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20 Abstract
21 The availability of large amounts of high-throughput genomic, transcriptomic and epigenomic 

22 data has provided opportunity to understand regulation of the cellular transcriptome with an 

23 unprecedented level of detail. As a result, research has advanced from identifying gene 

24 expression patterns associated with particular conditions to elucidating signalling pathways 

25 that regulate expression. There are over 1,000 transcription factors (TFs) in vertebrates that 

26 play a role in this regulation. Determining which of these are likely to be controlling a set of 

27 genes can be assisted by computational prediction, utilising experimentally verified binding 

28 site motifs.

29 Here we present CiiiDER, an integrated computational toolkit for transcription factor binding 

30 analysis, written in the Java programming language, to make it independent of computer 

31 operating system. It is operated through an intuitive graphical user interface with interactive, 

32 high-quality visual outputs, making it accessible to all researchers. CiiiDER predicts 

33 transcription factor binding sites (TFBSs) across regulatory regions of interest, such as 

34 promoters and enhancers derived from any species. It can perform an enrichment analysis to 

35 identify TFs that are significantly over- or under-represented in comparison to a bespoke 

36 background set and thereby elucidate pathways regulating sets of genes of pathophysiological 

37 importance.

38 CiiiDER is available from www.ciiider.org.
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39 Introduction
40 Contemporary transcriptomic technologies such as microarrays and RNA-sequencing provide 

41 reliable methods to identify genes differentially expressed across cell types, tissues or in 

42 response to different stimuli. These methods reveal many co-expressed genes or gene networks 

43 that are together predicted to determine the observed biological responses.

44 Transcription factors (TFs) bind to specific DNA sequences (transcription factor binding sites; 

45 TFBSs) within promoter and enhancer regions of genomic DNA and either activate or repress 

46 gene expression. These interactions can be determined experimentally, for example using 

47 chromatin immunoprecipitation (ChIP) techniques, and are typically represented as position 

48 frequency matrices (PFMs). Curated databases of PFMs, applicable to a wide range of species, 

49 include the commercial TRANSFAC database [1] and the open-access JASPAR database [2, 

50 3]. While using PFMs alone can predict TFBSs within regulatory sequences, in eukaryotic 

51 organisms, this typically results in high false positive prediction rates, since predicted sites may 

52 not be accessible to the transcriptional machinery due to chromatin structure or the epigenetic 

53 landscape.

54 An enrichment analysis, which compares the distribution of TFBSs predicted in a set of 

55 regulatory DNA regions to the distribution in a set of background sequences, can be utilised to 

56 more accurately identify true TFBSs. With the appropriate choice of background, it is possible 

57 to identify TFBSs that are statistically over- or under-represented. The TFs with over-

58 represented TFBSs in a set of co-expressed genes are more likely to be involved in regulating 

59 the expression of these genes.

60 While there are existing and publicly available programs that can perform enrichment analyses, 

61 these tools are typically web-based (e.g. Pscan [4], MotifViz [5] and oPOSSUM [6]) or 

62 restricted to command line use (e.g. Clover [7], the MEME suite [8] and HOMER [9]). Online 
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63 tools can be convenient, but it is beneficial to be have the security of a downloadable program, 

64 which can be run on a local computer and to have saved projects that can easily be revisited. 

65 Downloadable applications for TFBS prediction that are run through the command line often 

66 require additional tools to be installed or lack effective visualisations, providing static or text-

67 based results, which limits their utility for a wide audience.

68 There is a need for a downloadable program, independent of computer operating system, that 

69 provides the required flexibility to perform accurate, integrated, customisable analysis and data 

70 exploration. To address this, we developed CiiiDER, a user-friendly analysis toolkit for 

71 predicting and analysing putative TFBSs within regulatory regions. CiiiDER is operated 

72 through an intuitive graphical user interface (GUI), which is designed with ease of use in mind. 

73 Established algorithms  [10] have been implemented to map potential TFBSs within a set of 

74 regulatory sequences. TF enrichment analysis can be used to enable identification of key TFs 

75 that are statistically enriched and are therefore more likely to be biologically relevant.
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76 Methods
77 Workflow and algorithms
78 The CiiiDER workflow (Fig 1) can accept query and background regions in a variety of input 

79 formats. It consists of two main analyses, with results presented in an interactive format.

80

81 Fig 1. CiiiDER workflow.

82 A typical analysis involves submitting gene sets for scanning against known TF models, 

83 followed by the identification of sites that are statistically enriched relative to a submitted 

84 background gene list.

85

86 Inputs
87 CiiiDER has been designed to ensure that data input is easy and that a wide variety of formats 

88 are accepted. All data input and parameter selection is facilitated though simple interfaces, with 

89 pop-up information boxes available to help users make the appropriate selections. Data can be 

90 loaded from file or by pasting the sequence information directly into a box in the GUI. 

91 CiiiDER will read sequences directly from data entered in FASTA format. Genomic location 

92 formats (GFF, GTF or BED) require an associated genome file for the relevant species to obtain 

93 DNA sequences. These formats can be used to analyse any regulatory region of interest 

94 including promoters, enhancers and untranslated regions (UTRs).

95 As promoters tend to be the regulatory regions of interest for the majority of users, CiiiDER 

96 will automatically extract promoter sequences from a genome file, given a list of gene symbols, 

97 Ensembl gene IDs or Ensembl transcript IDs. This requires an additional annotation file, 

98 denoted the gene look-up manager (GLM), which contains the location of the transcription start 
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99 sites (TSSs) for each gene and transcript. The user can specify the size of the sequence relative 

100 to the TSS, with the default set at –1500 bases upstream to +500 bases downstream of the TSS. 

101 CiiiDER can be downloaded with human GRCh38 and mouse GRCm38 genomes and GLM 

102 files. For alternative genomes, the user will need to provide the appropriate genome and an 

103 Ensembl GTF file, from which CiiiDER can automatically generate the necessary GLM file.

104

105 Scan
106 During the Scan stage, CiiiDER uses an implementation of the MATCH algorithm [10] to 

107 predict potential TFBSs in regions of interest. This approach is compatible with PFMs in 

108 JASPAR [11] or TRANSFAC [1] format. The mapping of each TFBS is performed with a user-

109 specified deficit that determines the stringency of the scan. The deficit is the difference between 

110 the MATCH score of a TFBS and the maximum possible score, which is 1. The default deficit 

111 is 0.15, which means the scan will accept any TFBSs that have MATCH scores of 0.85 or 

112 above (the same cut-off is applied to both the core and matrix scores from the MATCH 

113 algorithm).

114

115 Enrichment
116 The Enrichment stage identifies those TFBSs that are significantly over- or under-represented 

117 in query regions compared to relevant, user-specified background regions. This analysis scans 

118 the background sequences for TFBSs using the same criteria as used for the query sequences. 

119 Over- and under-represented TFs are determined by comparing the numbers of sequences with 

120 predicted TFBSs to the number of those without, using a Fisher's exact test; alternatively, the 

121 distributions of the number of sites per sequence in the query and background sets can be 

122 compared using a Mann-Whitney U test. 
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123 For the enrichment plots, if a given transcription factor has binding sites in  out of  search 𝑛𝑆 𝑁𝑆

124 regions and  out of  background regions, then:𝑛𝐵 𝑁𝐵

125 𝐴𝑣𝑒𝑟𝑎𝑔𝑒.𝐿𝑜𝑔2.𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛.𝐵𝑜𝑢𝑛𝑑 =
1
2log2 (𝑛𝑆 + 1 2

𝑁𝑆 + 1 2) +
1
2log

2
(𝑛𝐵 + 1 2

𝑁𝐵 + 1 2)
126 𝐿𝑜𝑔2.𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 = log2 (𝑛𝑆 + 1 2

𝑁𝑆 + 1 2) ‒ log
2

(𝑛𝐵 + 1 2

𝑁𝐵 + 1 2)
127 𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒.𝑆𝑐𝑜𝑟𝑒 =‒ sign(𝐿𝑜𝑔2.𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡) × log10 (P - value)

128

129 Outputs and Visualisation
130 CiiiDER produces clear graphical displays to help interpret the results of TFBS prediction. 

131 Putative TFBSs are displayed in an interactive map (Error! Reference source not found.). 

132 By default, ten TFs are shown, but the user can choose to add or remove TFs from the image. 

133 There are also options to filter the TFs displayed according to the scan stringency or enrichment 

134 P-value, for intuitive exploration of the data.

135 Promoters or other regulatory regions can be re-arranged or removed and the colour of each 

136 TF can be customised for the production of figures. The enrichment analysis produces an 

137 additional interactive plot that displays the fold enrichment, average abundance and P-value 

138 associated with all TFs (Fig 3). The images created can be saved as publication-quality files 

139 and the binding site data and enrichment statistics can be saved as text files for subsequent 

140 analysis using additional tools.

141 The entire project can be saved for further analysis and interpretation.

142
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143 Fig 2. CiiiDER interactive site map.

144 The scan and enrichment algorithms produce a graphical display of the TFBS locations on the 

145 sequences. There are many options to edit the images, including adjusting the deficit and P-

146 value thresholds for displaying TFBSs, selecting or removing TFs to be viewed, editing the 

147 colour scheme for TFs and rearranging the order of the sequences.

148

149 Fig 3. CiiiDER enrichment results for the breast cancer metastasis dataset.

150 The data are derived from the proportion of regions bound for each TF, which is the number 

151 of bound regions divided by the total number of regions. The plot shows the enrichment (ratio 

152 of proportion bound) and average log proportion bound. Size and colour show ∓log10(P-value); 

153 it is greater than zero if the TF is over-represented and less than zero if under-represented.

154

155 Implementation
156 CiiiDER has been implemented in Java for platform independence with the GUI utilising the 

157 Swing libraries to deploy a simple, intuitive interface. The multi-threading capabilities of Java 

158 are used to take advantage of all available computer processors, significantly improving 

159 analysis speeds (S1 Fig); alternatively, CiiiDER can also be restricted to use only a certain 

160 number of processors. Enrichment of transcription factors is also displayed using interactive 

161 HTML plots generated using the Plotly JavaScript library [12].

162 CiiiDER is available for download as a JAR file with supporting files; other software 

163 dependencies do not need to be installed. Two PFM libraries are supplied with the software: 

164 the JASPAR 2018 CORE non-redundant vertebrate matrices [2] and matrices from Jolma et 

165 al., a large experimental dataset [13]. Genomes and associated GLM files are also available for 
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166 extracting promoter sequences using gene names or Ensembl IDs.

167 CiiiDER is distributed under the GNU GPLv3 licence. The program and documentation are 

168 available from www.ciiider.org and the source code is available at 

169 https://gitlab.erc.monash.edu.au/ciiid/ciiider.

170

171 Experimental methods
172 CiiiDER analyses were performed using the Ensembl 89 or Ensembl 94 annotations of the 

173 human GRCh38 and mouse GRCm38 genomes, respectively, with the 2011 version of the 

174 TRANSFAC non-redundant vertebrate database [1] or the 2018 JASPAR core non-redundant 

175 vertebrate matrices [2]. All promoter regions were defined as spanning –1500 bases to +500 

176 bases relative to the transcription start site.

177

178 ChIP-seq scan
179 Experimentally verified transcription factor binding site regions were obtained from publicly 

180 available ChIP-seq experiments: a CTCF dataset (ENCSR000DLG) from ENCODE [14] and 

181 STAT3 dataset (GSM288353 [15]) from GEO [16]. These were selected because they were in 

182 narrow peak format with peak max values, to give the highest probability of focusing on the 

183 true binding site, and because matching high-quality TRANSFAC TF models were available.

184 Sequences corresponding to 50 bases either side of the maximum signal of each ChIP-seq peak 

185 were obtained. This length was chosen to allow sufficient sequence to identify TFBSs, while 

186 minimising extraneous sequence. Backgrounds were produced by using 101 base genomic 

187 sequences 10,000 bases away from the peak, ensuring that none of the background sequences 

188 overlapped with surrounding peaks. CiiiDER scans were performed using deficits of 0.2. 
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189 TRANSFAC scans were performed with equivalent core and matrix similarity score cut-offs 

190 of 0.8. Clover analyses were performed with default values. pROC [17] was used to generate 

191 ROC curves and associated area under curve (AUC) values for each program.

192

193 Microarray enrichment analysis
194 Robust multiarray averaging (RMA)-normalised microarray data from Bidwell et al. 

195 (GSE37975) [18] were downloaded using GEOquery [19] and processed through the limma 

196 package [20] to identify differentially expressed transcripts between the primary and metastatic 

197 tumour samples, with log2 fold change > 1 or < −1 and a P-value < 0.05 (adjusted for false 

198 discovery rate using the Benjamini-Hochberg correction).

199 The query gene list consisted of significantly down-regulated genes that were defined as 

200 interferon-inducible in mouse using the Interferome v2.0 [21] (up-regulated at least two-fold 

201 by interferon treatment). The background gene list was derived from transcripts with an 

202 absolute log2 fold change < 0.05 and average expression greater than the first quartile. CiiiDER 

203 analyses were performed on the promoter sequences using deficits of 0.15 with JASPAR TF 

204 models.

205

206 Phylogenetic scan
207 The IFNβ promoter sequence was obtained from 16 species of placental mammals, using 

208 Ensembl 94 annotations. A background containing the promoter sequences of 2,463 human 

209 protein-coding genes was used for enrichment. CiiiDER analysis was performed using 

210 JASPAR TF motifs with deficits of 0.15.
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211 Results and discussion
212 Comparing CiiiDER to other software with ChIP-seq data
213 In order to demonstrate the utility of CiiiDER and that it correctly implements the MATCH 

214 algorithm, we compared CiiiDER against other downloadable TF site prediction software, 

215 TRANSFAC (which also uses the MATCH algorithm), as well as Clover. As examples, we 

216 obtained ChIP-seq data for CTCF and STAT3 and compared the performances of the programs 

217 to detect true positive TFBSs using ROC curves (Error! Reference source not found..). The 

218 Area Under Curve (AUC) was calculated for each program and CiiiDER showed the same 

219 ability to predict true positive sites as TRANSFAC, demonstrating that the CiiiDER 

220 implementation of the MATCH TFBS prediction algorithm functions as expected.

221

222 Applications of CiiiDER
223 Identification of enriched TFs in co-expressed gene sets
224 Transcriptomic experiments such as microarray and RNA-sequencing are an excellent source 

225 of co-regulated genes for CiiiDER analyses. In order to perform an enrichment analysis for a 

226 gene set of interest, it is important to choose an appropriate background. Comparing an 

227 experimentally derived, co-expressed gene list to a genome-wide background may lead to the 

228 enrichment of some TFs that are not specifically related to the experiment. For example, if the 

229 query were promoters of genes showing a significant change in expression following a 

230 particular treatment, then an appropriate background might be promoters of genes that were 

231 expressed in the appropriate cell or tissue type, but showed no significant response to the 

232 stimulation.

233 If the experiment were comparing two cell types, the query could be genes expressed highly in 

234 one cell type and the background would then be genes expressed highly in the other. Over-
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235 represented TFs would be predicted to be important in regulating transcription in the first cell 

236 type, whereas under-represented TFs could be important in transcriptional regulation in the 

237 second cell type.

238 The ability for CiiiDER to predict key regulatory TFs was demonstrated by reanalysing a 

239 published study of the regulation of the immune system in breast cancer [18]. Bidwell et al. 

240 compared the gene expression in primary and metastatic tumour cells in a mouse model of 

241 spontaneous bone metastasis. A set of approximately 3,000 genes were down-regulated in the 

242 metastasised cells relative to the primary tumour, 540 of which were determined to be 

243 interferon-regulated genes (IRGs) from the Interferome v1.0 database [22]. In that study, 

244 Clover was used to show that these genes were enriched for Irf7 binding sites. The role of Irf7 

245 was confirmed by showing an increase in interferon signalling and a reduction of tumour 

246 metastases following restoration of Irf7 expression in the tumour cells in the bone metastasis 

247 model.

248 We reanalysed the normalised expression data from this experiment to create a list of IRGs 

249 down-regulated in metastases using the updated Interferome v2.0 [21]. A CiiiDER enrichment 

250 analysis was performed on the promoters of these IRGs using a background gene set of 

251 expressed, unchanged genes (Fig 3). This showed that CiiiDER was able to identify Irf7 as a 

252 key TF, potentially regulating the expression of immune system genes within the breast cancer 

253 tumour (P = 3.46E-05), in agreement with the published prediction and experimental 

254 validation.

255 In this example, many other IRF-family TFs were also significantly over-represented (e.g. 

256 IRF8, P = 1.76E-07). It is often difficult to accurately distinguish between TFBSs of TFs 

257 belonging to a family, since their binding site preferences can be very similar. In this case, 

258 cross-referencing with the published expression data revealed that Irf7 was the most 
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259 significantly suppressed IRF-family TF in metastases, which added supporting evidence to its 

260 role.

261 Identifying phylogenetically conserved TFBSs 
262 Since gene orthologues often retain similar functions throughout evolution and maintain a 

263 similar method of regulation [23], CiiiDER could potentially be used to examine phylogenetic 

264 conservation, through prediction of enriched TFs, and by creating visualisations to help 

265 distinguish patterns in TFBSs. To test the capacity of CiiiDER to identify evolutionary 

266 conserved regulatory elements, we selected the interferon β (IFNβ) promoter, the 

267 transcriptional regulation of which has been very well characterised [24]: in brief, IRF-family 

268 TFs, NF-κB and AP-1 (which is comprised of ATF2 and JUN) together allow remodelling of 

269 the local chromatin structure to promote gene transcription.

270 Initially, the scan method was used to identify TFBSs in the IFNβ promoters from placental 

271 mammal species detailed in Fig 4. This identified a great number of potential TFBSs for 

272 hundreds of TFs (see Fig 2), many of which are likely to be false positives, which makes it 

273 difficult to identify likely candidate transcriptional regulators. An enrichment analysis was then 

274 performed to compare the TFBSs in the IFNβ promoters against a background of human protein 

275 coding genes. The top ten over-represented TFs that occurred in at least half of the promoters 

276 were selected for display (Fig 4). Spatially conserved TFBSs are immediately apparent, 

277 particularly those in a cluster within 200 bases of the TSSs. This includes TFBSs for the best 

278 characterised IFNβ regulators—NF-κB components RELA and REL (P = 2.38E-19 and 1.10E-

279 10) and IRF-family TFs IRF1 and IRF2 (P = 9.54E-14 and 4.46E-10). These are the most 

280 significant TFs that are predicted in all promoters, whereas other top significant TFs do not 

281 show the same consistent pattern.

282 The combination of enrichment analysis and effective visualisation can allow rapid 
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283 identification of TFBSs that are phylogenetically and spatially conserved. This gives greater 

284 support when choosing candidate TFs that are most likely to be involved in regulatory 

285 elements.

286

287 Fig 4. Phylogenetic conservation of TF binding sites in the IFNβ promoter.

288 The results of the enrichment algorithm, displaying the ten most significantly enriched TFs 

289 present in at least half of the promoters.

290

291 Further analyses
292 CiiiDER can also be used to search for TFBSs associated with regions of the genome marked 

293 with epigenetic modifications obtained from ChIP-seq data or open chromatin regions derived 

294 from ATAC-seq data. For example, we have published using CiiiDER to examine 

295 transcriptional enhancers (marked by histone H3 lysine 4 mono-, di- and tri-methylation) in 

296 effector and memory T-cells, compared to those common between effector, memory and naïve 

297 T-cells, to show an enrichment of BATF, JUN and FOS motifs, among others [25].

298 The power of CiiiDER analyses can be increased by linking the results to other data. As with 

299 the breast cancer example, it is worth considering all members of a TF family when choosing 

300 TFs for further validation. TFBS enrichment results may be assessed in the context of gene 

301 expression data to determine which TFs are detectable or have altered expression levels in the 

302 experimental system of interest.

303
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304 Conclusion
305 CiiiDER is an intuitive new tool for analysing TFBSs in regulatory regions of interest. It can 

306 efficiently scan sequences for potential TFBSs and identify TFBSs that are statistically under- 

307 or over- represented. It is user-friendly and produces quality visual outputs to assist researchers 

308 to uncover signalling pathways and their controlling TFs in a wide variety of biological 

309 contexts. The program, user manual and example data are available at www.ciiider.org.

310
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413 Supporting information captions
414 S1 Fig. CiiiDER analysis time.

415 Example plot of analysis time and CPU usage of CiiiDER when performing site identification 

416 and enrichment using the Irf7 breast cancer gene set. Gene sets were loaded into the GUI and 

417 promoters were obtained (A), TFBSs were predicted across the query promoters (B) and 

418 collated (C), background sites were predicted (D), the enrichment calculation was performed 

419 (E) and the final graphical outputs were created (F). The site prediction steps take advantage 

420 of multiple computer processors. The maximum memory usage was 4.53 GB. Measurements 

421 were made on an iMac with four i7 4.0 GHz processors and 32 GB RAM.

422

423 S2 Fig. CiiiDER scan algorithm.

424 The accuracy of CiiiDER was compared with Clover and TRANSFAC software using ROC 

425 curves for (A) CTCF and (B) STAT3. The curves represent the ratio of true binding sites 

426 predicted against the number of false binding sites predicted. The locations of true binding sites 

427 have been validated previously using ChIP-seq experiments. Note that, due to almost complete 

428 overlap with the TRANSFAC curves, the CiiiDER curves for both CTCF and STAT3 were 

429 shifted down by -0.01.
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