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Abstract 1 

Measures of resting-state functional connectivity allow the description of neuronal 2 

networks in humans and provide a window on brain function in normal and 3 

pathological conditions. Animal models are critical to further address experimentally 4 

the function of brain networks and their roles in pathologies. Here we describe for the 5 

first time brain network organization in the mouse lemur (Microcebus murinus), a 6 

small primate attracting increased attention as a model for neuroscience. Resting-7 

state functional MR images were recorded at 11.7 Tesla. Forty-eight functional 8 

regions were identified and used to identify networks using graph theory, dictionary 9 

learning and seed-based analyses. Comparison of results issued from these three 10 

complementary methods allowed the description of the most robust networks from 11 

mouse lemurs. Large scale networks were then identified from resting-state 12 

functional MR images of humans using the same method as for lemurs. Strong 13 

homologies were outlined between cerebral networks in mouse lemurs and humans. 14 

 15 
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Brain function, Cerebral networks, Functional MRI, Graph theory, Human, Microcebus 17 

murinus, Mouse lemur, Primate, Resting state   18 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/599423doi: bioRxiv preprint 

https://doi.org/10.1101/599423
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

1. Introduction 19 

Blood-oxygen level dependent (BOLD) functional magnetic resonance imaging 20 

(fMRI) is largely used to investigate brain function in response to specific tasks. In the 21 

absence of explicit tasks (i.e. in resting state conditions) patterns of oscillations of the 22 

fMRI signal are similar in functionally connected brain structures (Biswal et al., 1995). 23 

The detection of the synchronicity of BOLD signal in various brain regions in resting 24 

state conditions can thus be used to describe cerebral network organization. In 25 

particular this allows the characterization of i. local regions in which highly 26 

coordinated neuronal activity occurs and ii. large scale networks composed of 27 

widespread functional regions connected together (Biswal et al., 1995; Power et al., 28 

2014). 29 

Studies of brain networks have contributed to many breakthroughs in the 30 

understanding of brain function in normal as well as in pathological conditions such 31 

as Alzheimer’s or Parkinson’s diseases (Buckner et al., 2005; Gao and Wu, 2016). 32 

However, many questions remain concerning both the technique and interpretation of 33 

resting state fMRI. For example, both the role of resting state networks in cerebral 34 

function, and the biological mechanisms underlying their activity, are still partly 35 

unknown. Also, how their modulations impact behaviour and cognition in pathological 36 

conditions is still debated (Mohan et al., 2016). 37 

Using animal models is critical to further address these questions. Indeed, in 38 

animals it is possible to artificially stimulate neuronal activity to characterize biological 39 

mechanisms underlying network function (Gerits et al., 2012). Another interest of 40 

studying neuronal networks in animals is to evaluate how evolution has driven 41 

network architecture and to assess to what extent animal behaviours and ecology 42 

(Burkart et al., 2016) have impacted this architecture. Finally, animals can be used to 43 

model diseases and explore the impact of pathological processes on brain networks. 44 

Various analysis pipelines have been proposed to investigate neuronal networks 45 

in humans and animals. For example, large scale networks were identified using 46 

data-driven methods relying on spatial map decomposition (dictionary learning 47 

(Varoquaux et al., 2011), independent component analysis (Damoiseaux et al., 48 

2006)) or on graph theory (modularity analysis (Grayson et al., 2016)), as well as 49 

hypothesis-driven methods (seed-based analysis (Hutchison et al., 2014)). These 50 

methods are based on different algorithms and each one has its own inherent 51 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/599423doi: bioRxiv preprint 

https://doi.org/10.1101/599423
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

advantages and disadvantages (Lee et al., 2013). They can provide complementary 52 

approaches for identifying networks in unexplored animals. 53 

The mouse lemur (Microcebus murinus) is a primate attracting increased attention 54 

in neuroscience research. This small animal (typical length 12cm, 60-120g weight) is 55 

arboreal and nocturnal. It has a decade-long lifespan and is a model for studying 56 

cerebral aging (Sawiak et al., 2014) and various diseases such as diabetes-related 57 

encephalopathy (Djelti et al., 2016), Parkinson's disease (Mestre-Frances et al., 58 

2018), or Alzheimer's disease (Kraska et al., 2011). It has a key position on 59 

phylogenetic trees of primates and is used to investigate primate brain evolution 60 

(Montgomery et al., 2010). Characterizing its cerebral networks is thus useful in the 61 

context of comparative biology as well as for further use of this animal to model 62 

various pathologies. Thus, the first aim of this study was to characterize neuronal 63 

networks in mouse lemurs. Our second objective was to implement a protocol that 64 

could define functional regions directly from resting-state fMR images and to 65 

compare large scale networks identified with data-driven and hypothesis-driven 66 

methods to assess the robustness of the identified networks. Our third objective was 67 

to compare resting state networks identified in lemurs with those identified in humans 68 

using the same procedure. 69 

Resting state functional MR images were recorded from 14 mouse lemurs at 11.7 70 

Tesla. These images enabled the identification of 48 functional regions using 71 

dictionary learning (Varoquaux et al., 2011). These regions were concatenated into a 72 

3D functional atlas covering most of the brain and were used as nodes for whole 73 

brain network characterization. Large scale networks were identified using several 74 

methods based on graph theory, dictionary learning and seed-based analysis. They 75 

included default-mode-like, visual, fronto-temporal, somato-motor, basal ganglia and 76 

thalamic networks. These networks were then compared to large scale networks in 77 

humans. We found a strong homology between cerebral networks in mouse lemurs 78 

and humans.  79 
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2. Results 80 

2.1. Identification of local functional regions and concatenation in a 3D 81 

functional atlas 82 

Resting state fMR images were recorded from 14 anaesthetised (isoflurane 1.25-83 

1.5%) mouse lemurs at 11.7 Tesla (Suppl. Table 1). Images were recorded using a 84 

gradient-echo echo planar imaging (EPI) sequence. Each animal was scanned twice 85 

with an interval of 6 months. 86 

Organisation of whole brain networks can be modelled using graph theory. During 87 

this modelling, whole brain networks are defined as a set of nodes (basic elements of 88 

the system) and edges (allowing relationships between nodes). The identification of 89 

nodes can be based on the use of anatomical atlases (Ghahremani et al., 2016) or 90 

on the use of study-specific functional atlases that identify local functional regions 91 

(Ma et al., 2018). 92 

Here, we identified local functional regions by performing a dictionary learning 93 

based on a large number of sparse components (SCs). This method extracts maps of 94 

cerebral networks from fMRI data and relies on sparsity-based decomposition of the 95 

signal. Multi-animal dictionary learning analyses of resting state fMR images were 96 

performed in mouse lemurs using 35 components (Fig. 1). Each component was 97 

manually classified using anatomical (Bons et al., 1998; Nadkarni et al., 2018) and 98 

Brodmann atlases (Brodmann, 1999 (original in 1909); Le Gros Clark, 1931). First, 99 

brain regions were classified based on their locations within the frontal, parietal, 100 

temporal and occipital lobes as well as subcortical and midbrain regions. The 35 101 

components were used to create a 3D functional atlas of the brain (Fig. 2). Some 102 

single components were associated to bilateral structures as shown, for example, for 103 

the precentral cortex in Fig. 1. These bilateral regions were classified as two different 104 

regions (i.e. one in each hemisphere). Thus, 48 local functional regions (27 cortical, 105 

21 subcortical) could be extracted from the 35 component dictionary analysis (Table 106 

1). They can be downloaded from https://www.nitrc.org/projects/fmri_mouselemur/. 107 
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Figure 1. Regions of functional activity identified in mouse lemurs. 

Regions of functional activity were identified following dictionary learning analyses of 
resting state fMR images using 35 components. They are shown on coronal and 
axial anatomical templates with an automatic slice selection based on the center of 
mass of each component. All components were organized within five anatomical 
areas: frontal, parietal, occipital, temporal, and subcortical regions. 
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Figure 2. Mouse lemur 3D functional atlas based on dictionary learning. 
Forty eight local functional regions were identified following dictionary learning 
analyses of resting state fMR images using 35 components. Brain regions were 
classified based on their locations within the frontal (A), parietal (B), occipital (C), and 
temporal (D) lobes. We display three different views and three slices extracted from 
the functional atlas. 1. Frontal Superior Anterior, 2. Frontal Middle, 3.  Frontal 
Superior Posterior, 4. Supplementary Motor Area, 5. Cingulum Anterior, 6. 
Precentral, 7. Postcentral, 8. Cingulum Posterior, 9. Parietal, 10. Occipital Middle, 11. 
Temporal Superior, 12. Temporal Middle, 13. Temporal Inferior, 14. Occipital Inferior, 
15. Cuneus, 16. Occipital Pole, 17. Basal forebrain, 18. Septal nuclei, 19. Striatum 
Anterior, 20. Caudate nucleus Posterior, 21. Putamen Posterior, 22. Globus pallidus, 
23. Amygdala, 24. Hypothalamus, 25. Dorsal thalamus, 26. Ventral thalamus, 27. 
Hippocampus, 28. Colliculus, 29. Pons, 30. Midbrain. 
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 109 

 Label name Area Function 

Frontal lobe 
 

Frontal Sup Ant (1) 10/46 task coordination 

Frontal Mid (2) 45/12 visual, auditory processing 

Frontal Sup Post (3) 8 coordinated movements 

Supp Motor Area (4) 4 primary motor  

Cingulum Ant (5) 24 multimodal 

Precentral (6) 6 secondary motor area 

Postcentral (7) 1-3 primary somatosensory 

Parietal 
lobe 

Cingulum Post (8) 23 multimodal 

Parietal (9) 
5 
7 

secondary somatosensory 
somatosensory association 

Temporal 
lobe 

Temporal Sup (11) 22 secondary auditory area  

Temporal Mid (12) 38/21 auditory processing 

Temporal Inf (13) 20 secondary visual  

Occipital 
lobe 

Cuneus (15) 18 visual processing 

Occipital Mid (10) 18  secondary visual area 

Occipital Inf (14) 37 visual processing 

Occipital Pole (16) 17 primary visual 

Subcortical 
regions 

Basal forebrain (17)     

Septal nuclei (18)     

Striatum Ant (19)     

Caudate nucleus Post (20)     

Putamen Post (21)     

Globus pallidus (22)     

Amygdala (23)     

Hypothalamus (24)     

Dorsal thalamus (25)     

Ventral thalamus (26)     

Hippocampus (27)     

Colliculus (28)     

Pons (29)     

Midbrain (30)     

Table 1. Identification of functional regions of the mouse lemur brain. 110 

Brain regions were classified based on their locations within the frontal, parietal, 111 

temporal, or occipital lobes as well as subcortical regions. Each labelled region was 112 

compared to cytoarchitectonic (Brodmann, 1999 (original in 1909); Le Gros Clark, 113 

1931) and anatomical atlases of the mouse lemur (Bons et al., 1998; Nadkarni et al., 114 

2018) and of the human “AAL for SPM12” atlas (Tzourio-Mazoyer et al., 2002) to 115 

evaluate the Brodmann areas that were the closest to the identified regions. A 116 

function is also proposed for each region following expectations from Brodmann 117 

classification.  118 
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2.2. Large scale brain networks in mouse lemurs 119 

The quantification of correlations of temporal evolution of BOLD fMRI signal 120 

between two regions (or nodes) provides an index of the “functional connectivity” 121 

between these nodes. Here, the 48 functional regions identified with the dictionary 122 

learning analysis were used as nodes for graph analysis of the mouse lemur brain. A 123 

3D-view of the mouse lemur network based on these 48 functional regions is 124 

presented in Suppl. Fig. 1. Partial correlation matrices were created using fully 125 

preprocessed MR images by calculating the partial correlation coefficients between 126 

temporal evolutions of BOLD MR signals within each region of this 3D functional 127 

network. 128 

2.2.1. Modularity and large scale network identification based on graph 129 

analysis 130 

In graph theory, large scale networks are defined as community structure (or 131 

modules), which are groups of nodes connected densely and sparsely with nodes 132 

from other modules. The modularity of a partition (Q) is the degree to which a 133 

network can be subdivided into non-overlapping groups of nodes with maximum 134 

within-group connections and minimum number of between-group connections (D. B. 135 

Vincent et al., 2008). Here, the average partial correlation matrix was used to 136 

evaluate the modular structure of the mouse lemur brain by graph theory. Q was 137 

calculated to assess the ability of this weighted undirected matrix to be segregated 138 

into non-overlapping groups of nodes. A high modularity value (Q = 0.43) was 139 

obtained which suggests a prominent modular structure of mouse lemur brain 140 

networks. This modularity index was associated with the classification of the matrix 141 

into 6 modules (large scale networks) (Fig. 3, Suppl Table 2). Each functional region 142 

was associated with one and only one network. These networks were identified as: 143 

M-16 – Default mode network-like (DMN-like). This module involved posterior 144 

and anterior cingulum, superior posterior frontal and parietal cortices. In other 145 

species, these regions are reported to be part of the DMN (Belcher et al., 2013; 146 

Hutchison et al., 2010; J. L. Vincent et al., 2007). This module also embedded nodes 147 

from the superior motor area and postcentral cortices. 148 

M-26 – Visual. This module involved the cuneus, the occipital pole, the middle, 149 

the inferior occipital and the inferior temporal cortices. Those clusters correspond to 150 

visual areas and regions involved in integration of visual information. 151 
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M-36 – Frontal. This module involved nodes from frontal and precentral 152 

cortices. 153 

M-46 – Temporal. This module embedded temporal structures usually 154 

implicated in response to auditory stimuli as well as the right posterior putamen. 155 

M-56 – Basal ganglia. This module embedded the anterior striatum, the 156 

posterior striatum (posterior caudate nucleus and posterior putamen), the amygdala, 157 

basal forebrain, septal nuclei, as well as the hypothalamus and globus pallidus. 158 

M-66 – Thalamic. This network involved a large number of subcortical regions 159 

including and surrounding the thalamus, the hippocampus, the colliculi and the 160 

midbrain. 161 

 

Figure 3. Mouse lemur networks identified using graph analysis based on 48 
functional regions. 
Using graph analysis, we partitioned the mouse lemur brain into six cortical and 
subcortical modules. A color and a name were assigned to each module. Colors 
highlight interactions between different nodes, i.e. they outline large scale networks. 
Eigenvector centrality, a measure of node influence, is represented by the node size. 

  162 
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2.2.2. Identification of large scale networks based on dictionary learning 163 

We then wondered whether the six previously identified modules could be 164 

identified with dictionary learning analysis, another data-driven method. A six-165 

component analysis revealed bilateral networks spread over the whole brain (Fig. 4, 166 

Suppl. Table 2). Four networks (the DMN, visual, basal ganglia and thalamic) were 167 

very similar to those identified with the module analysis. One network (fronto-168 

temporal) was a concatenation of two networks identified by module analysis. The 169 

last network (somato-motor) was not identified with module analysis. Unlike for the 170 

graph analysis some functional regions (e.g. the anterior cingulate cortex) could be 171 

attributed to different networks (e.g. the DMN, fronto-temporal and somato-motor 172 

networks). More precisely, the networks were identified as: 173 

SC-16 – DMN. This network involved structures identified with graph analysis 174 

(posterior and anterior cingulum cortices, superior posterior frontal and parietal 175 

cortices). Some nodes (superior motor area and postcentral cortices) identified as 176 

part of the DMN by graph analysis were not detected with dictionary learning. 177 

SC-26 – Visual. This network involved the same nodes as those detected with 178 

module analysis (occipital pole, middle, inferior occipital and inferior temporal 179 

cortices), except the inferior temporal cortex.  180 

SC-36 – Fronto-temporal. This network involved several regions that were 181 

identified as frontal or temporal network with graph analysis. It also included the 182 

anterior cingulum cortex. 183 

SC-46 – Somato-motor. This network embedded frontal and parietal regions 184 

located above the Sylvian fissure (corresponding to Brodmann 1-3 (primary region 185 

involved in body sensation), 4 (primary motor region) and 6 (secondary motor 186 

region)) and temporal regions surrounding the Sylvian fissure. This network could 187 

thus be involved in somato-motor activities. 188 

SC-56 – Basal ganglia. This network involved the same regions as those 189 

identified for this network with module analysis except for the hypothalamus and 190 

globus pallidus. 191 

SC-66 – Thalamic. This last network involved mostly the same regions as the 192 

ones identified with graph analysis. In addition, it included the basal forebrain, septal 193 

nuclei and globus pallidus.   194 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/599423doi: bioRxiv preprint 

https://doi.org/10.1101/599423
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

 
Figure 4. Cerebral networks identified following six component dictionary 
learning in mouse lemurs.  
This analysis revealed bilateral networks that included several regions spread over 
the whole brain classified as default mode-like, visual, fronto-temporal, somato-
motor, basal ganglia and thalamic networks. 

  195 
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2.2.3. Identification of large scale networks based on seed-based 196 

analysis 197 

Another way to analyse cerebral networks is to perform seed-based studies. This 198 

method evaluates the relationships between mean BOLD signal in a brain region 199 

(seed) and BOLD signal in any voxel of the brain. Here, the seeds corresponded to 200 

the 48 previously identified functional regions. Some seeds were only connected with 201 

voxels from the same brain region and were not further explored (i.e. the visual and 202 

thalamic networks, SB-26 and SB-66 in Fig. 5). Four seeds were connected with 203 

voxels localized in brain networks previously described with the graph analysis and 204 

dictionary learning methods (i.e. the DMN, fronto-temporal, somato-motor and basal 205 

ganglia networks, Fig. 5). Two networks identified with other methods were not 206 

identified by seed-based analysis (the visual and thalamic networks). As for 207 

dictionary learning, some structures (i.e. the anterior cingulum cortex) could be 208 

attributed to different networks (Suppl. Table 2). More precisely, the networks 209 

highlighted by seed-based analysis are described as follows. 210 

SB-16 – DMN. The seed from the posterior cingulum cortex (PCC) is usually 211 

used to define the DMN. Here, using this seed we highlighted highly connected 212 

voxels in the regions identified as DMN with graph analysis and dictionary learning 213 

methods (posterior and anterior cingulum cortices, superior posterior frontal and 214 

parietal cortices). Additional parts of this network were also identified (middle frontal 215 

cortex and dorsal thalamus). 216 

SB-36 – Fronto-temporal. The seed from the left middle temporal cortex was 217 

connected with the right middle and superior temporal cortices, superior anterior 218 

frontal cortex, superior posterior frontal cortex and anterior cingulum cortex. 219 

SB-46 – Somato-motor. Using a seed in the left superior motor area, we 220 

highlighted a network englobing several regions included in the somato-motor 221 

network identified by dictionary learning (fronto and parietal cortices, superior 222 

temporal regions, anterior cingulum cortex). Voxels from the middle frontal, superior 223 

posterior frontal cortex, posterior cingulum cortices as well as the posterior caudate 224 

nucleus and dorsal thalamus were also associated with this network. 225 

SB-56 – Basal ganglia. Using the posterior caudate nucleus (left) as a seed, 226 

we highlighted a basal ganglia network that involved the striatum. It was already 227 

identified for this network with graph analysis and dictionary learning. Voxels from the 228 
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superior posterior frontal cortex and anterior cingulum cortices were also associated 229 

with this network. 230 

 

Figure 5. Mouse lemur resting-state networks characterized with seed-based 
analysis. 
Each image highlights mean z-statistic maps of regions connected to a cerebral 
seed. Seed-based analysis detected four of the six previous large scale networks 
identified with dictionary learning: default mode-like, fronto-temporal, somato-motor, 
and basal ganglia (seeds positioned in the posterior cingulate cortex, the left medial 
temporal cortex, the left superior frontal cortex and the left posterior caudate nucleus, 
respectively). Visual and thalamic networks that were detected with dictionary 
learning were not detected with seed-based analysis: SB-26 and SB-66 display lack of 
large network detection using seeds in the left occipital cortex and the left ventral 
thalamus. Color bars represent z-statistic values. 

SB-56 Basal ganglia network SB-66 Thalamic network

SB-26 Visual network

SB-36 Fronto-temporal network

SB-16 Default mode-like network

Seed-based

SB-46 Somato-motor network

6 8 1210
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2.3. Functional hubs and small-worldness features of mouse lemur brains  231 

2.3.1. Brain hubs in mouse lemurs 232 

Whole brain networks can also be characterized using various descriptors. One of 233 

these descriptors, "hubness", describes the centrality of nodes in the network. This is 234 

a measure of node influence within the whole brain network. It can be measured by 235 

eigenvector centrality. For each node, this index is mainly calculated based on its 236 

partial correlation values (edges) with all regions of the 3D functional atlas, weighted 237 

by the eigenvector scores of its neighbourhood nodes. In other words, nodes which 238 

display high eigenvector centrality scores are strongly linked to other nodes and/or to 239 

strongly connected nodes. Here, eigenvectors were presented as histograms (Fig. 6) 240 

or as the size of the nodes in the graphical representation of the networks (Fig. 3). 241 

The 3 nodes presenting the highest eigenvector centrality were the anterior cingulum 242 

cortex, the posterior cingulum cortex, and the superior posterior frontal cortex. These 243 

three regions belong to the DMN. The dorsal thalamus was the next region showing 244 

highest hubness properties. Then the following hubs involved the parietal cortex, 245 

superior motor area, as well as the superior temporal and postcentral cortices (Fig. 246 

6). 247 

2.3.2. Small-worldness of mouse lemur brain networks 248 

Network topology describes properties of regional specialization and global 249 

information transfer efficacy. It can be classified into three main classes: random, 250 

lattice and small-world networks (Telesford et al., 2011). Network topology can be 251 

characterized using two small-world coefficients (σ and ω) (NetworkX (Hagberg et 252 

al., 2008)). Small-world networks have σ values superior to 1 and ω values close to 0 253 

(Telesford et al., 2011). In mouse lemurs these coefficients (σ = 1.47 and ω = 0.39) 254 

indicated small-world properties. Usually, mammal brains have small-worldness 255 

topology (Mechling et al., 2014).  256 
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Figure 6. Eigenvalue centrality scores, reflecting "hubness", in mouse lemur 
brain regions. 

The three regions displaying the highest scores were the anterior cingulate cortex, 
the posterior cingulate cortex and the central frontal cortex. The dorsal thalamus was 
the next region showing highest hubness properties. Then the following hubs 
involved the parietal cortex, superior motor area, as well as the superior temporal 
and postcentral cortices. 

  257 
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2.4. Cerebral networks in humans 258 

We then wondered how comparable mouse lemur and human brain networks are. 259 

To answer to this question, resting state fMRI data were recorded from 42 healthy 260 

humans ranging from 41 to 60 years old at 3.0 Tesla using an interleaved 2D T2* 261 

SENSE EPI. Participants were asked to keep their eyes closed and relax without 262 

falling asleep during image acquisition. Human images were then processed with the 263 

same graph analysis and dictionary learning algorithms as mouse lemur images. 264 

Local functional regions were identified using a dictionary learning based on 35 265 

components. Single components spread on bilateral structures were dissociated into 266 

two different regions (i.e. one in each hemisphere). Ultimately, the brain was 267 

partitioned into 56 local functional regions (55 cortical, 1 subcortical). They were 268 

named based on the “AAL for SPM12” atlas (Tzourio-Mazoyer et al., 2002) (Suppl. 269 

Fig. 2) 270 

As for mouse lemurs, the 56 functional regions identified with the dictionary 271 

learning analysis were used as nodes for large scale network analysis. First, we 272 

calculated partial correlation coefficients between temporal evolutions of BOLD MR 273 

signals within each region of the 3D functional atlas. The obtained correlation matrix 274 

was used to calculate the matrix modularity value (Q = 0.56). This index was 275 

associated with the segregation of the matrix into 6 modules that were classified as 276 

default mode, visual, frontal, temporal somato-motor, and temporo-insular networks 277 

(Suppl. Fig. 3). 278 

Then large scale networks were further characterized in humans using a dictionary 279 

learning analysis with 6 components (Fig. 7, Table 2). The 6 networks identified could 280 

be classified as the default mode, visual, fronto-supramarginal (classified as control-281 

executive network in (Solé-Padullés et al., 2016)), somato-motor, temporal, and a 282 

fronto-parietal network (classified as attention network in (Raichle, 2011)).  283 
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Figure 7. Human cerebral networks identified following six component 
dictionary learning.  

The spatial map decomposition extracted 6 cortical networks commonly observed in 
the literature (DMN, visual, fronto-supramarginal, somato-motor, temporal, fronto-
parietal). This analysis was performed with similar pretreatments as for the mouse 
lemurs. 

  284 
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2.5. Functional hubs and small-worldness features of human brains 285 

Eigenvector centrality and network topology were evaluated in humans using the 286 

same procedures as for mouse lemurs. Eigenvector centrality was presented as 287 

histograms (Fig. 8) or as the size of the nodes in the graphical representation of the 288 

networks (Suppl. Fig. 3). The 3 nodes presenting the highest eigenvector centrality 289 

were the parietal inferior (right and left) and the precuneus posterior. Then the next 290 

hubs were located in the middle frontal cortex (left), the angular region (left) and the 291 

posterior cingulum cortex. All these regions except the middle frontal cortex belong to 292 

the DMN. Regarding network topology, as expected we found small-world properties 293 

in the human brain (σ = 1.1 and ω = 0.08). 294 

 

Figure 8. Eigenvalue centrality scores, reflecting "hubness", in human brain 
regions. 
The 3 nodes presenting the highest eigenvector centrality were the parietal inferior 
(right and left) and the precuneus posterior. Then the next hubs were located in the 
middle frontal cortex (left), the angular region (left) and the posterior cingulum cortex. 

  295 
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3. Discussion  296 

This study provides a detailed characterisation of the organisation of functional 297 

networks in mouse lemur primates under isoflurane sedation. Complementary 298 

analyses based on dictionary learning, seed-based studies and graph analysis 299 

highlighted 48 local functional regions that could be grouped into several large scale 300 

networks. We also identified the main hubs and small-world characteristics of mouse 301 

lemur brains. Human brain networks were also analysed with algorithms similar to 302 

those used in lemurs in order to compare networks in both species. 303 

3.1. Parcellation of functional regions within mouse lemur brains  304 

Up to now, description of mouse lemur functional organisation was based on 305 

cytoarchitectonic atlases (Bons et al., 1998; Le Gros Clark, 1931; Nadkarni et al., 306 

2018). Here, using dictionary learning with a large number of components, we 307 

created a 3D map of 48 local functional regions. The quality of this functional atlas 308 

was supported by the bilateralism of the extracted regions. One of the strengths of 309 

this functional map is that it can be used to create a whole brain graph that relies on 310 

brain function rather than on anatomical boundaries. Studies of animal resting state 311 

networks often used regions of interest based on anatomical atlases (Li and Zhang, 312 

2018), as opposed to functional atlases. The latter approach is preferable since 313 

anatomical boundaries do not necessarily correspond to underlying brain function. 314 

Therefore, regions of interest based on anatomical atlases display less signal 315 

homogeneity and so increase non-specific signal (Craddock et al., 2012). The 316 

second advantage of functional atlases is that no predetermined anatomical atlas is 317 

required during the analysis. Consequently, the independence of our pipeline 318 

provides the capacity to build brain networks in species that have not been fully 319 

investigated.  320 
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3.2. Modular organisation of mouse lemur brains 321 

High modularity is an important principle of brain organisation (Bullmore and 322 

Sporns, 2009). It can be measured with modularity of a partition (Q). Here we found 323 

Q=0.43 in mouse lemurs. This value is consistent with Q values reported in rats 324 

(Q=0.39 (D'Souza et al., 2014)), other non-human primates (0.33 < Q < 0.54 (Shen 325 

et al., 2012)) or humans in our study (Q = 0.56) and indicates that the mouse lemur 326 

brain can be partitioned into modules. Using graph analysis, we identified six cortical 327 

and subcortical modules that corresponded to large scale networks. This 328 

organisation into six modules is consistent with the number of modules reported in 329 

rats (n=6 (D'Souza et al., 2014)), other non-human primates (for example n=4 (Shen 330 

et al., 2012) or n=7 (Grayson et al., 2016) in Macaca fascicularis), or humans in our 331 

study (n=6). 332 

3.3. Characterisation of large scale networks in mouse lemur brains 333 

3.3.1. Multi-method approach of resting state analysis in animals 334 

Whole brain networks can be decomposed into large scale networks. However, 335 

there are no absolute frontiers between these large scale networks due to the 336 

gradualness of the interactions between the different regions of the brain. Several 337 

methods, such as dictionary learning, graph analysis and seed-based studies can be 338 

used to identify these large scale networks in mammal brains. They rely on various 339 

mathematical bases associated with various sensitivities to image artefacts (Power et 340 

al., 2014). Also, these methods have diverse abilities to classify brain regions into 341 

networks. For example, graph analysis attributes each region to one and only one 342 

network while dictionary learning and seed-based analysis can attribute a region to 343 

several networks. In most resting state fMRI studies in animals, neuronal networks 344 

are identified on the basis of a single method. Here we showed that different 345 

methods do not detect exactly the same networks. However, networks identified with 346 

each method display a strong overlap. Functional regions included in a network by 347 

several methods represent the more robust parts of the network. Thus, we propose a 348 

first classification of the mouse lemur networks that takes into account only regions 349 

identified by two or three methods (Fig. 9, Suppl. Table 3). An overview of each 350 

network is presented in the following paragraphs.  351 
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Figure 9. Most robust functional networks identified in mouse lemurs using two 
or three network identification methods. 
Regions from the DMN, visual, fronto-temporal, somato-motor, basal ganglia and 
thalamic networks that could be identified by two or three network identification 
methods are considered as robustly associated to a network and are displayed on 
this figure. For each network, edges were reported from those identified with graph 
analysis. 

 352 

3.3.2. Default-mode-like network 353 

The DMN is one of the most studied networks in humans (Hampson et al., 2006) 354 

and other mammals including rodents (Lu et al., 2012) and non-human primates (J. 355 

L. Vincent et al., 2007). It plays a critical role in several physiological and pathological 356 

processes such as Alzheimer’s or Parkinson’s diseases (Buckner et al., 2005; Gao 357 

and Wu, 2016). In mouse lemurs, four regions of this network were detected with 358 

network identification methods: anterior and posterior cingulum cortices, superior 359 

posterior frontal cortex and parietal cortex. In several species, these regions are 360 

reported to be part of the default mode network (Belcher et al., 2013; J. L. Vincent et 361 

al., 2007). 362 

In humans and other mammals, the DMN contains highly connected hub nodes. 363 

In the mouse lemur brain, we also found that it contained the most connected nodes. 364 

Given the importance of this network it was critical to characterize it in the mouse 365 

lemur, which is widely used as a model of neurodegenerative diseases (Kraska et al., 366 

2011; Mestre-Frances et al., 2018). 367 

  368 
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3.3.3. Fronto-temporal network 369 

The fronto-temporal network was found in mouse lemurs with dictionary learning 370 

and seed-based analysis, but was split into two networks (frontal and temporal) with 371 

graph analysis. One of its components, the superior temporal cortex, was a strong 372 

hub in the mouse lemur brain. In primates, these regions are reported to be part of 373 

the executive network (Hutchison et al., 2012) 374 

3.3.4. Networks specialized in sensory and motor information processing 375 

We also identified networks that could be classified as externally-driven. The first 376 

one is the visual network. It involved mainly occipital areas. This network has been 377 

described in numerous primates under task and rest conditions (Belcher et al., 2013). 378 

The second externally-driven network is the somato-motor network. It has also been 379 

widely defined in humans (Beckmann et al., 2005), primates (Nelissen and Vanduffel, 380 

2011), and many other mammals (Sierakowiak et al., 2015). It integrates sensory 381 

input and motor commands. In mouse lemurs, we found that this network contains 382 

several hubs such as the anterior cingulum cortex, the superior motor area and the 383 

postcentral cortices. 384 

3.3.5. Subcortical networks 385 

Finally, two networks were identified in subcortical areas. The first one involved 386 

the basal ganglia. Similar networks are described in primates (Belcher et al., 2013), 387 

and other mammals (Sierakowiak et al., 2015) and are involved in emotional, 388 

motivational, associative and cognitive functions (Herrero et al., 2002). 389 

The second subcortical network involved several regions such as the ventral 390 

thalamus (a strong hub in mouse lemurs), dorsal thalamus, hippocampus, colliculus, 391 

pons and midbrain. It was called "thalamic network". 392 

3.4. Small-worldness features of mouse lemur brains 393 

We finally evaluated the small-worldness properties of the mouse lemur functional 394 

networks by calculating small-world coefficients σ and ω. Our results attested that 395 

mouse lemur networks have small-world properties (ω = 0.39). Interestingly, ω was 396 

much smaller in the human brain (ω = 0.08) than in the lemur brain suggesting 397 

stronger small-world properties in humans. The small-world configuration is 398 

considered as optimal for local information processing and for its global transfer. 399 

Indeed, small-world networks have the unique ability to have specialized regions 400 

while simultaneously exhibiting shared or distributed processing across all of the 401 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/599423doi: bioRxiv preprint 

https://doi.org/10.1101/599423
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

communicating regions of a network (Telesford et al., 2011). 402 

3.5. Cross species comparison: homologies and divergence between 403 

humans and mouse lemur networks 404 

In a last part of the study, cerebral networks were analyzed in humans with the 405 

same graph analysis and dictionary learning algorithms as the ones used in mouse 406 

lemurs. Two major differences were reported between the two species. First, large 407 

scale networks were only cortical in humans while they involved two subcortical 408 

networks in lemurs. Second, in humans, large scale networks involved more 409 

functional regions than in lemurs. This latter result is consistent with the stronger 410 

small-world organization in humans than in lemurs suggesting a better efficacy of 411 

whole brain networks in humans. These differences between the two species may be 412 

related to a better efficacy of neuronal networks in humans, but they could also be 413 

associated to different awareness levels as lemurs were anesthetized while humans 414 

were awake during image acquisition. Indeed, Barttfeld et al. compared connectivity 415 

measures in awake and anesthetized conditions in primates. They showed that under 416 

anesthesia, the more frequent functional connectivity patterns inherit the structure of 417 

anatomical connectivity and exhibit fewer small-world properties (Barttfeld et al., 418 

2015). 419 

Graph analysis revealed four similar modules (default mode-like, visual, frontal, 420 

and temporal networks) in mouse lemurs and humans, although their regional 421 

organization was not strictly identical. Two other modules detected in humans 422 

(somato-motor and temporo-insular) corresponded to networks that were not 423 

detected in lemurs. On the contrary, the two subcortical modules detected in lemurs 424 

(basal ganglia and thalamic networks) were not detected in humans. Because of the 425 

multiple regions involved in module description by graph analysis and because of the 426 

possibility to attribute a region to only one network with this method, it was difficult to 427 

further compare human and lemur networks with this technique. 428 

Dictionary learning also revealed four similar networks (DMN, visual, fronto-429 

temporal/supramarginal and somato-motor networks) in lemurs and humans (Table 430 

2; Suppl. Fig. 4). In both species, the DMN network involved the cingulum, frontal, 431 

and parietal cortices. In mouse lemurs, it involved the superior posterior frontal cortex 432 

that was probably subdivided in two functional regions (frontal superior medial and 433 

frontal superior posterior cortices) in humans. Other regions such as the temporal 434 
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cortex were included in the human DMN but not in the mouse lemur DMN. 435 

Interestingly, in both species, this network was the one in which highest hubness 436 

coefficients (eigenvectors) were detected. This reinforces the importance of this 437 

network for brain functional organization. In humans, the default mode network has 438 

been largely linked to self-referential thought, internal-oriented cognition and 439 

monitoring of the environment (Buckner et al., 2008). The strength and stability of this 440 

network in mouse lemurs under anaesthesia is consistent with the discovery of this 441 

network in many other anesthetized animals (J. L. Vincent et al., 2007). This 442 

suggests that it is an essential element of brain functional organization and that it 443 

may be dedicated to other tasks too. 444 

In the visual network, occipital cortex was detected in both species. Additional 445 

more anterior-parietal regions such as the paracentral lobule and the postcentral 446 

were highlighted in humans. We cannot rule out that this wider extension in human 447 

dataset is not related to the wakefulness state as it induces a richer repertoire of 448 

functional configurations (Barttfeld et al., 2015).  449 

In mouse lemurs, a network involving the anterior cingulum, frontal and temporal 450 

regions was classified as the fronto-temporal network. In humans, one network 451 

involving mostly the anterior cingulum and frontal regions could be homologous to 452 

this network. Interestingly, in lemurs, this networks also involved temporal (superior 453 

and medial temporal regions) while it involved parietal regions (supramarginal 454 

anterior and parietal inferior cortices) as well as additional regions (supplementary 455 

motor, cingulum median and opercular regions) in humans. This network could 456 

correspond to the control-executive network (Solé-Padullés et al., 2016). If the fronto-457 

temporal network of mouse lemur is equivalent to the fronto-supramarginal human 458 

network, then this would suggest a shift of the functional region localized in the 459 

superior temporal area in lemurs towards a supramarginal location in humans. 460 

The last comparable network was the somato-motor network. In humans it 461 

involved regions surrounding the central sulcus (precentral and postcentral regions) 462 

as well as the supplementary motor region. In lemurs, there is no central sulcus, but 463 

this network involved similar regions (precentral and postcentral regions) as well as 464 

the supplementary motor region. Interestingly, this part of the network seemed to 465 

have a more anterior position in the brain of lemurs than in humans. This is 466 

consistent with the more anterior part of the motor regions reported in lemurs by Le 467 

Gros Clark (Le Gros Clark, 1931) and Brodmann (Brodmann, 1999 (original in 468 
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1909)). This pattern is linked to the smaller size of the frontal region in lemurs as 469 

compared to humans. Finally, in humans, this region involved the paracentral and the 470 

precuneus anterior cortices while it involved the region classified as anterior cingulate 471 

cortex in the mouse lemur. These two regions are localized in the same area and we 472 

cannot rule out that the functional region classified as anterior cingulate cortex in 473 

lemur indeed involved the pre and post central lobule in addition to the anterior 474 

cingulate cortex. 475 

3.6. Anaesthesia-related limitations 476 

One of the objectives of this study was to describe for the first time neuronal 477 

networks in mouse lemurs. It was conducted on sedated animals using isoflurane 478 

with the lowest non-awakening isoflurane level possible for mouse lemurs (1.25%). 479 

Isoflurane is expected to decrease the functional connectivity but at high doses 480 

(superior to 1.5%) or after a long exposure (Hutchison et al., 2014; Li and Zhang, 481 

2018). Evaluating resting state networks in anesthetised and not in awake animals is 482 

an obvious limitation of the study (Schroeter et al., 2014). However, several animal 483 

studies showed that the major functional networks are preserved under anaesthesia 484 

(J. L. Vincent et al., 2007). Here, we confirm this assumption by describing several 485 

networks, including a DMN-like in anesthetised mouse lemurs. In the future, one may 486 

also focus on resting state fMRI in awake mouse lemurs to possibly evaluate more 487 

physiological brain states and increase the number of nodes associated with each 488 

identified network. Such an approach is challenging but has already been performed 489 

in marmosets (Belcher et al., 2013) and macaques (Goense et al., 2008).  490 
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Mouse lemur Human 

 Label   Label 

Default 
mode 

(8) Cingulum Post (20) 

(5) Cingulum Ant (7) 

(3) Frontal Sup Post 
Frontal Sup Post (R&L) 

Frontal Sup medial (R&L)  
(2) 
(3) 

  Frontal Inf (L) (35) 

(9) Parietal (R&L) 
Parietal Inf (R&L) 

Angular (L) 
(14) 
(15) 

  Temporal Mid Ant(R&L) (23) 

  Occipital Sup (R&L) (27) 

  Precuneus Post (18) 

  Calcarine (30) 

     

Visual 

(16) Occipital Pole (R&L) (33) 

(10) Occipital Mid (R&L) (28) 

(14) Occipital Inf (R&L) (29) 

(15) Cuneus (26) 

  Calcarine (30) 

  Lingual (31) 

  Fusiform (R&L) (32) 

  Paracentral lobule (19) 

  Postcentral (R&L) (11) 

     

Fronto-
temporal 
/ 
Fronto-
supra- 
marginal 

(5) Cingulum Ant (7) 

(1) Frontal Sup Ant (R&L) (1) 

(3) Frontal Sup Post  
Frontal Sup Post (R) 

Frontal Sup medial (R) 

(2) 

(3) 

(2) Frontal Mid (R&L) 
Frontal Mid (R&L) 

Frontal Inf operc (R&L) 

(4) 
(5) 

  Frontal Inf (L) (35) 

  Supp motor area (12) 

  Cingulum Mid (8) 

(11) Temporal Sup (R&L) Supramarginal (R&L) (21) 

  Parietal Inf (R) (14) 

  Striatum-thalamus (34) 

(12) Temporal Mid (R&L)   

     

Somato-
motor 

(6) Precentral (R&L) (10) 

(7) Postcentral (R&L) (11) 

(4) Supp motor area (R&L) (12) 

(9) Parietal (L) Parietal Sup Ant (R&L) (13) 

(5) Cingulum Ant 
Paracentral lobule (19) 

Precuneus Ant (17) 

(11) Temporal Sup (R&L) 
Temporal Sup (R&L) (25) 

Supramarginal (R&L) (21) 

Table 2. Comparison of the regions belonging to the different networks 491 

extracted in mouse lemurs and humans. 492 

Regions that were identified with different methods are grouped within a single case. 493 

The 3D functional atlas of each species was pasted on different networks obtained 494 

by dictionary learning. A region was considered to belong to a network when more 495 

than 30% of its volume belonged to this network. The fit between two regions with 496 

different names was based on the anatomical proximity. Labels represent the number 497 

corresponding to this region in Figure 2 for lemurs and Supplementary Figure 2 for 498 

humans. 499 
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4. Conclusion 500 

This study provides the first characterisation of functional brain networks in 501 

mouse lemur primates. Local functional regions were identified without using any 502 

anatomical atlas. Six large scale networks were identified using several 503 

complementary data-driven and hypothesis-based methods. Networks identified with 504 

each method displayed a strong overlap and we propose a first classification of the 505 

most robust mouse lemur networks by selecting only regions identified by two or 506 

three methods. We also proposed a second validation method by comparing 507 

networks in lemurs and human brains. Indeed, a strong homology was reported 508 

between well characterized human cortical networks and lemur cortical networks. 509 

This further suggests the accuracy of the identified mouse lemur networks. The 510 

mouse lemur brain displayed small-world features leading to optimal information 511 

transfer. Finally, critical hubs were detected and involved the posterior and anterior 512 

cingulate cortices, the central prefrontal cortex, and the dorsal thalamus. 513 

The mouse lemur is an interesting primate because of its key position in the 514 

phylogenetic tree, rodent-like small size and nocturnal and arboreal lifestyle. The 3D 515 

functional atlas and resting state network maps are freely available at 516 

https://www.nitrc.org/projects/fmri_mouselemur/. The imaging tools used to create 517 

and manipulate the template are also available (https://sammba-mri.github.io). 518 

5. Materials and methods 519 

5.1. Animals and breeding 520 

This study was carried out in accordance with the recommendations of the 521 

European Communities Council directive (2010/63/EU). The protocol was approved 522 

by the local ethics committees CEtEA-CEA DSV IdF (authorization 523 

201506051736524 VI (APAFIS#778)). All mouse lemurs studied were born in the 524 

laboratory breeding colony of CNRS/MNHN in Brunoy, France (UMR 7179 525 

CNRS/MNHN) and bred in our laboratory (Molecular Imaging Research Center, CEA, 526 

Fontenay-aux-Roses). 527 

Sixteen mouse lemurs (12 males and 4 females) were initially included in this 528 

study. Two females that presented brain lesions on anatomical MRI were excluded 529 

from the analysis. The 14 analysed animals ranged from 0.9 to 3.1 years old 530 

(mean±SD: 1.7±0.7) (Suppl. Table 1). Housing conditions were cages containing one 531 
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or two lemurs with jumping and hiding enrichment, temperature 24–26°C, relative 532 

humidity 55% and seasonal lighting (summer: 14 hours of light/10 hours of dark; 533 

winter: 10 hours of light/14 hours of dark). Food consisted of fresh apples and a 534 

homemade mixture of bananas, cereals, eggs and milk. Animals had free access to 535 

tap water. None of the animals had previously been involved in pharmacological trials 536 

or invasive studies.  537 

5.2. Animal preparation and MRI acquisition 538 

Each animal was scanned twice with an interval of 6 months. All scanning was 539 

under isoflurane anaesthesia at 1.25-1.5% in air, with respiratory rate monitored to 540 

confirm animal stability until the end of the experiment. Body temperature was 541 

maintained by an air heating system at 32°C, inducing a natural torpor in mouse 542 

lemurs (Aujard and Vasseur, 2001). This has the advantage of allowing a low 543 

anaesthesia level without reawakening. 544 

The MRI system was an 11.7 Tesla Bruker BioSpec (Bruker, Ettlinger, Germany) 545 

running ParaVision 6.0.1. Anatomical images were acquired using a T2-weighted 546 

multi-slice multi-echo (MSME) sequence: TR = 5000 ms, TE = 17.5 ms, 6 echoes, 547 

inter-echo time = 5 ms, FOV = 32 × 32 mm, 75 slices of 0.2 mm thickness, resolution 548 

= 200 µm isotropic, acquisition duration 10 min. Resting state time series data were 549 

acquired using a gradient-echo EPI sequence: TR = 1000 ms, TE = 10.0 ms, flip 550 

angle = 90°, repetitions = 450, FOV = 30 × 20 mm, 23 slices of 0.9 mm thickness and 551 

0.1 mm gap, resolution = 312 × 208 × 1000 µm, acquisition duration 7m30s. 552 

5.3. MRI acquisition in humans 553 

Forty-two healthy participants from the ‘Imagerie Multimodale de la Maladie 554 

d’Alzheimer à un stade Précoce’ (IMAP) study (Caen) were included in the present 555 

study (18 males and 24 females ranging from 41 to 60 years old (mean±SD: 556 

50±5.9)). All participants were scanned on a 3.0 T scanner (Philips Achieva, 557 

Amsterdam, Netherlands) at the Cyceron Center (Caen, France). Anatomical T1-558 

weighted images were acquired using a 3D fast-field echo sequence (3D-T1-FFE 559 

sagittal TR = 20 ms, TE = 4.6 ms, flip angle = 10°, 180 slices of 1 mm with no gap, 560 

FOV = 256 × 256 mm2, in-plane resolution = 1 × 1 mm2). Resting state time series 561 

data were acquired using an interleaved 2D T2* SENSE EPI (2D-T2*-FFE-EPI axial, 562 

SENSE = 2; TR = 2382 ms; TE = 30 ms; flip angle = 80°; 42 slices of 2.8 mm with no 563 

gap, repetitions = 450, FOV = 224 × 224 mm2, in plane resolution = 2.8 × 2.8 mm2, 564 
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acquisition duration = 11.5 min). Head motion was minimized with foam pads. 565 

Participants were equipped with earplugs and the scanner room’s light was turned 566 

off. During this acquisition, participants were asked to keep their eyes closed and 567 

relax without falling asleep. 568 

5.4. MRI pre-processing 569 

5.4.1. Mouse lemur data 570 

Scanner data were exported as DICOM files then converted into NIfTI-1 format. 571 

Then spatial pre-processing was performed using the python module sammba-mri 572 

(SmAll MaMmals BrAin MRI; http://sammba-mri.github.io) which, using nipype for 573 

pipelining (Gorgolewski et al., 2011), leverages AFNI (Cox, 1996) for most steps and 574 

RATS (Oguz et al., 2014) for brain extraction. Anatomical images were mutually 575 

registered to create a study template, which was further registered to a high 576 

resolution anatomical mouse lemur template (Nadkarni et al., 2018). Resting state 577 

images were corrected for slice timing (interleaved), motion, and B0 distortion (per-578 

slice registration to respective anatomicals), then all brought into the same space of 579 

the mouse lemur template by successive application of the individual anatomical to 580 

study template and study template to mouse lemur atlas transforms. Functional 581 

images were further pretreated using Nilearn (Abraham et al., 2014). Nuisance signal 582 

regression was applied including a linear trend as well as 24-motion confounds (6 583 

motion parameters, those of the preceding volume, plus each of their squares 584 

(Friston et al., 1994)). Images were then spatially smoothed with a 0.9 mm full-width 585 

at half-maximum Gaussian filter. The first 10 volumes were excluded from analysis to 586 

ensure steady-state magnetization. 587 

5.4.2. Human data 588 

Artefacts were inspected in individual datasets using the TSDiffAna routines 589 

(http://imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics). Datasets displaying 590 

significant movements (> 1.5° rotation or > 3 mm translation) and abnormal variance 591 

distribution and/or artefacted were excluded from the analysis. Data were then 592 

preprocessed as defined in Landeau et al. (Landeau et al., 2017) with slice timing 593 

correction, realignment to the first volume and spatial normalization within native 594 

space to correct for distortion effects. EPI volumes were registered to their own high 595 

resolution anatomical image and then registered and normalized to MNI template 596 

space. Nuisance signal regression was applied including a linear trend as well as 24-597 
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motion confounds (6 motion parameters, those of the preceding volume, plus each of 598 

their squares (Friston et al., 1994)). Images were then spatially smoothed with a 2 599 

mm full-width at half-maximum Gaussian filter. 600 

5.5. Identification of functional regions by dictionary learning and creation of 601 

a 3D functional atlas 602 

Multi-animal dictionary learning was performed with Nilearn (Mensch et al., 2016) 603 

on preprocessed resting state functional MR images. A mask excluding the corpus 604 

callosum, hindbrain, ventricles and three systematically artefacted regions (olfactory 605 

bulb, ventral entorhinal cortex and prepiriform cortex) was used to restrict functional 606 

data to non-noise voxels prior to dictionary learning analysis. During a pilot 607 

investigation, several analyses were performed using 20, 30, 35, 40, 45, 50, and 60 608 

sparse components (SCs). The study based on 35 SCs was selected for the final 609 

analysis as it highlighted either unilateral local functional regions or bilateral regions. 610 

Moreover, the extracted components matched well to anatomy (Nadkarni et al., 611 

2018). The 35 SCs were used to create a 3D functional atlas of the mouse lemur 612 

brain. Each bilateral SC was split into two unilateral regions. Regions smaller than 5 613 

mm3 were excluded leading to 48 local functional regions. Each region was then 614 

named using ITK-SNAP to create a 3D functional atlas (Yushkevich et al., 2006). The 615 

same procedure than in lemurs was applied to process human fMRI data. We used 616 

35 SCs and a grey matter mask without hindbrain. 617 

5.6. Identification of large scale networks 618 

5.6.1. Connectivity matrix based on functional atlas 619 

Partial correlation matrices were created using fully preprocessed MR images by 620 

calculating the partial correlation coefficients between BOLD MR signal timecourses 621 

within each region of the 3D functional atlas. Partial correlations were used because 622 

they select direct associations between regions and allow the control of indirect 623 

correlations (Mechling et al., 2014). Individual partial correlation matrices were 624 

computed from shrunk covariance matrices using the Ledoit and Wolf shrinkage 625 

coefficient (Ledoit and Wolf, 2004) as recommended by Varoquaux et al. (Varoquaux 626 

et al., 2012) and Brier et al. (Brier et al., 2015). Partial correlation coefficients were 627 

then Fisher’s z-transformed. Values from different animals were averaged and 628 

thresholded based on a one-tailed t-test (p ≤ 0.01) (Mechling et al., 2014). 629 
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5.6.2. Modularity and large scale network identification by graph theory 630 

analysis 631 

The modularity of a partition (Q) is the degree to which a network can be 632 

subdivided into non-overlapping groups of nodes (D. B. Vincent et al., 2008). The 633 

modularity of a partition as well as an optimal segregation of the whole brain network 634 

into modules were calculated using Gephi 0.9.2 (Bastian et al., 2009). 635 

5.6.3. Large scale network identification by dictionary learning analysis 636 

A second dictionary analysis was performed in mouse lemurs and humans using 637 

a smaller number of SCs in order to highlight large networks and to compare them. 638 

Six SCs were used based on the 6 modules found with the graph theory analysis 639 

(see Results). In humans, a mask excluding the hindbrain and the white matter was 640 

used prior to the analysis to compare the dictionary learning of the two species in a 641 

similar space. 642 

5.6.4. Large scale network identification by seed-based analysis 643 

Seeds corresponded to each region of the 3D functional atlas. The BOLD signal 644 

was averaged within each seed. The functional connection between the seed’s mean 645 

BOLD signal and the BOLD signal in any voxel of the brain was estimated using a 646 

first-level general linear model (Nistats (Abraham et al., 2014)). The within-animal 647 

effect (i.e. the two series of MR images from each animal) was entered as a predictor 648 

(design matrix) and the mean seed time course as regressor. The model directly 649 

returned a fixed effect of the seed across the two sessions, producing 14 z-statistic 650 

maps. The functional regions previously identified were used as seeds. For each 651 

seed, a visual inspection of the animal mean z-statistic maps allowed the selection of 652 

four distinct large scale networks that were spread over the whole brain. 653 

5.7. Identification of functional regions from dictionary-learning and seed-654 

based maps 655 

Dictionary learning and seed-based analysis produced maps showing pixels 656 

belonging to different networks. These maps were extracted and pasted into the 3D 657 

functional atlas. A brain region was considered to be part of a specific network when 658 

the volume of labelled voxels within the map occupied at least 30% of that region. 659 

5.8. Evaluation of functional hubness and small-worldness features of mouse 660 

lemur brains by graph theory analysis 661 

We consider in this analysis the absolute value of the correlation coefficient as 662 
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performed routinely in human fMRI graph theory studies (De Vico Fallani et al., 663 

2014). 664 

5.8.1. Brain hubs in mouse lemurs 665 

Eigenvector centrality, a measure of "hubness", was measured using NetworkX 666 

(Hagberg et al., 2008). 667 

5.8.2. Small-worldness of mouse lemur brain networks 668 

Network topology can be characterized using two small-world coefficients (σ and 669 

ω) (NetworkX (Hagberg et al., 2008)).  670 

σ is defined as σ =  
𝐶/Crand

𝐿/Lrand
  (Watts and Strogatz, 1998)  671 

ω is defined as ω =
𝐿

Lrand
−

𝐶

Crand
 (Telesford et al., 2011). 672 

With C and L being, respectively, the average clustering coefficient (a measure of 673 

network segregation) and the average shortest path length (a measure of integration) 674 

of the network. Crand and Lrand are their equivalent derived random networks. 675 

Small-world networks have σ values superior to 1 and ω values close to 0 (Telesford 676 

et al., 2011). 677 
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