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which a given gene is identified as DE (FDR< 0.05).

Figure 4 Case study of differential expression analysis of INF-beta stimulated PBMC using two matched pools that consist of 8
samples. (A) UMAP representation of single-cell transcriptome profiles, colored by eight major cell types identified. Note, M denotes
Monocytes. (B) Analogous UMAP representation colored by the experimental condition: stimulated versus unstimulated. (C) The
number of stimulated and unstimulated B cells sequenced in each of the 8 samples. (D-1) Differential gene expression (DE) analysis
between stimulated and unstimulated B cells. (D) The expression level of an example gene OAZ1, depicting the distribution of
expression levels in both conditions, either considering each sample separately (S1..58) or considering aggregated data pooled across
all samples (All). FDR: adjusted P value (Benjamini-Hochberg) of each DE test between conditions with likelihood-ratio test. CPM:
count per million. (E) Number of recurrently detected DE genes between conditions (FDR< 0.05), detected in at least one to eight
samples. Box plots in grey show the recurrence expected by chance (based on 200 permutations). (F) The number of DE genes in
each of the 8 samples, categorized by the number of recurrent DE discoveries across samples, that is the number of individuals in

Conclusion

Here, we have presented Vireo, a Bayesian method
for demultiplexing pooled single-cell RNA-seq exper-
iments by exploiting natural genetic barcodes and
cell genotyping based on scRNA-seq reads. Uniquely,
Vireo does not require any reference genotype data
of the specific samples that are pooled in the experi-
ment, while achieving demultiplexing accuracies that
are comparable to methods that require a genotype
reference. Vireo is implemented using computationally
efficient variational Bayesian inference, which provides
a fully Bayesian treatment while retaining scalability
to large datasets.

Using synthetic mixtures of cells, we have evaluated
the accuracy of Vireo for demultiplexing pooled sam-
ples, and found it robust to a variety of settings. We
also demonstrated the model’s flexibility for handling
partial genotype data for some of the samples, should
these data be available. Unsurprisingly, we observed
that the accuracy of the genotype estimation step per
sample is primarily linked to the sequencing coverage,
which also substantially affects the ability to detect
doublet cells. As the exact requirements for the opti-
mal sequence coverage depend on the cell count and

the number of pooled samples, we provide a simula-
tion framework that enables the user to explore pa-
rameters thereby aiding the experimental design of
pooled studies. If cells from the same individuals are
assayed in multiple batches, Vireo can also demultiplex
them jointly, which boosts the assignment accuracy,
especially in experiments with lower read coverage.
Furthermore, the estimated genotypes for individual
samples enables aligning samples from the scRNA-seq
data with from other ’omics data for the same samples
(Fig. 3C), which provides a flexible approach for link-
ing samples across experiments, including multi-omics
treatment-control designs.

We noticed that demultiplexing without a genotype
reference starts to deteriorate for large sample pools
(>12 samples). Increased sequencing coverage may al-
low for demultiplexing even larger pools, but there re-
main general experimental limitations for such designs.
In particular, as long as the doublet rates scales with
increased cell count such designs are not yet of interest.

As future technologies that motivate even larger pool
sizes become available, extensions of Vireo that can
handle such settings may be warranted. Notably, the
demultiplexing accuracy is also linked to read coverage
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per cell as well as total cell count, two quantities that
continues to improve. Thus, the practical limitations
on the pool size are likely to increase as single-cell
technologies continue to improve.

As a reference-free method, Vireo is particularly use-
ful in settings where samples are treated as biologi-
cal replicates and the primary object is the variation
between samples, which does not require the explicit
identification of individual pooled samples(Fig. 3 and
4). Beyond that, Vireo has the intrinsic limitation that
the inferred samples cannot be directly identified or
linked to metadata. However, when the necessity for
sample identity arises, the estimated genotype states
are readily available for linking the samples to other
‘omics data, e.g., other scRNA-seq batches (Fig. 3C
and 3F) or bulk RNA-seq (Supp. Fig. S12). These prin-
ciples can be applied to any read-based assay, which
provides genotypes. Finally, it is straightforward to
generate targeted qPCR-based genotyes for a minimal
set of discriminatory variants (Supp. Fig. S13). The
Vireo software provides helper functions for designing
such experiments, which directly leverages the recon-
structed genotypes in the pool to define a small set of
discrimatory variants (Methods). Molecular barcoding
strategies, e.g., [9, 10, 11, 12], have recently emerged as
an alternatives to genetic barcoding in many respects
courtesy of their more universal applicability. For ex-
ample, molecular barcoding enables pooling multiple
treatment conditions or tissues from the same individ-
ual or from individuals with the same genetic back-
ground (e.g. inbred model organisms). Nevertheless,
the natural genetic barcoding methods, which thanks
to Vireo now can be applied even when no genotype
data are available, have the advantage of avoiding ad-
ditional laboratory work, thus reducing the logistical
complexity, which can impact processing efficiency and
data quality.

Methods

Vireo model

Given a list of N common variants, we extract allelic
expression of these variants in each of M cells with
RNA-seq data (see below for details on the read pileup
approach for variant genotyping). Let A and D respec-
tively denote the read or UMI count matrices for the
alternative allele (i.e., ALT) and the total read depth
(i.e., sum of ALT and REF) for N variants across M
cells. Vireo models variation in these counts matrices
by employing a clustering model with clusters corre-
sponding to K individuals in the pool, with (unknown)
genotype states G. The values of G take on values of 0,
1, or 2, corresponding to homozygous REF, heterozy-
gous and homozygous ALT alleles.
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The observed alternative allele counts A are mod-
elled as binomial distributed given the read depths

di,ja Ht) = Binom(ai7j|di7j,9t),t cT = {0, 1, 2},
(1)

p(ai;

where ¢ is the true genotype of variant 4 in cell j, and 6
is the binomial rate parameter that encodes the cor-
responding allele dosage of the alternative allele for
genotype t. Theoretically, the allele dosage is 6; = t/2,
whereas in practice we allow for deviations to account
for sequencing errors, genotype estimation errors, and
allelic imbalance.

The genotype in a given cell is defined by a clustering
model where the latent genotype ¢ for variant 7 in cell j
is coded by two indicator variables: the cell assignment
vector Z;, which assigns cell j to a latent sample in the
pool, and the genotype identity G; i, which defines the
allelic state of variant i in sample k. Specifically, the
indicator variable Z; ; = 1 if cell j is assigned to sam-
ple k and 0 otherwise; we also impose the constraint
>« Zjk = 1, which means that in expectation each
cell originates from exactly one sample. Analogously,
the indicator variable G; i . = 1 if the genotype of vari-
ant ¢ in sample k is ¢, and 0 otherwise, and we again
require Zt G;k+ = 1. The cell assignment matrix Z
is strictly unknown and needs to be estimated from
the observed data. In general, the genotype matrix G
is also unknown and is estimated jointly with Z. If
genotype information are available for one or multiple
samples in the pool, this information can be encoded
as informative prior on G; see below.

The likelihood of the full datasets, spanning all N
variants that were genotyped in each of M cells given
the cell assignment matrix Z, the genotype matrix G
and binomial parameter 8 follows as:

N M K

p(A7 D|Z, G, 0) = H H H H p(az‘,j|di,j, et)Zj,kXGi,k,

i=1j=1k=1teT

(2)

To complete the definition of the model, we introduce
prior distributions on the latent variables, which re-
sults in the following joint distribution over both ob-
served and latent variables

p(A, D, Z,G.0) = p(A, D|Z, G, 0)p(Z|m)p(G|U)p(0|a,
(3)

For computational convenience, we use conjugate
prior distributions, namely beta distribution for 8 and

=

B)
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multinomial distributions for both Z and G.
p(Z; ) = 1|7) = Multinom(w) = 7y
P(Gike = 1|U) = Multinom(u, ) = Ui k¢ (4)
(6 a§0>,,8,§°)) beta(9t|a( , t(o))

The hyper parameters are constant and set as follows.
We use an uninformative prior for Z: m, = 1/K, which
corresponds to a uniform assignment probability of
cells to samples. The user can define other multino-
mial probabilities, for example to encode known bias
in the sample representation. Similarly, we employ a
uniform prior on genotype G, i.e., u; ;¢ = 1/3 if no
genotype data are available. If the genotypes are par-
tially known for a subset of samples and/or variants,
a corresponding informative prior is encoded. Specifi-
cally, u; ;¢ takes the known genotype value with a relax
rate £, i.e., u; ;¢ = 1 — £ if the known genotype is t,
otherwise u; j + = &. The error rate parameter is set to
& = 0.05 by default.

Finally, the hyper parameter for the beta prior on
the allelic rate @ is determined using known germline
variants with high coverage: 6y ~ beta(0.3,29.7), 6, ~
beta(3,3), and 0 ~ beta(29.7,0.3), with which the
posterior of @ will be obtained by fitting to the dataset.

Variational Bayesian inference
Analytical calculation of the posterior distribution of

all latent variables given the observed data p(Z, G, 0| A, D)

is not tractable. Thus, we consider variational Bayesian
inference [21] to obtain an approximate solution,
thereby retaining the benefits of a Bayesian treatment
while retaining computational scalability to larger
scRNA-seq datasets. Briefly, the objective of vari-
ational inference is to approximate the exact (in-
tractable) posterior distribution of the latent variables
p(Y|X) by a factorized distribution ¢(Y) =[], ¢:(Y3),
where Y denotes a set of latent variables and X de-
notes the observed variables. The parameters of the
variational distribution ¢(Y) are determined with the
objective to minimise the Kullback-Leibler (L) di-
vergence between the approximate distribution ¢(Y)
and the actual posterior distribution p(Y|X)

- / q(Y)log

This objective is equivalent to maximizing the lower
bound of the full distribution L(g), as the log marginal
probability of the observed variables is a constant, as
follows,

KLY |p(Y X)) = Iy )

p(X) = L(q) + LL(¢(Y)][p(Y|X)), (6)
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where the lower bound L(q) is defined as follows,

pYX) gy 7)

L(q) Z/CI(Y) log oY)

A set of iterative update equations can be derived,
which are guaranteed to increase the lower bound

exp {Eix; log(p(Y, X))}
Jexp {Eiz; log(p(Y,X)}dY;

q;(Y;) = (8)

Here, E;+; denotes an expectation with respect to the
distributions ¢;(Y;) for all i # j.

For inference in Vireo, we assume a fully factorized
distribution ¢(Z,G,0) = ¢(Z)q(G)q(0) to approxi-
mate the true posterior distribution p(Z,G,8|A, D),
and we assume that Z and G follow categorical dis-
tributions, and 0 follows beta distributions. Based on
this assumption, the lower bound can be computed as
in Eq(7) (See Supplementary Methods Eq(S1-6)). Fol-
lowing Eq(8), it is possible to derive iterative update
equations for the @) distribution of the latent variables
(see Supplementary Methods Eq (S7-12) for full de-
tails).

M K
_ Zjk .
=TI II 54"
j=1k=1

T exp Ny Srer {Gikelaii0(@e) + bi0(Be)] |

ik = ~
TS mexp S Sier {Ginilanse(@) + bige(3) )
(9)
N K
-1111 H gk
i=1k=1teT
i k,r exp 300y 7 klaie(d) + bi,j@(ét)]}
9ik,t =

S her Wik,h €XP Y0ty 175 klai jo(an) + bi,j@(/f;’h)]}
(10)

0) = H beta(f¢|at, Bt);

teT
N M
it _a(o)-l,-ZZZT]kgzktazj, (11)
i=1j=1k=1
N M K
Br =B + SO FkGikoabiy
i=1j=1k=1

Here, we introduce b; ; = d; ; — a; ; to simplify the no-
tation and ¢(-) denotes the digamma function. To mit-
igate potential local optima, multiple random restarts
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are considered (default: 50 restarts) and the solution
that maximizes the variational lower bound is selected.
Thanks to the implementation with sparse matrix and
support of multiple threads, Vireo model is computa-
tionally efficient. On a laptop with 16G memory and
two 3.5GHz CPUs, Vireo finishes a two-run estimation
(see next section) in 6.7 minutes for 14,619 cells in an
eight sample pool and 58.1 seconds for 6,145 cells in
another eight sample pool (results in Fig. 3).

Vireo with known genotype or partial genotype

Besides demultiplexing pooled scRNA-seq without any
genotype information, Vireo is also able to leverage
any available genotype information. In the case that
the genotype is available for all pooled samples, we
only use the variants with known genotype and set the
genotype probability variable G as known and fixed,
which can be derived from the GT tag (for categori-
cal genotype), GP or GL tag (genotype probability or
likelihood) in the VCF file. By default, we use GT as
it is the most commonly available tag.

Alternatively, Vireo also supports the use of any par-
tial genotypes via a two-step run approach. In the first
run, Vireo does not use any genotype information but
infers the genotype for each sample. Then, we align the
samples with known genotype to these identified sam-
ples in this run and replace the estimated genotype
probability with the input known values. Therefore,
we obtain a genotype probability matrix with mixed
known and inferred samples, which we then use as a
prior of GG, instead of the default uniform prior in the
second run. Finally, we report the results of the second
run as the result of Vireo.

Estimation of the number of pooled samples

Access to the variational lower bound (Eq. 7) allows
for estimating the number of samples in a given pool.
Briefly, by comparing alternative Vireo runs with in-
creasing numbers of samples it is possible to identify
the most probable value with the elbow plot (e.g., Fig.
2A), which provides an objective means to define this
parameter.

A second strategy is to set a large number of samples
and prune some of the samples posthoc, as variational
Bayes model is self-regularizing and hence avoids over-
fitting (see Supp. Fig. S1). In practice this approach
can also increase robustness as the effective number of
samples in a pool can be larger than anticipated due
to doublets; see Section below.

Multiple random initializations

When genotype is not given, Vireo uses a pre-step with
multiple random initializations to avoid local optima.
By default, Vireo runs for 50 random initializations,
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each with a short iterations (15 by default). Then the
initialization with highest log likelihood will be con-
tinued.

As discussed in the above subsection, another strat-
egy to find all K pooled samples is searching from
a larger number of clusters. By default, we search
K + /K clusters in this pre-step, and only keep the K
clusters with largest number of assigned cells to con-
tinue, and discarded the v/K smaller clusters.

Doublet detection

To detect doublets, we construct the genotype of each
pair of samples and expand the K biological samples
by introducing in additional (K — 1) x K/2 doublet
competitors. For simplicity, we assume that the geno-
type of a doublet sample can be described as the aver-
age between two combined samples. Specifically, for a
given variant and genotype probability vectors for two
samples are ® = [r9,71,72] and Yy = [yo, Y1, ¥2], We
define the expected genotype for the doublet sample
as follows,

p(t =0) = zoyo

p(t =1) = z1y1 + Toy2 + T2v0

p(t =2) = 2212 (12)
p(t =0.5) = zoy1 + 1Yo
p(t = 1.5) = x1y2 + 22y1

where we introduce two pseudo-genotypes ¢t = 0.5 and
t = 1.5 respectively for combinations of genotype 0 &
1 and 1 & 2 in the doublet sample. For convenience,
we consider the binomial parameters for the alterna-
tive allelic reads and assume that the binomial param-
eters 65 and 075 also follow beta distributions. We
approximate the hyper-parameters of the beta distri-
bution empirically by respectively taking the ratio and
shapes with the arithmetic and geometric means from
the two ordinary genotypes. The resulting distribution
of Ay 5 can be expressed as follows

p(0o.5) = beta(ag.s, Bo.5)

Q0.5 1 (e 7)) aq
—05__— = + 13
ags+ Bos 2 (Oéo +p a1+ ﬂl) (13)

(o5 + 50.5)2 = (ag + Bo) x (a1 + B1).

Similarly, we define the distribution of 6 5.

In this augmented model, we have the full distri-
bution for the extended genotype reference G and 6,
consisting of K biological and (K — 1) x K/2 doublet
samples. In this model we can calculate the probability
that a cell originates from one of the doublet samples
using Eq(8).
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As an additional refinement, we specify a non-
uniform prior on 7 to define the a priori believe of
observing a doublet. Specifically, the prior binomial
distribution 7 is constructed as follows

p(ﬂ-h) B {T]/KQa

1 < h < K (singlet)
K < h < K + Kj; (doublet)
(14)

where Ky = (K —1) x K/2 as number of the combined
sample pairs. The prior probability for doublet cells is
low in most assays, e.g., n = 0.05. In case of the 10X
chromium platform, the prior value can be estimated
as a function of the number of loaded cells M, e.g.
n = M/100000 following [13], which by default are
used in our experiments.

Therefore, we can obtain the posterior of each cell’s
sample identity, i.e., the probability of cell j coming
from any of the K input samples or K5 combined
sample pairs (i.e., doublet). We use the highest assign-
ment probability of the K input samples, prob_max, as
the confidence score for singlet assignment and use the
summarised probability of all Ko sample pairs as the
confidence score of a doublet, namely prob_doublet.

Alignment of samples between multiple data sets

Vireo implicitly estimates the genotypes for subset of
variants with sufficient coverage (good accuracy for
variants with >10 reads per sample; see Supp. Fig. S4).
Among other use cases, these estimated genotypes al-
low for aligning scRNA-seq profiles from samples in a
pool to other ’omics data by matching genotype pro-
files.

When Vireo is applied to multiple data sets that
consist of the same samples, the estimated genotype
also allows for aligning samples across data sets (e.g.
Fic. 3C and 3F for multiple pools, and Supp. Fig. S12
for multiple ’omics). The software implementation of
Vireo provides support functions for this step by calcu-
lating the fraction of variants with matched genotype
between two or multiple experiments.

Identification of discriminatory variants

Given a set of variants for which estimated genotypes
are available, the Vireo software implements a heuris-
tic to define a minimal and informative set of dis-
criminatory variants. This set of variants can be used
to perform qPCR-based genotyping or for other tar-
geted genoytping methods. Briefly, the algorithm im-
plemented in Vireo prioritises variants with largest in-
formation gain in splitting samples, as follows.

1 Remove variants with < 20 UMIs per sample.
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2 Initialize the variant set S = {}, and the split T
among K samples, and calculate the initial en-
tropy H(T) =0

3 Rank variants by the information gain IG(T,v) =
H(T)— H(T|v)

4 Select the variant with highest information gain
and update S, T, and H(T)

5 If H(T) =logy(K), return S and T', otherwise go
to step 3.

Additionally, variants with homozygous alternative al-
lele in the pooled samples can also be filtered out be-
fore hand if needed. Examples of discriminatory vari-
ant sets for the six-sample pool from HipSci project
are shown in Supp. Fig. S13.

Differential expression analysis

Differential expression analysis was performed with
edgeR [20] between stimulated and control samples
(Fig. 4 and Supp. Fig. S7-11). A generalised regression
is applied in edgeR to test whether the stimulation
contributes to the expression variation on a certain
gene by using a likelihood-ratio test. By using the raw
UMI count, we performed cell type specific DE analy-
sis with the following three different strategies for all
cells jointly (Supp. Fig. S7).

Method 1: y ~ cdr 4 condition + sample, where y
is the expression count for a specific gene, which is
regressed three covariants: cdr, the cell detection rate
(i.e., the fraction of expressed gene in each cell), stim-
ulation condition and the sample identity.

Method 2 and 3: y ~ cdr+condition, where we ignore
the sample identity of each cell in the pool (Method
2). This same model can also be used in a pseudo-bulk
manner with summarize the count for all cells in the
same type in a sample (Method 3). Alternatively, we
can always perform this model at single cell level for
each sample separately (Fig. 4D-F).

ScRNA-seq data from Demuxlet paper

In this study, we considered two existing multiplexed
scRNA-seq datasets that consist of a total of five
batches [13]. Raw .bam files were obtained from the
Gene Expression Omnibus (GEO; accession number
GSE96583). The processed results from Demuxlet
for these five batches were directly downloaded from
https://github.com/yelabucsf/demuxlet_paper_
code. Approximately 37 million common variants (al-
lele frequency > 0.0005) extracted from the 1000
Genome Project, phase 3 [17] were used as candi-
date variants for scRNA-seq genotyping. We pro-
vide an companion Python package cel1SNP (https:
//pypi.org/project/cellSNP) for this task, which
enables generating selected pile-ups from scRNA-seq
data. We discarded non-bi-allelic variants as well as
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variants with fewer than 20 total UMIs across all cells
or minor (i.e., second) allele has less than 10% of total
UMIs. The final output of cel1SNP are two variants-
by-cells matrices, A and D, for UMI counts of alterna-
tive allele and the total counts respectively, which are
used as input for the Vireo model.

Bulk RNA-seq and scRNA-seq from HipSci project

In order to link the inferred samples to other ’omics
data, we used one scRNA-seq pool for iPSC differentia-
tion in HipSci project (10x Genomics platform, experi-
ment 44, day 0) with six samples: pipw, jejf, gehq, juuy,
wilk, and toco [15], and their according bulk RNA-seq
data for each sample [22] (http://www.hipsci.org).
Both scRNA-seq and bulk RNA-seq data sets were
downloaded in .bam files and genotyped on 7.4 mil-
lions common bi-allelic variants (minor allele frequency
>5%) extracted from the 1000 Genome Project with
cellSNP package. For single-cell data, we only keep
variants with minor allele frequency > 0.1 and > 20
UMIs. For each bulk RNA-seq sample, we also only
keep variants with minor allele frequency > 0.1 but
require > 100 read counts. Then the genotypes of each
bulk RNA-seq sample can be used to align to the sam-
ples that are demultiplexed from scRNA-seq data.

Synthetic data

We obtained raw 3’ scRNA-seq data based on 10x Ge-
nomics platform (v2 kit) for 16 genetically distinct
samples from Human Cell Atlas (Census of Immune
Cells) [18]. These data set are not pooled and each
sample has its own sequencing run. We only used data
from the first channel (each sample with around 100
millions reads), which is in the range of a standard 10x
sequencing run. We first mapped the raw fastq files to
the human genome hg38 by CellRanger v2.1 provided
by 10x Genomics (cellranger count command line).
Then we used cellSNP to genotype 7.4 millions com-
mon variants (minor allele frequency >5%) extracted
from the 1000 Genome Project for these 16 samples in
a pseudo-bulk manner. We only keeps variants with 1)
>100 UMIs summarised across 16 samples, 2) >10%
UMIs from minor allele, and 3) <5 UMIs for other al-
leles (i.e., not annotated reference and alternative al-
leles). Therefore, we obtained the genotypes of 62,193
variants for these 16 samples, which are feed into De-
muxlet and Vireo-GT.

By only keeping cells with >500 genes and >1000
UMIs, we had in total 66,410 cells across 16 samples,
with each sample having 2,495 to 4,909 cells. On av-
erage, there are 4,000 UMIs per cell (median 2,700
UMIs). In the synthetic mixture, we pooled reads for
a subset of cells from each sample (in bam format,
aligned reads) and generated multiplexed scRNA-seq
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data (also in bam format). The script to generating
these synthetic data is provided in Vireo’s GitHub
repository. Doublets were added into the pooled data
by adding proportional extra cells and combine them
with another cells randomly. The doublet rate is
N/100,000 where N is the total number of cells in
the pool.

By default, we pooled 1000 cells from each of 8 sam-
ples with doublet rate of 8%. This simulator also allows
setting different size of input samples, for example by
setting one sample with fewer cells ranging from 50 to
500 (Supp. Fig. S3). With the synthetic data in bam
format, we can even further sub sample reads by using
samtools with -s argument, e.g., 15-75% in Fig 2F.

All these simulations were randomly repeated for five
times to account for the variability in the simulation.
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