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In eukaryotes, mRNA abundance is often a poor proxy for protein abundance1-5. Despite 

this, the majority of methods used to dissect function in mammalian biology6 and for 

biomarker discovery in complex diseases7 involve manipulation or measurement of 

mRNA. The discrepancy between mRNA and protein abundance is likely due to several 

factors, including differences in the rates of translation and degradation between proteins 

and cell-types8, unequal contribution of individual splice variants to the production of a 

given protein9 and cell-type specific differences in splice variant use10. Here we performed 

experimental and computational time-series analysis of RNA-seq and mass-spectrometry 

of three key immune cell-types in human and mice and constructed mathematical mixed 

time-delayed splice variant models to predict protein abundances. These models had 

median correlations to protein abundance measurements of 0.79-0.94, which is a 

significant increase from the previously reported 0.21 on human protein atlas data1, and 

out-performed less complicated models without the usage of multiple splice variants and 

time-delay in cross-validation tests.  We showed the importance of our models for 

biomarker discovery by re-analysing RNA-seq data from five different complex diseases, 

which led to the prediction of new disease proteins that were validated in multiple 

sclerosis. Our findings suggest that similar protein abundance models may be created for 

the most critical cell-types in the human body. 

To understand the effect of splice-variant selection and translation rate on the relationship 

between RNA and protein abundance, we performed RNA-sequencing and mass-spectrometry 

proteomics of primary human naïve CD4+ T helper (NTH) cells at six time points during 

differentiation into T-helper type 1 (TH1) cells (Figure 1A, S1, S2). TH1 differentiation is an 

optimal model system to dissect the relationship between mRNA and protein as (i) primary 

human NTH cells can be isolated in high purity and large quantity from human blood (ii), all 

NTH cells are synchronised in the G1 phase of the cell cycle, further reducing inter-cell 

heterogeneity11,12 and (iii) changes in mRNA and associated protein abundance can be assayed 

over time13. Moreover, T helper cells are important regulators of immunity and thereby 

associated with many complex diseases, and TH1 differentiation itself is pathogenetically 

relevant in several diseases14,15. 

 

Interestingly, although the majority of genes showed a significant positive correlation between 

mRNA level and protein level (n=407, expected 123 out of 4920 proteins, binomial test P<10-

93) during TH1 cell differentiation, a significant fraction of negatively correlated genes was also 

observed (n=205, expected 123, P<10-11) (Figure 1B, Data S1). Analysing the correlation of 
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individual splice variants of each gene revealed the presence of both positively and negatively 

correlating transcript variants for the same genes (binomial test for enrichment of significant 

negative correlation P<1.3 x 10-3, odds ratio= 1.48). For example, the known T-helper cell 

associated genes, IL7R and STX1216, contained many splice variants, of which several were 

positively and negatively correlated to their corresponding protein levels (Figure 1C). Given 

the large variation in correlation between splice-variants of a given gene and its corresponding 

protein, we constructed a simple mRNA-protein model, in which protein expression was 

defined as a linear combination of the splice variants of a gene, with a time-delay accounting 

for the dynamical effect induced by post-transcriptional processes and protein synthesis (Figure 

1D). This simple dynamical model resulted in a gene-protein correlation of rhoTH1 = 0.86 

(Figure 1E), far in excess of previously reported gene-protein prediction models in 

mammals1,2,17-19. A strong correlation between gene and protein levels was also observed when 

the model was trained on published mRNA-protein datasets from human regulatory T cells 

(rhoTREG = 0.79) and mouse B cells (rhoBcell = 0.94) (Figure S3). Importantly, our model out-

performed models using only the best correlating splice variant of each gene (rhoTH1 = 0.71, 

rhoTREG = 0.44, rhoBcell = 0.52), or models using multiple transcripts but without a time delay 

(rhoTH1 = 0.74, rhoTREG = 0.69, rhoBcell = 0.45) (Figure 1F).  The median duration of optimal 

time-delays between splice-variants and proteins was 8h 17 min, 6h 18 min and 8h 49 min for 

TH1, TREG and murine B cells, respectively. These values are descriptions on the explanatory 

power of the different models on the same data as it was trained to. Cross-validation confirmed 

that our models could do out-of-sample prediction significantly better than gene expression 

based models of protein abundance (binomial test; PTH1= 10-152, PTREG= 10-247, Pmice B= 10-59), 

and simpler splice-variant models without time-delays  (PTH1=10-1459, PTREG= 10-8, Pmice B= 5x 

10-4, Fig. 1F, Fig. S4). To evaluate mRNA-protein associations in steady state across tissues, 

we used data from the human protein atlas20. We found that this only resulted in marginal 

improvements in correlation with respect to that previously reported in the literature1 

(rhoProtAtlas= 0.27), see (Figure S3). This lack of correlation can be explained by the lack of 

dynamic data, and by the presence of different cell types. In further support of cell type 

specificity, we found only marginal correlations (rho = 0.09) when comparing the correlation 

coefficients of our two T-cell data-sets of TH1and Treg cells. Thus, a common unifying model 

for many cell-types remains a challenge (Data S1). In summary, we have revealed that using a 

simple linear model of mRNA splice variants and time delay, we could predict protein 

abundances accurately.  
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To test the clinical usefulness of our results, we applied our model to available RNA-sequencing 

data-sets involving TH-associated diseases. Using data derived from human total CD4+ T cells 

in asthma, allergic rhinitis, obesity-induced asthma, pro-lymphocytic leukaemia, and multiple 

sclerosis (MS), we found for each disease a higher fraction of nominally differentially expressed 

proteins than standard differential expression analysis (Figure 2A). For MS, the TH1 model 

resulted in the highest fraction and 21 proteins were predicted as differentially expressed at 

FDR<0.05, whereof three (Annexin A1, sCD40L and sCD27) were annotated as extracellular 

according to gene ontology. To validate these predictions, we analysed if cerebrospinal fluid 

(CSF) levels of these proteins related to clinical outcome and immunomodulatory treatment in 

two independent cohorts, namely newly diagnosed MS (clinically isolated syndrome (CIS) and 

relapsing/remitting MS, n=41) vs healthy controls (HC, n=23), and response to Natalizumab 

treatment in relapsing remitting MS patients (see Methods, n=16). In both cohorts, only sCD27 

was present at a detectable level. Analysis of all patients (n=57) vs HC (n=23) showed high 

separation (AUC=0.88, non-parametric P=3.0 x 10-8, Figure 2B), and treatment with 

Natalizumab reduced the sCD27 levels by 34% (P = 4.9 x 10-4). Lastly, we tested the prognostic 

value of sCD27 and found that the baseline levels in the newly diagnosed MS patients were 

able to predict disease activity after four years follow up (AUC= 0.87, P=1.2 x 10-3, Figure 2B), 

which was stronger than that of all our previously reported 14 biomarkers21. Taken together, 

the high correlation between predicted and measured protein levels from mass-spectrometry, 

the increased fraction of differentially expressed predicted proteins and successful biomarker 

validation, show the relevance of our CD4+ T cell models for discovery of protein biomarkers 

in TH-cell mediated diseases from RNA-seq data alone.  

In conclusion, we have shown that simple mRNA-protein models, in which the protein 

expression is defined as a linear combination of the splice variants of a gene, with a time-delay 

accounting for the dynamical effect induced by post-transcriptional processes and protein 

synthesis, can profoundly improve our ability to predict protein abundance from mRNA 

abundance. We expect this modelling strategy to be generally applicable to other cellular 

differentiation systems, such as embryonic stem cell differentiation, and to be increasingly 

useful for understanding basic biology and identification of new biomarkers as more RNA-seq 

and proteomic data sets become publicly available.  
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Fig 1. Predictive protein abundance models derived from splice variants showed high 

correlation to experiments in multiple cell types. (A) Experimental design. (B) Heat map of 

transcript and protein abundance dynamics in genes that show significant negative (left) and 
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positive (right) correlations. (C) Transcript splice variants of STX12 (left) and IL7R (right) 

were both significantly negatively and positively correlated with protein levels. (D) 

Illustration of the modelling procedure for resolving the poor correlation, using STX12 as an 

example. (E) Gene/protein correlations in Th1 differentiation. In the histogram, in grey a 

single value lumping all splice variants of a transcript (as in e.g. Fortelny et al.1) is used to 

quantify mRNA abundance (median: dashed line at 0.21), while in the blue histogram our 

time-delayed multiple splice variant based model is used (median at 0.86). Only cross-

validated protein predictions (PPs) are shown for the 3410 out of 4920 proteins for which the 

null-model could be rejected. (F) Median correlation coefficients (rho) for different 

mathematical protein prediction models derived from RNA with increasing protein abundance 

correlations. P-values are derived from predictions using leave-one-out cross-validation. 

Fig 2. Proteins models led to the discovery of new potential biomarkers of complex diseases that 

were validated in multiple sclerosis (MS). (A)  Differential predicted protein (PP) analysis of five 

diseases using the Th1 (light blue) and Treg (dark blue) models showed higher fraction of nominally 

significant genes than normal gene tests. (B) Validation of multiple sclerosis PP in cerebrospinal fluid 

(CSF) from early MS (clinically isolated syndrome (CIS)) vs healthy controls (HC) and pre vs post one-

year treatment with Natalizumab. Red filled circles represent patients with no evidence of disease 

activity) at four years follow up and the remaining are coded by unfilled circles. 

 

Material and methods 

Experimental protocol 
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Isolation of CD4+ T helper (TH) cells and TH1 polarization: Peripheral blood mononuclear 

cells (PBMC) were isolated from blood donor derived buffy coats through gradient 

centrifugation (Lymphoprep, Axis shields diagnostics, Dundee, Scotland). Naive CD45RA+ 

CD4+ T cells were subsequently isolated with magnetic bead separation using the “Naive CD4+ 

T Cell Isolation Kit II, human“ (Miltenyi Biotec, Bergisch Gladbach, Germany). The cells were 

then activated and polarized towards TH1 using Dynabeads™ Human T-Activator CD3/CD28 

(Dynal AS, Lillestøm, Norway), recombinant human IL-12p70, recombinant human IL-2 and 

anti-IL-4 antibodies (clone MAB204) (all three from, Bio-Techne, Minneapolis, USA), in 

RPMI 1640 media (Gibco, Paisley, United Kingdom). A portion of T-cells used for RNA and 

protein isolation was obtained at baseline and after 0.5 h, 1 h, 2 h, 6 h, 24 h and 5 days. The 

cells were washed twice in PBS, snap frozen in a dry ice ethanol bath and stored at -80C until 

use. During the protein and RNA extractions, multiple samples were pooled from twelve 

different individuals to reach the necessary amount of material for the subsequent analysis steps.  

 

Mass-spec proteomics: The cells were lysed by sonication. Proteins were digested with trypsin 

through an in-solution digestion protocol and desalted peptides were labelled with 6-plex TMT 

reagents (Thermofisher Scientific, Massachusetts, USA). Then, the labelled peptides were 

mixed and separated using high-pH reverse-phase liquid chromatography, each fraction of 

which was analysed on an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermofisher 

Scientific, Massachusetts, USA). The tandem mass spectrometry data were analysed using 

MaxQuant (v 1.6.0.1). Detailed experimental procedures are provided in the Supplementary 

information.  

RNA-seq: RNA was isolated using a ZR-Duet DNA/RNA kit (Zymo Research, Irvine, USA) 

and stored at -80C. RNA library preparation and the subsequent RNA-sequencing were carried 

out by the Beijing Genomics Institute (https://www.bgi.com/global/). Library preparation was 

performed using the TruSeq RNA Library Prep Kit v2 (Illumina, San Diego, USA). Each 

sample was sequenced to the depth of 40 million reads per samples (Fig 1A) with pair end 

sequencing and a read length of 100bp on an Illumina 2500 instrument.  

 

Bioinformatics: All RNA-seq data were processed similarly using the following pipeline. 

Sample qualities were assessed with fastQC and the mRNA reads were subsequently aligned 

using STAR22 to the “Homo_sapiens.GRCh37.75.dna.primary_assembly.fa” from Ensemble. 

The resulting read alignment bam files were assembled into transcripts with StringTie23 using 
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the GRCh37.75 gtf annotation from Ensemble. To evaluate mRNA to protein relationship, 

mRNA reads were mapped to the mass spectrometry signal of protein abundance using the 

Homo.sapiens and Mus.musculus package in R24. Correlations were calculated using Pearson 

correlations across gene expressions, i.e. one coefficient per gene. 

 

Splice variant model construction: 

We trained a linear regression model with a LASSO constraint model using the python package 

Sklearn25. We implemented a time-delay shift which was defined using a grid of 195 values, 

exponentially increasing from 0 to 24h. Linear interpolation was used to estimate the 

corresponding protein values. Specifically, for different 𝜏 we solve the following:  

 

 

  

 

Here, the time series of one protein is denoted by the vector Y, and the corresponding time 

series of the splice variants are denoted by the matrix X. The λ term was chosen to minimize 

the prediction error of a leave-one-out cross validation. For each τ, we did a leave-one-out cross 

validation on top of the one used for determining the λ parameter. Next, the τ yielding the lowest 

error on an outer cross validation error was selected. Testing for τ=0 was used when studying 

the information gain from combining splice variants. Pipe-line and code available from  

https://gitlab.com/Gustafsson-lab/IMUNA-an-integrated-multilevel-Th1-analysis . 

 

Disease prediction 

Disease relevance of the splice variant models was tested by re-analysis of deep RNA-

sequenced case control material of samples containing total CD4+ T-cells, i.e. CD4+ T-cells 

with all its sub-types. We found T-cell prolymphocytic leukemia (T-PLL, GSE100882), asthma 

in obese children (GSE86430), and allergic rhinitis/asthma (GSE75011) studies through a Gene 

Expression Omnibus (GEO) repository search and multiple sclerosis (MS) through 

collaboration26. For each of the studies’ datasets, we used the TH1 and Treg derived models on 

how to combine mRNA splice variants to predict protein abundance. The resulting sets of 

predicted protein levels were tested for differential expression between patients and controls 

using a non-parametric Kruskal-Wallis test. We also applied Kruskal-Wallis tests to the 

individual splice variants that were used by the models. We assessed model effects by 
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measuring the increase in nominally differential expression from model predictions compared 

to ingoing splice variants into the model.  

Protein validation 

Three of the DEPPs (Annexin A1, sCD40L and sCD27) were measured in cerebrospinal fluid 

(CSF) from two different cohorts, one with of 41 patients with newly diagnosed MS and 23 

healthy matched controls (Supplemental table) and a second with 16 patients with relapsing 

remitting MS before and after one year of treatment with Natalizumab (Supplemental 

table). Quantification of Annexin A1 was performed using Human Annexin A1 ELISA kit 

(Abcam, Cambridge, United Kingdom) and sCD27 was measured using the Human Instant 

ELISATM kit (Thermo Fischer Scientific, Waltham, MA, USA), according to the instructions 

provided by the manufactures. Multiplex Bead Technology (MILLIPLEX® MAP Kit, Cat. #: 

HCYTOMAG-60K-01, Merck Millipore, Burlington, MA, USA) was used to measure soluble 

CD40L, according to the manufacturer's description. A more detailed description is available 

in the Supplementary information. 
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