal gastrulation, and abnormal 

axial skeleton morphology. Thus gene mutations in this module might affect multiple developmental 

processes, including brain development that could lead to autism. Second are 2 modules involved in nervous 

system development (#77) and axonogenesis (#9). Among them, Module #9 contains 16 autism genes 

(OR=3.3, FDR=0.0017) (Fig. 4B), like NLGN3, NLGN4X, and NRXN1 (39). The module is enriched with 

autism-related MPs, such as abnormal nervous system physiology and abnormal motor 

coordination/balance (40). Among the 49 genes with the MP abnormal nervous system physiology, 10 are 

autism genes and the rest might contain additional candidate genes. Third are 5 modules participating in 

synaptic signaling. Though all enriched with synaptic signaling genes (P=2.78E-34 to 6.71E-05), these 

modules express differently. Module #20 and #35 have biased expression in cerebellum and cortex 

respectively, while #11, #76, and #124 express broadly in various brain regions (fig. S7). All 5 modules are 

enriched with autism genes and might contain potential candidate genes. For example, Module #20 has 15 

autism genes (OR=3.1, FDR=0.0049) (Fig. 4C), like MYTL1 and DLGAP1 (38, 41). It also contains 49 

genes with MPs abnormal social/conspecific interaction and/or abnormal motor 

capabilities/coordination/movement, among which are 10 autism genes and the rest merit further 

investigation. Among the other autism modules, #186 and #131 function in cell-cell adhesion and 

extracellular matrix organization respectively, #358 is enriched with neuron part genes, while #168, #266 

and #325 are without clear biological interpretation presently. Thus, these modules indicate abnormality in 

chromatin modification, nervous system development, synaptic signaling and other processes could lead to 

autism.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2019. ; https://doi.org/10.1101/598151doi: bioRxiv preprint 

https://doi.org/10.1101/598151
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Modules for epilepsy, schizophrenia, bipolar disorder, and depressive disorder are also identified, 

revealing shared and distinct disease modules among brain disorders (Fig. 4D and table S4). Module #7 for 

chromatin modification is associated with autism and epilepsy only, but Module #11 and 76 for synaptic 

signaling are shared by autism, schizophrenia, bipolar disorder and depressive disorder. Also shared by 

bipolar disorder and depressive disorder is Module #231 involved in circadian rhythm regulation, 

highlighting circadian rhythm’s role in mood disorders (42). On the other hand, epilepsy is distinctly 

associated with modules functioning in mitochondria (#2, #22, #70), lysosomes (#27), and kidneys (#281), 

indicating its unique etiology (43-45). Schizophrenia is uniquely associated with modules for MHC antigen 

presentation (#83, #264), myelination (#14), and fatty acid biosynthesis (#520), while depressive disorder 

is particularly associated with Module #95 for inflammatory response (46-48). The rest shared or distinct 

brain disorder modules also function in synaptic signaling (#93, #146, #187, #229), ion transport (#72, 

#113), neuropeptide signaling (#277), and dopamine metabolism (#288). These modules delineate the 

pathways associated with brain disorders and should facilitate their etiology studies. 

Thus, GGM network analysis identified unbiased data-driven gene modules with enriched 

functions in a variety of pathways and tissues. Disease genes converge on these modules, although the 

network was derived from non-diseased samples. Such convergence is not limited to diseases affecting 

specific tissues but also applies to complex and multifactorial diseases like hypertension and autism. The 

identified disease modules, mostly with clear biological interpretation, integrate well with previous disease 

knowledge. They provide useful information about the etiological pathways of the diseases. Based on MP 

assignments from mouse models, potential disease candidate genes were identified from within the modules. 

Therefore, the modules can be used to pinpoint the pathways involving in diseases and reveal potential 

novel disease genes. Our current work focused on coding genes only, but future analysis can also include 

non-coding genes, such as long non-coding RNAs, to study their roles on diseases development.  
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Materials and Methods 

Co-expression network construction 

Open-access and de-identified GTEx V7 transcriptome data were downloaded from the GTEx 

Portal (http://www.gtexportal.org). The data were fully processed and available as a matrix that contains 

TPM gene expression values for 53035 genes in 11688 samples spanning 53 tissues from 714 postmortem 

donors. After filtering out low expressed genes that have TPM values >=1 in less than 10 samples, the 

expression data were normalized in a tissue-aware manner via qsmooth with default parameters (49). A 

sub-matrix consisting of 18626 protein-coding genes was extracted from the normalized expression matrix 

and used for GGM network construction, following a procedure described previously (12, 13). Briefly, the 

procedure consisted of 6000 iterations. In each iteration, 2000 genes were randomly selected and used for 

partial correlation coefficient (pcor) calculation via the GeneNet v 1.2.13 package in R (14). After 6000 

iterations, every gene pair was sampled in average 69 times with 69 pcors calculated, and the pcor with 

lowest absolute value was selected as its final pcor. Also calculated were Pearson’s correlation coefficient 

(r) between gene pairs. Finally, gene pairs with pcor>=0.035 and r>=0.35 were chosen for network 

construction.  

Network clustering and module analysis  

The network was clustered via the MCL clustering algorithm with parameters “-I 1.55 –scheme 7” 

(15). The identified modules with >=9 genes were kept, and they were further expanded by including 

outside genes that connect with >= 3 genes within the original modules. The sub-networks for the modules 

were visualized in Cytoscape v 3.40 (50). GO enrichment analysis were performed via hypergeometric test, 

with GO annotations retrieved from Ensembl BioMart (https://www.ensembl.org/biomart) on 03/06/2019. 

Mouse Mammalian Phenotype (MP) term assignments were obtained from the MGI database 

(http://www.informatics.jax.org/downloads/reports/MGI_GenePheno.rpt) on 03/07/2019. MP term 

assignments derived from mouse models involving 2 or more genes were excluded. Mouse genes’ MP 
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assignments were passed on to their human orthologues and used for MP enrichment analysis via 

hypergeometric test.  

Identification of modules associated with diseases 

Gene-disease associations for obesity were obtained from the human obesity gene map (1). Autism 

genes were obtained from the SFARI database on 01/15/2019, and only the autism genes scoring as category 

1 to category 4 were used in the analysis (2). For other diseases, the curated gene-disease associations 

registered in DisGeNET v5.0 were used (3). For hypertension, besides the disease genes from DisGeNET, 

blood pressure loci were also obtained from a recent GWAS study, by combining the previous reported 

blood pressure loci and the newly confirmed variants, as listed in Supplementary Table 4 and 5 in the article 

by Evangelou et al. (29).  

For every disease, its disease gene list were queried against every gene module to calculate a pValue 

for disease gene enrichment using hypergeometric test. Suppose a disease has m disease genes within a 

gene module with the size of k, and M disease genes among all K genes in the whole network. A pValue 

for that disease and module combination was calculated as: 

������ (������, �������) =  �
�

�
�

� �
� − �
� − �

�

�
�
�

�

���(�,�)

���

 

For every disease, the pValues for all modules were adjusted for multiple testing via the Benjamini-

Hochberg procedure (51).  

A permutation based procedure was also used to estimate FDR. In each permutation, every 

disease’s disease gene list were replaced by the same number of genes randomly selected from the whole 

network and used for enrichment calculation. After conducting 10000 permutations, the results were tallied 

and used to calculate the FDRs corresponding to original pValues. 
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Fig. 1. Experimental design and overview of the identified modules. (A) The analysis
pipeline. (B) A sub-network for the largest 20 modules. Nodes represent genes and co-expressed
genes are connected by edges. Colors of nodes indicate module identities, except that nodes in
grey color are those belong to multiple modules. (C) A gene module (#71) for cholesterol
biosynthesis. Highlighted in red are cholesterol biosynthesis genes. Labeled with blue square are
genes encoding cholesterol homeostasis regulators. (D) Enriched GO terms for selected
modules discussed in the main text. M#, Module ids; P, BH-adjusted pValue for GO enrichment.

M# Enriched GO P M# Enriched GO P M# Enriched GO P

1 cilium 3.18E-51 60 apoptotic process 4.54E-06 186 cell-cell adhesion 1.44E-15

2 mitochondrion 8.3E-153 66 extracellular matrix 1.03E-54 187 synaptic signaling 5.26E-05

3 cell cycle 3.9E-135 67 cilium 1.67E-20 197 hyperosmotic salinity response 2.02E-04

6 immune response 4.74E-52 70 fatty acid oxidation 1.00E-27 220 spliceosomal snRNP complex 2.07E-06

7 chromatin organization 1.56E-23 71 cholesterol biosynthetic process 1.92E-42 229 regulation of synaptic plasticity 5.08E-04

8 immune response 5.19E-62
72

anion transmembrane 
transporter activity

2.11E-12 231
circadian regulation of gene 
expression

8.27E-07
9 axonogenesis 5.17E-17

11 synaptic signaling 2.8E-34 76 synaptic signaling 9.39E-22 249 neurotransmitter binding 9.66E-03

14 myelination 1.66E-10 77 nervous system development 4.83E-05 264 MHC class II protein complex 6.70E-31

15 adaptive immune response 5.61E-68 83 MHC class I protein complex 3.16E-15 277 neuropeptide signaling pathway 7.00E-04

18 lipid storage 3.37E-12 85 muscle contraction 5.41E-20
281

ion transmembrane transporter 
activity

2.90E-04
20 synaptic signaling 1.21E-19 92 muscle contraction 3.69E-21

22 mitochondrion 1.10E-33 93 synaptic signaling 3.50E-06 288 dopamine metabolic process 3.09E-08

27 lysosome 4.47E-37 95 inflammatory response 1.75E-20 305 sodium ion homeostasis 4.65E-03

28 ribosome biogenesis 1.31E-56 101 extracellular matrix 1.20E-31 358 neuron part 4.31E-03

29 protein folding 9.50E-33
105

serine-type endopeptidase 
activity

8.09E-10 374
mitochondrial ATP synthesis 
coupled electron transport

2.19E-20
34 circulatory system development 6.47E-14

35 synaptic signaling 6.86E-12 113 ion channel activity 2.48E-05
396

regulation of vascular smooth 
muscle cell differentiation

9.31E-03
39 muscle contraction 6.48E-30 114 visual perception 4.18E-16

50 brush border 3.03E-11 124 synaptic signaling 6.17E-05
442

inward rectifying potassium     
channel

1.49E-03
51 thyroid hormone generation 1.51E-08 126 cGMP metabolic process 7.50E-04

54
glucocorticoid biosynthetic 
process

4.02E-09
131 extracellular matrix 1.59E-10 466 synapse 1.00E-02

146 synaptic signaling 8.92E-09 520 fatty acid biosynthetic process 1.12E-08

56 muscle structure development 1.14E-19 154 alveolar lamellar body 8.24E-08 546 feeding behavior 6.44E-04

Figures
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Fig. 2. Gene modules associated with diseases. (A) Modules associated with obesity,
cardiomyopathy, hypertension, and autism. M#, module id. OR, odd ratio. (B) A module (#18)
associated with obesity. Obesity genes, insulin resistance genes, and genes with MPs abnormal
body weight and insulin resistance are indicated. (C) A module (#85) associated with dilated
cardiomyopathy and hypertrophic cardiomyopathy.

C

MP abnormal body weight

insulin resistance gene

MP insulin resistance

NAME  gene
NAME  obesity gene

MP enlarged heart

NAME gene
NAME DCM gene

HCM gene

M#
Disease 

gene 
counts

OR
BH 

Adjusted 
pValue

FDR

Obestiy

18 21 10.2 7.26E-13 <0.0001

288 6 19.8 3.25E-05 0.0001

60 9 7.8 1.54E-04 0.0001

101 9 6.1 7.48E-04 0.0007

34 11 4.9 7.48E-04 0.0007

546 4 21.0 8.44E-04 0.001

30 10 4.6 2.31E-03 0.0029

277 4 14.0 3.81E-03 0.0048

396 3 13.1 2.97E-02 0.0441

Dilated Cardiomyopathy (DCM)

85 13 60.5 1.06E-17 <0.0001

92 10 42.4 2.68E-12 <0.0001

39 9 19.2 3.98E-08 <0.0001

70 5 22.4 4.55E-05 0.0001

Hypertrophic Cardiomyopathy (HCM)

2 21 19.4 1.57E-17 <0.0001

85 8 30.9 9.82E-09 <0.0001

70 5 20.0 1.15E-04 0.0002

39 5 9.0 3.88E-03 0.0098

Hypertensive Disease (Hypertension)

374 7 35.9 4.87E-08 <0.0001

39 13 7.4 3.02E-06 <0.0001

281 5 20.7 1.72E-04 0.0001

95 7 9.7 3.30E-04 0.0002

30 10 5.8 3.98E-04 0.0003

66 8 7.1 5.31E-04 0.0006

305 4 16.5 2.01E-03 0.0022

54 6 7.2 3.93E-03 0.0037

126 4 9.4 1.52E-02 0.0231

101 6 5.1 2.08E-02 0.0314

Autism

7 42 5.9 1.35E-17 <0.0001

186 17 17.2 2.78E-16 <0.0001

77 13 6.2 1.26E-05 <0.0001

11 21 2.9 1.06E-03 0.0009

168 7 7.9 1.06E-03 0.0009

9 16 3.3 1.76E-03 0.0017

20 15 3.1 5.49E-03 0.0049

35 12 3.5 5.90E-03 0.0049

131 7 5.2 1.07E-02 0.0097

124 7 4.9 1.38E-02 0.0133

358 4 8.0 3.19E-02 0.0325

76 9 3.3 3.66E-02 0.0363

325 4 7.4 3.66E-02 0.0369

266 4 6.5 5.82E-02 0.0492
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Fig. 3. Gene modules associated with hypertension. (A), (B), and (C) Modules #281, #66, and
#126 associated with hypertension, respectively. (D) A sub-network including all hypertension
modules. Gene names are not labeled due to space limitation. Dashed circles outline the
approximate positions of the modules.
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Fig. 4. Gene modules associated with autism and other brain disorders. (A), (B), and (C)
Modules #7, #9, and #20 associated with autism, respectively. Most gene names are not labeled
in (A) due to space limitation. (D) Distinct and shared disease modules among epilepsy, autism,
schizophrenia, bipolar disorder, and depressive disorder. Numbers indicate the module ids.

C

D

MP abnormal social/conspecific 
interaction 
MP abnormal motor 
capabilities/coordination/movement

NAME  gene
NAME  autism gene

MP abnormal brain morphology

gene
autism gene

MAP7D2
MAST1 NSF

ELAVL2

SYT1
CHN2

NAPB

RALYL

KIAA1549L

CELF4

CACNA1A

SLC17A7MMP24

NEUROD2
RTN4R

GABBR2

SLC8A2
NEUROD6

RIT2

KCNC1

GLRA2

HTR5A
SYT2

SLC32A1

RPH3A CLVS1GABRA1

GPR158

ST8SIA3
SLC12A5

CELF5SYNPR

SLC6A7

ACTL6B

SHANK1

KCNC2 VSTM2A

HTR2C

HAPLN4 FRMPD4

SLC4A10

OPCML

SYT4

TTC9B

MPPED1

LRFN2 ADAM11

SNCB

GABRG2 PNMA6F

DIRAS2MYT1L RGS7

ATP2B3DLGAP1

ARHGAP44 SRRM3

VSNL1
GABRB2

CKMT1B

BRSK2

SRRM4

PTH2

FGF3
NXPH4

UNCX

ESPNL
KIF25

CCDC155
SEPT12

DAO

CATSPERG

KHDC3L

EN2

ALS2

CAMKK2

ZP2

CDH15

NKX2-2

PAX6

CBLN3

PKIB

C19orf81

SHISA8 SLC35F4
PCP2

SLC1A6

NKX6-3
OTX2 ZIC3

LHX5

KCND2

AKAIN1
SCRT2

GRM4

PVALBGNG13

PRMT8
ZIC5

INSM1

BARHL1

TLX3

CNPY1

XKR7

BARHL2
PRR35

GFY

ZSCAN10PRSS55

GALR3 NTN3
PXT1 HES7 SCLY

GABRA6

FAT2

NEUROD1ETV1

GABRD

CRTAM

ZBTB18

CBLN1

FSTL5

HRH3
KCNK9

SEZ6
CAMK4

GRM1

Distinct Modules Brain Disorder Shared Modules

2, 22, 27, 70, 281 epilepsy 7

131, 168, 186, 266, 325 autism 7 11, 76 9, 20, 35, 124 77, 358

14, 34, 83, 229, 264, 442, 466, 520, 529, 626 schizophrenia 11, 76 9, 20, 35, 124 93, 288 72, 187 197

113, 146, 249 bipolar disorder 11, 76 9, 20, 35, 124 93, 288 72, 187 77, 358 231

95, 277, 374 depressive disorder 11, 76 93, 288 231 197

MP abnormal nervous systems 
physiology
MP abnormal motor 
coordination/balance

NAME  gene
NAME  autism gene
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