
positive (right) correlations. (C) Transcript splice variants of STX12 (left) and IL7R (right) 

were both significantly negatively and positively correlated with protein levels. (D) 

Illustration of the modelling procedure for resolving the poor correlation, using STX12 as an 

example. (E) Gene/protein correlations in Th1 differentiation. In the histogram, in grey a 

single value lumping all splice variants of a transcript (as in e.g. Fortelny et al.1) is used to 

quantify mRNA abundance (median: dashed line at 0.21), while in the blue histogram our 

time-delayed multiple splice variant based model is used (median at 0.86). Only cross-

validated protein predictions (PPs) are shown for the 3410 out of 4920 proteins for which the 

null-model could be rejected. (F) Median correlation coefficients (rho) for different 

mathematical protein prediction models derived from RNA with increasing protein abundance 

correlations. P-values are derived from predictions using leave-one-out cross-validation. 

Fig 2. Proteins models led to the discovery of new potential biomarkers of complex diseases that 

were validated in multiple sclerosis (MS). (A)  Differential predicted protein (PP) analysis of five 

diseases using the Th1 (light blue) and Treg (dark blue) models showed higher fraction of nominally 

significant genes than normal gene tests. (B) Validation of multiple sclerosis PP in cerebrospinal fluid 

(CSF) from early MS (clinically isolated syndrome (CIS)) vs healthy controls (HC) and pre vs post one-

year treatment with Natalizumab. Red filled circles represent patients with no evidence of disease 

activity) at four years follow up and the remaining are coded by unfilled circles. 

 

Material and methods 

Experimental protocol 
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Isolation of CD4+ T helper (TH) cells and TH1 polarization: Peripheral blood mononuclear 

cells (PBMC) were isolated from blood donor derived buffy coats through gradient 

centrifugation (Lymphoprep, Axis shields diagnostics, Dundee, Scotland). Naive CD45RA+ 

CD4+ T cells were subsequently isolated with magnetic bead separation using the “Naive CD4+ 

T Cell Isolation Kit II, human“ (Miltenyi Biotec, Bergisch Gladbach, Germany). The cells were 

then activated and polarized towards TH1 using Dynabeads™ Human T-Activator CD3/CD28 

(Dynal AS, Lillestøm, Norway), recombinant human IL-12p70, recombinant human IL-2 and 

anti-IL-4 antibodies (clone MAB204) (all three from, Bio-Techne, Minneapolis, USA), in 

RPMI 1640 media (Gibco, Paisley, United Kingdom). A portion of T-cells used for RNA and 

protein isolation was obtained at baseline and after 0.5 h, 1 h, 2 h, 6 h, 24 h and 5 days. The 

cells were washed twice in PBS, snap frozen in a dry ice ethanol bath and stored at -80C until 

use. During the protein and RNA extractions, multiple samples were pooled from twelve 

different individuals to reach the necessary amount of material for the subsequent analysis steps.  

 

Mass-spec proteomics: The cells were lysed by sonication. Proteins were digested with trypsin 

through an in-solution digestion protocol and desalted peptides were labelled with 6-plex TMT 

reagents (Thermofisher Scientific, Massachusetts, USA). Then, the labelled peptides were 

mixed and separated using high-pH reverse-phase liquid chromatography, each fraction of 

which was analysed on an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermofisher 

Scientific, Massachusetts, USA). The tandem mass spectrometry data were analysed using 

MaxQuant (v 1.6.0.1). Detailed experimental procedures are provided in the Supplementary 

information.  

RNA-seq: RNA was isolated using a ZR-Duet DNA/RNA kit (Zymo Research, Irvine, USA) 

and stored at -80C. RNA library preparation and the subsequent RNA-sequencing were carried 

out by the Beijing Genomics Institute (https://www.bgi.com/global/). Library preparation was 

performed using the TruSeq RNA Library Prep Kit v2 (Illumina, San Diego, USA). Each 

sample was sequenced to the depth of 40 million reads per samples (Fig 1A) with pair end 

sequencing and a read length of 100bp on an Illumina 2500 instrument.  

 

Bioinformatics: All RNA-seq data were processed similarly using the following pipeline. 

Sample qualities were assessed with fastQC and the mRNA reads were subsequently aligned 

using STAR22 to the “Homo_sapiens.GRCh37.75.dna.primary_assembly.fa” from Ensemble. 

The resulting read alignment bam files were assembled into transcripts with StringTie23 using 
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the GRCh37.75 gtf annotation from Ensemble. To evaluate mRNA to protein relationship, 

mRNA reads were mapped to the mass spectrometry signal of protein abundance using the 

Homo.sapiens and Mus.musculus package in R24. Correlations were calculated using Pearson 

correlations across gene expressions, i.e. one coefficient per gene. 

 

Splice variant model construction: 

We trained a linear regression model with a LASSO constraint model using the python package 

Sklearn25. We implemented a time-delay shift which was defined using a grid of 195 values, 

exponentially increasing from 0 to 24h. Linear interpolation was used to estimate the 

corresponding protein values. Specifically, for different 𝜏 we solve the following:  

 

 

  

 

Here, the time series of one protein is denoted by the vector Y, and the corresponding time 

series of the splice variants are denoted by the matrix X. The λ term was chosen to minimize 

the prediction error of a leave-one-out cross validation. For each τ, we did a leave-one-out cross 

validation on top of the one used for determining the λ parameter. Next, the τ yielding the lowest 

error on an outer cross validation error was selected. Testing for τ=0 was used when studying 

the information gain from combining splice variants. Pipe-line and code available from  

https://gitlab.com/Gustafsson-lab/IMUNA-an-integrated-multilevel-Th1-analysis . 

 

Disease prediction 

Disease relevance of the splice variant models was tested by re-analysis of deep RNA-

sequenced case control material of samples containing total CD4+ T-cells, i.e. CD4+ T-cells 

with all its sub-types. We found T-cell prolymphocytic leukemia (T-PLL, GSE100882), asthma 

in obese children (GSE86430), and allergic rhinitis/asthma (GSE75011) studies through a Gene 

Expression Omnibus (GEO) repository search and multiple sclerosis (MS) through 

collaboration26. For each of the studies’ datasets, we used the TH1 and Treg derived models on 

how to combine mRNA splice variants to predict protein abundance. The resulting sets of 

predicted protein levels were tested for differential expression between patients and controls 

using a non-parametric Kruskal-Wallis test. We also applied Kruskal-Wallis tests to the 

individual splice variants that were used by the models. We assessed model effects by 
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measuring the increase in nominally differential expression from model predictions compared 

to ingoing splice variants into the model.  

Protein validation 

Three of the DEPPs (Annexin A1, sCD40L and sCD27) were measured in cerebrospinal fluid 

(CSF) from two different cohorts, one with of 41 patients with newly diagnosed MS and 23 

healthy matched controls (Supplemental table) and a second with 16 patients with relapsing 

remitting MS before and after one year of treatment with Natalizumab (Supplemental 

table). Quantification of Annexin A1 was performed using Human Annexin A1 ELISA kit 

(Abcam, Cambridge, United Kingdom) and sCD27 was measured using the Human Instant 

ELISATM kit (Thermo Fischer Scientific, Waltham, MA, USA), according to the instructions 

provided by the manufactures. Multiplex Bead Technology (MILLIPLEX® MAP Kit, Cat. #: 

HCYTOMAG-60K-01, Merck Millipore, Burlington, MA, USA) was used to measure soluble 

CD40L, according to the manufacturer's description. A more detailed description is available 

in the Supplementary information. 
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