
Phigaro: high throughput prophage sequence annotation

Elizaveta V. Starikova1*, Polina O. Tikhonova2, Nikita A. Prianichnikov1, Chris M.
Rands1, Evgeny M. Zdobnov2, Vadim M. Govorun2,

1 Department of Molecular Biology and Genetics, Federal Research and
Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a,
119435 Moscow, Russia
2 Department of Genetic Medicine and Development, University of Geneva
Medical School and Swiss Institute of Bioinformatics, Geneva, Switzerland

* hed.robin@gmail.com

Abstract

Summary Phigaro is a standalone command-line application that is able to detect
prophage regions taking raw genome and metagenome assemblies as an input. It also
produces dynamic annotated “prophage genome maps” and marks possible transposon
insertion spots inside prophages. It provides putative taxonomic annotations that can
distinguish tailed from non-tailed phages. It is applicable for mining prophage regions
from large metagenomic datasets.

Availability Source code for Phigaro is freely available for download at
https://github.com/bobeobibo/phigaro along with test data. The code is written in
Python.

Introduction 1

Bacteriophages (phages) are viruses that infect bacteria and have recently gained 2

increasing interest due to the alarming spread of antibiotic-resistant strains of 3

pathogenic bacteria. Phages are known for their substantial impact on diverse 4

ecosystems, from animals’ intestinal tracts to oceans. Phages can sometimes provide 5

benefits to their hosts by transporting virulence factors and antibiotics resistance genes 6

among bacterial strains. To date, our knowledge of bacteriophage diversity is narrow 7

due to a negligible number of isolated and sequenced bacteriophage genomes, as 8

compared to the huge proportion of viral “dark matter” found in metagenomes [11]. 9

Many undiscovered viral sequences of Myoviridae, Podoviridae, Siphoviridae, Inoviridae 10

and Microviridae families lie within sequenced bacterial genomes in the form of 11

prophages, as those families are known to have temperate life cycles, and even more 12

unknown prophages are likely within metagenomes. Existing command line tools for 13

prophage prediction tend to output a limited selection of annotations and visualizations, 14

and generally don’t mark any overlapping mobile elements like transposons. Here we 15

present Phigaro, a novel high-throughput command line tool that is able to predict and 16

annotate prophage sequences with a dynamic visualization interface applicable to both 17

genomic and metagenomic assembled data. 18

1/4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 22, 2019. ; https://doi.org/10.1101/598243doi: bioRxiv preprint

https://doi.org/10.1101/598243
http://creativecommons.org/licenses/by-nc-nd/4.0/

Phigaro overview 19

Phigaro is a Python package that accepts one or more FASTA files of assembled contigs 20

as input. The core of this program is PhigaroFinder algorithm that defines regions of 21

putative prophages based on preprocessed input data. The preprocessing is carried out 22

consistently by two external programs. Firstly, FASTA files are processed by 23

Prodigal [6], which returns a list of genes with their coordinates, GC content and other 24

properties for a given sequence. Then the obtained genes are annotated with 25

HMMSCAN [9] using phage-specific profile HMMs from pVOGs (prokaryotic Virus 26

Orthologous Groups) [5]. A gene is considered “phage-like” if it corresponds to one of 27

the pVOG profile HMMs. 28

PhigaroFinder algorithm 29

For each gene, PhigaroFinder algorithm computes the probability of it being localized in 30

a prophage region. The algorithm uses two pre-computed sets of pVOG profile HMMs: 31

the “black list” and the “white list”. Those lists were formed based on pVOG 32

distributions inside and outside known prophage regions in 54 bacterial genomes in 33

order to correct the initial set of pVOG profile HMMs to avoid detecting regions with a 34

high density of genes corresponding to pVOGs that are, in fact, not true prophage 35

regions. The “black list” consists of pVOGs that are likely to be found in other regions 36

unrelated to prophages throughout bacterial genomes (e.g. the ones annotated as “ABC 37

transporters”, “plasmid partition proteins”, etc.), while the “white list” is the opposite: 38

it consists of pVOGs that are more likely to be found in prophage regions than in other 39

regions (e.g. annotated as “capsid proteins”, “terminases”, etc.). In order to compute 40

each gene’s scores, input data is transformed into two sequences of indicators using data 41

obtained from Prodigal and HMMER3 outputs. The sequence of indicators for 42

computing “phage scores” are formed as following: 43

• 0 for a gene whose protein product does not match any pVOG profile HMMs 44

• (1 + ‘black penalty’) for a gene whose protein product does match a pVOG 45

profile HMM from the “black list” 46

• 1 for a gene whose protein product does match a pVOG profile HMM from either 47

the “black” or “white” list 48

Then, a triangular window function [8] is applied to count “phage scores” using the
following formula:

Phage scorei =

i+w/2∑
n=i−w/2

(
1− |i− n|

w/2

)
× Indn

where i is gene index, w is window width, Indn - n-th gene’s indicator Similarly, GC
scores are obtained for each gene with the following formula:

GC cont scorei =

i+w/2∑
n=i−w/2

(
1− |i− n|

w/2

)
× gc contn

Where gc contn is GC content for a gene obtained from Prodigal output. After the two
scores are calculated, the resulting score is computed for each gene as a product of its
“phage score” and “GC score”.

Scorei = Phage scorei ×GC cont scorei

2/4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 22, 2019. ; https://doi.org/10.1101/598243doi: bioRxiv preprint

https://doi.org/10.1101/598243
http://creativecommons.org/licenses/by-nc-nd/4.0/

Finally, the algorithm determines phage regions based on the sequence of resulting 49

scores. Phage regions are defined as ranges of genes with scores exceeding the 50

“minimum score threshold”, given that at least one of the genes has a score exceeding 51

the “maximum score threshold”. Thus, for each input contig, Phigaro returns a set of 52

prophage regions with their coordinates. For each of the predicted prophage regions, the 53

algorithm defines possible taxonomy of the phage and marks the possible presence of 54

transposons inside of the prophage sequence. Phigaro produces annotated “prophage 55

genome maps” where prophages are visualized dynamically on a webpage by displaying 56

their proteins as arrows with colour coding of the phage functional modules (See 57

Supplementary). 58

PhigaroFinder parameters optimization 59

In order to optimize PhigaroFinder parameters, we used a ”golden standard” set of 54
bacterial genomes with manually annotated prophage positions [3]. During a two-step
optimization process, “black list” penalty, “white list” bonus, threshold values, as well
as hmmscan E-value and window width were chosen. Parameter selection was done
using grid search techniques and Jaccard index and PPV (Positive Predicted Value) as
metrics:

Jaccard index =
Li

Lu
=

TP

TP + FP + FN

PPV =
Li

Lp
=

TP

TP + FP

where Li - length of intersection of predicted and true prophage regions, Lu - length of 60

union of predicted and true prophage regions, Lp - length of predicted phage region. 61

• “Black list” penalty: -2.2 62

• “White list” bonus: +0.7 63

• Minimum score threshold: 45.39 64

• Maximum score threshold: 46.0 65

• Hmmscan E-value: 0.00445 66

• Window size: 32 ORFs 67

For this set of parameters, Jaccard index was 0.625, and PPV was 0.853. 68

Performance analysis 69

Phigaro performance was compared to those of other prophage predicting tools using 70

prophage predictions from 54 annotated and curated bacterial genomes as input data 71

that are commonly used for benchmarking prophage prediction tools [3]. Although there 72

are several prophage predicting tools to date (such as Phaster [2], Virsorter [10], 73

Phage Finder [4], ProphET, Prophinder [7], PhiSpy [1]), only the first two accept 74

unannotated FASTA sequences as input. To compare the performance of all of the 75

listed tools, we used the same metrics as those used in gridsearch procedure: Jaccard 76

index and PPV (Table 1). 77

In spite of performing less accurately than Phaster on certain bacterial genomes, 78

Phigaro performance appears to be the best among the existing tools. The mean 79

execution time stays in top three among all presented tools. Overall, we show that 80

Phigaro has decent performance compared to existing prophage prediction tools. 81

Additionally, the tool marks possible transposons inserted into prophages and provides 82

dynamic visualizations to inspect the genome annotation and organization of prophages. 83

3/4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 22, 2019. ; https://doi.org/10.1101/598243doi: bioRxiv preprint

https://doi.org/10.1101/598243
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1. Performance of Phigaro compared to other commonly used prophage prediction tools

Program Input App/Web Jaccard index PPV Average time
Phigaro .fna standalone 0.625 0.853 167s

PHASTER .fna web/API 0.61 0.684 136s
VirSorter .fna standalone 0.347 0.373 1155s

ProphET .fna + .gff standalone 0.535 0.745 102s
Phage Finder .fna + .faa + .ptt standalone 0.477 0.626 238s

PhiSpy .gbk/SEED standalone 0.377 0.42 442s
ProPhinder .gbk web 0.341 0.763 509s

Funding information 84

This work was supported by RFBR (grant number 16-54-21012) and SNSF (grant 85

identifier IZLRZ3 163863). 86

References

1. S. Akhter, R. K. Aziz, and R. A. Edwards. Phispy: a novel algorithm for finding
prophages in bacterial genomes that combines similarity-and composition-based
strategies. Nucleic acids research, 2012.

2. D. Arndt, J. R. Grant, A. Marcu, T. Sajed, A. Pon, Y. Liang, and D. S. Wishart.
Phaster: a better, faster version of the phast phage search tool. Nucleic acids
research, 2016.

3. S. Casjens. Prophages and bacterial genomics: what have we learned so far?
Molecular microbiology, 2003.

4. D. E. Fouts. Phage finder: automated identification and classification of prophage
regions in complete bacterial genome sequences. Nucleic acids research, 2006.

5. A. L. Grazziotin, E. V. Koonin, and D. M. Kristensen. Prokaryotic virus
orthologous groups (pvogs): a resource for comparative genomics and protein
family annotation. Nucleic acids research, 2016.

6. D. Hyatt, G. L. Chen, P. F. LoCascio, M. L. Land, F. W. Larimer, and L. J.
Hauser. Prodigal: prokaryotic gene recognition and translation initiation site
identification. BMC Bioinformatics, 2010.

7. G. Lima-Mendez, J. Van Helden, A. Toussaint, and R. Leplae. Prophinder: a
computational tool for prophage prediction in prokaryotic genomes.
Bioinformatics, 2008.

8. A. V. Oppenheim. Discrete-time signal processing. 1999.

9. S. C. Potter, A. Luciani, S. R. Eddy, Y. Park, R. Lopez, and R. D. Finn. Hmmer
web server: 2018 update. Nucleic acids research, 2018.

10. S. Roux, F. Enault, B. L. Hurwitz, and M. B. Sullivan. Virsorter: mining viral
signal from microbial genomic data. PeerJ, 2015.

11. N. Yutin, K. S. Makarova, A. B. Gussow, M. Krupovic, A. Segall, R. A. Edwards,
and E. V. Koonin. Discovery of an expansive bacteriophage family that includes
the most abundant viruses from the human gut. Nature, 2018.

4/4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 22, 2019. ; https://doi.org/10.1101/598243doi: bioRxiv preprint

https://doi.org/10.1101/598243
http://creativecommons.org/licenses/by-nc-nd/4.0/

