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Abstract

The joint analysis of multiple samples using single-cell RNA-seq is a promising experimental design, offering
both increased throughput while allowing to account for batch variation. To achieve multi-sample designs,
genetic variants that segregate between the samples in the pool have been proposed as natural barcodes for
cell demultiplexing. Existing demultiplexing strategies rely on access to complete genotype data from the
pooled samples, which greatly limits the applicability of such methods, in particular when genetic variation is
not the primary object of study. To address this, we here present Vireo, a computationally efficient Bayesian
model to demultiplex single-cell data from pooled experimental designs. Uniquely, our model can be applied in
settings when only partial or no genotype information is available. Using simulations based on synthetic
mixtures and results on real data, we demonstrate the robustness of our model and illustrate the utility of
multi-sample experimental designs for common expression analyses.
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Background
Single-cell RNA-seq (scRNA-seq) is a rapidly evolving
technology. Robust protocols and reduced costs have
fostered applications in biomedicine, for example to
identify biomarkers in disease [1, 2], or to characterize
the cellular response to treatment and other external
stimuli [3, 4].

Across these use cases, pooled experimental designs
that combine multiple samples in a single experiment
have critical statistical advantages compared to the se-
rial analysis of cells from multiple samples in indepen-
dent experimental batches [5, 6]. In particular, pooled
designs allow dissecting true inter-individual varia-
tion from experimental batch variation. Pooled designs
whereby a large number of cells are processed in a
joint fashion are facilitated by the uptake of droplet se-
quencing methods in particular, including Drop-seq [7]
and the 10x Genomics Chromium platform [8], which
can assay tens of thousands of cells in a single run.

The aforementioned advantages have motivated a
series of barcoding strategies to demultiplex sam-
ples from pooled experiments. In addition to simpli-
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fied experimental logistics and reduced batch varia-
tion, pooled designs can also facilitate the identifica-
tion of double cells. Existing barcoding strategies in-
clude molecular labelling prior to analysis [9, 10, 11,
12] as well as exploiting natural genetic barcodes of
germline variants that segregate between pooled indi-
viduals [13]. While molecular barcoding is in principle
applicable to any study design, genetic barcoding is
both elegant and can be seamlessly integrated in ex-
isting scRNA-seq workflows, without the need to in-
troduce additional processing steps.

The multiplexed designs with genetic barcoding are
particularly useful in biomedical research, where the
analysis of larger cohorts of genetically distinct in-
dividuals is particularly relevant [14]. However, cur-
rent methods for demultiplexing genetically barcoded
pools, such as Demuxlet [13], require genotype refer-
ence data for the pooled samples. Using variant infor-
mation extracted from the scRNA-seq reads, each cell
is assigned to a sample in the pool based on its ge-
netic distance to the known genotypic states in a pre-
defined reference database. While there is a growing
interest in multi-sample analyses to study the effect
of genetic variation between individuals at single-cell
level, e.g., [15, 16], the requirement to supply a geno-
type reference database is prohibitive for studies with-
out a genetic focus per se. Consequently, the potential
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of pooled experimental designs is currently not fully
realized.

To address this, we here present Vireo (Variational
Inference for Reconstructing Ensemble Origins), a
principled Bayesian method to demultiplex arbitrary
pooled designs that combine genetically distinct indi-
viduals. Uniquely, Vireo models the genotypes of each
individual as latent variables, which are inferred from
the observed scRNA-seq reads. The model can also
leverage partial genotype information, e.g. when geno-
type data are available for a subset of individuals, and
hence can be applied to a wide range of experimental
settings.

Results and discussion
Vireo jointly assigns each cell to one of K individuals
and estimates the genotypic state of these individu-
als at known polymorphic loci. The model takes a set
of common genetic variants as input (for example de-
rived from the 1000 Genomes Project [17]), which are
genotyped in each cell based on the scRNA-seq read
data. Despite the typically low coverage of single-cell
RNA-seq experiments, this approach allows for geno-
typing on the order of 100 expressed variants per cell
(e.g. using 3’ 10x Genomics data; approx. 50,000 reads
per cell, Fig 1 and Methods). Combining information
across cells, these sparse genotype data allow for re-
constructing the underlying individuals that are rep-
resented in the pool, which in turn allows for assigning
each cells to an individual (Fig. 1). Vireo also explic-
itly accounts for doublets (two or more cells processed
as a “single cell” in the assay) by considering cells that
appear to be assigned to a combination of individuals.
Finally, the model estimates the most likely number of
pooled individuals, a feature that is useful if some of
the pooled samples drop out for experimental reasons,
and the method can incorporate partial genotype data
that are available for a subset of the pooled samples.

Model validation using synthetic data
Initially, we considered synthetic data with a known
truth to validate our approach. We considered raw 3’
single-cell RNA-seq data from 10x Genomics platform
(v2 kit) for 16 genetically distinct samples from the
census of immune cells project that are available from
the Human Cell Atlas (Methods) [18]. We then syn-
thetically mixed 8 of these samples (1,000 cells per
sample and 4,000 UMIs per cell on average), and sim-
ulated 8% of cells as doublets, which were included
alongside the sampled singlet cells (“singlets”; Meth-
ods). Initially, we evaluated Vireo’s ability to esti-
mate the number of input samples, by comparing the
marginal likelihood of multiple Vireo runs assuming in-
creasing numbers of samples in the pool, ranging from

six to twelve. Notably, models with at least the true
number of input samples (K = 8) were evident from
an elbow plot of the variational lower bound (Fig. 2A).
We also observed that models that assume larger pool
sizes (K > 8) tended to yield sparse solutions, which
means that only the relevant subset of latent samples
required to explain the data were used, indicating that
the model is robust to reconstructing a larger number
of samples than necessary (Supp Fig. S1).

Next, we evaluated the performance Vireo in sin-
glet assignment and doublet detection, where for com-
parison we also considered alternative models that re-
quire full genotype data of the pooled samples (De-
muxlet [13] and Vireo-GT, i.e., Vireo with full geno-
type data; Methods). By measuring the adjusted Rand
index (ARI) of the most likely assignment of singlet
cells to samples with regard to the true assignments,
we found that Vireo achieved markedly accurate re-
sults, yielding comparable performance as Vireo-GT
and Demuxlet (Fig. 2B). We also varied the assignment
confidence (Methods), finding that all three methods
achieve near-perfect assignments of the full set of sin-
gletons (recall = 1). In the following, we consider the
area under the ARI-recall curve (AUC) as a system-
atic measure for assessing the overall performance of
singlet assignment.

Similar to Demuxlet, Vireo can also be used to
identify doublet cells, provided that the doublets are
formed of combinations of cells from two genetically
distinct samples in the pool. Vireo without genotype
achieves doublet detection with an overall AUC =
0.978 (e.g, 98.7% sensitivity and 96.7% specificity at
prob doublet > 0.9, Fig. 2C), which is only marginally
lower than the performance achieved when using geno-
type data (Vireo-GT or Demuxlet, both AUC ≈
0.995). In practice, and in the experiments reported
below, we recommend prob max >0.9 as the threshold
for the singlet assignment, and prob doublet >0.9 for
the detection of doublets (see Methods).

Exploring a wider range of settings, we also eval-
uated the model when varying the number of multi-
plexed samples (Fig. 2D & 2G), the number of cells
sampled in each experiment (Fig. 2E & 2H), and the
number of UMIs per cell (Fig. 2F & 2I). As expected,
the cell-assignment accuracy decreased with increas-
ing numbers of samples in the pool, but Vireo re-
tained high accuracy for up to 12 multiplexed sam-
ples (Fig. 2D & 2G). Beyond 12 samples, there is a
risk that the Vireo solution represents a local optima
of the optimization of the variational lower bound,
which may omit one or multiple samples present in the
pool (Fig. 2D). Using current experimental technolo-
gies, such high multiplexes are not commonly consid-
ered, as high cell counts are associated with greatly
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Figure 1 Illustration of Vireo for demultiplexing multi-sample scRNA-seq studies without reference genotype data. (A, B) The
inference is based on genotyped common polymorphic variants in each cell, defined based on a standard reference of common human
variants. (B, C) The resulting sparse read count matrices of alternative and reference alleles (displayed as compound matrix for
simplicity; NA in white denotes no observed reads) are then decomposed into a matrix of estimated genotypes for each input sample
and a probabilistic cell assignment matrix.

increased doublet rates (e.g. on the 10x Chromium
platform). Conversely, the accuracy of cell-assignment
is consistently high across a larger of cell counts per
sample (Fig. 2E), where larger numbers of cells tended
to increase accuracy. Similarly, increasing the sequenc-
ing coverage resulted in improved accuracy for doublet
detection (Fig. 2I), whereas accurate singleton assign-
ments were achieved with extremely low UMIs per cell
(Fig. 2F).

Next, we assessed the utility of partial genotype data
for a subset of samples in the pool, which as expected
increased the model performance, particularly in set-
tings with low sequencing coverage (1,200 UMIs per
cell, Supp Fig. S2). We also evaluated the robustness
of Vireo when applying the model to biased pools of
samples, i.e. settings in which some samples contribute
a smaller than expected fraction of cells. Vireo robustly
detected and aligned cells to samples with a relative
frequency as low as 10% (Supp. Fig. S3), while retain-
ing high accuracy for doublet detection. However, rare
sample that were represented by fewer than 100 cells
can be missed in some settings.

Finally, we assessed the accuracy of the genotype re-
construction of the pooled samples, finding that Vireo
implicitly provides accurate genotype information for
expressed variants that are accessible via scRNA-seq,
especially for the subset of variants that are cov-
ered by at least 10 UMIs per sample (overall preci-
sion > 0.96, with heterozygous sites of lowest pre-
cision = 0.91; Supp. Fig. S4). Although such esti-
mated genotypic states are intrinsically not available
genome-wide, these partial genotype profiles be used
as a linking key to align the reconstructed samples

to other ’omics data or to combine demultiplexed
datasets across experiments (Methods).

Application to real pooled data
Next, we applied Vireo to two real datasets that have
previously been considered to benchmark methods for
demultiplexing pooled experiments when genotype in-
formation is available for all samples [13].

First, we considered a set of three multiplexed exper-
iments (Fig. 3A-C; W1-W3, between 3,639 and 6,145
cells) of peripheral blood mononuclear cells (PBMCs)
from eight lupus patients. We applied Vireo without
using genotype information to all cells across these
three batches (Methods), thereby also creating an im-
plicit link across all the three experiments. The Vireo
cell assignments were markedly consistent with the as-
signments obtained when using Demuxlet, which, how-
ever, depends on genotype data for all samples (Fig.
3A). Similarly, we observed overall concordant doublet
cell assignments, although there were larger differences
than for singlet assignments (Fig. 3B). We also ap-
plied Vireo separately to each of the three datasets
and used the inferred genotype state of the samples
to link the samples identify across experiments retro-
spectively (Fig. 3C). This demonstrates how the utility
of the inferred genotype data for integrating demulti-
plexed samples across experiments, which can also be
used to link them to other (sequencing-based) assays
available from the same samples (Methods).

As a second use case, we considered two experi-
ments of PBMCs from the same eight patients: one
batch with IFN-β stimulation and a matched control
experiment without stimulus. Cells were cultured for
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Figure 2 Evaluation of Vireo using synthetic mixtures of up to 16 scRNA-seq datasets, including a comparison to models that
require genotype data of the pooled samples (Vireo-GT and Demuxlet). (A-C) Assessment of Vireo performance on one
representative simulated dataset consisting of 8 pooled samples with 1,000 cells per sample, 8% doublet rate, and 4,000 UMIs per
cell on average. (A) Vireo model evidence (variational lower bound) when varying the pool size assumed in the model. (B) Adjusted
Rand index (ARI) between the most likely inferred and the true singlet assignment, when varying the assignment confidence. The
recommended cutoff (prob max > 0.9 for Vireo and Vireo-GT, and PRB.SNG1 > 0.67 for Demuxlet) are highlighted as dot. (C)
Receiver operating characteristic (ROC) curve for detecting doublets, when varying the assignment confidence. The recommended
cutoff (prob doublet > 0.9 for Vireo and Vireo-GT, and 0.67 for Demuxlet) are highlighted with dots. (D-I) Systematic assessment
of Vireo and alternative methods on simulated data using a range of parameter choices, using five replicate runs. (D-F) Area under
ARI for singlet assignment considering alternative simulation settings, either varying the number of input samples (D), the number of
total cells in the dataset (doublet rate varied proportional; 1.2% to 12%; Methods) (E), as well as the number of UMIs per cell (F).
(G-I) Area under the ROC for doublet detection, considering the same simulation paramters as in panels D-F. Parameters not varied
in either of these experiments were set to their default values (indicated by the star symbol). Small dots in each experiment denote
the five replicate simulation experiments, and the big dot denotes the median performance across replicates.

six hours after pooling, which, in contrast to the first

dataset, resulted in an imbalanced distribution of cells

across samples (Fig. 3D). Despite this distributional

bias, Vireo again yielded demultiplexing results that

were markedly consistent with the results obtained by

methods that require a genotype reference (Fig. 3D-

E), and Vireo enabled aligning samples across both
experiments (Fig. 3F).

Leveraging multiplexed designs for differential
expression analysis
Finally, we considered the demultiplexed dataset con-
sisting of stimulated and unstimulated cells (Fig. 3D-
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Figure 3 Evaluation of Vireo on data from multiplexed human PBMCs. (A-C) Results obtained on two datasets consisting of two
pools of 4 samples each, as well as a third dataset consisting of the union of all 8 samples. (A) Concordance of singlet assignment
and doublet detection between Vireo without genotype data and Demuxlet applied with complete genotype reference. Bars denote
the number of cells assigned to each sample, either considering cells that were consistently assigned by both Vireo and Demuxlet
(blue), or assigned exclusively by Vireo (green) or Demuxlet (red). (B) Concordance of doublet detection between Vireo and
Demuxlet when varying the assignment threshold for each method. Note, p denotes the threshold prob doublet in Vireo (x axis) and
Demuxlet (y axis) respectively, and n denotes the number of detected doublets. Assignment of cells in A is based on the most
probable sample assignment, considering all cells that were not detected as doublet. Cells with a doublet probability (p doublet > 0.9
in Vireo; > 2/3 in Demuxlet) were labelled as doublet cells and are considered in B. (C) Alignment of samples, when applying Vireo
separately to the three datasets considered in A. Values in the heatmap denote the fraction of concordant genotype states between
pairs of samples from both Vireo runs, considering variants with a read coverage of at least 10 UMIs per sample. (D-F) Results from
a second experiment, consisting of two datasets with the same 8 samples pooled in two different conditions: unstimulated and
stimulated. Results shown correspond to the panels in (A-C).

F) to explore the utility of multi-sample designs for
differential gene expression analysis. Graph-based clus-
tering (implemented in Scanpy [19]) applied to the
joint dataset consisting of stimulated and unstimu-
lated cells from all eight samples (Fig. 4C) identi-
fied eight major clusters, which could be annotated by
common cell types (Fig. 4A-B; Supp. Fig. S5). Next,
we tested for differential gene expression between the
stimulated and unstimulated condition within each cell
type (using edgeR, considering cells as replicates [20]).
Considering B cells as a representative example (see
Supp. Fig. S8-11 for full results), this analysis identi-
fied between 78 and 477 DE genes in individual sam-
ples (FDR<5%; Fig. 4F), with cell count being a major

explanatory factor for differences in the number of DE

genes (Fig. 4C). Although globally, DE genes tended

to be recurrently detected in multiple samples (Fig.

4E), there was a substantial fraction of DE genes that

were private to individual samples. For example, the

gene OAZ1 (Fig. 4D) was deferentially expressed in

four of eight samples, highlighting the importance of

inter-individual differences (more examples in Supp.

Fig. S6). We also explored carrying out joint testing

across all samples (using samples as an explanatory

factor in the model in edgeR; Methods), which lead to

broadly similar conclusions (Supp. Fig. S7).
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Figure 4 Case study of differential expression analysis of INF-beta stimulated PBMC using two matched pools that consist of 8
samples. (A) UMAP representation of single-cell transcriptome profiles, colored by eight major cell types identified. Note, M denotes
Monocytes. (B) Analogous UMAP representation colored by the experimental condition: stimulated versus unstimulated. (C) The
number of stimulated and unstimulated B cells sequenced in each of the 8 samples. (D-I) Differential gene expression (DE) analysis
between stimulated and unstimulated B cells. (D) The expression level of an example gene OAZ1, depicting the distribution of
expression levels in both conditions, either considering each sample separately (S1..S8) or considering aggregated data pooled across
all samples (All). FDR: adjusted P value (Benjamini-Hochberg) of each DE test between conditions with likelihood-ratio test. CPM:
count per million. (E) Number of recurrently detected DE genes between conditions (FDR< 0.05), detected in at least one to eight
samples. Box plots in grey show the recurrence expected by chance (based on 200 permutations). (F) The number of DE genes in
each of the 8 samples, categorized by the number of recurrent DE discoveries across samples, that is the number of individuals in
which a given gene is identified as DE (FDR< 0.05).

Conclusion
Here, we have presented Vireo, a Bayesian method
for demultiplexing pooled single-cell RNA-seq exper-
iments by exploiting natural genetic barcodes and
cell genotyping based on scRNA-seq reads. Uniquely,
Vireo does not require any reference genotype data
of the specific samples that are pooled in the experi-
ment, while achieving demultiplexing accuracies that
are comparable to methods that require a genotype
reference. Vireo is implemented using computationally
efficient variational Bayesian inference, which provides
a fully Bayesian treatment while retaining scalability
to large datasets.

Using synthetic mixtures of cells, we have evaluated
the accuracy of Vireo for demultiplexing pooled sam-
ples, and found it robust to a variety of settings. We
also demonstrated the model’s flexibility for handling
partial genotype data for some of the samples, should
these data be available. Unsurprisingly, we observed
that the accuracy of the genotype estimation step per
sample is primarily linked to the sequencing coverage,
which also substantially affects the ability to detect
doublet cells. As the exact requirements for the opti-
mal sequence coverage depend on the cell count and

the number of pooled samples, we provide a simula-
tion framework that enables the user to explore pa-
rameters thereby aiding the experimental design of
pooled studies. If cells from the same individuals are
assayed in multiple batches, Vireo can also demultiplex
them jointly, which boosts the assignment accuracy,
especially in experiments with lower read coverage.
Furthermore, the estimated genotypes for individual
samples enables aligning samples from the scRNA-seq
data with from other ’omics data for the same samples
(Fig. 3C), which provides a flexible approach for link-
ing samples across experiments, including multi-omics
treatment-control designs.

We noticed that demultiplexing without a genotype
reference starts to deteriorate for large sample pools
(>12 samples). Increased sequencing coverage may al-
low for demultiplexing even larger pools, but there re-
main general experimental limitations for such designs.
In particular, as long as the doublet rates scales with
increased cell count such designs are not yet of interest.

As future technologies that motivate even larger pool
sizes become available, extensions of Vireo that can
handle such settings may be warranted. Notably, the
demultiplexing accuracy is also linked to read coverage
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per cell as well as total cell count, two quantities that
continues to improve. Thus, the practical limitations
on the pool size are likely to increase as single-cell
technologies continue to improve.

As a reference-free method, Vireo is particularly use-
ful in settings where samples are treated as biologi-
cal replicates and the primary object is the variation
between samples, which does not require the explicit
identification of individual pooled samples(Fig. 3 and
4). Beyond that, Vireo has the intrinsic limitation that
the inferred samples cannot be directly identified or
linked to metadata. However, when the necessity for
sample identity arises, the estimated genotype states
are readily available for linking the samples to other
’omics data, e.g., other scRNA-seq batches (Fig. 3C
and 3F) or bulk RNA-seq (Supp. Fig. S12). These prin-
ciples can be applied to any read-based assay, which
provides genotypes. Finally, it is straightforward to
generate targeted qPCR-based genotyes for a minimal
set of discriminatory variants (Supp. Fig. S13). The
Vireo software provides helper functions for designing
such experiments, which directly leverages the recon-
structed genotypes in the pool to define a small set of
discrimatory variants (Methods). Molecular barcoding
strategies, e.g., [9, 10, 11, 12], have recently emerged as
an alternatives to genetic barcoding in many respects
courtesy of their more universal applicability. For ex-
ample, molecular barcoding enables pooling multiple
treatment conditions or tissues from the same individ-
ual or from individuals with the same genetic back-
ground (e.g. inbred model organisms). Nevertheless,
the natural genetic barcoding methods, which thanks
to Vireo now can be applied even when no genotype
data are available, have the advantage of avoiding ad-
ditional laboratory work, thus reducing the logistical
complexity, which can impact processing efficiency and
data quality.

Methods
Vireo model

Given a list of N common variants, we extract allelic
expression of these variants in each of M cells with
RNA-seq data (see below for details on the read pileup
approach for variant genotyping). Let A and D respec-
tively denote the read or UMI count matrices for the
alternative allele (i.e., ALT) and the total read depth
(i.e., sum of ALT and REF) for N variants across M
cells. Vireo models variation in these counts matrices
by employing a clustering model with clusters corre-
sponding to K individuals in the pool, with (unknown)
genotype states G. The values of G take on values of 0,
1, or 2, corresponding to homozygous REF, heterozy-
gous and homozygous ALT alleles.

The observed alternative allele counts A are mod-
elled as binomial distributed given the read depths

p(ai,j |di,j , θt) = Binom(ai,j |di,j , θt), t ∈ T = {0, 1, 2},
(1)

where t is the true genotype of variant i in cell j, and θt
is the binomial rate parameter that encodes the cor-
responding allele dosage of the alternative allele for
genotype t. Theoretically, the allele dosage is θt = t/2,
whereas in practice we allow for deviations to account
for sequencing errors, genotype estimation errors, and
allelic imbalance.

The genotype in a given cell is defined by a clustering
model where the latent genotype t for variant i in cell j
is coded by two indicator variables: the cell assignment
vector Zj , which assigns cell j to a latent sample in the
pool, and the genotype identity Gi,k, which defines the
allelic state of variant i in sample k. Specifically, the
indicator variable Zj,k = 1 if cell j is assigned to sam-
ple k and 0 otherwise; we also impose the constraint∑

k Zj,k = 1, which means that in expectation each
cell originates from exactly one sample. Analogously,
the indicator variable Gi,k,t = 1 if the genotype of vari-
ant i in sample k is t, and 0 otherwise, and we again
require

∑
tGi,k,t = 1. The cell assignment matrix Z

is strictly unknown and needs to be estimated from
the observed data. In general, the genotype matrix G
is also unknown and is estimated jointly with Z. If
genotype information are available for one or multiple
samples in the pool, this information can be encoded
as informative prior on G; see below.

The likelihood of the full datasets, spanning all N
variants that were genotyped in each of M cells given
the cell assignment matrix Z, the genotype matrix G
and binomial parameter θ follows as:

p(A,D|Z,G,θ) =
N∏
i=1

M∏
j=1

K∏
k=1

∏
t∈T

p(ai,j |di,j , θt)Zj,k×Gi,k,t

(2)

To complete the definition of the model, we introduce
prior distributions on the latent variables, which re-
sults in the following joint distribution over both ob-
served and latent variables

p(A,D,Z,G,θ) = p(A,D|Z,G,θ)p(Z|π)p(G|U)p(θ|α,β)

(3)

For computational convenience, we use conjugate
prior distributions, namely beta distribution for θ and
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multinomial distributions for both Z and G.

p(Zj,k = 1|π) = Multinom(π) = πk

p(Gi,k,t = 1|U) = Multinom(ui,k) = ui,k,t

p(θt|α(0)
t , β

(0)
t ) = beta(θt|α(0)

t , β
(0)
t )

(4)

The hyper parameters are constant and set as follows.
We use an uninformative prior for Z: πk = 1/K, which
corresponds to a uniform assignment probability of
cells to samples. The user can define other multino-
mial probabilities, for example to encode known bias
in the sample representation. Similarly, we employ a
uniform prior on genotype G, i.e., ui,j,t = 1/3 if no
genotype data are available. If the genotypes are par-
tially known for a subset of samples and/or variants,
a corresponding informative prior is encoded. Specifi-
cally, ui,j,t takes the known genotype value with a relax
rate ξ, i.e., ui,j,t = 1 − ξ if the known genotype is t,
otherwise ui,j,t = ξ. The error rate parameter is set to
ξ = 0.05 by default.

Finally, the hyper parameter for the beta prior on
the allelic rate θ is determined using known germline
variants with high coverage: θ0 ∼ beta(0.3, 29.7), θ1 ∼
beta(3, 3), and θ2 ∼ beta(29.7, 0.3), with which the
posterior of θ will be obtained by fitting to the dataset.

Variational Bayesian inference
Analytical calculation of the posterior distribution of
all latent variables given the observed data p(Z,G,θ|A,D)
is not tractable. Thus, we consider variational Bayesian
inference [21] to obtain an approximate solution,
thereby retaining the benefits of a Bayesian treatment
while retaining computational scalability to larger
scRNA-seq datasets. Briefly, the objective of vari-
ational inference is to approximate the exact (in-
tractable) posterior distribution of the latent variables
p(Y|X) by a factorized distribution q(Y) =

∏
i qi(Yi),

where Y denotes a set of latent variables and X de-
notes the observed variables. The parameters of the
variational distribution q(Y) are determined with the
objective to minimise the Kullback-Leibler (KL) di-
vergence between the approximate distribution q(Y)
and the actual posterior distribution p(Y|X)

KL(q(Y)||p(Y|X)) = −
∫
q(Y) log

q(Y)

p(Y|X)
dY. (5)

This objective is equivalent to maximizing the lower
bound of the full distribution L(q), as the log marginal
probability of the observed variables is a constant, as
follows,

p(X) = L(q) +KL(q(Y)||p(Y|X)), (6)

where the lower bound L(q) is defined as follows,

L(q) =

∫
q(Y) log

p(Y,X)

q(Y)
dY. (7)

A set of iterative update equations can be derived,
which are guaranteed to increase the lower bound

qj(Yj) =
exp {Ei 6=j log(p(Y,X))}∫

exp {Ei 6=j log(p(Y,X)}dYj
. (8)

Here, Ei 6=j denotes an expectation with respect to the
distributions qi(Yi) for all i 6= j.

For inference in Vireo, we assume a fully factorized
distribution q(Z,G,θ) = q(Z)q(G)q(θ) to approxi-
mate the true posterior distribution p(Z,G,θ|A,D),
and we assume that Z and G follow categorical dis-
tributions, and θ follows beta distributions. Based on
this assumption, the lower bound can be computed as
in Eq(7) (See Supplementary Methods Eq(S1-6)). Fol-
lowing Eq(8), it is possible to derive iterative update
equations for the Q distribution of the latent variables
(see Supplementary Methods Eq (S7-12) for full de-
tails).

q∗(Z) =
M∏
j=1

K∏
k=1

r
Zj,k

j,k ;

rj,k =
πk exp

∑N
i=1

∑
t∈T

{
g̃i,k,t[ai,jϕ(α̃t) + bi,jϕ(β̃t)]

}
∑K

h=1 πh exp
∑N

i=1

∑
t∈T

{
g̃i,h,t[ai,jϕ(α̃t) + bi,jϕ(β̃t)]

}
(9)

q∗(G) =
N∏
i=1

K∏
k=1

∏
t∈T

g
Gi,k,t

i,k,t ;

gi,k,t =
ui,k,t exp

∑M
j=1

{
r̃j,k[ai,jϕ(α̃t) + bi,jϕ(β̃t)]

}
∑

h∈T ui,k,h exp
∑M

j=1

{
r̃j,k[ai,jϕ(α̃h) + bi,jϕ(β̃h)]

}
(10)

q∗(θ) =
∏
t∈T

beta(θt|αt, βt);

αt = α
(0)
t +

N∑
i=1

M∑
j=1

K∑
k=1

r̃j,k g̃i,k,tai,j ,

βt = β
(0)
t +

N∑
i=1

M∑
j=1

K∑
k=1

r̃j,k g̃i,k,tbi,j

(11)

Here, we introduce bi,j = di,j −ai,j to simplify the no-
tation and ϕ(·) denotes the digamma function. To mit-
igate potential local optima, multiple random restarts
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are considered (default: 50 restarts) and the solution
that maximizes the variational lower bound is selected.
Thanks to the implementation with sparse matrix and
support of multiple threads, Vireo model is computa-
tionally efficient. On a laptop with 16G memory and
two 3.5GHz CPUs, Vireo finishes a two-run estimation
(see next section) in 6.7 minutes for 14,619 cells in an
eight sample pool and 58.1 seconds for 6,145 cells in
another eight sample pool (results in Fig. 3).

Vireo with known genotype or partial genotype
Besides demultiplexing pooled scRNA-seq without any
genotype information, Vireo is also able to leverage
any available genotype information. In the case that
the genotype is available for all pooled samples, we
only use the variants with known genotype and set the
genotype probability variable G as known and fixed,
which can be derived from the GT tag (for categori-
cal genotype), GP or GL tag (genotype probability or
likelihood) in the VCF file. By default, we use GT as
it is the most commonly available tag.

Alternatively, Vireo also supports the use of any par-
tial genotypes via a two-step run approach. In the first
run, Vireo does not use any genotype information but
infers the genotype for each sample. Then, we align the
samples with known genotype to these identified sam-
ples in this run and replace the estimated genotype
probability with the input known values. Therefore,
we obtain a genotype probability matrix with mixed
known and inferred samples, which we then use as a
prior of G, instead of the default uniform prior in the
second run. Finally, we report the results of the second
run as the result of Vireo.

Estimation of the number of pooled samples
Access to the variational lower bound (Eq. 7) allows
for estimating the number of samples in a given pool.
Briefly, by comparing alternative Vireo runs with in-
creasing numbers of samples it is possible to identify
the most probable value with the elbow plot (e.g., Fig.
2A), which provides an objective means to define this
parameter.

A second strategy is to set a large number of samples
and prune some of the samples posthoc, as variational
Bayes model is self-regularizing and hence avoids over-
fitting (see Supp. Fig. S1). In practice this approach
can also increase robustness as the effective number of
samples in a pool can be larger than anticipated due
to doublets; see Section below.

Multiple random initializations
When genotype is not given, Vireo uses a pre-step with
multiple random initializations to avoid local optima.
By default, Vireo runs for 50 random initializations,

each with a short iterations (15 by default). Then the
initialization with highest log likelihood will be con-
tinued.

As discussed in the above subsection, another strat-
egy to find all K pooled samples is searching from
a larger number of clusters. By default, we search
K+
√
K clusters in this pre-step, and only keep the K

clusters with largest number of assigned cells to con-
tinue, and discarded the

√
K smaller clusters.

Doublet detection
To detect doublets, we construct the genotype of each
pair of samples and expand the K biological samples
by introducing in additional (K − 1) ∗ K/2 doublet
competitors. For simplicity, we assume that the geno-
type of a doublet sample can be described as the aver-
age between two combined samples. Specifically, for a
given variant and genotype probability vectors for two
samples are x = [x0, x1, x2] and y = [y0, y1, y2], we
define the expected genotype for the doublet sample
as follows,

p(t = 0) = x0y0

p(t = 1) = x1y1 + x0y2 + x2y0

p(t = 2) = x2y2

p(t = 0.5) = x0y1 + x1y0

p(t = 1.5) = x1y2 + x2y1

(12)

where we introduce two pseudo-genotypes t = 0.5 and
t = 1.5 respectively for combinations of genotype 0 &
1 and 1 & 2 in the doublet sample. For convenience,
we consider the binomial parameters for the alterna-
tive allelic reads and assume that the binomial param-
eters θ0.5 and θ1.5 also follow beta distributions. We
approximate the hyper-parameters of the beta distri-
bution empirically by respectively taking the ratio and
shapes with the arithmetic and geometric means from
the two ordinary genotypes. The resulting distribution
of θ0.5 can be expressed as follows

p(θ0.5) = beta(α0.5, β0.5)

α0.5

α0.5 + β0.5
=

1

2

(
α0

α0 + β0
+

α1

α1 + β1

)
(α0.5 + β0.5)2 = (α0 + β0)× (α1 + β1).

(13)

Similarly, we define the distribution of θ1.5.
In this augmented model, we have the full distri-

bution for the extended genotype reference G and θ,
consisting of K biological and (K − 1) ∗K/2 doublet
samples. In this model we can calculate the probability
that a cell originates from one of the doublet samples
using Eq(8).
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As an additional refinement, we specify a non-
uniform prior on η to define the a priori believe of
observing a doublet. Specifically, the prior binomial
distribution π is constructed as follows

p(πh) =

{
(1− η)/K, 1 ≤ h ≤ K; (singlet)

η/K2, K < h ≤ K +K2; (doublet)

(14)

where K2 = (K−1)×K/2 as number of the combined
sample pairs. The prior probability for doublet cells is
low in most assays, e.g., η = 0.05. In case of the 10X
chromium platform, the prior value can be estimated
as a function of the number of loaded cells M , e.g.
η = M/100000 following [13], which by default are
used in our experiments.

Therefore, we can obtain the posterior of each cell’s
sample identity, i.e., the probability of cell j coming
from any of the K input samples or K2 combined
sample pairs (i.e., doublet). We use the highest assign-
ment probability of the K input samples, prob max, as
the confidence score for singlet assignment and use the
summarised probability of all K2 sample pairs as the
confidence score of a doublet, namely prob doublet.

Alignment of samples between multiple data sets

Vireo implicitly estimates the genotypes for subset of
variants with sufficient coverage (good accuracy for
variants with >10 reads per sample; see Supp. Fig. S4).
Among other use cases, these estimated genotypes al-
low for aligning scRNA-seq profiles from samples in a
pool to other ’omics data by matching genotype pro-
files.

When Vireo is applied to multiple data sets that
consist of the same samples, the estimated genotype
also allows for aligning samples across data sets (e.g.
Fic. 3C and 3F for multiple pools, and Supp. Fig. S12
for multiple ’omics). The software implementation of
Vireo provides support functions for this step by calcu-
lating the fraction of variants with matched genotype
between two or multiple experiments.

Identification of discriminatory variants

Given a set of variants for which estimated genotypes
are available, the Vireo software implements a heuris-
tic to define a minimal and informative set of dis-
criminatory variants. This set of variants can be used
to perform qPCR-based genotyping or for other tar-
geted genoytping methods. Briefly, the algorithm im-
plemented in Vireo prioritises variants with largest in-
formation gain in splitting samples, as follows.

1 Remove variants with < 20 UMIs per sample.

2 Initialize the variant set S = {}, and the split T
among K samples, and calculate the initial en-
tropy H(T ) = 0

3 Rank variants by the information gain IG(T, v) =
H(T )−H(T |v)

4 Select the variant with highest information gain
and update S, T , and H(T )

5 If H(T ) = log2(K), return S and T , otherwise go
to step 3.

Additionally, variants with homozygous alternative al-
lele in the pooled samples can also be filtered out be-
fore hand if needed. Examples of discriminatory vari-
ant sets for the six-sample pool from HipSci project
are shown in Supp. Fig. S13.

Differential expression analysis
Differential expression analysis was performed with
edgeR [20] between stimulated and control samples
(Fig. 4 and Supp. Fig. S7-11). A generalised regression
is applied in edgeR to test whether the stimulation
contributes to the expression variation on a certain
gene by using a likelihood-ratio test. By using the raw
UMI count, we performed cell type specific DE analy-
sis with the following three different strategies for all
cells jointly (Supp. Fig. S7).

Method 1: y ∼ cdr + condition + sample, where y
is the expression count for a specific gene, which is
regressed three covariants: cdr, the cell detection rate
(i.e., the fraction of expressed gene in each cell), stim-
ulation condition and the sample identity.

Method 2 and 3: y ∼ cdr+condition, where we ignore
the sample identity of each cell in the pool (Method
2). This same model can also be used in a pseudo-bulk
manner with summarize the count for all cells in the
same type in a sample (Method 3). Alternatively, we
can always perform this model at single cell level for
each sample separately (Fig. 4D-F).

ScRNA-seq data from Demuxlet paper
In this study, we considered two existing multiplexed
scRNA-seq datasets that consist of a total of five
batches [13]. Raw .bam files were obtained from the
Gene Expression Omnibus (GEO; accession number
GSE96583). The processed results from Demuxlet
for these five batches were directly downloaded from
https://github.com/yelabucsf/demuxlet_paper_

code. Approximately 37 million common variants (al-
lele frequency > 0.0005) extracted from the 1000
Genome Project, phase 3 [17] were used as candi-
date variants for scRNA-seq genotyping. We pro-
vide an companion Python package cellSNP (https:
//pypi.org/project/cellSNP) for this task, which
enables generating selected pile-ups from scRNA-seq
data. We discarded non-bi-allelic variants as well as
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variants with fewer than 20 total UMIs across all cells
or minor (i.e., second) allele has less than 10% of total
UMIs. The final output of cellSNP are two variants-
by-cells matrices, A and D, for UMI counts of alterna-
tive allele and the total counts respectively, which are
used as input for the Vireo model.

Bulk RNA-seq and scRNA-seq from HipSci project
In order to link the inferred samples to other ’omics
data, we used one scRNA-seq pool for iPSC differentia-
tion in HipSci project (10x Genomics platform, experi-
ment 44, day 0) with six samples: pipw, jejf, qehq, juuy,
uilk, and toco [15], and their according bulk RNA-seq
data for each sample [22] (http://www.hipsci.org).
Both scRNA-seq and bulk RNA-seq data sets were
downloaded in .bam files and genotyped on 7.4 mil-
lions common bi-allelic variants (minor allele frequency
>5%) extracted from the 1000 Genome Project with
cellSNP package. For single-cell data, we only keep
variants with minor allele frequency ≥ 0.1 and ≥ 20
UMIs. For each bulk RNA-seq sample, we also only
keep variants with minor allele frequency ≥ 0.1 but
require ≥ 100 read counts. Then the genotypes of each
bulk RNA-seq sample can be used to align to the sam-
ples that are demultiplexed from scRNA-seq data.

Synthetic data
We obtained raw 3’ scRNA-seq data based on 10x Ge-
nomics platform (v2 kit) for 16 genetically distinct
samples from Human Cell Atlas (Census of Immune
Cells) [18]. These data set are not pooled and each
sample has its own sequencing run. We only used data
from the first channel (each sample with around 100
millions reads), which is in the range of a standard 10x
sequencing run. We first mapped the raw fastq files to
the human genome hg38 by CellRanger v2.1 provided
by 10x Genomics (cellranger count command line).
Then we used cellSNP to genotype 7.4 millions com-
mon variants (minor allele frequency >5%) extracted
from the 1000 Genome Project for these 16 samples in
a pseudo-bulk manner. We only keeps variants with 1)
>100 UMIs summarised across 16 samples, 2) >10%
UMIs from minor allele, and 3) <5 UMIs for other al-
leles (i.e., not annotated reference and alternative al-
leles). Therefore, we obtained the genotypes of 62,193
variants for these 16 samples, which are feed into De-
muxlet and Vireo-GT.

By only keeping cells with >500 genes and >1000
UMIs, we had in total 66,410 cells across 16 samples,
with each sample having 2,495 to 4,909 cells. On av-
erage, there are 4,000 UMIs per cell (median 2,700
UMIs). In the synthetic mixture, we pooled reads for
a subset of cells from each sample (in bam format,
aligned reads) and generated multiplexed scRNA-seq

data (also in bam format). The script to generating
these synthetic data is provided in Vireo’s GitHub
repository. Doublets were added into the pooled data
by adding proportional extra cells and combine them
with another cells randomly. The doublet rate is
N/100, 000 where N is the total number of cells in
the pool.

By default, we pooled 1000 cells from each of 8 sam-
ples with doublet rate of 8%. This simulator also allows
setting different size of input samples, for example by
setting one sample with fewer cells ranging from 50 to
500 (Supp. Fig. S3). With the synthetic data in bam
format, we can even further sub sample reads by using
samtools with -s argument, e.g., 15-75% in Fig 2F.

All these simulations were randomly repeated for five
times to account for the variability in the simulation.

Abbreviations

scRNA-seq: single-cell RNA-seq; SNP: Single-nucleotide polymorphism;

AUC: area under the curve; ARI: adjusted Rand index.

Availability of Data and Materials

Vireo model has been implemented as a standard Python package, which is

freely available at https://pypi.org/project/vireoSNP with Apache

License 2.0. All scripts to replicate the simulations in this paper are also

included in linked GitHub repository. Vireo’s manual with examples is

available at https://vireoSNP.readthedocs.io.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

O.S. and D.J.M conceived and guided the study. Y.H. developed and

implemented the model. Y.H., D.J.M and O.S. carried out the experiments.

Y.H., O.S. and D.J.M interpreted the results and wrote the paper.

Acknowledgements

We would like to thank Raghd Rostom, Maria Ban, Marc Jan Bonder,

Stephen Sawcer and Sarah Teichmann for fruitful discussions.

Ethics approval and consent to participate

Not applicable.

Additional File

Additional file 1 — Supplementary Methods and Supplementary Figures

S1–S12.

Author details
1Department of Clinical Neurosciences, University of Cambridge, CB2 0QQ

Cambridge, UK. 2EMBL-European Bioinformatics Institute, Wellcome

Genome Campus, Hinxton, CB10 1SD Cambridge, UK. 3St Vincent’s

Institute of Medical Research, Fitzroy, 3065 Victoria, Australia.
4Melbourne Integrative Genomics, University of Melbourne, Parkville, 3010

Victoria, Australia. 5European Molecular Biology Laboratory, Genome

Biology Unit, 69117 Heidelberg, Germany. 6Division of Computational

Genomics and Systems Genetics, German Cancer Research Center (DKFZ),

69120 Heidelberg, Germany.

References
1. Stubbington, M.J., Rozenblatt-Rosen, O., Regev, A., Teichmann, S.A.:

Single-cell transcriptomics to explore the immune system in health and

disease. Science 358(6359), 58–63 (2017)

2. Gaublomme, J.T., Yosef, N., Lee, Y., Gertner, R.S., Yang, L.V., Wu,

C., Pandolfi, P.P., Mak, T., Satija, R., Shalek, A.K., et al.: Single-cell

genomics unveils critical regulators of Th17 cell pathogenicity. Cell

163(6), 1400–1412 (2015)

3. Zhu, D., Zhao, Z., Cui, G., Chang, S., Hu, L., See, Y.X., Lim, M.G.L.,

Guo, D., Chen, X., Robson, P., et al.: Single-cell transcriptome analysis

reveals estrogen signaling coordinately augments one-carbon,

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2019. ; https://doi.org/10.1101/598748doi: bioRxiv preprint 

http://www.hipsci.org
https://pypi.org/project/vireoSNP
https://vireoSNP.readthedocs.io
https://doi.org/10.1101/598748
http://creativecommons.org/licenses/by-nc-nd/4.0/


Huang et al. Page 12 of 12

polyamine, and purine synthesis in breast cancer. Cell reports 25(8),

2285–2298 (2018)

4. Golumbeanu, M., Cristinelli, S., Rato, S., Munoz, M., Cavassini, M.,

Beerenwinkel, N., Ciuffi, A.: Single-cell RNA-Seq reveals

transcriptional heterogeneity in latent and reactivated HIV-infected

cells. Cell reports 23(4), 942–950 (2018)

5. Tung, P.-Y., Blischak, J.D., Hsiao, C.J., Knowles, D.A., Burnett, J.E.,

Pritchard, J.K., Gilad, Y.: Batch effects and the effective design of

single-cell gene expression studies. Scientific reports 7, 39921 (2017)

6. Hicks, S.C., Townes, F.W., Teng, M., Irizarry, R.A.: Missing data and

technical variability in single-cell rna-sequencing experiments.

Biostatistics 19(4), 562–578 (2017)

7. Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K.,

Goldman, M., Tirosh, I., Bialas, A.R., Kamitaki, N., Martersteck, E.M.,

et al.: Highly parallel genome-wide expression profiling of individual

cells using nanoliter droplets. Cell 161(5), 1202–1214 (2015)

8. Zheng, G.X., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W.,

Wilson, R., Ziraldo, S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., et

al.: Massively parallel digital transcriptional profiling of single cells.

Nature communications 8, 14049 (2017)

9. Stoeckius, M., Zheng, S., Houck-Loomis, B., Hao, S., Yeung, B.Z.,

Mauck, W.M., Smibert, P., Satija, R.: Cell hashing with barcoded

antibodies enables multiplexing and doublet detection for single cell

genomics. Genome biology 19(1), 224 (2018)

10. Gehring, J., Park, J.H., Chen, S., Thomson, M., Pachter, L.: Highly

Multiplexed Single-Cell RNA-seq for Defining Cell Population and

Transcriptional Spaces. bioRxiv, 315333 (2018)

11. McGinnis, C.S., Patterson, D.M., Winkler, J., Conrad, D.N., Hein,

M.Y., Srivastava, V., Hu, J.L., Murrow, L.M., Weissman, J.S., Werb,

Z., et al.: MULTI-seq: sample multiplexing for single-cell RNA

sequencing using lipid-tagged indices. Nature methods 16(7), 619–626

(2018)

12. Shin, D., Lee, W., Lee, J.H., Bang, D.: Multiplexed single-cell

RNA-seq via transient barcoding for simultaneous expression profiling

of various drug perturbations. Science advances 5(5), 2249 (2019)

13. Kang, H.M., Subramaniam, M., Targ, S., Nguyen, M., Maliskova, L.,

McCarthy, E., Wan, E., Wong, S., Byrnes, L., Lanata, C.M., et al.:

Multiplexed droplet single-cell RNA-sequencing using natural genetic

variation. Nature biotechnology 36(1), 89 (2018)

14. Haque, A., Engel, J., Teichmann, S.A., Lönnberg, T.: A practical guide
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