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Abstract

Particle filtering is a contemporary Sequential Monte Carlo state inference and identification methodology
that allows filtering of general non-Gaussian and non-linear models in light of time series of empirical ob-
servations. Several previous lines of research have demonstrated the capacity to effectively apply particle
filtering to low-dimensional compartmental transmission models. We demonstrate here implementation and
evaluation of particle filtering to more complex compartmental transmission models for pertussis – includ-
ing application with models involving 1, 2, and 32 age groups and with two distinct functional forms for
contact matrices – using over 35 years of monthly and annual pre-vaccination provincial data from the mid-
western Canadian province. Following evaluation of the predictive accuracy of these four particle filtering
models, we then performed prediction, intervention experiments and outbreak classification analysis based
on the most accurate model. Using that model, we contribute the first full-paper description of particle
filter-informed intervention evaluation in health. We conclude that applying particle filtering with relatively
high-dimensional pertussis transmission models, and incorporating time series of reported counts, can serve
as a valuable technique to assist public health authorities in predicting pertussis outbreak evolution and
classify whether there will be an outbreak or not in the next month (Area under the ROC Curve of 0.9) in
the context of even aggregate monthly incoming empirical data. Within this use, the particle filtering mod-
els can moreover perform counterfactual analysis of interventions to assist the public health authorities in
intervention planning. With its grounding in an understanding of disease mechanisms and a representation
of the latent state of the system, when compared with other emerging applications of artificial intelligence
techniques in outbreak projection, this technique further offers the advantages of high explanatory value and
support for investigation of counterfactual scenarios.

Keywords: Particle Filter, Mathematical Modelling, Pertussis, Age-structured Model, Contact Matrix,
Outbreak Prediction

1. Introduction1

Pertussis is a common childhood disease, which is a highly contagious disease of the respiratory tract2

that caused by the bacterium Bordetella pertussis [1]. It is most dangerous for infants, due to risks of severe3

complications, post-paroxysm apnia [1]. The most frequent complication is pneumonia, while seizures and4

encephalopathy occur more rarely [1]. Pertussis is a highly contagious disease only found in humans, and5

spreads from person to person by coughing, sneezing, and prolonged proximity [2]. Evidence indicates a6

secondary attack rate of 80% among susceptible household contacts [3]. In contrast to some other prevalent7

childhood diseases, immunity conferred by natural exposure or vaccination to pertussis is widely believed8

to wane relatively rapidly, leading to significant risks of infection even in adults who have been previously9

infected. It is notable that babies can be infected by adults, such as parents, older siblings, and caregivers10

who might not even know they have already contracted this disease [2]. Pertussis incidence shows no distinct11

seasonal pattern. However, it may increase in the summer and fall [3].12

In the pre-vaccination era, pertussis was one of the most common childhood infectious diseases and a13

major cause of childhood mortality. In 1860, the mortality rate of all-age pertussis in Demark was 0.015% [4],14
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but that burden fell heavily on infants and children. Research into historical mortality rates from pertussis15

indicate that the death rate in infancy is higher than in other groups [4]. In recent years globally, there are16

an estimated 24.1 million cases of pertussis, and about 160,700 deaths per year [5]. Since the 1980s, there17

has been a rising trend in the reported cases of pertussis in the United States [5]. The most recent peak year18

of the reported cases of pertussis in the United States is 2012, when the Centers for Disease Control and19

Prevention (CDC) reported 48,277 cases, but many more are believed to go undiagnosed and unreported20

[5]. Research aimed at estimating the level of population susceptibility and predicting the transmission21

dynamics of pertussis could aid outbreak prevention and control efforts by health agencies, such as performing22

intervention before the predicted next outbreak, and in targeted outbreak response immunization campaigns23

[6].24

Dynamic modelling has long served as an important tool for understanding the spread of the infectious25

diseases in population [7], including pertussis, and for evaluating the impacts of interventions such as immu-26

nization and hygeine-enhancing. In recent years, particle filtering as a machine learning method has been27

employed for incorporating empirical time series data (such as surveillance [8] and online communicational28

behavior data [9]) to ground the hypothesis as to the underlying model state models in some previous re-29

searches [10, 11, 12, 13], especially for the infectious diseases of influenza [14, 15] and measles [8]. In this30

paper, we apply the particle filtering algorithm in a more complex and widely used compartmental model [16]31

of pertussis by incorporating the reported pertussis cases in Saskatchewan during the pre-vaccination era.32

Particle filtering for pertussis is different than for other pathogens on account of the need for state estimation33

to estimate the population segments at varying levels of immunity. Another need concerns extends from34

the heterogenous nature of the mixing and incidence burden between different age groups. For this reason,35

age-structured models are examined here. Specifically, we have examined two categories of age-structured36

particle filtering models – with 2 age groups and with 32 age groups. Moreover, we have proposed and37

explored three methods for calculating the contact matrix, so as to reduce the degrees of freedom asso-38

ciated with characterization of the contact matrix. This contribution compares the results obtained from39

all the particle filtering models by incorporating the empirical data across the whole timeframe evaluating40

the predictive accuracy of the models. Finally, using the minimum discrepancy particle filtering model, we41

demonstrate how we can evaluate intervention effects in a fashion that leverages the capacity of particle42

filtering to perform state estimation.43

2. Methods and materials44

2.1. Mathematical epidemiological models45

As noted above, the dynamics of pertussis in the population is more complex than for infectious diseases46

that confer lifelong immunity – including other prominent childhood infectious diseases such as measles –47

due to the temporary character of the immunity acquired by Bordetella pertussis infection. As the time48

since the most recent pertussis infection increases, the immunity of a person wanes [7]. People with lower49

immunity generally tend to be more easily infected, and exhibit a higher risk of transmitting the infection50

once infected.51

In this paper, we have employed the structure of the popular pertussis mathematical model of Hethcote52

[16]. To capture the characteristics of pertussis in waning of immunity and the different level of infectiousness53

and susceptibility involved with infection in light of pre-existing immunity, the compartmental model in [16]54

further divides the infectious population into three groups: infective with weak-disease (Iw), mild-disease55

(Im), and full-disease (I). In a similar fashion, the recovered population is divided into four groups of56

successively increasing immune system strength: R1, R2, R3 and R4.57

Figure 1 shows the mathematical structure of our compartmental pertussis model adapted from [16];58

readers interested in further introduction of this structure are referred to Appendix A. It is notable that59

the model of Hethcote (1997) [16] employs a formulation in which each state variable is of unit dimension,60

representing a fraction of the population in different age groups of the same class. However, for the sake61

of easing comparison against empirical data – the pertussis reported cases in the province of Saskatchewan,62

Canada during pre-vaccination era (from 1921 to 1956) – two parts are modified compared to the original63

model in [16]. Firstly, the model in this paper is represented in a re-dimensionalized fashion, with the state64

variables representing counts of persons based on the structure in Figure 1. Secondly, because of the focus65
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Figure 1: The transfer diagram for the pertussis model without vaccination. adapted from [16]

of this paper on the pre-vaccination error, all vaccinated-related elements of the original model of [16] are66

removed.67

Finally, four models are considered in this research. Using n to denote the count of age groups incorpo-68

rated in the models, we consider models of the aggregate population (n = 1), of two age groups (n = 2), 3269

age groups model (n = 32) with the contact matrix introduced in the paper of Hethcote (1997) [16], and a70

final model with 32 age groups (n = 32) model with a re-balanced contact matrix. The mathematical models71

are introduced in separate sections below.72

2.1.1. Aggregate population epidemiological model (n = 1)73

In the aggregate model, discordant contacts – contacts of infectious individuals (including the persons in74

stocks of I, Im and Iw) and the others (including the persons in the other stocks, S, R1, R2, R3 and R4) –75

are mixed homogeneously. Based on the mathematical structure (Figure 1) adapted from Hethcote (1997)76

[16], the equations of the aggregate compartmental model of pertussis are as follows:77

dS

dt
= Nv − (λ+ µ)S + ιR1

dI

dt
= λS − (γ + µ) I

dIm
dt

= λR1 − (γ + µ) Im

dIw
dt

= λR2 − (γ + µ) Iw

dR1

dt
= αR2 − (λ+ µ+ ι)R1

dR2

dt
= αR3 − (λ+ µ+ α)R2

dR3

dt
= αR4 − (λ+ µ+ α)R3

dR4

dt
= γ(I + Im + Iw) + λR3 − (α+ µ)R4

λ =
lp(I + ρmIm + ρwIw)

N
N = S + I + Im + Iw +R1 +R2 +R3 +R4

(1)

The meaning of the states and parameters are as follows: Compartment S is the count of susceptible78

individuals. Compartments I, Im and Iw are the count of individuals having full-disease infectious cases79
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with all of the usual symptoms, with mild disease and weak disease infectious cases, respectively, and with80

correspondingly decreasing infectivity. It is notable that individuals in both class Im and Iw lack usual81

symptoms of pertussis, and thus exhibit atypical pertussis [16]. Compartments R1, R2, R3 and R4 are the82

count of recovered people in the population, with correspondingly increasing levels of immunity. N is the83

population size. v is the overall population birth rate, while µ is the death rate. It is notable that this84

paper follows [16] in assuming that all model compartments share identical values for the mortality rate (µ),85

although the death rates in the stocks of the infectives (Im, Iw, and especially I) are theoretically higher86

than for the other stocks, due to risk of pertussis-induced mortality. The mean time for waning of immunity87

from the stock of R1 to S, and that for successive waning of immunity from successive pairs of R3, R2, and88

R1, are ι−1 and α−1, respectively. The three infectious compartments – I, Im, Iw – share an identical mean89

infectious periods of γ−1. However, the infectiousness of an individual varies across the three infectious90

compartments (I, Im, Iw), with individuals in compartment I, Im and Iw having highest, middle and lowest91

infectiousness, respectively. Parameters ρm and ρw represent the ratios of the infectiousness of those in the92

mild-disease (Im) and weak-disease (Iw) infectious classes to those in the full-disease infectious classes of I93

[16]. The force of infection parameter λ characterizes the hazard rate – the probability density with which94

a susceptible (a person in the stocks of S, R1, R2 and R3) is subject to infection from an infective, and95

is governed by the mass action principles [17, 16]. Parameter λ is related to the total effectively infectious96

cases (I + ρmIm + ρwIw), contact rate (denoted as l) and per-discordant-contact transmission probability97

(denoted as p).98

2.1.2. General age-structured epidemiological model99

To capture the difference of the contact pattern among different age groups – for example, the fact that100

children in school age primarily contact with peers, while babies contact more closely with their parents or101

caregivers – and adapt the simulation models with the empirical datasets (both monthly pertussis reported102

cases across the whole population and age-group-specific yearly pertussis reported cases), we extended the103

pertussis model in Equation (1) to an age-structured model.104

The age-structured demographic model. Before introducing the epidemiological age-structured pertussis math-105

ematical model, we first introduce the age-structured demographic model. The demographic model mainly106

captures the age structure and the birth and death in the population related to the empirical data (per-107

tussis reported cases in province of Saskatchewan in Canada during the pre-vaccination era – from 1921108

to 1956) employed in this paper. Suppose we have n age groups in the whole population, by divided by109

a sequence of ages ai, 1 ≤ i ≤ n − 1. The age groups can be characterized as a series of n intervals –110

[0, a1), [a1, a2), · · · , [an−1,∞). The demographic model can then be written as follows [8, 16, 18].111

dN1(t)

dt
=

n∑
j=1

vjNj(t)− (c1 + µ1)N1(t)

dNi(t)

dt
= ci−1Ni−1(t)− (ci + µi)Ni(t), i ≥ 2

(2)

where Ni is the number of people in age group i; vi and µi are the birth and death rate of age group i,112

respectively; ci is the aging rate of age group i, given by ci = (ai − ai−1)−1, and cn = 0.113

In this paper, we assume that the population is in equilibrium; this reflects the fact that the empirical114

Saskatchewan population size from 1921 to 1956 does not change dramatically [19], as will be discussed below115

in greater detail. This approximation assumes that the total population Ni(t) of age group i will remain116

invariant over the model time horizon, that is, dNi(t)/dt = 0. Thus, according to Equation (2), for this117

simplified context, the death rate µi can be calculated as follows:118

µ1 =

∑n
j=1 vjNj(t)− c1N1(t)

N1(t)

µi =
ci−1Ni−1 − ciNi

Ni(t)
, i ≥ 2

(3)
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The values of parameters in the demographic model are estimated from the empirical data. Specifically,119

the population in each age group Ni is estimated from the age pyramid of Saskatchewan [19], and the birth120

rates vi are estimated from the Public Health Annual Report of Saskatchewan [20] published yearly by the121

Government of Saskatchewan.122

The age-structured pertussis epidemiological model. By incorporating the age-structured demographic model123

shown in Equation (2), and the structure of the compartmental epidemiological model shown in Figure 1, we124

obtain the age-structured pertussis epidemiological model given below. Readers interested in the detailed125

mathematical derivation are referred to our previous contribution [8].126

dS1

dt
=

n∑
j=1

vjNj + ιR11 − (c1 + λ1 + µ1)S1

dSi
dt

= ci−1Si−1 + ιR1i − (ci + λi + µi)Si 2 ≤ i ≤ n

dI1
dt

= λ1S1 − (c1 + γ + µ1)I1

dIi
dt

= ci−1Ii−1 + λiSi − (ci + γ + µi)Ii 2 ≤ i ≤ n

dIm1

dt
= λ1R11 − (c1 + γ + µ1)Im1

dImi
dt

= ci−1Im,i−1 + λiR1i − (ci + γ + µi)Imi 2 ≤ i ≤ n

dIw1

dt
= λ1R21 − (c1 + γ + µ1)Iw1

dIwi
dt

= ci−1Iw,i−1 + λiR2i − (ci + γ + µi)Iwi 2 ≤ i ≤ n

dR11

dt
= αR21 − (λ1 + ι+ c1 + µ1)R11

dR1i

dt
= ci−1R1,i−1 + αR2i − (λi + ι+ ci + µi)R1i 2 ≤ i ≤ n

dR21

dt
= αR31 − (λ1 + ι+ c1 + µ1)R21 (4)

dR2i

dt
= ci−1R2,i−1 + αR3i − (λi + ι+ ci + µi)R2i 2 ≤ i ≤ n

dR31

dt
= αR41 − (λ1 + ι+ c1 + µ1)R31

dR3i

dt
= ci−1R3,i−1 + αR4i − (λi + ι+ ci + µi)R3i 2 ≤ i ≤ n

dR41

dt
= γ(I1 + Im1 + Iw1) + λ1R31 − (α+ c1 + µ1)R41

dR4i

dt
= ci−1R4,i−1 + γ(Ii + Imi + Iwi) + λiR3i − (α+ ci + µi)R4i 2 ≤ i ≤ n

Ni = Si + Ii + Imi + Iwi +R1i +R2i +R3i +R4i 1 ≤ i ≤ n

µ1 =

∑n
j=1 vjNj − c1N1

N1

µi =
ci−1Ni−1 − ciNi

Ni
2 ≤ i ≤ n

In this age-structured epidemiological model, the definition of most quantities are consistent with (mu-127

tatis mutandis) the aggregate population epidemiological model (Equation (1)) and the age-structured de-128

mographic model (Equation (3)), with the notable exception of the force of infection λi for age group i.129
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As noted above, this work followed [16] in characterizing transmission of pertussis infection between130

infectives and susceptibles according to mass action principles. The force of infection defined as the hazard131

rate with which susceptibles are infected by infectives, and is related to contact rate, transmission probability,132

and the fraction of infectives in the whole population. In the model with aggregate population, the individuals133

are assumed contact homogeneously, and the force of infection can be simply calculated as in Equation (1).134

However, in the age-structured model, contacts between individuals are assumed to occur homogeneously135

within age groups and heterogeneously across different age groups. Thus, the calculation of force of infection136

in the age-structured models are considerably more complex than for aggregate population model, being137

mediated by a contact matrix. Readers interested in the mathematical representation of the contact matrix138

could are referred to our previous contribution [8]. In the current paper, we have employed three different139

methods of calculating the contact matrix and – by extension – the force of infection in the models. These140

three methods are introduced as follows.141

2.1.3. Force of infection models142

General mass action-based contact matrix. Under the assumption of mass action, the force of infection – the143

hazard rate (probability density) with which a susceptible is transmitted the pathogen by infectives – can144

be calculated by the sum of the hazard rates associated with transmission from infectives in each age group145

in turn. The force of infection of each age group is correspondingly represented as follows.146


λ1
λ2
...
λn

 =


l1f11 l1f12 · · · l1f1n
l2f21 l2f22 · · · l2f2n

...
...

. . .
...

lnfn1 lnfn2 · · · lnfnn

×

p1

I1+ρmIm1+ρwIw1

N1

p2
I2+ρmIm2+ρwIw2

N2

...

pn
In+ρmImn+ρwIwn

Nn

 (5)

The above can be rewritten as the following equation:147

λi = lipi

n∑
j=1

fij
Ij + ρmImj + ρwIwj

Nj
(6)

where λi, li, pi, Ii, Imi and Iwi are the force of infection, contact rate, transmission probability, number148

of persons in full-disease infectious, number of persons in mild-disease and weak-disease infectious classes in149

age group i, respectively. For an individual in age group i, fij is the fraction of that individual’s contacts150

that occur with others in the age group of j. Thus, for a given age group i:
∑n
i=1 fij = 1. lifij are then the151

elements in the contact matrix.152

An advantage of this method in calculating the contact matrix in the age-structured model is that the153

contacts between any two age groups (e.g., i and j) is balanced (symmetric) – the number of total contacts154

of an age group i to group j equals to the number of total contacts of the age group j to group i; that is,155

Nilifij = Nj ljfji. However, this method has a notable disadvantage that the count of unknown parameters156

in calculating the contact matrix grows quadratically with the count of age groups (denoted as n) in the157

model; a demonstration of the super-linear growth of the total number of unknown parameters in the contact158

matrix with the total number of age groups is shown in Appendix B. This disadvantage makes challenging159

parameter estimation for models incorporating a large number of age groups. To address this challenge,160

we have explored two other methods for characterizing the contact matrix and force of infection in which161

the count of parameters grows sub-linearly or linearly with the total number of age groups. The first162

is a method of obtaining an un-balanced contact matrix contributed by Hethcote (1997) with a constant163

number of unknown parameters [16]. The second approach calculates a re-balanced contact matrix in which164

the number of unknown parameters grows linearly with the total number of age groups. Each of these165

approaches are characterized below.166

The Unbalanced Contact Matrix. This unbalanced contact matrix is introduced in the research of Hethcote167

(1997) [16], which assumes that only adequate contacts are sufficient to transmit the disease. This method168

based on a simple proportional mixing assumption that the number of total persons contacted by one person169
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in the age group j is distributed among the population in the age group i in proportion to the fractions170

li/D
∗, where D∗ is the total number of contacts per unit time received by all people, li is the contact rate –171

average number of persons contacted by a person per unit time – of age group i, and D∗ =
∑n
j=1 ljNj [16].172

The elements in the contact matrix are lilj/D
∗ [16]. Finally, the re-dimensionalized force of infection (λ)173

used in Equation (4) and in [16] is given as follows:174

λi =
n∑
j=1

lilj
D∗ (Ij + ρmImj + ρwIwj) (7)

However, in this paper, we employ the dimensionless representation of the “force of infection” in Equation175

(8), which is consistent with [16], instead of the re-dimensionalized one in Equation (7). The motivation for176

this lies in our use of the values of parameters related to the mixing matrix from [16], which will be detailed177

below in the section “particle filtering implementation”. The dimensionless equation of force of infection in178

[16] is as follows:179

λi =
n∑
j=1

lilj
D

Ij + ρmImj + ρwIwj∑n
j=1Nj

(8)

where D is the dimensionaless total contacts across all population, and D =
∑n
j=1 ljNj/

∑n
j=1Nj =180

D∗/
∑n
j=1Nj .181

The advantage of this method is that – if one adopts the values of the contact rate in each age group182

given in [16] – there are no unknown parameters required for calculating the contact matrix. And it is183

straightforward to calculate the contact matrix as long as those age-specific contact rate parameters are184

known. However, this method of calculating the contact matrix suffers from a notable disadvantage – a lack185

of guaranteed symmetry between the contacts exerted between pairs of age groups. Specifically, it can be186

readily shown that the value of the total contacts occurring from age group i to age group j is not in general187

equal to the value of the total contacts occurring from age group j to age group i. This reflects the fact188

that the number of total contacts of the age group j to age group k is Nj lj lk/D
∗, while the number of total189

contacts of the age group k to age group j is Nklj lk/D
∗. In general, these two quantities need not be equal.190

To address this shortcoming, we explored a previously contributed method to calculate a balanced contact191

matrix. While the above method does not require additional parameters, for the balanced method, the total192

number of the unknown parameters grows linearly with the number of age groups.193

The Re-balanced Contact Matrix. To calculate the balanced contact matrix, we have employed the method194

introduced in research by Garnett and Bowden (2000) [21]. The elements of the contact matrix lijfij and force195

of infection λi are as follows; readers interested in the detailed mathematical deduction of the re-balanced196

contact matrix can refer to Appendix C:197

lijfij = li

(
εj
εi

)0.5
[

(1.0− εi)δij + εi

(
Nj lj∑n
j=1Nj lj

)]

λi = pi

n∑
j=1

lijfij(Ij + ρmImj + ρwIwj)

Nj

(9)

where pi is the transmission probability of age group i, fij is the fraction of the contacts of an individual198

in age group i that are made with others in age group j, δij is the identity matrix, mixing parameter εi199

determines where mixing occurs on a scale from fully homophilic – persons only contact with the individuals200

in the same age group (representing εi = 0) – to random mixing in which the contact among the total201

population is non-preferential (representing εi = 1.0).202

Finally, based on the above discussion, we have employed four pertussis epidemiological models as the203

state-space models to be used in corresponding applications of particle filtering – the aggregate population204

model (shown in Equation (1)), the age-structured model with two age groups (Equation (4) with n = 2)205
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with the general contact matrix based the mass action assumption (Equation (6)), the age-structured model206

with 32 age groups (Equation (4) with n = 32) with an un-balanced contact matrix (Equation (8)) and the207

age-structured model with 32 age groups (Equation (4) with n = 32) with a re-balanced contact matrix208

(Equation (9)). It is notable that the 32 age group division applied is directly adopted from Hethcote (1997)209

[16], with age groups from 0–1 month, 2–3 months, 4–5 months, 6–11 months, integer ages for 1 through210

and including 19, 20–24 years, 25–29 years, 30–39 years, 40–49 years, 50–59 years, 60–69 years, 70–79 years,211

80–89 years, 90 years and older. The age structured model with two age groups dichotomizes the population212

into 0–4 years and 5 years and older age categories. It bears noting that while more detailed age structure213

can better capture both the effects of population aging and inter-group heterogeneity, in terms of particle214

filtering, it entails estimation of a larger underlying model state space – potentially adversely affecting the215

accuracy of that estimation; in many models, it also requires specification of additional parameter values.216

2.2. Particle Filter Implementation217

Particle filtering is a contemporary state inference and identification methodology that allows filtering218

of general non-Gaussian and non-linear state space models in light of time series of empirical observations219

[10, 11, 22, 15, 8, 23]. This approach estimates time-evolving internal states of dynamic systems where220

random perturbations are present, and information about the state is obtained via noisy measurements221

made at each time step. The state space model characterizes the processes governing evolution over time of222

internal states with stochastics consisting of random perturbations. The states in the state space model are223

assumed in general to be latent and unobservable. Information concerning the latent states is obtained from224

a noisy observation vector. The means by which the particle filter method operates includes the Recursive225

Bayes Filter [22], Sequential Importance Sampling [22, 23, 10], and Resampling [22, 23, 10].226

Sequential importance sampling (SIS) is the most basic Monte Carlo method used to sample when the227

predict-and-update equations of the recursive Bayes filter are not analytically tractable [22]. The key idea228

of SIS is to estimate the posterior distribution at a given time with a weighted set of samples. SIS then229

recursively updates these prior samples to obtain samples approximating the posterior distribution at the230

next time step. These importance-weighted samples are also named particles [22]. The SIS particle filter231

commonly suffers from a strong degeneracy problem – as the algorithm continues, many – and eventually232

most – particles will develop a negligible weight. This occurs because we are sampling in a high dimensional233

space, using a myopic proposal distribution [23].234

The key idea underlying resampling is a variant of the principle of “survival of the fittest”. To achieve this,235

the resampling step will monitor the effective sample size following each observational update. Whenever the236

effective sample size drops below a threshold, the algorithm will draw a new set of particles from the existing237

set, where the probability of drawing a given particle is – in accordance with the principle of importance238

sampling – proportional to its weight. Within such resampling, particles with higher weight will tend to be239

reproduced, and particles with lower weight will tend to die out. The new particles inherit their parent’s240

values but carry a uniform normalized weight. At a given time, each particle contributing to the distribution241

(represented collectively by the particles according to the principles of sequential importance sampling [23])242

can be seen as representing a competing hypothesis concerning the underlying state of the system at that time.243

The particle filtering method can be viewed as undertaking a “survival of the fittest” of these hypotheses, with244

fitness of a given particle being determined by the consistency between the expectations of the hypothesis245

associated with that particle and the empirical observations.246

Interested readers are referred to more detailed treatment in [22, 24, 23, 10].247

2.2.1. State Space Model248

The state space model depicts the processes governing the state – both latent and observable – of a249

noisy system evolving with time. In this paper, we employ the deterministic pertussis epidemiological250

models as base models. Reflecting the fact that particle filtering offers value in the context of underlying251

state equation models exhibiting stochastic variability, we then extend these deterministic models by adding252

random perturbations in some processes or parameters, so as to represent the stochastic processes in the253

real world; the extended, stochastic model then serves as the basis for a corresponding particle filter. Thus,254

we have built four particle filtering models based on the respective pertussis compartmental epidemiological255

models introduced previously – the aggregate population model, two-age group model with the general256
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contact matrix, and the 32-age group models with both un-balanced contact matrix and re-balanced contact257

matrix.258

Stochastic Adaptation of the Aggregate Population State Space Model. In the aggregate population state259

space model, we employ the aggregate population pertussis compartmental epidemiological model (equation260

(1)) as the base model. Stochastics are added to this base model in three areas – in the rate of new infections,261

for the contact process between susceptibles and infectives, and in the reporting process for infected cases.262

The mathematical structure of the pertussis aggregate population state space model is shown in Figure263

2. The stochastics associated with these factors represents a composite of two factors. Firstly, there is264

expected to both be stochastic variability in the pertussis infection processes and some evolution in the265

underlying transmission dynamics in terms of an evolving reporting rate, as well as changes in mixing.266

Secondly, such stochastic variability allows characterization of uncertainty associated with respect to model267

dynamics—reflecting the fact that both the observations and the model dynamics share a high degree of268

fallability. Given an otherwise deterministic simulation model such as that considered here, there is a269

particular need to incorporate added stochastic variability in parameters and flows to provide the model270

with the requisite openness to correction when observing a new empirical datum [8].271

Figure 2: The mathematical structure of the aggregate particle filtered model.

In characterizing transmission process, we consider a stochastic process – specifically, a Poisson process –272

associated with incidence of infection, including cases of full-disease infectives (I), mild-disease infectives (Im)273

and weak-disease infectives (Iw). This process reflects the small number of cases that occur over each small274

unit of time – denoted as ∆t (carrying the value of 0.01 months in all models in this paper, or roughly 7.3275

days) [10, 8]. The new infection flows incorporating stochastic process (Poisson process) are correspondingly276

listed as follows:277

AI =
Poisson(λS∆t)

∆t
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AIm =
Poisson(λR1∆t)

∆t
(10)

AIw =
Poisson(λR2∆t)

∆t

The second stochastic process considered in the aggregate population pertussis state space model is the278

mixing process between susceptibles and the infectious. We know that the transmission probability of the279

disease of pertussis is normally a constant. Thus, to simplify the model, we incorporated an effective contact280

rate parameter, denoted as β, where the effective contact rate is the multiplication of a per-month contact281

rate and transmission probability (of unit dimension), denoted as l and p (β = lp) in the deterministic282

aggregate population compartmental pertussis epidemiological model characterized in Equations (1). We283

posit that parameter will undergo some evolution in value in accordance with contact rates – such as due to284

social distancing, as the school year starts or stops, and enhanced hygenic awareness during outbreaks. We285

thus characterized effective contact rate β as evolving stochastically within the model.286

To estimate changing values of the stochastic effective contact rate parameter β, and to investigate287

the capacity of the particle filter to adapt to parameters whose effective values evolve over simulation,288

we incorporated the parameter β into the state of the particle filter model, as seen in Figure 2. Moreover,289

reflecting the fact that the effective contact rate β is conceptually bounded to the non-negative real numbers,290

we treat the natural logarithm of the effective contact rate β as undergoing a random walk according to291

Brownian Motion, as characterized by a Wiener Process [25, 26, 8]. The stochastic differential equation of292

the effective contact rate β can thus be described according to Stratonovich notation as:293

dln(β) = sβdWt (11)

where dWt is a standard Wiener process whose perturbations follow a normal distribution with 0 of mean294

and unit rate of variance; sβ is the diffusion coefficient. Thus, the perturbations in the value of ln(β) are295

normally distributed with 0 of mean and variance sβ
2.296

The third stochastic process considered in the noisy state space model relates to the reporting process297

for infected pertussis cases. Over the multi-decadal model time horizon (as circumscribed by the span of298

the empirical data from 1921 to 1956), and particularly on account of shifting risk perception, there can be299

notable evolution in the degree to which infected individuals or their guardians seek care. To capture this300

evolution, we incorporated another stochastically evolving parameter – the fraction of underlying pertussis301

cases that are reported (denoted as Cr); as for the above parameters, this parameter is also treated as an302

element of evolving model state. Reflective of the fact that the reporting rate Cr is a probability limited to303

the range [0, 1], we characterize the logit of Cr as also undergoing Brownian Motion according to Stratonovich304

notation [8] as follows:305

d(logit(Cr)) = d(ln(
Cr

1− Cr
)) = srdWt (12)

where dWt is as above; sr is the diffusion coefficient. Perturbations in the value of ln( Cr

1−Cr
) with time306

follow a normal distribution with mean 0 and variance sr
2.307

Moreover, to calculate the reported number of pertussis cases in the particle filtering model, which is used308

in the measurement model discussed below, we incorporated an extra state, denoted as Ik, which accumulates309

the count of pertussis infectious cases from time k − 1 to time k. It is notable that the state of cumulative310

infectious cases from time k − 1 to k – Ik – is different from the original infectious states I, Im or Iw in311

the deterministic compartmental model in Equations (1). Specifically, the state of the cumulative count of312

infectious cases Ik purely integrates all the inflows to the infectious states as a whole (and without all the313

outflows), so as to simulate a similar process of successively tallying up the pertussis cases over the course314

of some period of time as is undertaken in the real world. Moreover, we further assume that the individuals315

with mild-disease infectious cases (Im) and weak-disease infectious cases (Iw) are also subject to reporting.316

The reporting rates of the mild-disease infectious cases (Im) and weak-disease infectious cases (Iw) that have317

symptoms are considered to be ρm and ρw, in this paper. It is notable that the sequence of the values of k318

correspond to the sequence of historical reporting times (per Month in this paper). Then, the cumulative319

infectious cases from time k − 1 to k in state Ik is represented as follows:320
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Ik =

∫ k

k−1

(
Poisson(λS∆t)

∆t
+ ρm

Poisson(λR1∆t)

∆t
+ ρw

Poisson(λR2∆t)

∆t

)
dt (13)

It bears emphasis that the model implementation of Equation (13) made use of identical values drawn for321

the stochastic components used in the flows that it serves to accumulate. Thus, the reported pertussis cases322

calculated in the state space model at the measure time k, denoted as Irk, can be represented as follows:323

Irk = IkCr (14)

Finally, we obtained the noisy state space model of the pertussis particle-filtered aggregate model by324

incorporating into the base model – as given by the deterministic compartmental epidemiological model in325

equations of (1) – the adjusted stochastic parts in equations of (10), (11), (12), (13) and (14) (Figure 2).326

Readers interested in the complete mathematical equations, parameter values, and initial state assumptions327

for the state space model can refer to Appendix D; those seeking better understanding of basis for the pa-328

rameters related to the transmission of pertussis in this model are referred to the research of Hethcote (1997)329

[16]. The demographic parameters of this model are sourced from the Annual Report of the Saskatchewan330

Department of Public Health [20] and the age pyramid of Saskatchewan [19]. The initial values of states in331

this model are estimated by tuning the particle-filtered model (the assumptions regarding the distribution332

of the initial states, as given by constants) and sampled by the particle filtering algorithm. Both the values333

of parameters and initial values of states in this model are listed in Appendix D.334

The two-age group population structure state space model. In the two-age-group population structure state335

space model, we employ the age- and population-structured pertussis compartmental epidemiological model336

(Equation (4)) with n = 2 as the base model, where the variable of “force of infection” is calculated according337

to the mass-action based formulation of the general contact matrix (Equation (5)). In this model variant,338

we use subscripts “c” and “a” to denote the child- and adult-specific values, respectively, where the child age339

group includes all individuals from newborns to the end of the fourth year, and the remaining individuals340

are in the adult age group. Similar to the state space model with an aggregate population, noise is imparted341

to this base model in three elements – the new infectious occurrence process, the contact process between342

susceptibles and infectives, and the reporting process for infected cases. The mathematical structure of the343

pertussis aggregate population state space model is shown in Figure 3.344

As discussed in the aggregate population state space model, we consider occurrence of infections within a345

given small interval to be characterized by a Poisson process. Then, the flows of new infections incorporated346

into the model are given by the following equations:347

AIc =
Poisson(λcSc∆t)

∆t

AIa =
Poisson(λaSa∆t)

∆t

AImc
=
Poisson(λcR1c∆t)

∆t
(15)

AIma
=
Poisson(λaR1a∆t)

∆t

AIwc
=
Poisson(λcR2c∆t)

∆t

AIwa
=
Poisson(λaR2a∆t)

∆t

Characterization of the stochastic mixing process between susceptibles and infectives within the stratified348

model is more involved than the same process in the aggregate population model, due to the need to include349

both homogeneous mixing within the same age group and heterogeneous mixing amongst different age groups.350

In the two-age structured model, we assume that all the differences in transmission from an infected351

adult vs. an infected child is due to differences in contact rates, and thus that the transmission probability352
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Figure 3: The mathematical structure of the particle filtering age-structured model with two age groups.

of pertussis (denoted as pi in the force of infection model of Equation (5) and Equation (6) for age group i)353

are the same between child and adult age groups (i.e., that pc = pa). Then, according to the general contact354

matrix model based on mass action introduced previously, we obtain the following equations:355

fcc + fca = 1

fac + faa = 1 (16)

Nclcfca = Nalafac

where lc and la are the contact rates of child and adult age groups; Nc and Na are the total populations356

of the child and adult age groups; fij , i, j ∈ [c, a] indicates the fraction of the contacts of age group i occur357

with age group j.358

Then, similarly to the aggregate population state space model, we import the parameters – effective359

contact rates of the child and adult age groups – denoted as βc and βa, respectively. We know the effective360

contact rate is the multiplication of the parameter of contact rate and transmission probability. Then, we361

get βc = lcpc and βa = lapa. Substituting the equation with βc and βa to the Equation (15), we can get [8]:362

fca = 1− fcc

fac =


Ncβc

Naβa
(1− fcc) , if

[
Ncβc

Naβa
(1− fcc)

]
< 1.0

1.0, if
[
Ncβc

Naβa
(1− fcc)

]
≥ 1.0

(17)

faa = 1− fac
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To represent the stochastic characteristics of the mixing process of the two-age group state space model,363

we allowed three parameters to change with time according to a random walk (with the values of these364

parameters being estimated as part of model state upon each observation during particle filtering) – the365

effective contact rate of the child age group βc, the fraction of the contacts of the child age group that occur366

with the child age group fcc, and the ratio of the adult age group’s effective contact rate (βa) to that of367

the child age group (βc), denoted as Ma. Reflecting the fact that both βc and Ma vary over the entire368

range of positive real numbers and fcc varies in the range of [0, 1], we treat the natural logarithm of each369

of βc and Ma, as well as the logit of fcc, as undergoing a random walk according to a Wiener Process, and370

thus undergoing Brownian Motion) [25, 26, 8]. Drawing on notation from the Stratonovich calculus for the371

random walks involved, we obtain the equations as follows:372

d(lnβc) = sβcdWt

d(ln(
fcc

1− fcc
)) = sccdWt (18)

d(lnMa) = sMa
dWt

βa = Maβc

The third stochastic component in the two-age group model relates to calculation of the reported cases of373

pertussis in the model. As in the aggregate population model, for comparison with reported case counts, we374

also make use of two convenience states – denoted as Ikc and Ika – to accumulate pertussis infectious cases375

from time k − 1 to k for the child and adult age groups. Moreover, we assume that the pertussis reporting376

rates of child and adult age groups are the same. Thus, the equation of reporting rate – denoted as Cr – is377

identical to that in the aggregate model in Equation (12). The mathematical equations characterizing the378

reporting process are listed as follows:379

d(logit(Cr)) = d(ln(
Cr

1− Cr
)) = srdWt

Ikc =

∫ k

k−1

(AIc + ρmAImc
+ ρwAIwc

) dt

Ika =

∫ k

k−1

(AIa + ρmAIma
+ ρwAIwa

) dt (19)

Irck = CrIkc

Irak = CrIka

where dynamic variables Irck and Irak indicate the reported pertussis cases calculated from the two-age380

group model.381

Finally, the noisy state space model of the two-age group pertussis particle-filtered transmission model is382

the combination of the base model of the deterministic compartmental epidemiological model in Equations383

(4) and the adjusted stochastic parts in Equations (15), (18) and (19) (Figure 3). Readers interested in the384

full mathematical equations of the state space model, values of parameters, and initial states can refer to385

Appendix D.386

32-age group population structure state space models. In this paper, we have explored two pertussis particle387

filtering models with 32-age group population structure – with the unbalanced contact matrix introduced by388

[16] (Equation (8)) and re-balanced contact matrix (Equation (9)) – taking the deterministic epidemiological389

model of Equation (4) with n = 32 as the base model. As in the state space models above, we also390

incorporated three stochastic elements within the 32-age group state space models – the new infectious391

occurrence process, the contact process between susceptibles and infectives, and the infected case reporting392

process (Figure 4).393
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Figure 4: The mathematical structure of the particle filtering age-structured model with 32 age groups.

Similar to the aggregate and two-age group population state space models introduced above, we con-394

sider the new infectious individuals occurrence processes follows the Poisson process, and the mathematical395

equations are listed as follows:396

AIi =
Poisson(λiSi∆t)

∆t
1 ≤ i ≤ 32

AImi
=
Poisson(λiR1i∆t)

∆t
1 ≤ i ≤ 32 (20)

AIwi
=
Poisson(λiR2i∆t)

∆t
1 ≤ i ≤ 32

Similarly to those previous models, in the stochastic process of reporting the pertussis cases in the 32-age397

group state space models, we consider the reporting rate of each age group to be the same, denoted as Cr,398

the logit of Cr undergoing Brownian Motion. The resulting mathematical equations related to the reporting399

process are listed as follows:400

d(logit(Cr)) = d(ln(
Cr

1− Cr
)) = srdWt
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Iki =

∫ k

k−1

(AIi + ρmAImi
+ ρwAIwi

) dt 1 ≤ i ≤ 32 (21)

Irki = IkiCr 1 ≤ i ≤ 32

where Iki represent the new states incorporated into the state space model to capture the accumulative401

number of pertussis cases from time k−1 to time k for age group i, and dynamic variable Irki is the estimated402

occurrence of reported cases calculated by the state space model for age group i.403

Then, in characterizing the mixing process between susceptibles and infectives, we separately implement404

the 32-age group state space model with the un-balanced contact matrix introduced in [16] and re-balanced405

contact matrix.406

In the un-balanced contact matrix method introduced in [16], we consider the parameter of l1/
√
D to407

evolve stochastically in the state space model (i.e., the natural logarithm of l1/
√
D undergoes Brownian408

Motion). Then, a vector represents how the contact rate of each successive age group compares with that of409

the first age group; specifically, fli represents the ratio between the contact rate for the first age group and410

the contact rate of age group i. This vector is then used to calculate the parameter of li/
√
D for each age411

group i. fli is calculated from the value assumed for contact rate of all age groups, which are taken from412

[16]. The value of fli is (1, 6.03, 8.03, 10.03, 12.04, 15.06, 20.08, 28.10, 47.18, 47.18, 47.18, 47.18, 47.18,413

25.09, 25.09, 25.09, 25.09, 25.09, 15.06, 15.06, 15.06, 15.06, 15.06, 15.06, 15.06, 15.06, 10.03, 10.03, 5.02,414

5.02, 5.02, 5.02). Moreover, another vector fpi is incorporated to represent the ratio of the transmission415

probability of pertussis of each age group compared to the first age group in the state space model. The416

original mathematical model of [16] lacks a dedicated transmission probability parameter. However, one417

would expect transmission probabilities to different among different age groups. For example, transmission418

probability from a young child is usually higher than that of the adults due to hygienic disparities. The419

mathematical equations of the stochastic mixing process are listed as follows:420

d(ln
l1√
D

) = slD1
dWt

li√
D

= l1 ∗ fli 2 ≤ i ≤ 32 (22)

λi = fpi

n∑
j=1

lj li
D

Ij + ρmImj + ρwIwj∑n
j=1Nj

1 ≤ i ≤ 32

D =
n∑
k=1

lkNk/
n∑
k=1

Nk

The value of fpi in the 32-age-group models of pertussis in this paper is (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,421

1, 1, 1, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05). We assume that422

the transmission probability of individuals under 15 years old are the same and is the highest, while the423

transmission probabilities of individuals in the age groups from 15 to 19 years and over 20 years are half and424

1/20 compared to the individuals under 15 years, respectively. The population of each age group – which is425

collected from the age pyramid of Saskatchewan [19] and is assumed to be invariant – is (3349, 3330, 3320,426

9950, 19843, 19733, 19647, 19571, 19486, 19394, 19289, 19161, 19002, 18809, 18577, 18318, 18033, 17724,427

17386, 17021, 16629, 16218, 15802, 73256, 65935, 117771, 97621, 70964, 44313, 19332, 4377, 387). To let the428

arrival rate of newborns in each pertussis particle filtering model per unit time (here, month) be the same429

across all models, the yearly birth rate of the 32-age-group models are assumed as (0, 0, 0, 0, 0, 0, 0, 0, 0,430

0, 0, 0, 0, 0, 0, 0, 0, 0, 0.03, 0.03, 0.03, 0.03, 0.03, 0.1, 0.1, 0.1, 0, 0, 0, 0, 0, 0). This is done to ensure the431

new born population each year are the same in all the models. The values of birth rates are informed from432

the [20]. Readers interested in a complete characterization of the mathematical equations of 32-age group433

state space model with an un-balanced contact matrix [16] and the initial values of all states can refer to434

Appendix D.435

In the re-balanced contact matrix method, to represent the stochastic mixing process, we assume that436

the changes of the logarithm of l1p1 (the effective contact rate of the first age group) undergoes a random437
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walk according to a Wiener Process (Brownian Motion) [25, 26, 8]. The logit of the six mixing parameters438

(εi, 1 ≤ i ≤ 6) are similarly treated as evolving according to a Wiener Process. The reason that the total439

number of mixing parameters is 6, instead of 32 – as might be expected if there are a mixing parameter440

related to each age group each – lies in the fact that the yearly empirical datasets could only be split into441

6 age groups – less than 1 year, 1 to 4 years, 5 to 9 years, 10 to 14 years, 15 to 19 years and 20 years and442

older, as is characterized in detail below. Finally, the force of infection for the the 32-age group structured443

pertussis particle filtering model with a re-balanced contact matrix is given as follows:444

lijfij = li

(
εj
εi

)0.5
[

(1.0− εi)δij + εi

(
Nj lj∑n
j=1Nj lj

)]
1 ≤ i ≤ 32, 1 ≤ j ≤ 32

λi = pi

n∑
j=1

lijfij(Ij + ρmImj + ρwIwj)

Nj
1 ≤ i ≤ n (23)

d[ln(l1p1)] = sl1dWt

lipi = l1p1 ∗ fli ∗ fpi 2 ≤ i ≤ n

d(logit(εi)) = d(ln(
εi

1− εi
)) = sεidWt 1 ≤ i ≤ 6

where fli and fpi are the ratios of the contact rate and transmission probability between age group i and445

the first age group, respectively. Both the values of fli and fpi are the same as in the un-blanced contact446

matrix model. It is notable that we treat the effective contact rate (lipi) – the multiplication of the contact447

rate and the transmission probability of age group i as a single parameter in this re-balanced model, to448

be simplify and consistent with the previous models. Thus, we use Nj ljpj/
∑n
j=1Nj ljpj to approximately449

represent the value of Nj lj/
∑n
j=1Nj lj during implementing the model. Readers interested the complete450

mathematical equations of the 32-age group state space model with a re-balanced contact matrix [16] and451

the initial values of all states can refer to Appendix D.452

2.2.2. Likelihood function453

In the condensation method version [23] of the particle filtering method [22], the weight update rule for454

a particle given a new observation yk involves multiplying the previous weight by the value of the likelihood455

function p(yk|xk), where the latter represents the probability of observing the empirical data (denoted as456

yk) given the particle state xk at time k. In this paper, following several past contributions [10, 14, 8, 27],457

we select the negative binomial distribution as the basis for the likelihood function. We treat the likelihood458

of observing yk individuals at time k given an estimated count of incident individuals from the model ik as459

follows:460

p(yk|ik) =

(
yk + r − 1

yk

)
pyk(1− p)r (24)

where yk is the empirical data (reported pertussis cases) at time k; p = ik/(ik + r) represents the461

probability that a given reported case is in fact a true incident case, and r is a dispersion parameter. In all462

scenarios reported in this paper, the value of r is chosen to be 10.463

Aggregate model. Because the aggregate particle filtering model lacks the capacity to distinguish between464

individuals with different age groups as necessary to compare to the yearly age-stratified reported values, the465

measured data for that model consists of a one-dimensional vector giving the reported cases for successive466

months. The likelihood function in the aggregate model can then correspondingly be calculated by the value467

of p(ymk|Irk), where ymk is the empirical data as given by the monthly reported measles cases at time k,468

and Irk is the expected reported cases as calculated by the particle filtering model for each particle.469

Age structured model. The weight update rule in the age structured model is similar to that in the aggregate470

model, with the exception of the updates associated with the close of each year. Specifically, we take the471

likelihood function at the close of the last month (December) of each year as the product of the likelihood472
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functions as formulated for each empirical dataset – including both monthly pertussis reported cases across473

the whole population and the yearly reported cases related to each of the reported age groups considered.474

The likelihood formulation of age structured models is as follows:475

LAgeStructuredModel = Lmonth ∗
n∏
i=1

Lyearlyi

Lmonth = p(ymk|
n∑
i=1

Irik)

Lyearlyi =

{
1, if (k mod 12) 6= 0

p(yyik|
∑k
i=k−12 Irik), if (k mod 12) = 0

(25)

where Lmonth is the likelihood function based on the monthly empirical data across the total population,476

Lyearlyi is the likelihood function based on the yearly empirical data for group i, yyik is the yearly empirical477

data for age group i, and Irik is the reported pertussis cases of age group i at time k.478

In the two-age group particle filtering model, we have three empirical datasets – the monthly reported479

pertussis cases across the whole population and yearly reported cases for each of the two age groups (n = 2480

in Equations (25)). In the 32-age group particle filtering models, we have employed seven empirical datasets481

– the monthly reported pertussis cases across the whole population and six datasets of yearly reported cases482

(n = 6 in Equations (25)). As noted previously, the yearly empirical datasets could only be split into 6 age483

groups.484

2.2.3. Proposal distribution485

The Condensation Algorithm [28, 23] is applied in this project to implement the particle filter model. It486

is the simplest and most widely used proposal algorithm, making use of the prior as the proposal distribution487

[23, 22].488

2.3. Empirical data resources489

2.3.1. The surveillance data490

This paper benefits from the fact that pertussis is formally classified as a notifiable illness for the mid-491

western Canadian province of Saskatchewan. Pertussis reporting data for Saskatchewan are used as empirical492

data for the particle filtering models. These data are public aggregate data obtained from the Government493

of Saskatchewan’s “Annual Report of Department of Public Health in the Province of Saskatchewan” [20].494

This paper employs two categories of datasets drawn from that report – monthly reported cases aggregated495

across the entire population, and yearly reported cases in each age group. The latter reflects the fact that496

in the yearly empirical datasets, the annual reported cases are split into different age groups. Within this497

dataset, age stratification is inconsistent; as a result, the splitting in some years fails to precisely match498

stratification of the age groups in the models. For these cases, we proportionally split the yearly empirical499

reported cases into overlapping age groups within the model. Readers interested the detailed introduction500

of age deviation of the empirical data can refer to Appendix E.501

This study employs pertussis reported cases in Saskatchewan specifically during the pre-vaccination era.502

The monthly empirical data extends from Jan. 1921 to Dec. 1956, with the dataset offering a total of 432503

records. Reporting of age-specific data initiated in 1925, and continued through 1956. Every record contains504

three features – date, reported cases and population size [19]. To make them consistent with the population505

size of the dynamic model – the average population from 1921 to 1956 (863,545) – the reported cases are506

normalized to the same population size as the model, as shown in Figure 5, yielding estimated incidence507

rates rather than incident case counts. It can be readily appreciated that the time series demonstrate the508

classic patterns of waxing and waning incorporating both stochastic and regular features characteristic of509

many childhood infectious diseases in the pre-vaccination era.510
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Figure 5: The monthly reported pertussis cases in Saskatchewan from 1921 to 1956 normalized by the population
employed in the model (863,545)

2.3.2. The demographic data511

The demographic parameters play a significant role in the models, particularly the age structured variants.512

The parameters related to the population are abstracted from the empirical population of Saskatchewan from513

1921 to 1956 [19]. The empirical demographic data indicate that the total population of Saskatchewan does514

not show drastic fluctuation [19] over the year range from 1921 to 1956. During these years, the empirical515

population lie in the interval from 757,000 to 932,000. The population of Saskatchewan from 1921 to 1956 of516

each age is depicted in Figure 6. Thus, we let the model population constantly stay in 863,545, which is the517

average reported population over the years 1921 to 1956 within the Saskatchewan age pyramid [19]. It bears518

emphasis that for simplicity, we assumed an equilibrium in the population structure – the total population519

and population among each age group (in the age-structured models) – remain invariant. Similarly, the520

model assumes fixed values of the population in each age group, according to the previously noted average521

population.522

Figure 6: The age-specific and overall population of Saskatchewan from 1921 to 1956.

2.4. Introduction of the aggregate population model with calibrated parameters523

To evaluate the performance of the particle filtering model when compared to the traditional calibration524

method, combining with the empirical data, we further constructed a calibration model with the aggregate525

population using the deterministic epidemiological compartmental model of Equation (1). To be consistent526

with the particle filtering aggregate model, the parameters and initial values sampled in the particle filtering527

model are estimated in the calibration model, which are the effective contact rate β, reporting rate Cr528

and the initial value of the stocks of S, I and R1. In this calibrated model, the values of the parameters529

obtained from calibration against the empirical dataset are listed below. The initial value estimated from530

the calibration process in class S, I and R1 are 19420, 500, 9960. The value of the effective contact rate531

(β) is 56.692; it bears emphasis that this value incorporates both a rate of contact and the probability of532
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transmission. The calibrated value of the reporting rate of pertussis is 0.01. The other parameters are the533

same as the particle filtering models.534

2.5. Classifying outbreak occurrence535

The pertussis particle filtering models – combining the particle filtering algorithm and the compartmental536

models with empirical data – are capable to estimate and predicting the full (continuous) model state537

over time. Moreover, in this paper, on the basis of having particle filtered up to a certain month, we538

further perform classification outbreak (outbreak vs. non-outbreak) analysis based on the predicted results539

(in the next time unit – month) of the particle filtered models. Referred from our previous contribution540

[8], the function mapping from the continuous predicted results of particle filtering models – predicted541

reported pertussis cases in the next month – to dichotomous categories of outbreak and non-outbreak can542

be represented as follows [23, 8]:543

zk = f(I
(i)
rk ) (26)

where

{{
I
(i)
rk

}Ns

i=1

}Tf

k=1

indicates the matrix of reported cases of pertussis predicted by the particle filtering544

model of particle i (1 ≤ i ≤ Ns) at time k (1 ≤ k ≤ Tf ). Tf is the total running time of the model.{zk}
Tf

k=1 is545

the vector of dichotomous predicted classes – zk ∈ {0, 1}, where 0 indicates non-outbreak, and 1 indicates546

outbreak. The value Irk is generated by the particle filtering models. Specifically, Irk equals
∑n
i=1 Irik (where547

Irik is the reported pertussis cases of age group i at the time k) in the particle filtering models introduced548

above.549

Two processes are then used to perform classification analysis of the results from the particle filtering550

models [8]. In the first process, we define a threshold (θ) – mean plus 1.5 times the standard deviation of the551

empirical monthly reported cases, above which that particle is considered as positing an outbreak. In the552

second process, we define a threshold of the fraction (θk) of particles required to posit an outbreak at time553

k for us to consider there as being an outbreak. Then, the vector determining whether there is an outbreak554

of measles in each month – zk – is calculated. We further denote {ylk}
Tf

k=1 as the binary empirical vector555

of whether a pertussis outbreak indeed obtained at time k, ylk ∈ {0, 1}. The calculation method of ylk is556

similar to that of each particle. If the count of measles reported cases is greater or equal to the threshold557

θ, the related element in vector ylk is labeled to be outbreak (the value is 1). Otherwise, a non-outbreak is558

assumed (the value is 0).559

Finally, to summarize the performance of the classifier, we employ as a metric the area under the Receiver560

Operating Characteristic (ROC) curve. Readers interested in additional detail are referred to our previous561

contribution utilizing a comparable methodology for measles [8].562

3. Results563

3.1. Results of models incorporating empirical datasets across all timeframe564

Recall that to explore the predictive performance of particle filtering in different compartmental pertussis565

models, four distinct particle filtering models have been built in this research – the aggregate particle566

filtering pertussis model (denoted as PFaggregate), the age-structured particle filtering model with 2 age567

groups (denoted as PFage 2), the age-structured particle filtering model with 32 age groups with the original568

Hethcote contact matrix (denoted as PFage 32 Hethcote), and the age-structured particle filtering model with569

32 age groups with the re-balanced contact matrix (denoted as PFage 32 rebalanced). In each of the four570

particle filtering models, 3000 particles are used in the particle filtering algorithm; for clarity in exposition, we571

sampled the same number when generating the plots of the 2D histogram and for calculating the discrepancy.572

To compare the accuracy of a particle filtered model against that of a traditional model of pertussis calibrated573

against comparable data, we have further built a calibrated model of the aggregate population, henceforth574

denoted Calibrated.575

By comparing the discrepancy – the root mean square error (RMSE) between the model results and576

the empirical data – associated with each model, we sought to identify the model offering the greatest577

predictive validity. We then use the most favorable model to perform prediction and intervention analysis.578

19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2019. ; https://doi.org/10.1101/598490doi: bioRxiv preprint 

https://doi.org/10.1101/598490
http://creativecommons.org/licenses/by/4.0/


Table 1: Comparison of the average discrepancy (RMSE) for the calibrated model and all four particle filtered
pertussis models, considering empirical data across all observation points; parentheses give the 95% confidence
intervals.

Model Monthly Yearly in Month Total
Calibrated 34.2 NONE NONE
PFaggregate 20.9 (20.0, 21.9) NONE NONE
PFage 2 19.9 (18.8, 21.0) 21.0 (19.2, 22.7) 40.9 (38.1, 43.6)
PFage 32 Hethcote 20.6 (20.1, 21.2) 25.8 (23.0, 28.6) 46.4 (43.1, 49.7)
PFage 32 rebalanced 19.8 (19.5, 20.1) 28.1 (24.2, 31.9) 47.9 (43.9, 51.9)

Each of the five particle filtering models was run 5 times (the random seed generated from the same set).
Shown here are the average and 95% confidence intervals (in parentheses) of the mean discrepancy for each
model variant.

Figure 7: Boxplot of monthly and yearly discrepancy of all models at monthly observation points, considering
empirical data across all observation points. “Calibrate” indicates the calibration model with aggregate population
structure; “PF a1” indicates the particle filtering model with aggregate population structure; “PF a2” indicates the particle
filtering model with 2 age groups; “PF a32H” indicates the particle filtering model with 32 age groups and the contact matrix
introduced in [16]; “PF a32R” indicates the particle filtering model with 32 age groups and the re-balanced contact matrix. “ M”
indicates the discrepancy of the model comparing model-based monthly results with the monthly empirical data – the pertussis
reported cases among all population; “ Y” indicates the sum of discrepancy (of each age group) of the models comparing
model-based yearly results with the yearly empirical data – the pertussis reported cases classified into age groups and having
adjusted the unit to Month by dividing by 12. It is also notable that the dot in the boxplot indicates the mean value, while the
horizontal line indicates the median value.
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To assess model results, each of the four particle filtering models was run 5 times with random seeds579

generated from the same set. We calculated the average and 95% confidence intervals of the mean discrepancy.580

Table 1 displays the average discrepancies of the four pertussis particle filtering models and the calibrated581

deterministic pertussis compartmental model, where the discrepancy considers the entire timeframe. These582

results suggest that particle filtering models significantly improve the predictive accuracy beyond what is583

achieved via calibration. It is notable that both the calibrated deterministic model and the aggregate particle584

filtering model only offer monthly average discrepancy, because the yearly observations are stratified by age,585

but age stratification absent in both such models. Table 1 indicates that the particle filtering models are586

significantly more accurate than the calibrated model – the average discrepancies of the particle filtering587

models are significantly lower than those for the calibrated deterministic model. Moreover, although the588

monthly average discrepancies among the four particle filtering models with different population structure589

and contact matrix structure are quite close, the particle filtering models PFage 2 and PFage 32 rebalanced590

exhibit smaller average discrepancies. With respect to the yearly average discrepancies, Table 1 shows that591

the age-structured model with two age groups offers better predictive performance than the model with 32 age592

groups; as noted, the aggregate model lacks the age stratification required to calculate yearly discrepancies.593

It is notable that the total number of the yearly empirical datasets against which the calibration is assessed594

is different between the age-structured models with 2 age groups (which is compared with 2 yearly empirical595

datasets) and that with with 32 age groups (which is compared with 6 empirical yearly datasets). The yearly596

average discrepancies listed in Table 1 are the sum of the average discrepancy across each empirical dataset.597

Thus, this difference may contribute to the result that the yearly average discrepancies of the model with 32598

age groups are greater than the model with 2 age groups; at the same time, this effect will tend to be limited599

by the fact that both the model and the empirical values will tend to have smaller counts when applied to a600

greater number of age groups, yielding a smaller per-age-group discrepancy. On balance, we chose to employ601

the particle filtering model with two age groups as the minimum average discrepancy model to explore the602

performance of pertussis outbreak prediction.603

Figure 7 shows a boxplot of the distribution of discrepancies among the calibrated model and the four604

particle filtering models, where a given box in the boxplot summarizes monthly discrepancy estimates for605

a given model, where those discrepancies are considered over different points in time. Each of the particle606

filtering models was run 5 times (with the random seed being generated from same set). Then the average607

monthly and yearly discrepancy among these five runs at each observation time between the particle filtering608

models and the empirical data are recorded for the boxplot. Both the monthly and yearly (adjusted to units609

of one Month by dividing by 12) distributions of the discrepancies of each of the age structured models610

are plotted in Figure 7. This boxplot also indicates that when considered over time, the the discrepancies611

of all the particle faltering models tend to be smaller than for the calibrated model, although there are612

similar median discrepancy values. More notable yet is the fact that the discrepancies associated with the613

calibrated model are significantly more variable than those for the particle filtered models. This suggests614

that particle filtering improves the consistency of the model’s match against empirical data, when compared615

to a traditional deterministic model with calibrated parameters. Finally, it bears note that the datasets616

of the discrepancy of the model PFage 2 have a particularly narrow distribution, especially when judged in617

terms of yearly discrepancy.618

Figure 8 compares the output of the calibration model and the empirical data. It indicates that the619

deterministic model even with parameters calibrated against the entire scope of data encounters difficulties620

in tracking oscillations associated with waning and waxing of pertussis almost across the entire model time621

horizon, reflecting the approach of the deterministic model towards a stable equilibrium. These results622

indicate that the particle filtering models considered here can not only decrease the discrepancy between623

model results and the empirical data, but can further track the oscillation of outbreaks of pertussis.624

Taken together, the results shown in Figure 7 and Figure 8 suggest that incorporating particle filtering625

in the compartmental model of pertussis could enhance simulation accuracy and support more accurate626

outbreak tracking.627

Figure 9 presents the posterior results of the pertussis particle filtering model with aggregate population628

structure over the entire timeframe. For this diagram at time t, the results of the particle filtering model at629

time t are sampled according to the weight of all particles following the update to those weights resulting630

from incorporating the empirical data from time t. Those time-specific values are then plotted; the values of631
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Figure 8: Reported pertussis cases predicted by the calibration model (monthly).

Figure 9: 2D histogram posterior result over the total timeframe for the aggregate particle filtering pertussis
model. The posterior result is sampled following weight updates in light of observations of empirical data arriving at each unit
time.

Figure 10: 2D histogram prior result over the total timeframe for the aggregate particle filtering pertussis
model. The prior result is sampled before the weight updates in light of observations of empirical data arriving at each unit
time.
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(a)

(b)

Figure 11: 2D histogram posterior result over the total timeframe of the two-age stratified pertussis model. (a)
the monthly particle filtering result summed over the entire population. (b) the yearly particle filtering result for the child (top)
and adult (bottom) age groups.
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(a)

(b)

Figure 12: 2D histogram posterior result over the total timeframe of the age structured model of 32 age groups
with the Hethcote contact matrix. (a) the monthly particle filtering result summed over the entire population. (b) the
yearly particle filtering results of each age group of empirical datasets; age groups are successively older from top to bottom.
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empirical data points are shown in red, while the sampled posterior distribution of particle filtering model632

are shown in blue. The blue color saturation indicates the relative density of sampled points within a given633

2D bin. Figure 9 demonstrates that most of the empirical data points are located in or near the high density634

region of the posterior distribution of the particle filtering model. The results shown in that figure further635

indicate that the particle filtering model has the capability to track the outbreak of pertussis over time,636

especially compared with the calibrated model whose results are shown in Figure 8. It bears emphasis that637

the particle filtered results can follow the patterns of empirical data as they arrive; this capacity to update638

its estimate of model state – both latent and observed – in with new arriving data is central to the function639

of particle filtering. By contrast, calibration lacks a means of updating the estimate of the model state over640

time, and is instead relegated to estimating parameter values, rather than the values of the state at varying641

points in time.642

Figure 10 shows the prior results of the pertussis particle filtering model with aggregate population643

structure for the entire timeframe. For the prior diagram, the results are sampled before the weight update644

step triggered by arrival of an empirical data point. Compared with the posterior results shown in Figure 9,645

the prior values of sampled particles of Figure 10 are distributed over a wider range. This difference in646

dispersion indicates that the weight update process of particle filtering algorithm in this paper has the647

capability to use an empirical datum to concentrate the distribution of particles in the state space of the648

particle filtering model into a tighter range offering greater consistency with the empirical datum.649

Figure 11 displays the 2D histogram plots comparing both the monthly and yearly empirical datasets650

(on the one hand) with the distributions of samples from the posterior distribution of incident cases from651

the age structured pertussis particle filtering model containing 2 age groups (denoted as PFage 2) (on the652

other). This figure demonstrates that the model PFage 2 is capable of tracking and simulating outbreaks653

of pertussis, as evidenced by the fact that most of the monthly and yearly empirical data (shown in the654

red dashes) in each month are located in or near the high density region of the sampled distribution of the655

particle filtering model (shown in blue in the 2D histogram plots).656

Figure 12 displays the 2D histogram plots comparing both the monthly and yearly empirical datasets (on657

the one hand) with the sampled posterior distribution of incident cases from the age structured pertussis658

particle filtering model with 32 age groups and the Hethcote contact matrix (denoted as PFage 32 Hethcote)659

(on the other). It is notable that the total number of the yearly empirical datasets employed is 6. This figure660

also demonstrates that the model PFage 32 Hethcote is capable of tracking and simulating the outbreaks of661

pertussis, as reflected in the fact that most of the monthly and yearly empirical data for each observation662

point are located in or near the high density area of the results of the particle filtering model.663

Figure 9, Figure 11 and Figure 12 represent the 2D histogram posterior result of all the particle filtering664

models, except for the age-structured model of 32 age groups with a re-balanced contact matrix. Results665

are omitted for this final model as they are highly similar to those for the 32-age-group model using the666

Hethcote contact matrix, which is itself shown in Figure 12. The 2D histogram plots shown indicate that667

both the age-structured particle filtering models and the aggregate population particle filtering model have668

the capability to closely track the outbreak pattern of pertussis. The results of the models could match the669

empirical datasets quite well, including both monthly empirical dataset and yearly empirical datasets. In670

contrast to the calibrated model whose results are shown in Figure 8, the particle filtering models are capable671

of localizing the model’s prediction of empirical data near the empirical data, as achieved by concentrating672

the distribution of particles across the underlying state space. Although the results in Table 1, Figure 7 (for673

discrepancy), Figure 9, Figure 11, and Figure 12 (for posterior distribution) suggest that all four pertussis674

particle filtering models are capable of tracking and estimating the pertussis outbreaks, in the interest of675

brevity of exposition, we selected the minimum discrepancy model – the age-structured particle filtering676

pertussis model with 2 age groups – to perform the prediction and intervention analysis below.677

3.2. Prediction of outbreaks with the minimum discrepancy model678

To assess the predictive capacity of the pertussis particle filtering models in anticipating outbreaks, we679

performed out-of-sample prediction experiments. Informally, each such experiment examines the capacity680

of the model to project results into the future, having considered data only to some “current” time. That681

is, the model is particle filtered so as to incorporate data only to up to – but not including – a “Prediction682

Start Time” (T ∗), and then begins projecting (predicting) forward, starting at T ∗. More specifically, in683
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this process, the weights of particles will cease updating in response to observations at time T ∗; following684

that point, all of the particles run without new empirical data being considered. In this paper, all of the685

prediction experiments are run for 4 years following the “Prediction Start Time” T ∗. To evaluate the686

predictive capacity of the model, we examined the effects of changing the prediction start time T ∗ so as to687

pose different archetypal types of prediction challenges. It is notable that the minimum discrepancy model –688

the age structured model with 2 age groups where the child age group represents children in the first 5 years689

of their life, and incorporating both the monthly and yearly empirical datasets, as identified in the previous690

section – is employed to perform all of these experiments.691

(1) Prediction started from the first or second time points of an outbreak.692

(2) Prediction started before the next outbreak.693

(3) Prediction started from the peak of an outbreak.694

(4) Prediction started from the end of an outbreak.695

(a)

(b)

Figure 13: 2D histogram depicting prediction using the minimum discrepancy model from the first or second
time points of an outbreak. (a) prediction from month 190. (b) prediction from month 269.

Figures 13–16 display the prediction results of these situations with respect to the monthly 2D histogram696

of population-wide reported case counts. In the 2D histogram plots of Figures 13–16, the empirical data697

having been considered in the particle filtering process (i.e., incorporated in training the models) are shown698

in red, while the empirical data considered in the particle filtering process (and only displayed to compare699

with model results) are shown in black. The vertical straight line labels the “Prediction Start Time” (T ∗)700

of each experiment.701

These prediction results suggest that the pertussis particle filter model offers the capacity to probabilisti-702

cally anticipate pertussis dynamics with a fair degree of accuracy over a year or so. From the 2D histogram703

plots, empirical data lying in the projection interval after the prediction start time – and thus not considered704

by the particle filtering machinery – mostly lie within the high-density range of the particles. Reflecting the705

fact an ability to accurately anticipate a high likelihood of a coming outbreak could offer substantial value706
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(a)

(b)

Figure 14: 2D histogram depicting prediction using the minimum discrepancy model from the peak of an
outbreak. (a) prediction from month 176. (b) prediction from month 233.
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(a)

(b)

Figure 15: 2D histogram depicting prediction using the minimum discrepancy model from the end of an outbreak.
(a) prediction from month 209. (b) prediction from month 296.
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(a)

(b)

Figure 16: 2D histogram depicting prediction using the minimum discrepancy model prior to the next outbreak.
(a) prediction from month 99. (b) prediction from month 216.
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for informing public health agencies with accurate predictions of the anticipated evolution of pertussis over707

coming months, the next section formally evaluates the performance a simple classifier as to whether the708

next month will be subject to an outbreak or not, where that classifier uses a very simple prediction scheme709

constructed atop the particle filter model.710

3.3. Prediction of classifying outbreak occurrence of the minimal discrepancy model711

Beyond assessing the use of particle filtering models for predicting forward pertussis transmission more712

generally, we also used the lowest discrepancy particle filter pertussis model (PFage 2) to dichotomously713

predict occurrence of a pertussis outbreak within the next month.714

Figure 17 displays an evaluation of the predictive performance in the form of an ROC curve. The Area715

Under the Curve (AUC) of the ROC curve is 0.913, suggesting that it is possible to achieve both high716

specificity and high sensitivity. Figure 18 shows the boxplot of residuals (difference between predicted model717

result and empirical data) of sampled particles (by weight) at each time point where empirical data comes718

in (each month). Two points bear emphasis. Firstly, these results depict prior model predictions – that719

is, those predicted by the model before the new data is observed. Secondly, Figure 18 excludes the first 10720

months (empirical data points) of the time horizon, during which the particle filtering model is not stable721

enough due to insufficient incorporation of empirical data. Figure 18 indicates that for results of the next722

time point (month in this paper), the prior prediction of the particle filtering model are quite close to those723

of the empirical data – although the empirical data at each predicted time point are not yet incorporated to724

ground the model.725

Figure 17: ROC curve of the binary outbreak classifier of the minimum discrepancy model.

3.4. Intervention with the minimum discrepancy model726

The capacity of particle filtering to accurately estimate (sample from) the latent state of a pertussis model727

makes this technique capable of both estimating the entire latent state and using that estimation to project728

patterns of pertussis spread and waxing and waning of incidence in the near term, and to anticipate outbreak729

occurrence. The capacity to perform such state estimation within a mechanistic model also supports particle730

filtering models in more accurate simulation of the tradeoffs between intervention strategies, despite their731

counterfactual character.732

In this section, we have implemented several experiments to simulate stylized public health intervention733

policies, based on the minimum discrepancy particle filtering pertussis model identified above. The stylized734

intervention strategies are characterized in an abstract way for demonstration purposes, and are typically735

performed before or at the very beginning of an outbreak. For simplicity, we examine them as a historical736
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Figure 18: Boxplot of the residuals of results of prior prediction by sampled particles of the minimum discrepancy
model.

counterfactual that takes place at a certain historic context. Moreover, to support easy comparison with the737

baseline prediction results of the minimum discrepancy model absent any interventions, all of the intervention738

strategies are simulated starting at the start month of an outbreak (month 269) in this project. Moreover,739

in order to appropriately characterize how such techniques could be employed in public health scenario740

planning, we assume here that the start month of the intervention (month 269) is the “current time” in the741

scenario – that we wish to asses the effects of that intervention considering only the data available up to but742

not including month 269, and simulate the results of the intervention forward from that point. The baseline743

prediction result of the minimum discrepancy model absent any interventions is shown in Figure 13 (b). We744

examine below the impact of two stylized intervention policies – hygeine-enhancing and vaccination.745

Figure 19: 2D histogram of model-based projections of pertussis incident case counts when simulating a hygeine-
enhancing intervention during a pertussis outbreak. This is realized by decreasing the contact rate by 20%.

Figure 19 and Figure 20 display results from simulation of hygeine-enhancing intervention strategies [29]746

whose effects are characterized as decreasing the contact rate parameter by 20% and 50% when compared747

to its pre-intervention value, respectively. Similarly to the 2D histogram plot of the baseline prediction748

result shown in Figure 13 (b), the red dots represent the empirical data incorporated into the particle749

filtering model (here, up to just prior to the point of intervention); by contrast, the black dots represent750

empirical data not incorporated in the model, but presented for comparison purposes. It bears emphasis that751

because the interventions being characterized are counterfactual in character – i.e., did not in fact take place752

historically – the empirical data shown in black reflect the baseline context, which lacked an intervention753

of the sort simulated here. By comparing the hygeine-enhancing intervention results (see Figure 19 and754
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Figure 20: 2D histogram of model-based projections of pertussis incident case counts when simulating a hygeine-
enhancing intervention during a pertussis outbreak. This is realized by decreasing the contact rate by 50%.

Figure 21: 2D histogram of model-based projections of pertussis incident case counts when simulating an
outbreak-response immunization campaign. This is realized by characterizing a stylized elevated vaccine-induced protec-
tion level among 20% of the population.

Figure 22: 2D histogram of model-based projections of pertussis incident case counts when simulating an
outbreak-response immunization campaign. This is realized by characterizing a stylized elevated vaccine-induced protec-
tion level among 50% of the population.

Figure 20) with the baseline model result without intervention shown in Figure 13 (b) and the empirical data755

during the intervention period (the black-markers indicating historic data points lying after the triggering756

of the intervention, and not incorporated into the particle filtering model), we can see that, although the757

interventions are implemented in a stylized fashion, by virtue of the particle filter’s ability to estimate the758

underlying epidemiological state at the point of intervention through the transmission model, the particle759

filtered pertussis model is capable of using the estimated latent state to serve as the basis for probabilistically760

evaluating pertussis related intervention policies.761

To simulate an immunization intervention during a pertussis outbreak, a vaccination parameter is in-762

corporated into the simulation model, so as to represent the fraction of the population whose immunity763
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status is elevated as a result of the intervention. Specifically, recall that the pertussis model characterizes a764

chain of successively higher levels of vaccine-induced protection. This parameter specifies the fraction of the765

population that should be moved from their pre-vaccination classification – as characterized by the model766

compartment in which they reside – to the compartment representing the next higher level of vaccination767

(following vaccination). Figure 21 and Figure 22 show the results of the vaccination intervention. The layout768

and organization of the 2D histogram plots of the vaccination interventions with Figure 21 and Figure 22769

mirrors that of the hygeine-enhancing plots of Figure 19 and Figure 20.770

The results of pertussis interventions demonstrate that by virtue of its ability to estimate the underlying771

epidemiological state of the model (and thus the system characterized by that model), the use of particle772

filtering with pertussis models supports evaluation of public health intervention policies to prevent or control773

pertussis outbreaks.774

4. Discussion and conclusion775

This paper contributes a new method for anticipating, tracking, controlling and preventing pertussis776

outbreak patterns by integrating a particle filtering algorithm with a mechanistic pertussis compartmental777

model and empirical incidence data. This contribution represents the first time that particle filtering has ap-778

plied to pertussis transmission dynamics, and demonstrates the great promise of this technique. The models779

examined here demonstrated a notable degree of accuracy in predicting pertussis dynamics over multi-month780

timeframes – the 2D histogram plots comparing the empirical data and samples from the posterior distri-781

butions of the particle filtering models’ projected monthly and yearly reported cases of pertussis indicates782

that the high probability density region of the model’s prediction of empirical data encompasses or lies783

near the historic data. The results of prediction analysis based on the minimum discrepancy model suggest784

that particle filtering approaches offer notable strengths in predicting of occurrence of pertussis outbreak785

in the subsequent month. Moreover, the discrepancy of the pertussis particle filtering model’s predictions786

vs. observed data is reduced by approximately 60% when compared with a traditional calibration model,787

demonstrating a significant enhancement in model prediction ability. Additionally, it bears emphasis that788

the calibrated deterministic model encounters marked difficulties in tracking the fluctuation of the outbreak789

pattern of the calibration model; by contrast, the particle filtered model is capable to tracking stochastic790

fluctuations associated with pertussis, while still mechanistically capturing the impacts of such stochastics791

on the latent underlying dynamics of susceptibles, exposed individuals, etc. Further to this point, it is of792

great significance to the success and promise of these methods that pertussis particle filtering models support793

effective estimation of the entire state of the pertussis transmission models – and thus the systems that they794

represent – during those periods when the empirical datasets are available, including latent states of strong795

interest, such as those associated with waning of natural immunity and differing levels of infection sever-796

ity. Combined with the capability to perform outbreak projections, such particle filtering models can serve797

as powerful tools for understanding the current epidemiology of pertussis in the population, for projecting798

forward evolution of pertussis spread – including occurrence of outbreaks.799

Beyond that, in a further contribution that also benefits strongly from the capacity to estimate latent800

state, this research further marks the first instance of research demonstrating the capacity to perform public801

health intervention experiments using particle filtered models.802

Despite the strengths of these contributions, there remain a number of important limitations of this work,803

and priorities for future research. We briefly comment on several below.804

This work investigated the performance of four particle filtering models, including an aggregate population805

model, a two age group-stratified population model, and 32 age group population models using – alternatively806

– a contact matrix derived from Hethcote (1997) [16] and (separately) a re-balanced contact matrix. Although807

the results of all four of these particle filtering models matched the empirical data quite well, the minimum808

discrepancy model proved to be the 2 age group age-stratified particle filtering model in which individuals809

in the child age group represent children in the first 5 years of life, and which incorporates both monthly810

and yearly empirical datasets. In this regard, it is notable that according to the mathematical deduction811

of the age structured population model introduced in [8] – and adapted to pertussis in this research –812

the model can simulate the aging rate (ci) more accurately with more age groups considered in the age-813

structured model. However, in this paper, the 32 age group particle filtering models fail to demonstrate814
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improved performance – as measured by the discrepancy of model predictions from the empirical data –815

when compared with the two age group particle filtered models. We provide below some comments on816

possible reasons. Firstly, the stochastic processes considered in both the 32 age group age-structured model817

and the two age-group stratified model are different, especially in their characterization of the stochastic818

evolution of the contact rate. Secondly, the likelihood functions employed in this project – which are captured819

as the product of negative binomial density functions across all empirical datasets and sharing a common820

dispersion parameter – may be too näıve to capture the difference between the age groups within the empirical821

datasets. Thirdly – and perhaps most significantly – as the number of age groups increase, the the state space822

dimensionality of the particle filtering models increases dramatically. This latter issue must be considered823

in light of the limitations of the particle filtering algorithm, particularly the fact that the particle filtering824

method employing the condensation algorithm may encounter problems in high-dimensional systems. In825

such systems, the probability density functions would be more involved; addressing this using the functional826

form of the likelihood functions employed may require high dispersion, due to the difficulty of representing827

the details of the multivariate likelihood function using the product of simple probability density functions.828

Research is needed into more effective multivariate likelihood function design. The relationship between the829

the nominal state space dimensionality and the number of particles required for effective particle filtering830

also merits additional research, particularly in light of observed limitations in the benefit of particle filtering831

for high dimensional models [13]. Finally, when comparing the discrepancy for distinct models, our lack of832

normalization for the count of datasets used may lead to artificially stacking the comparison against the 32833

age group model; while the 32 age group does not exhibit markedly better discrepancy against the monthly834

aggregate observations than does the 2 age group model, this consideration suggests that it may be stronger835

than the yearly discrepancy numbers would suggest.836

It is also worth emphasizing the critical role that stochastic process noise within the state space models837

plays within successful particle filtering, and the practical challenges associated with managing such noise.838

The stochastics associated incorporated into the model represent a composite of two factors. Firstly, there is839

expected to be both stochastic variability in the measles infection processes (e.g., those that are prominent for840

small incident case counts) and some evolution in the underlying transmission dynamics in terms of changes in841

mixing and the reporting rate. Secondly, incorporation of such stochastic variability into the particle filtered842

model allows for characterization of uncertainty associated with respect to model dynamics – reflecting the843

fact that both the observations and the model dynamics share a high degree of fallibility, and allowing a844

requisite variety in the distribution over particle states, such that the particle filtered model is more open845

to correction by new observations. While results in both the estimation and prediction periods are sensitive846

to the degree of stochastics involved, such model stochastics impact the particle filtered model in distinct847

distinct ways during these periods. Taking into account these influences, the investigations demonstrated848

the importance of keeping the noise in the particle filtering models controlled within a proper range, by849

tuning the parameters of diffusion coefficients in the stochastic processes related to the Brownian motion.850

The need to characterize and tune stochastic noise effectively can impose limits on the speed with which851

particle filtering models can be prepared for a new sphere of application.852

The initial values of the age-structured population models in this paper are estimated both manually853

and by the particle filtering algorithm. Specifically, the population distribution among the different age854

groups are tuned manually, while the population distribution among different compartments within a given855

age group is estimated by the particle filtering algorithm by setting the initial values of compartments in a856

proper range following a uniform distribution, but maintaining a total number of individuals for that age857

group across the compartments. Especially in building the 32-age-groups particle filtering models, much858

time and efforts is dedicated to estimation of the population distribution among the latent states.859

While application of particle filtering to pertussis dynamics is not without its challenges, the approach860

examined here demonstrates great promise for creating models that are automatically kept abreast of the861

latest evidence, for understanding the underlying epidemiology of pertussis in the population – including862

the balance of the population at varying levels of immunity – for projecting forward pertussis dynamics863

and outbreak prediction over a year’s time, and for evaluation of counter-factual interventions. The results864

of this paper – which represents both the first application of particle filtering to pertussis, the first to865

demonstrate the capacity to accurately predict pertussis outbreaks in the pre-vaccination era, and the first866

to use particle filtering to assess the tradeoff between public health applications – suggest that particle867
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filtering may represent an important element in the arsenal of public health tools to address the increasingly868

difficult challenge of controlling pertussis in the context of vaccine hesitancy and waning of both natural-869

and vaccine induced- immunity.870

5. Future work871

The growing risk of pertussis outbreaks triggered by combinations of vaccine hesitancy and waning872

dynamics from earlier generations of pertussis vaccination, has elevated the urgency and prominence of873

questions about the rate at which immunity to pertussis wanes, especially about vaccine effectiveness over874

time [30, 31, 32, 33]. We identify here two notable needs for future work responsive to such dynamics875

Firstly, there is a keen need for application of the models presented here to data and dynamics from the876

vaccination era. While vaccination elements of the models discussed here are only glancingly tapped by this877

research (in the context of demonstrating capacity to reason about the effects of a stylized immunization878

intervention), because of their incorporation into the existing model structure, extension of this work to879

vaccine-era dynamics should require only limited changes to the models involved.880

A second need relates to the fact that we choose to employ a constant value for the waning of immunity881

that is drawn from [16]. In the future, to arrive at more informed parameter estimates for models and882

to contribute to discussion concerning the empirical rate at which vaccine-induced as well as (separately)883

naturally induced pertussis immunity wanes, and drawing on the success of our past work in this area [34], we884

propose to formally estimate the value of waning immunity for the the particle filtered pertussis models from885

a posterior distribution within Particle Markov Chain Monte Carlo (PMCMC) techniques, by incorporating886

empirical data on reported pertussis cases from the vaccination era.887

These and other lines of future work offer substantial promise in extending the already strong potential888

demonstrated here for using mechanistic transmission models informed by the machine learning approach of889

particle filtering to contribute to enhancements in pertussis prevention and control by providing a tool to890

improve understanding of underlying complex epidemiology of pertussis, to anticipate pertussis dynamics in891

the population, and to rigorously assess the tradeoffs between counterfactual intervention tradeoffs in light892

of uncertainties in both model and empirical data.893

Appendix A. The introduction of mathematical models894

In this compartmental model of pertussis in the pre-vaccination era, the total population is divided into 8895

distinct epidemiological classes. Newborns enter directly into class S of fully susceptible individuals. If a fully896

susceptible individual contacts an infective individual and is successfully transmitted pertussis, this previous897

susceptible person becomes infectious and enters the class (state) I of full infectives. Infective individuals898

in state I of have full cases of pertussis, with all of the usual symptoms. When individuals recover from the899

state I of infectives, they achieve full immunity and enter state R4. In this state, they are fully protected900

and can not be infected by pertussis. However, as time goes by, their immunity wanes and they enter into a901

less strong immunity class of R3. When individuals in class R3 are exposed to an infective, they are assumed902

to return to the highest immunity class of R4 without becoming infectious. Otherwise, their immunity keeps903

fading, and they enter to the relatively lower immunity class of R2. When a person in the class of R2 is904

sufficiently (re-)exposed to an infective for transmission to occur, the infected individual enters the Iw state905

with weak infectivity. Individuals in the Iw class have the weakest infective capability to infect a susceptible.906

After they recover, the individuals in class of Iw then secure the highest immunity, (re-) entering the class907

of R4 from which they originally waned. By contrast, if people in the class of R2 are not re-exposed to the908

infectives, their immunity continues waning, and they enter the minimally immune class of R1. Similarly, if909

a person in class R1 is re-exposed to an infective, this person gets infected with mild infectivity and enters910

the class of Im. Individuals in the class of Im have a higher infectious capability compared with those in911

the class of the weak infective (Iw), but exhibit a lower infectious capability compared to the fully infective912

individuals in I. When recovered, the individuals in class Im enter the class R4 again. If the individuals913

in the class of R1 are not re-exposed, they eventually lose all of their immunity and move back to the class914

of S whence they originated at birth. Given the presence of multiple infection states (I, Iw, Im) as well915

as multiple levels of immunity (R1, R2, R3, R4), three invariants bears noting. Firstly, regardless of the916
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pre-existing level of immunity, following recovery from an infection, that individual always returns to the917

full level of natural immunity (R4). Secondly, in any of the recovered states (R1, R2, R3, R4), immunity918

continues to wane absent re-exposure. Thirdly, as the level of immunity is reduced, the severity of resulting919

infectiousness rises, with no infectiousness being possible at all from exposure in states R3 and R4.920

Appendix B. Proof of the n-square grows of the unknown parameters921

In this part, we prove that the unknown parameters grows with n-squared with the total number of age922

groups in the model. The contact matrix has been introduced, which is923 
β11 β12 . . . β1n
β21 β22 . . . β2n

...
...

. . .
...

βn1 βn2 . . . βnn

 =


l1
l2
...
ln

 ◦

f11 f12 . . . f1n
f21 f22 . . . f2n
...

...
. . .

...
fn1 fn2 . . . fnn

 (B.1)

where ◦ indicates the Hadamard (element-wise) product; the parameter of li (1 ≤ i ≤ n) is the contact924

rate of age group i. In this research, the li is known variables; the parameters of fij (1 ≤ i ≤ n, 1 ≤ j ≤ n)925

indicates the fraction of the age group j of the contact rate of the age group i.926

The fij are normally unknown. And the total number of fij is n2. However, there are two relationships927

under this method. One relationship is that the sum of the fraction to all the age groups of the age group928

(e.g. i) is 1.0. The other relationship, related to the characteristics of balance of the contact matrix, is that929

the total contacts of the age group i to the age group j should be equal to the total contacts of the age group930

j to the age group i. Based on these two relationships, two equations could be generated as follows:931

n∑
j=1

fij = 1

Nilifij = Nj ljfji

(B.2)

the total number of equations in Equation (B.2) is n+

(
2
n

)
= n+ n(n− 1)/2 = (n2 + n)/2. Finally, in932

this method of calculating the contact matrix, the number of unknown parameters is (n2−n)/2. It indicates933

that the number of the unknown parameters grows in n-squared with the total number of age groups (n) in934

the model.935

Appendix C. The mathematical deduction of the force of infection with re-balanced contact936

matrix937

In the beginning, we introduce the method of calculating the basic contact matrix which is balanced938

already and with one unknown parameters. Before introduced, we import a mixing parameter, denoted as939

ε. The mixing parameter ε determines where mixing occurs on a scale from fully associative – persons only940

contact with the individuals in the same age group (e.g. ε = 0) and random mixing – the contact among the941

total population is homogeneous (e.g. ε = 1.0). Then, the fraction of the average persons that an individual942

in age group i that contact with the persons in the age group of j, which is the parameters of fij in the943

contact matrix are represented as follows:944

fij = (1.0− ε)δij + ε

(
Nj lj∑n
j=1Nj lj

)
(C.1)

where δij is the identity matrix. And the elements in the contact matrix is lifij .945

The total contacts of age group i to age group j (Nilifij) equal the total contacts of age group j to age946

group i (Nj ljfji), in this basic contact matrix. And the only unknown parameter is ε. However, in general,947

the mixing parameter related to each age group should be different. For example, the mixing parameter of ε948

36

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2019. ; https://doi.org/10.1101/598490doi: bioRxiv preprint 

https://doi.org/10.1101/598490
http://creativecommons.org/licenses/by/4.0/


of young children in school age maybe lower than the ε of the little baby, because the children in the school949

age contacts more to their peers in the school than the other groups, while the little baby contacts more with950

their parents or care-taker than the other babies. Thus, in the next step, we expend the mixing parameter951

ε to a vector, where each element represents the mixing parameter of each related age group εi.952

Then, in this method of calculating the contact matrix with a vector of mixing parameters, the equation953

of fij is listed as follows:954

fij = (1.0− εi)δij + εi

(
Nj lj∑n
j=1Nj lj

)
(C.2)

Similarly, the elements in this contact matrix with a vector of mixing parameters are lifij . It is notable955

that the total contacts between any two age groups calculated based on this contact matrix are unbalanced.956

Specifically, the number of total contacts of age group i to age group j is Nili

[
(1.0− ε)δij + εi

(
Nj lj∑n

j=1Nj lj

)]
,957

while the number of the total contact of age group j to age group i is Nj lj

[
(1.0− ε)δji + εj

(
Nili∑n

j=1Nj lj

)]
. In958

general, the mixing parameters of any two age groups are not the same. Thus, the total numbers of contacts959

calculated by this contact matrix between any two age groups are not always the same.960

To make the contact matrix balanced, we have employed the method introduced in [21] to re-balance961

the contact matrix. A parameter, denoted as ∆ij , is imported to represent the ratio of the number of total962

contacts between any two different age groups (i 6= j) (for the same age group, the total number of contacts963

are always the same). Then, the equation of ∆ij is:964

∆ij =
Nilifij
Nj ljfji

=
εiNiliNj lj
εjNiliNj lj

=
εi
εj
, i 6= j (C.3)

Then, the main idea of re-balancing the contact matrix is to extend the vector of contact rates (the965

elements of the contact rates are denoted as li) to a new matrix of contact rates lij . The elements in the966

matrix of contact rates lij represent the number of persons in the age groups j that a person in the age group967

i could contact in average. Then, according to [21], the equations of lij and lji could be defined separately:968

lij = li∆
θ
ij = li

(
εj
εi

)θ
lji = lj∆

−(1−θ)
ij = lj

(
εj
εi

)−(1−θ) (C.4)

where θ is the re-balanced parameter.969

Because both lij and lji represent the same matrix, a relationship could be generated, which is lij = lji.970

Then, we could get the value of the parameter of θ (θ = 0.5). Substitute the value of θ (θ = 0.5) to Equation971

(C.4), the matrix of contact rate – lij could be generated as follows:972

lij = li

(
εj
εi

)0.5

(C.5)

Finally, the element of contact matrix lijfij and force of infection λi are:973

lijfij = li

(
εj
εi

)0.5
[

(1.0− εi)δij + εi

(
Nj lj∑n
j=1Nj lj

)]

λi = pi

n∑
j=1

lijfij(Ij + ρmImj + ρwIwj)

Nj

(C.6)

where pi is the transmission probability of age group i.974
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Appendix D. The state space models in Particle filter implementation975

The mathematical system dynamics models are employed as the governing equations underlying the state976

space model. Then each particle at time k, noted as X
N(i)
k , represents a complete copy of the system states977

at that point of time. Except for the basic states in the mathematical model – pure Ordinary Differential978

Equations (ODEs), models of infection transmission are often related to more complex dynamics – such as979

parameters evolving according to stochastic processes.980

In this paper, we employ the identity method introduced in the previous contribution of [8] to let some981

constant parameters in the pure mathematical models change dynamically. Specifically, if the parameter982

varies over the entire range of positive real numbers, we treat the natural logarithm of this parameter as983

undergoing a random walk according to a Wiener Process (Brownian Motion) [25, 26, 8]. Otherwise, if the984

parameter varies over the range [0,1], we characterize the logit of this parameter as also undergoing Brownian985

Motion.986

Appendix D.1. The aggregate model (n = 1)987

In the aggregate model, the individuals contact with the infectious (in the stocks of Iw, Im and I)
homogeneously. Then, three stochastic processes are considered in the implementation of the aggregate
particle filtering model. The first is the transmissible contact rate linking infectious and susceptible persons,
which is represented by the parameter β. The second is also with respect to the disease reporting process.
Specifically, a parameter – representing the probability that a given pertussis infectious case is reported Cr,
and a state Ik – calculating the accumulative pertussis infectious cases per unit time (per Month in this
project) – are implemented. The final part is the Poisson process associated with the incidence of infection.
This process reflects the small number of cases that occur over each small unit of time – ∆t (0.01 in this
model). We also treat the natural logarithm of the transmissible contact rate (denoted by β) and the logit
of Cr as undergoing a random walk according to a Wiener Process (Brownian Motion) [25, 26, 8]. It is
notable that we assume the individuals under the medium infectious (Im) and weak infectious (Iw) also have
the probability to be confirmed and reported. The rates of the medium infectious (Im) and weak infectious
(Iw) that have symptoms are also considered as ρm and ρw. Finally, the state space model of the aggregate
pertussis particle filtering model is listed as follows:

dS

dt
= Nv −AI − µS + ιR1

dI

dt
= AI − (γ + µ) I

dIm
dt

= AIm − (γ + µ) Im

dIw
dt

= AIw − (γ + µ) Iw

dR1

dt
= αR2 −AIm − (µ+ ι)R1

dR2

dt
= αR3 −AIw − (µ+ α)R2

dR3

dt
= αR4 − (λ+ µ+ α)R3

dR4

dt
= γ(I + Im + Iw) + λR3 − (α+ µ)R4 (D.1)

λ =
β(I + ρmIm + ρwIw)

N
N = S + I + Im + Iw +R1 +R2 +R3 +R4

dln(β) = sβdWt

d(logit(Cr)) = d(ln(
Cr

1− Cr
)) = srdWt
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Ik =

∫ k

k−1

(AI + ρmAIm + ρwAIw) dt

Irk = IkCr

AI =
Poisson(λS∆t)

∆t

AIm =
Poisson(λR1∆t)

∆t

AIw =
Poisson(λR2∆t)

∆t

The parameters related to the transmission of pertussis in this model are referred from the research988

of Hethcote (1997) [16]. The demographic parameters of this model are got from the Annual Report of989

the Saskatchewan Department of Public Health [20] and the age pyramid of Saskatchewan [19]. Then, the990

parameters of the pertussis aggregate state space model – Equations (D.1) are specified in Table D.2, while991

the initial values of the stocks are listed in Table D.3.992

Table D.2: Table showing the value of parameters in the pertussis aggregate particle filtering model.

Parameter Description Value Units
γ−1 mean time for infectives to recover from pertussis 21 Day
v birth rate of the total population 0.03 1/Year
µ death rate of the total population 0.03 1/Year
N total population 863,545 Person
ι−1 mean time to lose immunity from the stock of R1 to S 10 Year
α−1 mean time to lose immunity from Ri down to Ri−1 5 Year
ρm the relative infectivities of the individuals in the stock Im 0.5 Dimensionless
ρw the relative infectivities of the individuals in the stock Iw 0.25 Dimensionless
sβ the diffusion parameter of ln(β) 0.5 Dimensionless

sr the diffusion parameter of ln( Cr

1−Cr
) 0.05 Dimensionless

Table D.3: Table showing initial values of the stocks in the pertussis aggregate particle filtering model.

Parameter Value Unit
S0 Uniform[5000, 30000) Person
I0 Uniform[500, 5000) Person
Im0 1000 Person
Iw0 2500 Person
R10 Uniform[10, 10000) Person
R20 10000 Person
R30 20000 Person
R40 N − S0 − I0 − Im0 − Iw0 −R10 −R20 −R30 Person
β Uniform[5,100) Person/Month
Cr Uniform[0,0.2) Dimensionless

Appendix D.2. The age-structured model of 2 age groups (n = 2)993

The mathematical model with two age groups is employed as the base model of the state space model994

of the age-structured model with 2 age groups. Then, the pure ODEs model – mathematical model – is995

extended by several stochastic processes. Except for the similar three stochastic processes considered in the996

aggregate state space model – the infectious contact rate of the child age group (denoted as βc), the report997

rate of pertussis cases (denoted as Cr), and the Poisson process related to the incidence of the infectious – two998
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Table D.4: Table showing the value of parameters (only related to the demographic model and stochastic
processes) in pertussis two-age-groups particle filtering model.

Parameter Description Value Units
va birth rate of the adult age group 0.034 1/Year
Nc the population of the child age group 98743 Person
Na the population of the adult age group 764802 Person
ω the aging rate from child to adult age group 0.2 Dimensionless
sβ the diffusion parameter of ln(β) 0.5 Dimensionless

sr the diffusion parameter of ln( Cr

1−Cr
) 0.05 Dimensionless

sMa the diffusion parameter of ln(Ma) 0.2 Dimensionless

scc the diffusion parameter of ln( fcc
1−fcc ) 0.15 Dimensionless

Table D.5: Table showing initial values of the stocks in the pertussis two-age-groups particle filtering model.

Parameter Value Unit
Sc0 Uniform[500, 35000) Person
Sa0 Uniform[10, 10000) Person
Ic0 Uniform[30, 2500) Person
Ia0 Uniform[0, 500) Person
Imc0 50 Person
Ima0 50 Person
Iwc0 100 Person
Iwa0 100 Person
R1c0 Uniform[5, 10000) Person
R1a0 Uniform[0, 10000) Person
R2c0 10000 Person
R2a0 10000 Person
R3c0 10000 Person
R3a0 10000 Person
R4c0 Nc − Sc0 − Ic0 − Imc0 − Iwc0 −R1c0 −R2c0 −R3c0 Person
R4a0 Na − Sa0 − Ia0 − Ima0 − Iwa0 −R1a0 −R2a0 −R3a0 Person
βc Uniform[5,100) Person/Month
Ma Uniform[5,100) Dimensionless
Cr Uniform[0,0.2) Dimensionless
fcc Uniform[0,0.2) Dimensionless
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other stochastic processed are also considered. These two stochastic processes are related to the parameter of999

the multiplier of the adult age group model (Ma) of the infectious contact rate and the fraction of children’s1000

infectious contacts that occur with other children (fcc). Specifically, the natural logarithm of the multiplier1001

of the infectious contact rate of the adult age group (Ma) and the logit of fcc are treated as undergoing a1002

random walk according to a Wiener Process (Brownian Motion) [25, 26, 8]. Finally, the state space model1003

of the pertussis age-structured model of 2 age groups is listed as follows:1004

[
dSc

dt
dSa

dt

]
=

[
Nava

0

]
+

[
−ωSc
ωSc

]
−
[
AIc
AIa

]
−
[
µcSc
µaSa

]
+

[
ιcR1c

ιaR1a

]
[
dIc
dt
dIa
dt

]
=

[
−ωIc
ωIc

]
+

[
AIc
AIa

]
− γ

[
Ic
Ia

]
−
[
µcIc
µaIa

]
[
dImc

dt
dIma

dt

]
=

[
−ωImc
ωImc

]
+

[
AImc

AIma

]
− γ

[
Imc
Ima

]
−
[
µcImc
µaIma

]
[
dIwc

dt
dIwa

dt

]
=

[
−ωIwc
ωIwc

]
+

[
AIwc

AIwa

]
− γ

[
Iwc
Iwa

]
−
[
µcIwc
µaIwa

]
[
dR1c

dt
dR1a

dt

]
=

[
−ωR1c

ωR1c

]
+ α

[
R2c

R2a

]
−
[
AImc

AIma

]
− ι
[
R1c

R1a

]
−
[
µcR1c

µaR1a

]
[
dR2c

dt
dR2a

dt

]
=

[
−ωR2c

ωR2c

]
+ α

[
R3c

R3a

]
−
[
AIwc

AIwa

]
− ι
[
R2c

R2a

]
−
[
µcR2c

µaR2a

]
[
dR3c

dt
dR3a

dt

]
=

[
−ωR3c

ωR3c

]
+ α

[
R4c

R4a

]
−
[
λc
λa

]
◦
[
R3c

R3a

]
− ι
[
R3c

R3a

]
−
[
µcR3c

µaR3a

]
[
dR4c

dt
dR4a

dt

]
=

[
−ωR4c

ωR4c

]
+ γ

[
Ic + Imc + Iwc
Ia + Ima + Iwa

]
+

[
λc
λa

]
◦
[
R3c

R3a

]
− α

[
R4c

R4a

]
−
[
µcR4c

µaR4a

]
[
λc
λa

]
=

[
βcfcc
βafac

βcfca
βafaa

]
×

[
Ic+ρmImc+ρwIwc

Nc

Ia+ρmIma+ρwIwa

Na

]
[
Nc
Na

]
=

[
Sc
Sa

]
+

[
Ic
Ia

]
+

[
Imc
Ima

]
+

[
Iwc
Iwa

]
+

[
R1c

R1a

]
+

[
R2c

R2a

]
+

[
R3c

R3a

]
+

[
R4c

R4a

]
(D.2)

d(lnβc) = sβc
dWt

d(ln(
fcc

1− fcc
)) = sccdWt

d(lnMa) = sMadWt

βa = Maβc

d(ln(
Cr

1− Cr
)) = srdWt

fca = 1− fcc

fac =


Ncβc

Naβa
(1− fcc) , if

[
Ncβc

Naβa
(1− fcc)

]
< 1.0

1.0, if
[
Ncβc

Naβa
(1− fcc)

]
≥ 1.0

faa = 1− fac

µc =
Na
Nc

va − ω

µa =
Nc
Na

ω
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Ikc =

∫ k

k−1

(AIc + ρmAImc
+ ρwAIwc

) dt

Ika =

∫ k

k−1

(AIa + ρmAIma
+ ρwAIwa

) dt[
Irck
Irak

]
= Cr

[
Ikc
Ika

]
AIc =

Poisson(λcSc∆t)

∆t

AIa =
Poisson(λaSa∆t)

∆t

AImc
=
Poisson(λcR1c∆t)

∆t

AIma
=
Poisson(λaR1a∆t)

∆t

AIwc
=
Poisson(λcR2c∆t)

∆t

AIwa
=
Poisson(λaR2a∆t)

∆t

In this paper, we have built a two-age-group particle filtering model, where the individuals in the age1005

group of “child” are from newborn up to the end of 4 years. The parameters with constant values related to1006

the pure compartmental model (γ, ι, α, ρm and ρw) in the two-age-group pertussis model are the same as1007

the aggregate model. All these parameters and the parameters related to the demographic model and the1008

stochastic processes of the two-age-group particle filtering model are listed in Table D.4. The initial values1009

of each stocks in this two-age-group particle filtering model are listed in Table D.5.1010

Appendix D.3. The age-structured model of 32 age groups (n = 32) with the Hethcote contact matrix1011

We employ the pure ODEs model – the age-structured model of 32 age groups introduced in the paper1012

of Hethcote (1997) [16] as the base model. Similarly, three stochastic processes are added to the base model1013

as the state space model. These three stochastic processes are related to the Poisson process related to the1014

incidence of infectious, the contact rate of the first age group and the reporting process of the pertussis cases.1015

Similarly, the natural logarithm of the parameter related to contact rate of the first age group (denoted as1016

l1/
√
D) and the logit of the report rate (denoted as Cr) are treated as undergoing a random walk according1017

to a Wiener Process (Brownian Motion) [25, 26, 8]. :1018

dS1

dt
=

n∑
j=1

vjNj + ιR11 −AI1 − (c1 + µ1)S1

dSi
dt

= ci−1Si−1 + ιR1i −AIi − (ci + µi)Si 2 ≤ i ≤ n

dI1
dt

= AI1 − (c1 + γ + µ1)I1

dIi
dt

= ci−1Ii−1 +AIi − (ci + γ + µi)Ii 2 ≤ i ≤ n

dIm1

dt
= AIm1

− (c1 + γ + µ1)Im1

dImi
dt

= ci−1Im,i−1 +AImi
− (ci + γ + µi)Imi 2 ≤ i ≤ n

dIw1

dt
= AIw1

− (c1 + γ + µ1)Iw1

dIwi
dt

= ci−1Iw,i−1 +AIwi
− (ci + γ + µi)Iwi 2 ≤ i ≤ n
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dR11

dt
= αR21 −AIm1

− (ι+ c1 + µ1)R11

dR1i

dt
= ci−1R1,i−1 + αR2i −AImi

− (ι+ ci + µi)R1i 2 ≤ i ≤ n

dR21

dt
= αR31 −AIw1

− (ι+ c1 + µ1)R21

dR2i

dt
= ci−1R2,i−1 + αR3i −AIwi

− (ι+ ci + µi)R2i 2 ≤ i ≤ n

dR31

dt
= αR41 − (λ1 + ι+ c1 + µ1)R31

dR3i

dt
= ci−1R3,i−1 + αR4i − (λi + ι+ ci + µi)R3i 2 ≤ i ≤ n

dR41

dt
= γ(I1 + Im1 + Iw1) + λ1R31 − (α+ c1 + µ1)R41

dR4i

dt
= ci−1R4,i−1 + γ(Ii + Imi + Iwi) + λiR3i − (α+ ci + µi)R4i 2 ≤ i ≤ n (D.3)

Ni = Si + Ii + Imi + Iwi +R1i +R2i +R3i +R4i 1 ≤ i ≤ n

µ1 =

∑n
j=1 vjNj − c1N1

N1

µi =
ci−1Ni−1 − ciNi

Ni
2 ≤ i ≤ n

λi = fpi

n∑
j=1

lj li
D

Ij + ρmImj + ρwIwj∑n
j=1Nj

1 ≤ j ≤ n

D =
n∑
k=1

lkNk/
n∑
k=1

Nk

d(ln
l1√
D

) = slD1dWt

li√
D

=
l1√
D
∗ fli 2 ≤ i ≤ n

d(logit(Cr)) = d(ln(
Cr

1− Cr
)) = srdWt

Iki =

∫ k

k−1

(AIi + ρmAImi
+ ρwAIwi

) dt 1 ≤ i ≤ n

Irki = IkiCr 1 ≤ i ≤ n

AIi =
Poisson(λiSi∆t)

∆t
1 ≤ i ≤ n

AImi
=
Poisson(λiR1i∆t)

∆t
1 ≤ i ≤ n

AIwi
=
Poisson(λiR2i∆t)

∆t
1 ≤ i ≤ n

The values of the parameters are the same as the ones listed in the aggregate particle filtering models1019

and two-age-group particle filtering model, and the initial values of the stocks in this particle filtering model1020

are listed in the Table D.6.1021

Appendix D.4. The age-structured model of 32 age groups (n = 32) with re-balanced contact matrix1022

The age-structured model of 32 age groups with re-balanced contact matrix are employed as the base1023

model of the state space model of the age-structured particle filtering model of 32 age groups with re-balanced1024

contact matrix. The mathematical equations of state space model are listed as follows:1025
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Table D.6: Table showing initial values of the stocks in the pertussis 32-age-groups particle filtering models.

Parameter Value Unit
Si0 1 ≤ i ≤ 32 Uniform[1000, 3000), Uniform[1000, 3000), Uniform[1000, 3000),

Uniform[1000, 9000), Uniform[1000, 10000), Uniform[1000,
10000), Uniform[1000, 10000), Uniform[100, 5000), Uniform[100,
2000), Uniform[100, 2000), Uniform[100, 2000), Uniform[100,
2000), Uniform[100, 2000), Uniform[10, 500), Uniform[10, 500),
Uniform[10, 500), Uniform[10, 500), Uniform[10, 500), Uni-
form[10, 500), Uniform[10, 500), Uniform[10, 500), Uniform[10,
500), Uniform[10, 500), Uniform[100, 2000), Uniform[100, 2000),
Uniform[100, 2000), Uniform[100, 5000), Uniform[100, 5000), Uni-
form[0, 2000), Uniform[0, 1000), Uniform[0, 500), Uniform[0, 100)

Person

Ii0 1 ≤ i ≤ 32 Uniform[0, 10), Uniform[0, 10), Uniform[0, 10), Uniform[0, 10),
Uniform[0, 20), Uniform[0, 20), Uniform[0, 20), Uniform[0, 20),
Uniform[0, 20), Uniform[0, 20), Uniform[0, 20), Uniform[0, 20),
Uniform[0, 20), Uniform[0, 10), Uniform[0, 10), Uniform[0, 10),
Uniform[0, 10), Uniform[0, 10), Uniform[0, 10), 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0

Person

Imi0 1 ≤ i ≤ 32 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0

Person

Iwi0 1 ≤ i ≤ 32 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Person

R1i0 1 ≤ i ≤ 32 0, 0, 0, 0, Uniform[0, 2000), Uniform[0, 2000), Uniform[0, 2000),
Uniform[0, 2000), Uniform[0, 2000), Uniform[0, 2000), Uniform[0,
2000), Uniform[0, 2000), Uniform[0, 2000), Uniform[0, 2000), Uni-
form[0, 2000), Uniform[0, 2000), Uniform[0, 2000), Uniform[0,
2000), Uniform[0, 2000), Uniform[0, 2000), Uniform[0, 2000), Uni-
form[0, 2000), Uniform[0, 2000), Uniform[0, 20000), Uniform[0,
20000), Uniform[0, 20000), Uniform[0, 20000), Uniform[0, 20000),
Uniform[0, 20000), Uniform[0, 2000), Uniform[0, 2000), Uni-
form[0, 100)

Person

R2i0 1 ≤ i ≤ 32 0, 0, 0, 0, 100, 100, 100, 100, 100, 100, 100, 100, 1000, 1000, 1000,
1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 10000, 10000,
10000, 10000, 10000, 10000, 5000, 500, 50

Person

R3i0 1 ≤ i ≤ 32 0, 0, 0, 0, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000,
6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 10000,
10000, 10000, 10000, 6000, 5000, 0, 0, 0

Person

R4i0 1 ≤ i ≤ 32 Ni − Si0 − Ii0 − Imi0 − Iwi0 −R1i0 −R2i0 −R3i0 Person
l1p1 Uniform[0.001, 0.5) Person/Day

l1/
√
D Uniform[0.005, 0.2)

√
Person/Day

Cr Uniform[0, 0.15) Dimensionless
εi 1 ≤ i ≤ 6 Uniform[0, 1) Dimensionless
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dS1

dt
=

n∑
j=1

vjNj + ιR11 −AI1 − (c1 + µ1)S1

dSi
dt

= ci−1Si−1 + ιR1i −AIi − (ci + µi)Si 2 ≤ i ≤ n

dI1
dt

= AI1 − (c1 + γ + µ1)I1

dIi
dt

= ci−1Ii−1 +AIi − (ci + γ + µi)Ii 2 ≤ i ≤ n

dIm1

dt
= AIm1

− (c1 + γ + µ1)Im1

dImi
dt

= ci−1Im,i−1 +AImi
− (ci + γ + µi)Imi 2 ≤ i ≤ n

dIw1

dt
= AIw1

− (c1 + γ + µ1)Iw1

dIwi
dt

= ci−1Iw,i−1 +AIwi
− (ci + γ + µi)Iwi 2 ≤ i ≤ n

dR11

dt
= αR21 −AIm1

− (ι+ c1 + µ1)R11

dR1i

dt
= ci−1R1,i−1 + αR2i −AImi

− (ι+ ci + µi)R1i 2 ≤ i ≤ n

dR21

dt
= αR31 −AIw1

− (ι+ c1 + µ1)R21

dR2i

dt
= ci−1R2,i−1 + αR3i −AIwi

− (ι+ ci + µi)R2i 2 ≤ i ≤ n

dR31

dt
= αR41 − (λ+ ι+ c1 + µ1)R31

dR3i

dt
= ci−1R3,i−1 + αR4i − (λ+ ι+ ci + µi)R3i 2 ≤ i ≤ n

dR41

dt
= γ(I1 + Im1 + Iw1) + λR31 − (α+ c1 + µ1)R41

dR4i

dt
= ci−1R4,i−1 + γ(Ii + Imi + Iwi) + λR3i − (α+ ci + µi)R4i 2 ≤ i ≤ n (D.4)

Ni = Si + Ii + Imi + Iwi +R1i +R2i +R3i +R4i 1 ≤ i ≤ n

µ1 =

∑n
j=1 vjNj − c1N1

N1

µi =
ci−1Ni−1 − ciNi

Ni
2 ≤ i ≤ n

lijfij = li

(
εj
εi

)0.5
[

(1.0− εi)δij + εi

(
Nj lj∑n
j=1Nj lj

)]
1 ≤ i ≤ n, 1 ≤ j ≤ n

λi = pi

n∑
j=1

lijfij(Ij + ρmImj + ρwIwj)

Nj
1 ≤ i ≤ n

d[ln(l1p1)] = sl1dWt

lipi = l1p1 ∗ fli ∗ fpi 2 ≤ i ≤ n

d(logit(εi)) = d(ln(
εi

1− εi
)) = sεidWt 1 ≤ i ≤ 6

d(logit(Cr)) = d(ln(
Cr

1− Cr
)) = srdWt
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Iki =

∫ k

k−1

(AIi + ρmAImi
+ ρwAIwi

)dt 1 ≤ i ≤ n

Irki = IkiCr 1 ≤ i ≤ n

AIi =
Poisson(λiSi∆t)

∆t
1 ≤ i ≤ n

AImi
=
Poisson(λiR1i∆t)

∆t
1 ≤ i ≤ n

AIwi
=
Poisson(λiR2i∆t)

∆t
1 ≤ i ≤ n

The values of the parameters are the same as the ones listed in the aggregate particle filtering models1026

and two-age-group particle filtering model, and the initial values of the stocks in this particle filtering model1027

are listed in Table D.6.1028

Appendix E. Further introduction of split the pertussis yearly reported cases to each age1029

group1030

The yearly empirical data related to multiple age categories are available from year 1925 to 1956 [20].1031

During the process in preparing the yearly empirical data for the two-age-group and 32-age-group particle1032

filtering models (the yearly empirical data divided into 6 groups), we need to split the data in some age1033

categories in the original datasets [20] due to two reasons. The first reason is because the division of the age1034

group in empirical dataset does not match the division of the age groups in the pertussis particle filtering1035

models. Specifically, from year 1926 to 1941, we need to split the reported pertussis cases in age category1036

“1-6 years” in age 5 proportionally (four fifths goes to the “ 1-4 years” age group, and one fifth goes to “5-91037

years” age group); from year 1942 to 1955, we need to split the reported pertussis cases in age category ”5-141038

years” in age 10 proportionally (half goes to the “5-9 years” age group, and half goes to “10-14 years” age1039

group). The second reason is because there is a category in the empirical yearly dataset of ”age not stated”.1040

Thus, we need to split the counts in this category to corresponding age groups in the particle filtering models1041

proportionally (based on the proportion calculated by the age categories has labeled age clearly).1042
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