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Abstract

Within biological networks, genes associated with human diseases likely map to modules whose
identification facilitates etiology studies but remains challenging. We describe a systematic approach to
identify such disease-associated gene modules. A gene co-expression network was constructed using GTEx
dataset and assembled into 652 gene modules. Screening these modules identified those with disease genes
enrichment for obesity, cardiomyopathy, hypertension, and autism, which revealed the pathways involved
in their pathogenesis. Using mammalian phenotypes derived from mouse models, potential disease
candidate genes were identified from these modules. Also analyzed were epilepsy, schizophrenia, bipolar
disorder, and depressive disorder, revealing shared and distinct disease modules among brain disorders.
Thus disease genes converge on modules within our network, which provides a general framework to

dissect genetic basis of human diseases.

Main Text

Human diseases often have genetic basis and their corresponding gene-disease associations are
widely documented, with many of them possessing multiple disease genes (/-3). Within biological
networks, disease genes usually do not distribute randomly but map to modules that include subsets of
genes functioning together in the same or similar pathways (4, 5). It is of great interest to identify such
disease gene modules due to their values in elucidating disease etiologies (6-8). Yet for most diseases, such
modules have not been detected. We describe a systematic approach to identify gene modules associated
with human diseases (Fig. 1A). Our analysis revealed modules for obesity, cardiomyopathy, hypertension,

autism, and other diseases with major impacts on public health worldwide.

A human gene co-expression network based on the graphical Gaussian model (GGM) was
constructed using publicly available transcriptome data from the Genotype-Tissue Expression (GTEX)
project (9). The project has created a resource of gene expression data from ‘normal’, non-diseased tissues,
which supported a range of studies, including co-expression analysis (/0, /1). Our work used GTEx V7

release that contains transcriptome data for 11688 samples spanning 53 tissues from 714 postmortem donors
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(9). The analysis followed a procedure we published previously (12, 13), which employed partial correlation
coefficient (pcor) for co-expression measurement (/4). The resulted network, HsGGM2019, contains
166980 co-expressed gene pairs among 18425 protein-coding genes (table S1). Via the MCL algorithm
(15), 652 gene co-expression modules with 9 or more genes were identified from the network. Considering
some genes might participate in multiple pathways, the modules were expanded by including outside genes
connected with >= 3 genes within the original modules. Accordingly, 14391 genes assembled into 652
modules containing 9 to 285 genes each, with 2668 genes belonging to multiple modules (Fig. 1B and table

S2). The rest 4034 genes organized into smaller modules that were not considered hereafter.

The modules contain co-expressed genes that, according to guilt-by-association, might function in
the same or similar pathways. Gene Ontology (GO) analysis identified 341 of them with enriched GO terms
(Benjamini-Hochberg adjusted pValue [P]<=1E-2) (table S3). Their biological relevance are exemplified
by three modules involved in lipid biosynthesis, transport, and storage. Module #71, expressed broadly in
various tissues (fig. S1), is enriched with 23 cholesterol biosynthesis genes (P=1.92E-42) (Fig. 1C),
including genes for enzymes catalyzing 23 of all 24 reaction steps for synthesizing cholesterol from acetyl-
CoA (fig. S2). It also contains LDLR, PCSKY9, SREBF?2, and INSIG1, encoding components of the PCSK9-
LDLR and SREBP-SCAP-Insig complexes that regulate cholesterol homeostasis (/6). Module #30,
containing genes with restricted expression towards liver (fig. S1), is enriched with high-density lipoprotein
(HDL) particle genes (P=5.29E-14), such as APOAI, APOA2, and APOAS5. This module could function in
HDL-mediated reverse cholesterol transport. Module #18, expressed biasedly in fat (fig. S1), is enriched
with lipid storage genes (P=3.37E-12). It contains PPARG, encoding a key transcription factor regulator of
adipogenesis, and its target genes involved in adipocyte differentiation and metabolism, like PLINI, FABP4,
LEP, and ADIPOQ (17). Modules were also revealed for other processes, such as those functioning in
specific organelles or tissues (#1, #27, #50), metabolism pathways (#54, #126, #288), immunity pathways
(#6, #8, #15), or general cellular pathways (#3, #28, #29) (see Fig. 1D and table S3 for these modules’

enriched GO, same as below).
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The modules were then screened for association with diseases. A module is considered as disease-
associated if it has disease genes enrichment (permutation-based False Discovery Rate [FDR]<=0.05).
Curated gene-disease associations for obesity, autism, and other diseases, retrieved from obesity gene map,
SFARI, and DisGeNET (/-3), were queried against the modules to identify those associated with diseases
(Fig. 2A and table S4). As an example, Module #18 for lipid storage is associated with obesity, a disease
involving excessive body fat that affects 12% adults worldwide (/8). Besides environment, genetic factors
influence obesity susceptibility. According to obesity gene map, 21 out of the 113 genes within Module
#18 are obesity genes (Fig. 2B), including ADIPOQ and LEP, whose genetic polymorphisms are risk factors
for obesity (/9). Comparing to the whole network, obesity genes are 10.2 fold enriched (Odd Ratio, OR)
within the module (FDR<0.0001). We examined phenotypes of transgenic or null mouse models developed
for the genes within the module, using Mammalian Phenotype (MP) Ontology assignments from MGI (20),
to investigate if other genes also relate to obesity. The MP abnormal body weight is associated with 33
genes and significantly enriched within the module (P=3.02E-07) (Fig. 2B, and see table S5 for MP
enrichment analysis results for all modules, and refer to Materials and Methods for analysis details). Among
them are 14 obesity genes, and the rest 19 might represent additional candidate genes. Note that these
candidate genes derived from mouse models need to be further verified by, i.e., human population genetics
studies. Additionally, Module #16 contains 7 genes for insulin resistance (OR=17.7, FDR<0.0001), a
syndrome that could result from obesity (217). It also has 13 genes with the MP insulin resistance (P=1.66E-
10), again expanding the disease’s candidate gene list. Also discovered are 8 additional obesity modules
(Fig. 2A and table S4), 7 of which function in lipid transport (#30), extracellular matrix organization (#101),
neuropeptide signaling pathway (#277), feeding behavior regulation (#546), dopamine metabolism (#288),
circulatory system development (#34), and apoptotic process (#60), respectively. Among them, dopamine
relates to obesity via modulating appetite, while within Module #277 are also genes regulating feeding

behavior, such as HCRT and PMCH (22, 23).
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Besides obesity, modules were identified for diseases affecting specific tissues or organs.
Cardiomyopathy is a heart muscle disease, where the heart muscle becomes enlarged, thick or stiff (24).
Dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) are among the major types of
cardiomyopathy. Five gene modules are associated with DCM and/or HCM (Fig. 2A and table S4). All top
3 DCM modules, #85, #92, #39 (OR>=19.2, FDR<0.0001), have enriched GO muscle contraction
(P<=5.41E-20), indicating their muscle-related functions. While Module #85 and #92 are specifically
expressed in heart and skeletal muscles, #39 is also expressed in tissues with smooth muscles like artery,
colon, and esophagus (fig. S3). Pathway analysis (25) indicated that #85 and #92 function in striated muscle
contraction and #39 in smooth muscle contraction. Module #70 for mitochondrial fatty acid beta-oxidation
is also associated with DCM (OR=22.4, FDR=0.0001). HCM is associated with Modules #85, #39, #70,
and another mitochondrial Module #2 (OR=19.4, FDR<(.0001), consistent with that cardiomyopathy could
result from mitochondrial dysfunction (26). Contained within Module #85, #92 and #39 are 42 genes with
the MP enlarged heart, including 27 as novel potential candidate genes for cardiomyopathy (Fig. 2C and
fig. S4). Other examples of tissue-specific disease modules include those for ciliary motility disorders (#1
and #67), pulmonary alveolar proteinosis (#154), akinesia (#56), hereditary pancreatitis (#105), congenital

hypothyroidism (#51), and night blindness (#114) (table S4).

Also identified were modules for hypertension, a complex and multifactorial disease that affects
nearly one billion people worldwide (27). Using curated gene-disease associations from DisGeNET, 10
hypertension modules were identified (Fig. 2A and table S4), 7 of which form two large categories. First
are 2 modules regulating sodium or ion homeostasis. Module #281, expressed specifically in kidneys (fig.
S5), is enriched with 7 ion transmembrane transporter genes (P=2.90E-04). It contains 5 hypertension
genes (OR=20.7, FDR=0.0001) (Fig. 3A), including UMOD that encodes uromodulin, the major secreted
protein in normal urine. Noncoding risk variants increase UMOD expression, which causes abnormal
activation of renal sodium cotransporter SLC12A1 and leads to hypertension (28). Interestingly, SLC12A41

is also in Module #281, together with TMEM?72. Both genes were identified as blood pressure loci in a
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GWAS study based on genetic analysis of over 1 million people (29), but not in DisGeNET. The module
contains additional genes with the MP abnormal kidney physiology, among which might include novel
candidate genes for hypertension, as kidneys are important for blood pressure control (30). Module #305,
expressed more broadly than #281 (fig. S5), is enriched with 4 hypertension genes (OR=16.5, FDR=0.0022)
like SCNNIB and SCNNIG, which also modulate renal sodium homeostasis (3/). Second are 5 modules
involved in vascular tone regulation. Module #66, over-represented with extracellular matrix genes
(P=1.03E-54), contains 8 hypertension genes (OR=7.1, FDR=0.0006), such as ELN and FBN! (Fig. 3B).
Its enriched MPs include abnormal blood vessel morphology and abnormal blood circulation, indicating
that, similar to ELN and FBNI (32), genes in the module could determine vascular extracellular matrix
composition and regulate arterial compliance. Similarly, Module #101 is also enriched with 35 extracellular
matrix genes as well as 6 hypertension genes (OR=5.1, FDR=0.0314). Module #39, functioning in smooth
muscle contraction, encompasses 13 hypertension genes (OR=7.4, FDR<0.0001), among which are
KCNMBI and PRKG1, encoding key modulators of smooth muscle tone (33, 34). Genes within the module,
enriched with MPs abnormal vascular smooth muscle physiology and impaired smooth muscle contractility,
could regulate arterial wall elasticity. Module #54, for glucocorticoids metabolism, contains 6 hypertension
genes (OR=7.2, FDR=0.0037), and #126 (Fig. 3C), participating in cGMP metabolism, includes 4
hypertension genes (OR=9.4, FDR=0.0231). Glucocorticoids and ¢cGMP modulate blood pressure via
regulating peripheral vascular resistance and blood vessel relaxation respectively (35, 36). The relevance
of these 5 modules are further supported by that, besides the hypertension genes in DisGeNET, Module
#39, #54, #66, #101, and #126 contain 8, 3, 6, 6, and 3 additional blood pressure loci respectively (Fig. 3,
B and C, and fig. S6), as revealed by the above mentioned GWAS study (29). The rest 3 hypertension
modules, #95, #30, #374 (Fig. 3D) function in inflammatory response, HDL-mediated lipid transport, and

mitochondrial ATP synthesis, respectively.

Our approach also identified modules associated with brain disorders, among which is autism, a

development disorder characterized by impaired social interaction and by restricted and repetitive behaviors
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(37). Using SFARI autism genes (2), 14 autism modules were detected (Fig. 2A and table S4), 8 of which
form three large categories. First is a module involved in chromatin modification (#7), which contains 194
genes, including 42 autism genes (OR=5.9, FDR<0.0001) (Fig. 4A), such as ASHIL, CHDS, and KMT2C
(38). The module has 35 genes with the MP abnormal brain morphology, among which 11 are autism genes.
It is also over-represented with MPs abnormal heart morphology, abnormal gastrulation, and abnormal
axial skeleton morphology. Thus gene mutations in this module might affect multiple developmental
processes, including brain development that could lead to autism. Second are 2 modules involved in nervous
system development (#77) and axonogenesis (#9). Among them, Module #9 contains 16 autism genes
(OR=3.3, FDR=0.0017) (Fig. 4B), like NLGN3, NLGN4X, and NRXNI (39). The module is enriched with
autism-related MPs, such as abnormal nervous system physiology and abnormal motor
coordination/balance (40). Among the 49 genes with the MP abnormal nervous system physiology, 10 are
autism genes and the rest might contain additional candidate genes. Third are 5 modules participating in
synaptic signaling. Though all enriched with synaptic signaling genes (P=2.78E-34 to 6.71E-05), these
modules express differently. Module #20 and #35 have biased expression in cerebellum and cortex
respectively, while #11, #76, and #124 express broadly in various brain regions (fig. S7). All 5 modules are
enriched with autism genes and might contain potential candidate genes. For example, Module #20 has 15
autism genes (OR=3.1, FDR=0.0049) (Fig. 4C), like MYTLI and DLGAPI (38, 41). It also contains 49
genes with  MPs  abnormal  social/conspecific  interaction  and/or  abnormal  motor
capabilities/coordination/movement, among which are 10 autism genes and the rest merit further
investigation. Among the other autism modules, #186 and #131 function in cell-cell adhesion and
extracellular matrix organization respectively, #358 is enriched with neuron part genes, while #168, #266
and #325 are without clear biological interpretation presently. Thus, these modules indicate abnormality in
chromatin modification, nervous system development, synaptic signaling and other processes could lead to

autism.
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Modules for epilepsy, schizophrenia, bipolar disorder, and depressive disorder are also identified,
revealing shared and distinct disease modules among brain disorders (Fig. 4D and table S4). Module #7 for
chromatin modification is associated with autism and epilepsy only, but Module #11 and 76 for synaptic
signaling are shared by autism, schizophrenia, bipolar disorder and depressive disorder. Also shared by
bipolar disorder and depressive disorder is Module #231 involved in circadian rhythm regulation,
highlighting circadian rhythm’s role in mood disorders (42). On the other hand, epilepsy is distinctly
associated with modules functioning in mitochondria (#2, #22, #70), lysosomes (#27), and kidneys (#281),
indicating its unique etiology (43-45). Schizophrenia is uniquely associated with modules for MHC antigen
presentation (#83, #264), myelination (#14), and fatty acid biosynthesis (#520), while depressive disorder
is particularly associated with Module #95 for inflammatory response (46-48). The rest shared or distinct
brain disorder modules also function in synaptic signaling (#93, #146, #187, #229), ion transport (#72,
#113), neuropeptide signaling (#277), and dopamine metabolism (#288). These modules delineate the

pathways associated with brain disorders and should facilitate their etiology studies.

Thus, GGM network analysis identified unbiased data-driven gene modules with enriched
functions in a variety of pathways and tissues. Disease genes converge on these modules, although the
network was derived from non-diseased samples. Such convergence is not limited to diseases affecting
specific tissues but also applies to complex and multifactorial diseases like hypertension and autism. The
identified disease modules, mostly with clear biological interpretation, integrate well with previous disease
knowledge. They provide useful information about the etiological pathways of the diseases. Based on MP
assignments from mouse models, potential disease candidate genes were identified from within the modules.
Therefore, the modules can be used to pinpoint the pathways involving in diseases and reveal potential
novel disease genes. Our current work focused on coding genes only, but future analysis can also include

non-coding genes, such as long non-coding RNAs, to study their roles on diseases development.
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Materials and Methods

Co-expression network construction

Open-access and de-identified GTEx V7 transcriptome data were downloaded from the GTEx
Portal (http://www.gtexportal.org). The data were fully processed and available as a matrix that contains
TPM gene expression values for 53035 genes in 11688 samples spanning 53 tissues from 714 postmortem
donors. After filtering out low expressed genes that have TPM values >=1 in less than 10 samples, the
expression data were normalized in a tissue-aware manner via gsmooth with default parameters (49). A
sub-matrix consisting of 18626 protein-coding genes was extracted from the normalized expression matrix
and used for GGM network construction, following a procedure described previously (/2, 13). Briefly, the
procedure consisted of 6000 iterations. In each iteration, 2000 genes were randomly selected and used for
partial correlation coefficient (pcor) calculation via the GeneNet v 1.2.13 package in R (/4). After 6000
iterations, every gene pair was sampled in average 69 times with 69 pcors calculated, and the pcor with
lowest absolute value was selected as its final pcor. Also calculated were Pearson’s correlation coefficient
(r) between gene pairs. Finally, gene pairs with pcor>=0.035 and r>=0.35 were chosen for network

construction.

Network clustering and module analysis

The network was clustered via the MCL clustering algorithm with parameters “-I 1.55 —scheme 7”
(15). The identified modules with >=9 genes were kept, and they were further expanded by including
outside genes that connect with >= 3 genes within the original modules. The sub-networks for the modules
were visualized in Cytoscape v 3.40 (50). GO enrichment analysis were performed via hypergeometric test,
with GO annotations retrieved from Ensembl BioMart (https://www.ensembl.org/biomart) on 03/06/2019.
Mouse Mammalian Phenotype (MP) term assignments were obtained from the MGI database
(http://www.informatics.jax.org/downloads/reports/MGI_GenePheno.rpt) on 03/07/2019. MP term

assignments derived from mouse models involving 2 or more genes were excluded. Mouse genes’ MP
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assignments were passed on to their human orthologues and used for MP enrichment analysis via

hypergeometric test.

Identification of modules associated with diseases

Gene-disease associations for obesity were obtained from the human obesity gene map (/). Autism
genes were obtained from the SFARI database on 01/15/2019, and only the autism genes scoring as category
1 to category 4 were used in the analysis (2). For other diseases, the curated gene-disease associations
registered in DisGeNET v5.0 were used (3). For hypertension, besides the disease genes from DisGeNET,
blood pressure loci were also obtained from a recent GWAS study, by combining the previous reported
blood pressure loci and the newly confirmed variants, as listed in Supplementary Table 4 and 5 in the article

by Evangelou et al. (29).

For every disease, its disease gene list were queried against every gene module to calculate a pValue
for disease gene enrichment using hypergeometric test. Suppose a disease has m disease genes within a
gene module with the size of k, and M disease genes among all K genes in the whole network. A pValue
for that disease and module combination was calculated as:

min(k,M) (kK (K — k
pValue (module, disease) = z M

K
l=m ( M)
For every disease, the pValues for all modules were adjusted for multiple testing via the Benjamini-

Hochberg procedure (51).

A permutation based procedure was also used to estimate FDR. In each permutation, every
disease’s disease gene list were replaced by the same number of genes randomly selected from the whole
network and used for enrichment calculation. After conducting 10000 permutations, the results were tallied

and used to calculate the FDRs corresponding to original pValues.
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Fig. 1. Experimental design and overview of the identified modules. (A) The analysis
pipeline. (B) A sub-network for the largest 20 modules. Nodes represent genes and co-expressed
genes are connected by edges. Colors of nodes indicate module identities, except that nodes in
grey color are those belong to multiple modules. (C) A gene module (#71) for cholesterol
biosynthesis. Highlighted in red are cholesterol biosynthesis genes. Labeled with blue square are
genes encoding cholesterol homeostasis regulators. (D) Enriched GO terms for selected
modules discussed in the main text. M#, Module ids; P, BH-adjusted pValue for GO enrichment.
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Fig. 2. Gene modules associated with diseases. (A) Modules associated with obesity,
cardiomyopathy, hypertension, and autism. M#, module id. OR, odd ratio. (B) A module (#18)
associated with obesity. Obesity genes, insulin resistance genes, and genes with MPs abnormal
body weight and insulin resistance are indicated. (C) A module (#85) associated with dilated
cardiomyopathy and hypertrophic cardiomyopathy.
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Fig. 3. Gene modules associated with hypertension. (A), (B), and (C) Modules #281, #66, and
#126 associated with hypertension, respectively. (D) A sub-network including all hypertension
modules. Gene names are not labeled due to space limitation. Dashed circles outline the
approximate positions of the modules.
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Fig. 4. Gene modules associated with autism and other brain disorders. (A), (B), and (C)
Modules #7, #9, and #20 associated with autism, respectively. Most gene names are not labeled
in (A) due to space limitation. (D) Distinct and shared disease modules among epilepsy, autism,
schizophrenia, bipolar disorder, and depressive disorder. Numbers indicate the module ids.
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