1 Streptococcus pneumoniae evades host cell phagocytosis and limits host mortality

2	through its cell wall anchoring protein PfbA
3	
4	Running title: PfbA inhibits phagocytosis and limits host responses
5	
6	Masaya Yamaguchi ^{a, #} , Yujiro Hirose ^a , Moe Takemura ^{a, b} , Masayuki Ono ^{a, c} , Tomoko
7	Sumitomo ^a , Masanobu Nakata ^a , Yutaka Terao ^d , Shigetada Kawabata ^a
8	
9	^a Department of Oral and Molecular Microbiology, Osaka University Graduate School of
10	Dentistry, Osaka, Japan
11	^b Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of
12	Dentistry, Osaka, Japan
13	^c Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry,
14	Osaka, Japan.
15	^d Division of Microbiology and Infectious Diseases, Niigata University Graduate School
16	of Medical and Dental Sciences, Niigata, Japan

17 [#]Address correspondence to Masaya Yamaguchi, yamaguchi@dent.osaka-u.ac.jp

18

19 Word count: 5255 words

20 Abstract

21	Streptococcus pneumoniae is a Gram-positive bacterium belonging to the oral
22	streptococcus species, mitis group. This pathogen is a leading cause of
23	community-acquired pneumonia, which often evades host immunity and causes
24	systemic diseases, such as sepsis and meningitis. Previously, we reported that PfbA is a
25	β -helical cell surface protein contributing to pneumococcal adhesion to and invasion of
26	human epithelial cells in addition to its survival in blood. In the present study, we
27	investigated the role of PfbA in pneumococcal pathogenesis. Phylogenetic analysis
28	indicated that the <i>pfbA</i> gene is specific to <i>S. pneumoniae</i> within the mitis group. Our <i>in</i>
29	vitro assays showed that PfbA inhibits neutrophil phagocytosis, leading to
30	pneumococcal survival. We found that PfbA activates NF-kB through TLR2, but not
31	TLR4. In addition, TLR2/4 inhibitor peptide treatment of neutrophils enhanced the
32	survival of the S. pneumoniae $\Delta pfbA$ strain as compared to a control peptide treatment,
33	whereas the treatment did not affect survival of a wild-type strain. In a mouse
34	pneumonia model, the host mortality and level of TNF- α in bronchoalveolar lavage
35	fluid were comparable between wild-type and $\Delta pfbA$ -infected mice, while deletion of

36	pfbA increased the bacterial burden in bronchoalveolar lavage fluid. In a mouse sepsis
37	model, the $\Delta pfbA$ strain demonstrated significantly increased host mortality and TNF- α
38	levels in plasma, but showed reduced bacterial burden in lung and liver. These results
39	indicate that PfbA may contribute to the success of S. pneumoniae species by inhibiting
40	host cell phagocytosis, excess inflammation, and mortality.
41	
42	Importance
43	Streptococcus pneumoniae is often isolated from the nasopharynx of healthy
44	children, but the bacterium is also a leading cause of pneumonia, meningitis, and sepsis.
45	In this study, we focused on the role of a cell wall anchoring protein, PfbA, in the
46	pathogenesis of S. pneumoniae-related disease. We found that PfbA is a
47	pneumococcus-specific anti-phagocytic factor that functions as a TLR2 ligand,
48	indicating that PfbA may represent a pneumococcal-specific therapeutic target.
49	However, a mouse pneumonia model revealed that PfbA deficiency reduced the
50	bacterial burden, but did not decrease host mortality. Furthermore, in a mouse sepsis
51	model, PfbA deficiency increased host mortality. These results suggest that S.

52	pneumoniae optimizes reproduction by regulating host mortality through PfbA;
53	therefore, PfbA inhibition would not be an effective strategy for combatting
54	pneumococcal infection. Our findings underscore the challenges involved in drug
55	development for a bacterium harboring both commensal and pathogenic states.
56	
57	Introduction
58	Streptococcus pneumoniae is Gram-positive bacteria belonging to the mitis group
59	that colonizes the human nasopharynx in approximately 20% of children without
60	causing clinical symptoms (1-3). On the other hand, S. pneumoniae is also a leading
61	cause of bacterial pneumonia, meningitis, and sepsis worldwide. The pathogen is
62	estimated to be responsible for the deaths of approximately 1,190,000 people annually
63	from lower respiratory infection (4). Following the introduction of pneumococcal
64	conjugate vaccines, S. pneumoniae is still responsible for two thirds of all cases of
65	meningitis (5). In addition, antibiotic selective pressure causes resistant pneumococcal
66	clones to emerge and expand all over the world and the World Health Organization
67	listed S. pneumoniae as one of antibiotic-resistant "priority pathogens" (6). Centers for

68	Disease Control and Prevention data from active bacterial core surveillance for 2009 to
69	2013 indicated that pneumococcal conjugate vaccines work as a useful tool against
70	antibiotic resistance (7). However, these vaccines also generate selective pressure, and
71	non-vaccine serotypes of S. pneumoniae are increasing worldwide (8, 9).
72	During the process of invasive infection, S. pneumoniae needs to evade host
73	immunity and replicate in the host after colonization. In these steps, pneumococcal cell
74	surface proteins work as adhesins and/or anti-phagocytic factors. There are two types of
75	motifs for pneumococcal cell surface localization, a cell wall anchoring motif, LPXTG
76	(10), and choline-binding repeats interacting with pneumococcal phosphorylcholine
77	(11). Choline-binding proteins (CBPs) localize on the pneumococcal cell wall via the
78	phosphorylcholine moiety of teichoic acids, while LPXTG-anchored proteins are
79	covalently attached to the cell wall. Several LPXTG-anchored proteins and CBPs
80	contribute to the adhesion to host epithelial cells through the interaction with host
81	factors (10-13). Some pneumococcal cell surface proteins also contribute to bacterial
82	survival by limiting complement deposition or inhibiting phagocytosis (11, 14-17). On
83	the other hand, the host recognizes S. pneumoniae and regulates immune responses

84	using pattern recognition receptors, including the Toll-like receptors (TLRs), nucleotide
85	oligomerization domain-like receptors, and retinoic acid-inducible gene-I-like receptors
86	(18). In addition, extracellular bacteria are recognized by TLR2 and TLR4 located on
87	the host cell surface. TLR2 recognizes pneumococcal cell wall components and
88	lipoproteins, while TLR4 senses a pore-forming toxin, pneumolysin (18, 19). Generally,
89	both TLR2 and TLR4 agonists induce neutrophil activation and inhibit the apoptosis
90	(20). However, in mouse influenza A virus and S. pneumoniae co-infection model, a
91	TLR2 agonist decreased inflammation and reduced bacterial shedding and transmission
92	(21). TLRs play important, but redundant, roles in the host defense and regulating
93	inflammatory responses against pneumococcal infection. Appropriate immune
94	responses contribute to pneumococcal clearance, while excessive inflammation can lead
95	to serious tissue damage.
96	We previously reported that plasmin- and fibronectin-binding protein A (PfbA)
97	plays a role in fibronectin-dependent adhesion to and invasion of epithelial cells, and
98	that an S. pneumoniae PfbA-deficient mutant strain exhibited decreased survival in
99	human blood (22, 23). PfbA is an LPXTG-anchored protein that features a right-handed

100	parallel β -helix with a groove or cleft, formed by three parallel β -sheets and connecting
101	loops (24, 25). Since the distribution and structural arrangement of the groove residues
102	in the β -helix make it favorable for binding to carbohydrates, PfbA binds to D-galactose,
103	D-mannose, D-glucosamine, D-galactosamine, N-acetylneuraminic acid, D-sucrose, and
104	D-raffinose (26). PfbA also binds to human erythrocytes by interacting with
105	N-acetylneuraminic acids on the cells (27).
106	In this study, we investigated the role of PfbA in pneumococcal pathogenesis.
107	Phylogenetic analysis indicated that <i>pfbA</i> is specific to <i>S. pneumoniae</i> among the mitis
108	group Streptococcus. Our in vitro analysis revealed that PfbA works as an
109	anti-phagocytic factor and that the protein causes NF-kB activation via TLR2. In
110	addition, Toll-interleukin 1 receptor adaptor protein (TIRAP) inhibition increased the
111	survival rate of the <i>pfbA</i> mutant strain after incubation with neutrophils, while the
112	wild-type (WT) strain was not affected. Mouse infection assays suggested that PfbA
113	contributes to pneumococcal survival in at least some organs. However, in a mouse
114	sepsis model, <i>pfbA</i> mutant strain-infected mice showed significantly higher mortality

- 115 and TNF- α levels in blood. Our findings indicate that PfbA is a pneumococcus-specific
- 116 anti-phagocytic factor and suppresses host excess inflammation.

118 Materials and Methods

119	Bacterial strains and construction of mutant strain
120	Streptococcus pneumoniae strains were cultured in Todd-Hewitt broth (BD
121	Biosciences, San Jose, CA, USA) supplemented with 0.2% yeast extract THY medium,
122	BD Biosciences) at 37°C. For selection and maintenance of mutants, spectinomycin
123	(Fujifilm Wako Pure Chemical Corporation, Osaka, Japan) was added to the medium at
124	120 µg/mL. The Escherichia coli strain XL10-Gold (Agilent, Santa Clara, CA, USA)
125	was used as a host for derivatives of plasmid pQE-30. All E. coli strains were cultured
126	in Luria-Bertani (LB) broth supplemented with 100 μ g/mL carbenicillin (Nacalai
127	Tesque, Kyoto, Japan) at 37°C with agitation.
128	S. pneumoniae TIGR4 isogenic pfbA mutant strains were generated as previously
129	described with minor modifications (22, 28, 29). Briefly, the upstream region of <i>pfbA</i> ,
130	an <i>aad9</i> cassette, the downstream region of <i>pfbA</i> , and pGEM-T Easy vector (Promega,
131	Madison, WI, USA) were amplified by PrimeSTAR® MAX DNA Polymerase (TaKaRa
132	Bio, Shiga, Japan) using the specific primers listed in Supplementary Table 1. The DNA
133	fragments were assembled using a GeneArt® Seamless Cloning and Assembly Kit
134	(Thermo Fisher Scientific, Waltham, MA, USA). The constructed plasmid was then

135	transformed into E. coli XL-10 Gold, and the inserted DNA region was amplified by
136	PCR. The products were used to construct mutant strains by double-crossover
137	recombination with the synthesized competence-stimulating peptide-2. The mutation
138	was confirmed by PCR amplification of genomic DNA isolated from the mutant strain.
139	
140	Cell culture
141	Human promyelocytic leukemia cells (HL-60, RCB0041) were purchased from
142	RIKEN Cell Bank (Ibaraki, Japan). HL-60 cells were maintained in RPMI 1640
143	medium (Thermo Fisher Scientific) supplemented with 10% FBS, and were incubated at
144	37°C in 5% CO ₂ . HL-60 cells were differentiated into neutrophil-like cells for 5 days in
145	culture media containing 1.2% DMSO (30, 31). Cell differentiation was confirmed by
146	nitro blue tetrazolium reduction assay (30).
147	Human TLR2/NF-KB/SEAP stably transfected HEK293 cells and human
148	TLR4/MD-2/CD14/NF-κB/SEAP stably transfected HEK293 cells (Novus Biologicals,
149	Centennial, CO, USA, currently sold by InvivoGen, San Diego, CA, USA) were
150	maintained in DMEM with 4.5 g/L glucose, 10% FBS, 4 mM L-glutamine, 1 mM

151	sodium pyruvate, 100 units/mL penicillin, 100 µg/mL streptomycin, 10 µg/mL
152	blasticidin, and 500 $\mu g/mL~G418$ and DMEM with 4.5 g/L glucose, 10% FBS, 4 mM
153	L-glutamine, 1 mM sodium pyruvate, 100 units/mL penicillin, 100 µg/mL streptomycin,
154	10 μ g/mL blasticidin, 2 μ g/mL puromycin, 200 μ g/mL zeocin, and 500 μ g/mL G418,
155	respectively. A secreted alkaline phosphatase reporter assay was performed according to
156	the manufacturer's instructions (Novus Biologicals).
157	
158	Phylogenetic analysis
159	Phylogenetic analysis was performed as described previously (17, 32, 33), with
160	minor modifications. Briefly, homologues and orthologues of the <i>pfbA</i> gene were
161	searched using tBLASTn (34). The sequences were aligned using Phylogears2 (35, 36)
162	and MAFFT v.7.221 with an L-INS-i strategy (37), and ambiguously aligned regions
163	were removed using Jalview (38, 39). The best-fitting codon evolutionary models for
164	phylogenetic analyses were determined using Kakusan4 (40). Bayesian Markov chain
165	Monte Carlo analyses were performed with MrBayes v.3.2.5 (41), and 4×10^6
166	generations were sampled after confirming that the standard deviation of split

167	frequencies was	< 0.01. To	validate phylog	genetic inferences	, maximum li	kelihood

168 phylogenetic analyses were performed with RAxML v.8.1.20 (42). Phylogenetic trees

169 were generated using FigTree v.1.4.2 (43) based on the calculated data.

- 171 Human neutrophil and monocyte preparation
- 172 Human blood was obtained via venipuncture from healthy donors after obtaining
- 173 informed consent. The protocol was approved by the institutional review boards of
- 174 Osaka University Graduate School of Dentistry (H26-E43). Human neutrophils and
- 175 monocytes were prepared using Polymorphprep (Alere Technologies AS, Oslo,
- 176 Norway), according to the manufacturer's instructions. Human blood was carefully
- 177 layered on the Polymorphprep solution in centrifugation tubes, which were then
- 178 centrifuged at $450 \times g$ for 30 min in a swing-out rotor at 20°C. Monocyte and neutrophil
- 179 fractions were transferred into tubes containing ACK buffer (0.15 M NH₄Cl, 0.01 M
- 180 KHCO₃, 0.1 mM EDTA), then centrifuged, washed in phosphate-buffered saline, and
- 181 resuspended in RPMI 1640 medium.
- 182

183 Neutrophil bactericidal assays

184	The pneumococcal cells grown to the mid-log phase were resuspended in PBS.
185	TIGR4 strains (3-11 \times 10 ³ CFUs/well) with or without rPfbA (0, 10, or 100 nM) were
186	combined with human neutrophils or neutrophil like-differentiated HL-60 cells (2 x 10^5
187	cells/well), and R6 strains (1.4-2.0 \times 10 ² CFUs/well) were combined with human
188	neutrophils (1 × 10 ⁵ cells/well). The mixture was incubated at 37°C in 5% CO ₂ for 1, 2,
189	and 3 h. Viable cell counts were determined by plating diluted samples onto TS blood
190	agar. The growth index was calculated as the number of CFUs at the specified time
191	point/number of CFUs in the initial inoculum. Bacterial phagocytosis was blocked by
192	addition of cytochalasin D (20 μM), and pneumococcal killing was blocked by protease
193	inhibitor cocktail set V (Merck, Darmstat, Germany; 500 μ M AEBSF, 150 nM
194	Aprotinin, 1 μ M E-64, and 1 μ M leupeptin hemisulfate, EDTA-free) at 1 h before
195	incubation. To determine whether TLR2 and TLR4 signaling affect pneumococcal
196	survival, 100 μ M TIRAP (TLR2 and TLR4) inhibitor peptide or control peptide (Novus
197	Biologicals) were added to neutrophils at 1 h before incubation.
198	

199 Time-lapse microscopic analysis

200	For time-lapse observations, isolated neutrophils were resuspended in RPMI 1640
201	at 1 × 10 ⁶ cells/mL. Next, 10 μ L of <i>S. pneumoniae</i> R6 wild type or $\Delta pfbA$ strains (1 ×
202	10 ⁶ CFUs) was added to 2 mL of the cells, and the mixture was incubated and observed
203	at 37°C. Time-lapse images were captured using an Axio Observer Z1 microscope
204	system (Carl Zeiss, Oberkochen, Germany).
205	
206	Flow cytometric analysis of phagocytes
207	Recombinant PfbA (rPfbA) or BSA was coated onto 0.5-µm-diameter fluorescent
208	beads (FluoroSphere, Thermo Fisher Scientific), according to the manufacturer's
209	instructions. rPfbA was purified as previously described (22). Isolated neutrophils or
210	monocytes were then resuspended in RPMI 1640 at 1.0×10^7 cells/mL, after which 900
211	μL of RPMI 1640 containing 1 μL of rPfbA-, BSA-, or non-coated fluorescent beads
212	was added to 100 μL of cells, and then the mixtures were rotated at 37°C for 1 h. The
213	cells were washed twice and fixed with 2% glutaraldehyde-RPMI 1640 at 37°C for 1 h,
214	then washed again three times and analyzed with a CyFlow flow cytometer (Sysmex,

215 Hyogo, Japan) using FlowJo software ver. 8.3.2 (BD Biosciences, Franklin Lakes, NJ,

216 USA).

217

218 TLR2/4 SEAPorter assay

HEK cells expressing TLR2 or TLR4 were stimulated with *S. pneumoniae* and/or rPfbA for 16 h, according to the manufacturer's instructions (Novus Biologicals). To avoid the effect of bacterial replication on this assay, *S. pneumoniae* were pasteurized

222 by incubation at 56°C for 30 min. To perform the assay under the same condition, rPfbA

223 was also incubated at 56°C for 30 min. Lipopolysaccharides from *Escherichia coli*

224 O111:B4 (Sigma-Aldrich Japan Inc., Tokyo, Japan) for the TLR-4 cell line and

225 Pam3CSK4 and Zymozan (Novus Biologicals) for the TLR-2 cell line were used as

226 positive controls under the same conditions. Secreted alkaline phosphatase (SEAP) was

analyzed using the SEAPorter Assay (Novus Biologicals) according to the

228 manufacturer's instructions. Quantitative data (ng/mL) were obtained using a standard

curve for the SEAP protein.

230

231 RNA extraction and miRNA array

232	We performed microRNA array analysis using neutrophil like-differentiated HL60
233	cells incubated with S. pneumoniae strains and/or 100 nM rPfbA for 1 h. We compared
234	rPfbA-treated and non-treated cells, wild type and $\Delta pfbA$ -infected cells, and $\Delta pfbA$ with
235	and without rPfbA-infected cells. In each cell sample, six replicates were pooled and
236	total RNA including microRNA was isolated from the pooled cells by miRNeasy Mini
237	Kit (Qiagen, Hilden, Germany). Approximately 1000 ng RNA was used for microarray
238	analysis using Affymetrix GeneChip miRNA 4.0 arrays (Affymetrix, Santa Clara, CA,
239	USA) through Filgen Inc. (Nagoya, Japan). Briefly, the quality of total RNA was
240	assessed using a Bioanalyzer 2100 (Agilent). Hybridization was performed using a
241	FlashTag Biotin HSR RNA Labeling Kit, GeneChip Hybridization Oven 645, and
242	GeneChip Fluidics Station 450. The arrays were scanned by Affymetrix GeneChip
243	Scanner 3000 7G. The GeneChip miRNA 4.0 arrays contain 30,424 total mature
244	miRNA probe sets including 2,578 mature human miRNAs, 2,025 pre-miRNA human
245	probes, and 1,196 Human snoRNA and scaRNA probe sets.
246	

247 Mouse infection assays

248	Mouse infection assays were performed as previously described (17, 33, 44, 45).
249	For the lung infection model, CD-1 mice (Slc:ICR, 8 weeks, female) were infected
250	intratracheally with 4.3-6.7 \times 10 ⁶ CFUs of <i>S. pneumoniae</i> . For intratracheal infection,
251	the vocal cords were visualized using an operating otoscope (Welch Allyn, NY, USA),
252	and 40 μ L of bacteria was placed onto the trachea using a plastic gel loading pipette tip.
253	Mouse survival was monitored twice daily for 14 days. At 24 h after intratracheal
254	infection, bronchoalveolar lavage fluid (BALF) was collected following perfusion with
255	PBS.
256	For the sepsis model, CD-1 mice (Slc:ICR, 8 weeks, female) were infected
257	intravenously with 3.3-6.5 \times 10 ⁵ CFUs of <i>S. pneumoniae</i> via the tail vein. Mouse
258	survival was monitored twice daily for 14 days. At 24 and 48 h after infection, blood
259	aliquots were collected from mice following induction of general euthanasia. Brain,
260	lung, and liver samples were collected following perfusion with PBS. Brain and lung
261	whole tissues as well as the anterior segment of the liver were resected. Bacterial counts
262	in the blood as well as organ homogenates were determined by separately plating serial

\mathbf{n}	11	1.1 '.	· . 1		, 1	C	1.00	•		• • • •	\sim \cdot \cdot	1
	63	dilutione	with organ	counte	corrected	tor	dittoronoog	111 01	raan	woinshi l	1atantian	limite
4	\mathbf{v}	y ununous.	with organ	counts	COLLCUCU	101	uniterences	III UI	i zan	woigint. I		mmus
						-		-	0			

- were 50 CFUs/organ and 50 CFUs/mL in blood.
- 265 The concentrations of TNF- α in BALF and plasma were determined using a
- 266 Duoset[®] ELISA Kit (R&D Systems, Minneapolis, MN, USA). Mice plasma was
- 267 obtained by centrifuging the heparinized blood. All mouse experiments were conducted
- 268 in accordance with animal protocols approved by the Animal Care and Use Committees
- at Osaka University Graduate School of Dentistry (28-002-0).
- 270

271 Statistical analysis

- 272 Statistical analysis of *in vitro* and *in vivo* experiments was performed using a
- 273 nonparametric analysis, Mann-Whitney U test, or Kruskal-Wallis test with Dunn's
- 274 multiple comparisons test. Mouse survival curves were compared using a log-rank test.
- 275 p < 0.05 was considered to indicate a significant difference. The tests were carried out
- with Graph Pad Prism version 6.0h (GraphPad Software, Inc., San Diego, CA, USA).

277 Results

278	The <i>pfbA</i> gene is specific to <i>S. pneumoniae</i> among mitis group <i>Streptococcus</i>
279	We searched <i>pfbA</i> -homologues by tBLASTn and performed phylogenetic analysis
280	(Fig. 1 and Supplementary Fig. 1). The <i>pfbA</i> gene homologues were identified in <i>S</i> .
281	pneumoniae, Streptococcus pseudopneumoniae, and Streptococcus merionis. Although
282	16S rRNA sequences cannot distinguish mitis group species, the 16S rRNA of
283	Streptococcus sp. strain W10853 showed 99.387% identity to that of S.
284	pseudopneumoniae. Interestingly, S. pneumoniae-related species such as Streptococcus
285	mitis and Streptococcus oralis did not contain the homologues, whereas S. merionis had
286	a gene of which the query cover and identity were over 50%. S. merionis strain
287	NCTC13788 (also known as WUE3771, DSM 19192, and CCUG 54871), isolated from
288	the oropharynges of Mongolian jirds (Meriones unguiculatus), contained 16S rRNA that
289	belongs in a cluster distinct from the mitis group (46). This result indicates that the <i>pfbA</i>
290	gene is specific to S. pneumoniae and S. pseudopneumoniae in the mitis group.
291	

292 **PfbA contributes to evasion of neutrophil killing**

293	To investigate whether PfbA contributes to evasion of neutrophil killing, we
294	determined pneumococcal survival rates after incubation with human neutrophils. After
295	3 h incubation, the TIGR4 $\Delta pfbA$ strain showed a significantly decreased bacterial
296	survival rate. In addition, to clarify whether the observed effects were attributed to PfbA,
297	we also performed the assay with rPfbA. In the presence of 100 nM rPfbA, TIGR4
298	$\Delta pfbA$ strain demonstrated a recovered survival rate nearly equal to that of the wild-type
299	strain (Fig. 2A). In pneumococcal survival assays with neutrophil-like differentiated
300	HL60 cells, TIGR4 strains showed similar results (Fig. 2B). We also performed the
301	assay using the non-encapsulated strain R6 and human neutrophils. The R6 $\Delta pfbA$ strain
302	showed significantly decreased survival rates as compared to the wild-type strain after
303	incubation for 1, 2, and 3 h (Fig. 2C). As the R6 strain showed this phenotype at earlier
304	time points than the TIGR4 strain, we performed pneumococcal survival assays using
305	R6 strains with inhibitors (Fig. 2D). Neutrophil phagocytic killing of S. pneumoniae
306	requires the serine proteases (47). Thus, we used a protein inhibitor cocktail as a
307	positive control of a neutrophil killing inhibitor. While the R6 $\Delta pfbA$ strain showed
308	significantly decreased survival rates at 1 h after incubation with human fresh

309	neutrophils in the absence of inhibitors, treatment with an actin polymerization inhibitor,
310	cytochalasin D, reduced the differences among the wild-type and $\Delta pfbA$ strains as well
311	as the protein inhibitor cocktail. These results indicate that PfbA contributes to
312	pneumococcal evasion of neutrophil phagocytosis.
313	
314	PfbA inhibits neutrophil phagocytosis directly
315	We confirmed the anti-phagocytic activity of PfbA using flow cytometry and
316	PfbA-coated fluorescent beads (Fig. 3A). The fluorescence intensity of neutrophils and
317	monocytes incubated with PfbA-coated beads was substantially lower as compared with
318	cells incubated with non- or BSA-coated beads. These results indicated that neutrophils
319	and monocytes phagocytosed the non- and BSA-coated fluorescent beads, whereas the
320	PfbA-coated fluorescent beads escaped phagocytosis by neutrophils and monocytes.
321	We performed real-time observations for time-lapse analysis of the interaction
322	between S. pneumoniae and neutrophils (Fig. 3B). S. pneumoniae strain R6 wild-type
323	and $\Delta pfbA$ strains were separately incubated with fresh human neutrophils in RPMI
324	1640 medium. After coming into contact with neutrophils, the $\Delta pfbA$ strain was

325	phagocytosed within 1 min, whereas the wild-type strain was not phagocytosed after
326	more than 5 min. Time-lapse analysis also showed the $\Delta pfbA$ strain engulfed by
327	neutrophil phagosomes. These results suggest that PfbA can directly inhibit
328	phagocytosis.
329	
330	PfbA works as a TLR2 ligand and may inhibit phagocytosis through TLR2
331	Some lectins of pathogens work as ligand for TLR2 and TLR4 (48). We previously
332	reported that PfbA can interact with glycolipid and glycoprotein fractions of red blood
333	cells, several monosaccharides, D-sucrose, and D-raffinose (26, 27). Hence, to determine
334	whether PfbA works as a TLR ligand, we performed a SEAP assay using HEK-293 cells
335	stably transfected with either TLR2 or TLR4, NF-KB, and SEAP (Fig. 4A). Pam3CSK4
336	and Zymozan were used as positive controls for the TLR2 ligand, while LPS was used
337	for TLR4. The SEAP assay indicated that pasteurized S. pneumoniae TIGR4 wild-type
338	cells activated NF- κ B via TLR2, whereas $\Delta pfbA$ cells did not stimulate cells expressing
339	either TLR2 or TLR4. Pasteurized rPfbA also activated NF-κB dose-dependently
340	through TLR2, but not TLR4. In addition, in the presence of pasteurized rPfbA, $\Delta pfbA$

cells activated the cells expressing TLR2. Thus, PfbA is responsible for pneumococcal

341

342	NF-κB activation through TLR2.
343	Next, to determine whether TLR signaling suppresses survival of pneumococci
344	incubated with neutrophils, we performed a neutrophil survival assay using a TIRAP
345	inhibitor peptide (Fig. 4B). Data are presented as the ratio calculated by dividing CFUs
346	in the presence of inhibitor peptide by CFUs in the presence of control peptide. TIRAP
347	is an adaptor protein involved in MyD88-dependent TLR2 and TLR4 signaling
348	pathways. Since the TIRAP inhibitor peptide blocks the interaction between TIRAP and
349	TLRs, the peptide works as a TLR2 and TLR4 inhibitor. The inhibitor peptide treatment
350	increased survival rates of the $\Delta pfbA$ strain, but did not affect wild-type survival rates.
351	These results indicate that PfbA contributes to the evasion of neutrophil phagocytosis,
352	and TIRAP inhibitor treatment did not change survival rates of pneumococci incubated
353	with neutrophils. On the other hand, the S. pneumoniae $\Delta pfbA$ strain is more easily
354	phagocytosed by neutrophils as compared to the wild-type strain, and this phenotype is
355	abolished by TIRAP inhibitor.

356	Stimulation of the human monocytic cell line THP1 by a TLR ligand, LPS, induces
357	miR-146a/b expression in an NF-KB-dependent fashion, and this induction inhibits
358	innate immune responses (49). In addition, pneumococcal infection of human
359	macrophages induces expression of several microRNAs, including miR-146a, in a
360	TLR-2-dependent manner, which prevents excessive inflammation (50). We performed
361	microRNA array analysis using neutrophil like-differentiated HL60 cells, S.
362	pneumoniae strains and rPfbA (Supplementary Fig. 2, Accession number: GSE128341).
363	We compared rPfbA-treated and non-treated cells, wild type and $\Delta pfbA$ -infected cells,
364	and $\Delta pfbA$ with and without rPfbA-infected cells. The analysis revealed only one
365	microRNA, hsa-miR-1281, that was commonly downregulated by 2-fold or greater in
366	the presence of PfbA as compared to in its absence (Supplementary Fig. 2, magenta
367	circle). On the other hand, there were no commonly upregulated miRNAs, including
368	miR-146a/b. In addition, the expression of eight microRNAs was commonly changed in
369	wild-type infection and $\Delta pfbA$ infection with rPfbA as compared to infection with
370	$\Delta pfbA$ only. Five micro RNAs (hsa-miR-4674, hsa-miR-3613-3p, hsa-miR-4668-5p,
371	hsa-miR-3197, and hsa-miR-6802-5p) were upregulated, while three (hsa-miR-3935,

372 hsa-miR-1281, and hsa-miR-3613-5p) were downregulated. However, the role of these

- 373 miRNAs in infectious process remains unclear.
- 374

375 **PfbA** deficiency reduces pneumococcal burden in BALF but does not alter host

- 376 survival rate in a mouse pneumonia model
- 377 To investigate the role of PfbA in pneumococcal pathogenesis, we infected mice
- 378 with S. pneumoniae strains intratracheally and compared bacterial CFUs and TNF- α
- 379 levels in BALF from mice 24 h after infection. There were no differences observed in
- 380 survival time between mice infected with wild type and $\Delta pfbA$ strains (Fig. 5A).
- 381 However, recovered CFUs of wild-type bacteria were significantly greater than those of
- $\Delta pfbA$ strains in mouse BALF. In addition, the level of TNF- α in BALF was almost the
- 383 same in wild type and $\Delta pfbA$ infection (Fig. 5B).
- 384

385 **PfbA deficiency increases pneumococcal pathogenicity in a mouse sepsis model**

- 386 We also investigated the role of PfbA in mice following intravenous infection as a
- 387 model of sepsis. In the infection model, the $\Delta pfbA$ strain showed significantly higher

388 levels of virulence as compared to the wild-type strain (Fig. 6A). Furthermore, we

- 389 compared the TNF- α levels in plasma and examined the bacterial burden in blood, brain,
- 390 lung, and liver samples obtained at 24 and 48 h after intravenous infection (Fig. 6B, 6C
- and Supplementary Fig. 3). At 24 h after infection, TNF-α ELISA findings showed a
- 392 significantly greater level in the plasma of *pfbA* mutant strain-infected mice as
- 393 compared to the wild-type strain-infected mice. The numbers of CFUs of both the

394 wild-type and *pfbA* mutant strains in the blood and brain samples were comparable. On

- the other hand, in the lung and liver samples, the *pfbA* mutant strain-infected mice
- 396 showed slightly but significantly reduced numbers of CFUs as compared with the
- 397 wild-type strain-infected mice. At 48 h after infection, there were no significant
- 398 differences in TNF- α level and bacterial burden in each organ between the wild-type-
- and *pfbA* mutant strain-infected mice (Supplementary Fig. 3). Bacteria were not
- 400 detected in the blood of two of the wild-type strain-infected mice and five of the *pfbA*
- 401 mutant strain-infected mice. Meanwhile, three of the wild-type strain-infected mice
- 402 yielded more than 10⁶ CFUs/mL, while seven of the wild-type strain-infected mice did.

403 The *pfbA* mutant strain infection caused a polarized bacterial burden in the host at 48 h

404 after infection as compared to wild type infection.

Discussion

406	In the present study, we found that $pfbA$ is a pneumococcal-specific gene that
407	contributes to evasion of neutrophil phagocytosis. We determined that PfbA can activate
408	NF- κ B through TLR2. TIRAP inhibition increased the survival rate of $\Delta pfbA$ strain
409	incubated with neutrophils, while this inhibition did not affect a wild-type strain
410	survival. In a mouse model with lung infection, the bacterial burden of the $\Delta pfbA$ strain
411	was significantly reduced as compared with that of wild-type strain, but the TNF- α level
412	was comparable between the strains. Overall, there was no significant difference in the
413	survival rates of mice infected with the wild-type S. pneumoniae strain- and those
414	infected with the $\Delta pfbA$ strain. Furthermore, in a mouse model with blood infection, the
415	$\Delta pfbA$ strain showed a significantly higher TNF- α level than the wild-type strain. These
416	results suggest that PfbA may suppress the host innate immune response by acting as an
417	anti-phagocytic factor interacting with TLR2.
418	Prior studies have shown that S. pneumoniae under selective pressure can adapt to
419	the environment by importing genes from other related streptococci, such as those in the
420	mitis group (51-54). Although S. mitis and S. oralis are oral commensal bacteria, these

421	species contain various pneumococcal virulence factor homologues. Some mitis group
422	strains harbor several choline-binding proteins including autolysins, pneumolysin,
423	sialidases, and others (11, 55, 56). In this study, we found that <i>pfbA</i> homologues were
424	absent among mitis group strains without S. pneumoniae for which whole genome
425	sequences were available, whereas the <i>pfbA</i> gene is highly conserved among
426	pneumococcal strains. Interestingly, a streptococcal species with clear evolutionary
427	separation from the mitis group, S. merionis, contained a pfbA orthologue. This result
428	indicates that <i>pfbA</i> is a pneumococcal-specific gene and that ancestral <i>S. pneumoniae</i>
429	likely obtained the gene by horizontal gene transfer from non-mitis group streptococcal
430	species.
431	Although lipoproteins are major TLR2 ligands as well as peptidoglycans in <i>S</i> .
432	pneumoniae (19), we found that rPfbA can activate NF-кВ solely in HEK293 cells
433	expressing TLR2, but not those expressing TLR4. Since E. coli does not have the
434	capacity to glycosylate proteins (57), rPfbA-mediated TLR2 activation would be
435	independent of pneumococcal glycosylation. Plant and pathogen lectins can induce
436	NF-κB activation through binding to TLR2 <i>N</i> -glycans, while a classical ligand such as

437	Pam3CSK4 can activate NF-KB glycan-independently (48). TLR2 has four N-glycans
438	whose structures still remain unknown, and the N-glycans are critical for the lectins to
439	induce TLR2-mediated activation (48). PfbA binds to various carbohydrates via the
440	groove residues in the β -helix (26, 27). There is a possibility that PfbA induces TLR2
441	signaling by binding to TLR2 N-glycans.
442	Human macrophages challenged with S. pneumoniae induce a negative feedback
443	loop, preventing excessive inflammation via miR-146a and potentially other miRNAs
444	on the TLR2-MyD88 axis (50). On the other hand, pneumococcal endopeptidase O
445	enhances macrophage phagocytosis in a TLR2- and miR-155-dependent manner (58).
446	Furthermore, miR-9 is induced by TLR agonists and functions in feedback control of
447	the NF-kB-dependent responses in human monocytes and neutrophils (59). These
448	studies indicate that host phagocytes are regulated by a complex combination of pattern
449	recognition receptor signaling and miRNA induction. We predicted that PfbA
450	suppresses phagocytosis via the induction of miRNAs in a TLR2 dependent fashion.
451	However, an miRNA array showed that the levels of the involved miRNAs were not
452	changed over 2-fold in the presence or absence of PfbA. One possible hypothesis is that

453 PfbA induces different miRNA responses from classical TLR ligands vi	453	PfbA induces	different miRNA r	esponses from	classical '	TLR ligands vi
--	-----	--------------	-------------------	---------------	-------------	----------------

- 454 glycan-dependent recognition. Although PfbA can downregulate miR-1281 in
- 455 differentiated HL-60 cells, the role of miR-1281 in phagocytes remains unclear. Further
- 456 comprehensive studies are required to investigate the role of miRNAs in host innate
- 457 immunity.
- 458 Unexpectedly, our mouse pneumonia and sepsis models indicated that *pfbA*
- 459 deficiency reduces pneumococcal survival in the host, but does not decrease or
- 460 increases host mortality. We previously reported that PfbA works as an adhesin and
- 461 invasin of host epithelial cells (22). The reduction of bacterial burden in host organs can
- 462 be explained by the synergy of adhesive and anti-phagocytic abilities. On the other hand,
- 463 the S. pneumoniae $\Delta pfbA$ strain showed equivalent or greater induction of inflammatory
- 464 cytokines as compared with the wild-type strain. Generally, a deficiency of TLR ligands
- 465 would suppress inflammatory responses. However, a deficiency of PfbA would cause
- 466 more efficient bacterial uptake by phagocytes and promote inflammatory responses. In
- 467 addition, there is a possibility that the negative feedback loop induced by PfbA is lost
- 468 and causes excess inflammation. High mortality does not mean bacterial success, as

469	host death leads to the limitation of bacterial reproduction. PfbA may be beneficial for
470	pneumococcal species by increasing the bacterial reproductive number through
471	suppression of host cell phagocytosis and host mortality. PfbA showed high specificity
472	for and conservation in S. pneumoniae species. The assumed negative feedback loop
473	may not be as significant in non-pathogenic mitis group Streptococcus.
474	In single toxin-induced infectious diseases such as diphtheria and tetanus, highly
475	safe and protective vaccines are established. On the other hand, in multiple
476	factor-induced diseases such as those caused by S. pneumoniae, S. pyogenes, and so on,
477	there are either no approved vaccines or existing vaccines still need optimization. Our
478	study indicates that PfbA is a pneumococcal specific cell surface protein, which
479	contributes to evasion from phagocytosis. Therefore, PfbA would not be suitable as a
480	vaccine antigen, since the protein suppresses pneumococcal virulence in a mouse sepsis
481	model. Further investigation of the intricate balance between host immunity and
482	pathogenesis is required to establish the basis for drug and vaccine design.
483	

484 Acknowledgements

485	This study wa	as supported	by the	Japanese	Society	for the	Promotion	of Science

- 486 (JSPS), KAKENHI [grant numbers 26861546, 15H05012, 16H05847, 16K15787,
- 487 17H05103, 17K11666, and 18K19643], the SECOM Science and Technology
- 488 Foundation, Takeda Science Foundation, GSK Japan Research Grant, Asahi Glass
- 489 Foundation, Kurata Memorial Hitachi Science and Technology Foundation, Kobayashi
- 490 International Scholarship Foundation, and the Naito Foundation.
- 491

492 Author contributions

- 493 M.Y. and S.K. designed the study. M.Y. performed bioinformatics analyses. M.Y.,
- 494 Y.H., M.T., and M.O. performed the experiments. M.Y., T.S., M.N., Y.T., and S.K.
- 495 contributed to the setup of the experiments. M.Y. wrote the manuscript. Y.H., M.T.,
- 496 M.O., T.S., M.N., Y.T., and S.K. contributed to the writing of the manuscript.

497

498 **Conflict of interest**

The authors declare that they have no competing interests.

500 **References**

- Kawamura Y, Hou XG, Sultana F, Miura H, Ezaki T. 1995. Determination of
 16S rRNA sequences of *Streptococcus mitis* and *Streptococcus gordonii* and
 phylogenetic relationships among members of the genus *Streptococcus*. Int J
 Syst Evol Micrbiol 45:406-8.
- Richards VP, Palmer SR, Pavinski Bitar PD, Qin X, Weinstock GM, Highlander
 SK, Town CD, Burne RA, Stanhope MJ. 2014. Phylogenomics and the dynamic
 genome evolution of the genus *Streptococcus*. Genome Biol Evol 6:741-53.
- 3. Bogaert D, van Belkum A, Sluijter M, Luijendijk A, de Groot R, Rumke HC,
 Verbrugh HA, Hermans PW. 2004. Colonisation by *Streptococcus pneumoniae*and *Staphylococcus aureus* in healthy children. Lancet 363:1871-2.
- 511 4. Collaborators GL. 2017. Estimates of the global, regional, and national
 512 morbidity, mortality, and aetiologies of lower respiratory tract infections in 195
 513 countries: a systematic analysis for the Global Burden of Disease Study 2015.
 514 Lancet Infect Dis 17:1133-1161.
- 515 5. McIntyre PB, O'Brien KL, Greenwood B, van de Beek D. 2012. Effect of 516 vaccines on bacterial meningitis worldwide. Lancet 380:1703-11.
- 517 6. WHO. 2017. WHO priority pathogens list for R&D of new antibiotics.
 518 <u>http://www.who.int/mediacentre/news/releases/2017/bacteria-antibioti</u>
 519 cs-needed/en/. Accessed
- 520 7. Kim L, McGee L, Tomczyk S, Beall B. 2016. Biological and Epidemiological
 521 Features of Antibiotic-Resistant *Streptococcus pneumoniae* in Pre- and
 522 Post-Conjugate Vaccine Eras: a United States Perspective. Clin Microbiol Rev
 523 29:525-52.
- Solubchik T, Brueggemann AB, Street T, Gertz RE, Jr., Spencer CC, Ho T,
 Giannoulatou E, Link-Gelles R, Harding RM, Beall B, Peto TE, Moore MR,
 Donnelly P, Crook DW, Bowden R. 2012. Pneumococcal genome sequencing
 tracks a vaccine escape variant formed through a multi-fragment recombination
 event. Nat Genet 44:352-5.
- 529 9. Flasche S, Van Hoek AJ, Sheasby E, Waight P, Andrews N, Sheppard C, George
 530 R, Miller E. 2011. Effect of pneumococcal conjugate vaccination on
 531 serotype-specific carriage and invasive disease in England: a cross-sectional

532 study. PLoS Med 8:e1001017.

- Lofling J, Vimberg V, Battig P, Henriques-Normark B. 2011. Cellular
 interactions by LPxTG-anchored pneumococcal adhesins and their streptococcal
 homologues. Cell Microbiol 13:186-97.
- Hakenbeck R, Madhour A, Denapaite D, Bruckner R. 2009. Versatility of
 choline metabolism and choline-binding proteins in *Streptococcus pneumoniae*and commensal streptococci. FEMS Microbiol Rev 33:572-86.
- 539 12. Mitchell AM, Mitchell TJ. 2010. *Streptococcus pneumoniae*: virulence factors
 540 and variation. Clin Microbiol Infect 16:411-8.
- 541 13. Weiser JN, Ferreira DM, Paton JC. 2018. *Streptococcus pneumoniae*:
 542 transmission, colonization and invasion. Nat Rev Microbiol 16:355-367.
- Ren B, McCrory MA, Pass C, Bullard DC, Ballantyne CM, Xu Y, Briles DE,
 Szalai AJ. 2004. The virulence function of *Streptococcus pneumoniae* surface
 protein A involves inhibition of complement activation and impairment of
 complement receptor-mediated protection. J Immunol 173:7506-12.
- 547 15. Dave S, Carmicle S, Hammerschmidt S, Pangburn MK, McDaniel LS. 2004.
 548 Dual roles of PspC, a surface protein of *Streptococcus pneumoniae*, in binding
 549 human secretory IgA and factor H. J Immunol 173:471-7.
- 550 16. Gutierrez-Fernandez J, Saleh M, Alcorlo M, Gomez-Mejia A, Pantoja-Uceda D, 551 Trevino MA, Voss F, Abdullah MR, Galan-Bartual S, Seinen J, Sanchez-Murcia 552 PA, Gago F, Bruix M, Hammerschmidt S, Hermoso JA. 2016. Modular 553 Architecture and Unique Teichoic Acid Recognition Features of 554 Choline-Binding Protein L (CbpL) Contributing to Pneumococcal Pathogenesis. 555 Sci Rep 6:38094.
- 556 17. Yamaguchi M, Goto K, Hirose Y, Yamaguchi Y, Sumitomo T, Nakata M, Nakano
 557 K, Kawabata S. 2019. Identification of evolutionarily conserved virulence factor
 558 by selective pressure analysis of *Streptococcus pneumoniae*. Commun Biol 2:96.
- 559 18. Koppe U, Suttorp N, Opitz B. 2012. Recognition of *Streptococcus pneumoniae*560 by the innate immune system. Cell Microbiol 14:460-6.
- 561 19. Tomlinson G, Chimalapati S, Pollard T, Lapp T, Cohen J, Camberlein E,
 562 Stafford S, Periselneris J, Aldridge C, Vollmer W, Picard C, Casanova JL,
 563 Noursadeghi M, Brown J. 2014. TLR-mediated inflammatory responses to
 564 Streptococcus pneumoniae are highly dependent on surface expression of

bacterial lipoproteins. J Immunol 193:3736-45.

- Sabroe I, Dower SK, Whyte MK. 2005. The role of Toll-like receptors in the
 regulation of neutrophil migration, activation, and apoptosis. Clin Infect Dis 41
 Suppl 7:S421-6.
- Richard AL, Siegel SJ, Erikson J, Weiser JN. 2014. TLR2 signaling decreases
 transmission of Streptococcus pneumoniae by limiting bacterial shedding in an
 infant mouse Influenza A co-infection model. PLoS Pathog 10:e1004339.
- 572 22. Yamaguchi M, Terao Y, Mori Y, Hamada S, Kawabata S. 2008. PfbA, a novel
 573 plasmin- and fibronectin-binding protein of *Streptococcus pneumoniae*,
 574 contributes to fibronectin-dependent adhesion and antiphagocytosis. J Biol
 575 Chem 283:36272-9.
- 576 23. Yamaguchi M. 2018. Synergistic findings from microbiological and evolutional
 577 analyses of virulence factors among pathogenic streptococcal species. Journal of
 578 Oral Biosciences 60:36-40.
- 579 24. Suits MD, Boraston AB. 2013. Structure of the *Streptococcus pneumoniae*580 surface protein and adhesin PfbA. PLoS One 8:e67190.
- 581 25. Beulin DS, Yamaguchi M, Kawabata S, Ponnuraj K. 2014. Crystal structure of
 582 PfbA, a surface adhesin of *Streptococcus pneumoniae*, provides hints into its
 583 interaction with fibronectin. Int J Biol Macromol 64:168-73.
- 584 26. Beulin DSJ, Radhakrishnan D, Suresh SC, Sadasivan C, Yamaguchi M,
 585 Kawabata S, Ponnuraj K. 2017. *Streptococcus pneumoniae* surface protein PfbA
 586 is a versatile multidomain and multiligand-binding adhesin employing different
 587 binding mechanisms. FEBS J 284:3404-3421.
- 588 27. Radhakrishnan D, Yamaguchi M, Kawabata S, Ponnuraj K. 2018. *Streptococcus*589 *pneumoniae* surface adhesin PfbA and its interaction with erythrocytes and
 590 hemoglobin. Int J Biol Macromol 120:135-143.
- 591 28. Mori Y, Yamaguchi M, Terao Y, Hamada S, Ooshima T, Kawabata S. 2012.
 592 α-Enolase of *Streptococcus pneumoniae* induces formation of neutrophil
 593 extracellular traps. J Biol Chem 287:10472-81.
- 594 29. Bricker AL, Camilli A. 1999. Transformation of a type 4 encapsulated strain of
 595 *Streptococcus pneumoniae*. FEMS Microbiol Lett 172:131-5.
- 59630.Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC. 1979. Normal functional597characteristics of cultured human promyelocytic leukemia cells (HL-60) after

induction of differentiation by dimethylsulfoxide. J Exp Med 149:969-74.

- Wen X, Jin T, Xu X. 2016. Imaging G Protein-coupled Receptor-mediated
 Chemotaxis and its Signaling Events in Neutrophil-like HL60 Cells. J Vis Exp
 doi:10.3791/54511.
- 32. Yamaguchi M, Hirose Y, Nakata M, Uchiyama S, Yamaguchi Y, Goto K,
 Sumitomo T, Lewis AL, Kawabata S, Nizet V. 2016. Evolutionary inactivation
 of a sialidase in group B *Streptococcus*. Sci Rep 6:28852.
- 33. Yamaguchi M, Nakata M, Sumioka R, Hirose Y, Wada S, Akeda Y, Sumitomo T,
 Kawabata S. 2017. Zinc metalloproteinase ZmpC suppresses experimental
 pneumococcal meningitis by inhibiting bacterial invasion of central nervous
 systems. Virulence 8:1516-1524.
- 609 34. Gertz EM, Yu YK, Agarwala R, Schaffer AA, Altschul SF. 2006.
 610 Composition-based statistics and translated nucleotide searches: improving the
 611 TBLASTN module of BLAST. BMC Biol 4:41.
- 612 35. Tanabe AS. 2008. Phylogears2 ver. 2.0. <u>http://www.fifthdimension.jp/</u>.
 613 Accessed
- 614 36. Venditti C, Meade A, Pagel M. 2006. Detecting the node-density artifact in
 615 phylogeny reconstruction. Syst Biol 55:637-43.
- 616 37. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software
 617 version 7: improvements in performance and usability. Mol Biol Evol
 618 30:772-80.
- 619 38. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. 2009. Jalview
 620 Version 2--a multiple sequence alignment editor and analysis workbench.
 621 Bioinformatics 25:1189-91.
- 39. Talavera G, Castresana J. 2007. Improvement of phylogenies after removing
 divergent and ambiguously aligned blocks from protein sequence alignments.
 Syst Biol 56:564-77.
- 40. Tanabe AS. 2011. Kakusan4 and Aminosan: two programs for comparing
 nonpartitioned, proportional and separate models for combined molecular
 phylogenetic analyses of multilocus sequence data. Mol Ecol Resour 11:914-21.
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget
 B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian
 phylogenetic inference and model choice across a large model space. Syst Biol

- 631 61:539-42.
- 632 42. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and
 633 post-analysis of large phylogenies. Bioinformatics 30:1312-3.
- 63443.RambautA.2014.FigTreever.1.4.2.635http://tree.bio.ed.ac.uk/software/figtree/. Accessed
- 636 44. Okerblom JJ, Schwarz F, Olson J, Fletes W, Ali SR, Martin PT, Glass CK, Nizet
 637 V, Varki A. 2017. Loss of CMAH during Human Evolution Primed the
 638 Monocyte-Macrophage Lineage toward a More Inflammatory and Phagocytic
 639 State. J Immunol 198:2366-2373.
- 640 45. Hirose Y, Yamaguchi M, Goto K, Sumitomo T, Nakata M, Kawabata S. 2018.
 641 Competence-induced protein Ccs4 facilitates pneumococcal invasion into brain
 642 tissue and virulence in meningitis. Virulence 9:1576-1587.
- 643 46. Tappe D, Pukall R, Schumann P, Gronow S, Spiliotis M, Claus H, Brehm K,
 644 Vogel U. 2009. *Streptococcus merionis* sp. nov., isolated from *Mongolian jirds*645 (Meriones unguiculatus). Int J Syst Evol Microbiol 59:766-70.
- 646 47. Standish AJ, Weiser JN. 2009. Human neutrophils kill *Streptococcus*647 *pneumoniae* via serine proteases. J Immunol 183:2602-9.
- 648 48. Ricci-Azevedo R, Roque-Barreira MC, Gay NJ. 2017. Targeting and
 649 Recognition of Toll-Like Receptors by Plant and Pathogen Lectins. Front
 650 Immunol 8:1820.
- 49. Taganov KD, Boldin MP, Chang KJ, Baltimore D. 2006. NF-κB-dependent
 induction of microRNA miR-146, an inhibitor targeted to signaling proteins of
 innate immune responses. Proc Natl Acad Sci U S A 103:12481-6.
- 654 50. Griss K, Bertrams W, Sittka-Stark A, Seidel K, Stielow C, Hippenstiel S, Suttorp
 655 N, Eberhardt M, Wilhelm J, Vera J, Schmeck B. 2016. MicroRNAs Constitute a
 656 Negative Feedback Loop in *Streptococcus pneumoniae*-Induced Macrophage
 657 Activation. J Infect Dis 214:288-99.
- 658 51. Bek-Thomsen M, Poulsen K, Kilian M. 2012. Occurrence and evolution of the
 659 paralogous zinc metalloproteases IgA1 protease, ZmpB, ZmpC, and ZmpD in
 660 *Streptococcus pneumoniae* and related commensal species. MBio 3: e00303-12.
- Kilian M, Riley DR, Jensen A, Bruggemann H, Tettelin H. 2014. Parallel
 evolution of *Streptococcus pneumoniae* and *Streptococcus mitis* to pathogenic
 and mutualistic lifestyles. MBio 5:e01490-14.

53. Jensen A, Valdorsson O, Frimodt-Moller N, Hollingshead S, Kilian M. 2015.
Commensal streptococci serve as a reservoir for β-lactam resistance genes in *Streptococcus pneumoniae*. Antimicrob Agents Chemother 59:3529-40.

- 54. Skov Sorensen UB, Yao K, Yang Y, Tettelin H, Kilian M. 2016. Capsular
 Polysaccharide Expression in Commensal *Streptococcus* Species: Genetic and
 Antigenic Similarities to *Streptococcus pneumoniae*. MBio 7:e01844-16.
- Kilian M, Poulsen K, Blomqvist T, Havarstein LS, Bek-Thomsen M, Tettelin H,
 Sorensen UB. 2008. Evolution of *Streptococcus pneumoniae* and its close
 commensal relatives. PLoS One 3:e2683.
- 56. Johnston C, Hinds J, Smith A, van der Linden M, Van Eldere J, Mitchell TJ.
 2010. Detection of large numbers of pneumococcal virulence genes in
 streptococci of the mitis group. J Clin Microbiol 48:2762-9.
- 676 57. Clausen H, Wandall HH, Steentoft C, Stanley P, Schnaar RL. 2015.
 677 Glycosylation Engineering, p 713-728. *In* Varki A, Cummings RD, Esko JD,
 678 Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard
 679 JH, Schnaar RL, Seeberger PH (ed), Essentials of Glycobiology, 3rd edition
 680 doi:10.1101/glycobiology.3e.056. Cold Spring Harbor Laboratory Press, New
 681 York.
- 58. Yao H, Zhang H, Lan K, Wang H, Su Y, Li D, Song Z, Cui F, Yin Y, Zhang X.
 2017. Purified *Streptococcus pneumoniae* Endopeptidase O (PepO) Enhances
 Particle Uptake by Macrophages in a Toll-Like Receptor 2- and
 miR-155-Dependent Manner. Infect Immun 85.
- 59. Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L, Tamassia N,
 Mantovani A, Cassatella MA, Locati M. 2009. Induction and regulatory function
 of miR-9 in human monocytes and neutrophils exposed to proinflammatory
 signals. Proc Natl Acad Sci U S A 106:5282-7.
- 690

692 Figure Legends

- 693 Figure 1. Bayesian phylogenetic analysis of the *pfbA* gene.
- 694 The codon-based Bayesian phylogenetic relationship was calculated using the MrBayes
- 695 program. Strains with identical sequences are listed on the same branch. The percentage
- 696 of posterior probabilities is shown near the nodes. The scale bar indicates nucleotide
- 697 substitutions per site.

698

699 Figure 2. PfbA contributes to pneumococcal survival after incubation with 700 neutrophils. A. Growth of TIGR4 strains incubated with human fresh neutrophils. B. 701 Growth of TIGR4 strains incubated with neutrophil-like differentiated HL-60 cells. 702 Bacterial cells were incubated with human neutrophils or differentiated HL-60 cells in 703 the presence or absence of rPfbA for 1, 2, and 3 h at 37°C in a 5% CO₂ atmosphere. 704 Next, the mixture was serially diluted and plated on TS blood agar. Following 705 incubation, the number of CFUs was determined. Growth index was calculated by 706 dividing CFUs after incubation by CFUs of the original inoculum. C. Growth of R6 707 strains incubated with human fresh neutrophils. S. pneumoniae strains were added to

708	human neutrophils without serum and gently mixed for 1, 2, or 3 h at 37°C. Next, the
709	mixtures were serially diluted and plated on TS blood agar. After incubation, the
710	number of CFUs was determined. D. Growth of R6 strains incubated with human fresh
711	neutrophils in the presence of inhibitors. S. pneumoniae strains were added to human
712	neutrophils with or without cytochalasin D, or protease inhibitor cocktail in the absence
713	of serum, then gently mixed for 1 h at 37°C. The percent bacterial survival was
714	calculated based on viable counts relative to the wild-type strain. These data are
715	presented as the mean values of six samples, with S.E. values represented by vertical
716	lines. Differences between several groups were analyzed using a Kruskal-Wallis test
717	followed by Dunn's multiple comparisons test (A, B). The Mann-Whitney's U test was
718	used to compare differences between two independent groups (C, D). Three
719	experiments were performed, with data from a representative experiment is shown.
720	
721	Figure 3. PfbA suppresses host cell phagocytosis. A. Uptake of fluorescent

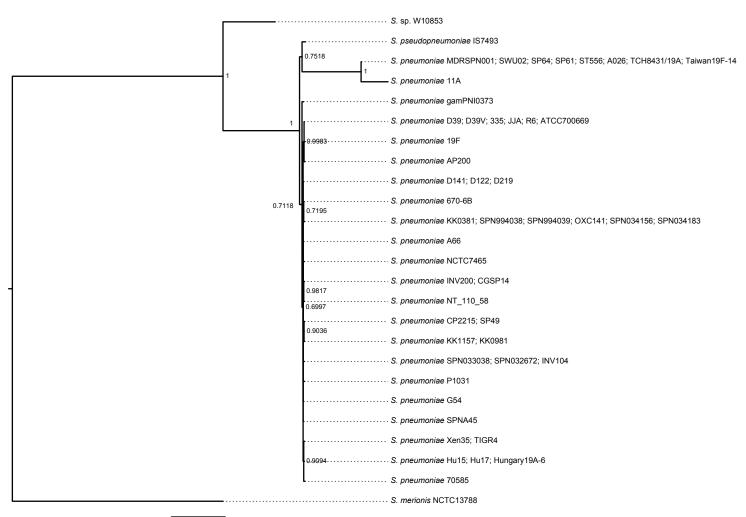
PfbA-coated beads by neutrophils and monocytes. Human neutrophils and monocytes

722

723 were separately incubated with PfbA-, BSA-, or non-coated fluorescent beads for 1 h at

724	37°C. Phagocytic activities were analyzed using flow cytometry. Data are presented as
725	histograms. The value shown for the percent of maximum was determined by dividing
726	the number of cells in each bin by the number of cells in the bin that contained the
727	largest number of cells. The bin is shown as a numerical range for the parameter on the
728	X-axis. B. Time-lapse analysis of the interaction between S. pneumoniae and
729	neutrophils. S. pneumoniae wild-type and $\Delta pfbA$ strains were incubated with neutrophils.
730	The elapsed times from contact with neutrophils are shown in the upper part of the
731	figures. Arrows indicate when S. pneumoniae cells contacted neutrophils. Arrowheads
732	indicate S. pneumoniae engulfed by a neutrophil phagosome.
733	
734	Figure 4. PfbA activates NF-кB via TLR2, and TLR2/4 inhibitor enhances <i>ΔpfbA</i>
735	strain survival. A. Secreted alkaline phosphatase (SEAP) porter assay using
736	TLR2/NF-кB/ SEAPorter or TLR4/MD-2/CD14/NF-кВ SEAPorter HEK293 cell lines.
737	The cells were plated in 24-well plates at 5×10^5 cells/well. After 24 h, cells were
738	stimulated with various amount of rPfbA, pasteurized S. pneumoniae (~ 5×10^6 CFU), 1
739	µg/mL Pam3CSK4, 10 µg/mL Zymozan, or 25 ng/mL LPS for 24 h. SEAP was

740	analyzed using the SEAPorter Assay Kit. Data are presented as the mean of six wells.
741	SE values are represented by vertical lines. Differences in pneumococcal infection
742	group and rPfbA addition group were analyzed using a Kruskal-Wallis test followed by
743	Dunn's multiple comparisons test, respectively. B. TLR2/4 inhibitor peptide enhances
744	survival of the TIGR4 $\Delta pfbA$ strain incubated with human neutrophils. S. pneumoniae
745	TIGR4 wild type strain or $\Delta pfbA$ strain bacteria were incubated with human neutrophils
746	in the presence of TLR2/4 inhibitor peptide or control peptide. After 1, 2, and 3 h, the
747	mixture was serially diluted and plated on TS blood agar. Following incubation, the
748	number of CFUs was determined. The CFU ratio was calculated by dividing CFUs in
749	the presence of inhibitor peptide by CFUs in the presence of control peptide. Data are
750	presented as the mean of six wells. S.E. values are represented by vertical lines.
751	Differences between groups were analyzed using Mann-Whitney's U test.
752	
753	
754	Figure 5. In a mouse pneumonia model, deficiency of <i>pfbA</i> decreases pneumococcal

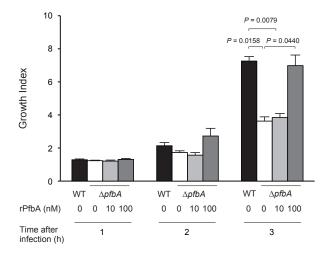

755 burden in the lung but does not affect host mortality. A. CD-1 mice were infected

756	intratracheally with the S. pneumoniae TIGR4 wild-type or $\Delta pfbA$ strain (3-18 × 10 ⁶
757	CFUs). Mice survival was recorded for 14 days. The differences between groups were
758	analyzed using a log-rank test. B. Bacterial CFUs and TNF- α in BALF collected from
759	CD-1 mice after intratracheal infection with S. pneumoniae. CD-1 mice were infected
760	intratracheally with the S. pneumoniae TIGR4 wild type or $\Delta pfbA$ strain (4-7 × 10 ⁶
761	CFUs). BALF was collected at 24 h after pneumococcal infection, and bacterial CFUs
762	and TNF- α levels in the BALF were determined. S.E. values are represented by vertical
763	lines. Statistical differences between groups were analyzed using Mann-Whitney's U
764	test. The data obtained from three independent experiments were pooled.
765	
766	Figure 6. In a mouse sepsis model, the deficiency of <i>pfbA</i> increases the virulence
767	and TNF- α level in blood but decreases the bacterial burden in the lung and liver.
768	CD-1 mice were infected intravenously with the S. pneumoniae TIGR4 wild type or
769	$\Delta pfbA$ strain (3-6 × 10 ⁶ CFUs). A. Mouse survival was monitored for 14 days.
770	Statistical differences between groups were analyzed using a log-rank test. B. CD-1
771	mice were infected intravenously with the S. pneumoniae TIGR4 wild type or $\Delta pfbA$

	772	strain $(6-9 \times 10^{\circ})$	⁶ CFUs). Plasm	a samples were	e collected from	these mice at 24	h after
--	-----	----------------------------------	---------------------------	----------------	------------------	------------------	---------

773	infection.	Values are	presented a	is the mean	of 16 or	18 samples.	Vertical line	es represent
-----	------------	------------	-------------	-------------	----------	-------------	---------------	--------------

- 774 the mean \pm S.E. Statistical differences between groups were analyzed using
- 775 Mann-Whitney's U test. C. The bacterial burden in the blood, brain, lung, and liver
- were assessed after 24 h of infection. S.E. values are represented by vertical lines. All
- 777 mice were perfused with PBS after blood collection, organ samples were collected.
- 778 Statistical differences between groups were analyzed using Mann-Whitney's U test. The
- mouse survival data were obtained from three independent experiments, and the TNF- α
- 180 level and bacterial burden values obtained from two independent experiments were
- pooled.

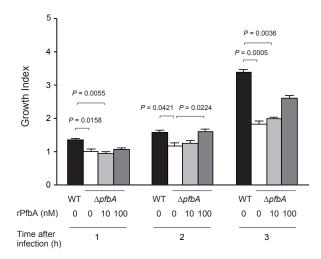


0.09

Figure 1. Yamaguchi et al.


Α

Neutrophil bactericidal assay (Strain TIGR4)


С

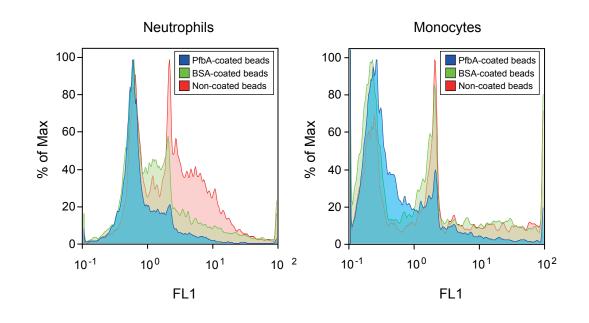
Neutrophil bactericidal assay (Strain R6)

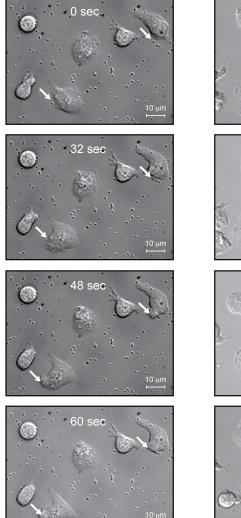
В

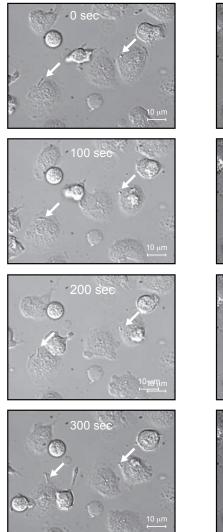
Differentiated HL-60 bactericidal assay

D

Neutrophil bactericidal assay with inhibitors


Figure 2. Yamaguchi et al.


В

Α

Fluorescent beads

S. pneumoniae WT

S. pneumoniae *ApfbA*

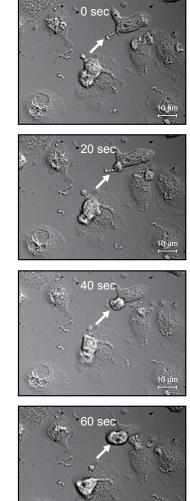
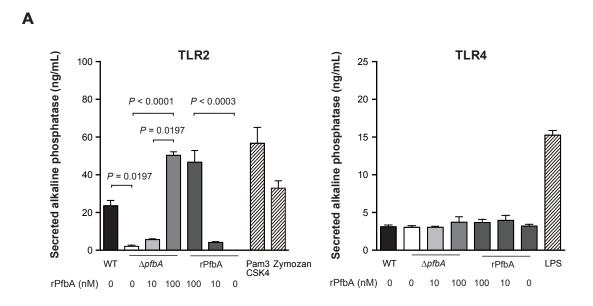



Figure 3. Yamaguchi et al.

Se.

В

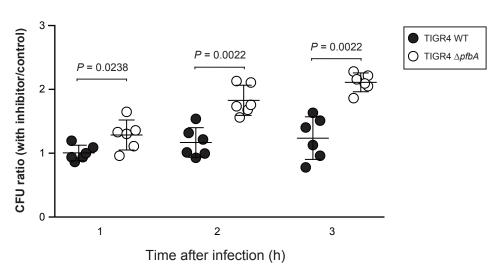
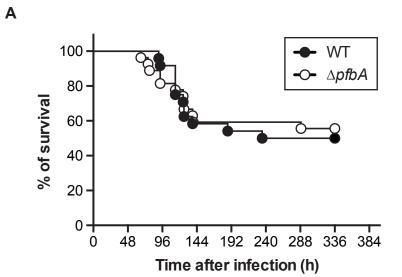
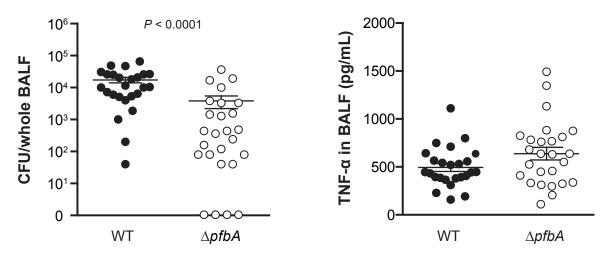
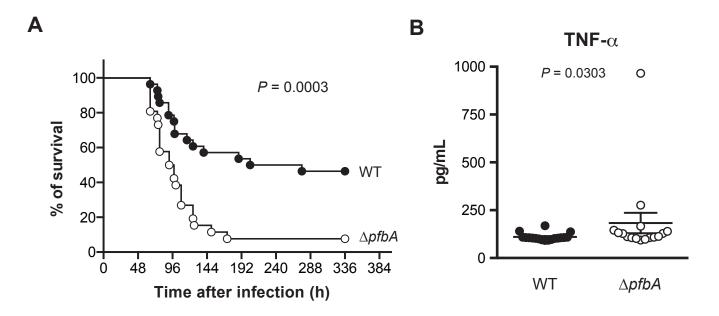
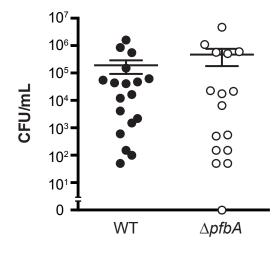
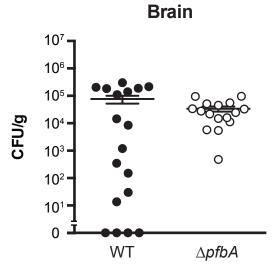
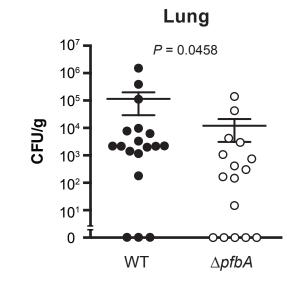





Figure 4. Yamaguchi et al.







Liver

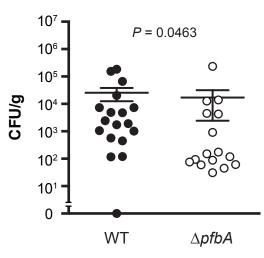


Figure 6. Yamaguchi et al.