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Abstract

Microbial communities are ubiquitous and often influence macroscopic properties of the

ecosystems they inhabit. However, deciphering the functional relationship between

specific microbes and ecosystem properties is an ongoing challenge owing to the

complexity of the communities. This challenge can be addressed, in part, by integrating

the advances in DNA sequencing technology with computational approaches like

machine learning. Although machine learning techniques have been applied to

microbiome data, use of these techniques remains rare, and user-friendly platforms to

implement such techniques are not widely available. We developed a tool that

implements neural network and random forest models to perform regression and feature

selection tasks on microbiome data. In this study, we applied the tool to analyze soil

microbiome (16S rRNA gene profiles) and dissolved organic carbon (DOC) data from a

45-day plant litter decomposition experiment. The microbiome data includes 1709 total

bacterial operational taxonomic units (OTU) from 300+ microcosms. Regression
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analysis of predicted and actual DOC for a held-out test set of 51 samples yield

Pearson’s correlation coefficients of .636 and .676 for neural network and random forest

approaches, respectively. Important taxa identified by the machine learning techniques

are compared to results from a standard tool (indicator species analysis) widely used by

microbial ecologists. Of 1709 bacterial taxa, indicator species analysis identified 285

taxa as significant determinants of DOC concentration. Of the top 285 ranked features

determined by machine learning methods, a subset of 86 taxa are common to all feature

selection techniques. Using this subset of features, prediction results for random

permutations of the data set are at least equally accurate compared to predictions

determined using the entire feature set. Our results suggest that integration of multiple

methods can aid identification of a robust subset of taxa within complex communities

that may drive specific functional outcomes of interest.

Introduction 1

Microbial communities mediate essential functions in diverse ecosystems. While the 2

microbiome controls many interesting macroscopic properties, elucidating the 3

relationship between specific microbes and ecosystem functions remains a complex 4

problem in ecology. Recent advances in DNA sequencing technology make it easy to 5

acquire metagenomic data representing the taxonomic profile of bacteria and fungi in 6

microbial communities. This opens the door to deciphering which components of the 7

microbiome can drive changes in macroscopic properties. However, analysis of 8

metagenomic microbial data poses several difficulties. The data are typically high 9

dimensional (many taxa) with a small number of samples collected in each study. 10

Additionally, sequencing results are noisy and yield sparse data sets [15]. 11

Machine learning techniques provide a means to analyze high-dimensional 12

data [1, 27] and could be used to elucidate relationships between microbial taxa (or 13

other metagenomic features such as gene families or metabolic pathways) and 14

environmental attributes. The random forest model is reportedly one of the most 15

effective machine learning models for analyzing microbiome data; high classification 16

accuracy has been demonstrated with a variety of 16S rRNA data sets for identification 17

of body habitat, host, and disease states [25]. In another study, artificial neural 18
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networks were used to map complex relationships between microbial communities and 19

environmental variables, enabling predictions of the abundance of microbial taxa across 20

the English Channel, for example [14]. 21

While most existing machine learning software packages focus on binary 22

classification of microbial data sets [6, 19, 22], random forest and neural network models 23

can also be used to identify the subset of microbial taxa whose relative abundances best 24

predict a continuous target variable [2, 18]. The combination of random forest and 25

neural network models can evaluate feature importance and reveal which microbial taxa 26

are most positively or negatively correlated with target variables. To provide helpful 27

perspective for microbial ecologists, we compare results from these machine learning 28

techniques to indicator species analysis, a commonly used tool in ecology that is 29

typically used for classification, though similar techniques have been adapted for 30

regression problems [29]. We also show how our tool can be applied to study the effect 31

of experimental sample size on model performance by evaluating prediction error over 32

increasing subsets of training data. In this study, we apply the proposed random forest 33

and neural network regression models to predict the abundance of dissolved organic 34

carbon (DOC) from plant litter decomposition, where bacterial taxa abundances are 35

treated as model features/variables. We use DOC and bacterial community data from a 36

study that examined the role of soil microbial community composition in controlling 37

carbon flow from plant litter decomposition [28]. Feature selection results determined 38

by machine learning methods are compared to indicator analyses [5, 10] in which high 39

and low DOC are used as classification category labels. 40

Materials and methods 41

Random forest and neural network regression models are examples of supervised 42

machine learning algorithms. In contrast to unsupervised machine learning algorithms, 43

these methods require a subset of the data called a training set to develop a 44

mathematical relationship between features and target variables. A feature represents a 45

model variable and the target is the variable the model predicts. For regression problems, 46

the target variable is a continuous scalar, and for classification problems, the target is a 47

discrete label. A sample is a single set of features paired with a target variable, which, 48
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in the context of the present case study, represents a bacterial community profile paired 49

with DOC. To assess model performance, predicted target variables using features from 50

a held-out set of test data are compared to known target variables. In this study, 51

prediction performance is measured using Pearson’s correlation coefficient, which 52

quantifies the linear correlation between predicted and true target variables, and for 53

whcih a value of one indicates a perfect positive linear correlation. In general, our 54

regression model assumes that targets and features are related to one another by 55

y =M(θ,x) + ε, (1)

where x ∈ RM is a vector M features, y ∈ R is the corresponding true value of the 56

target variable, M(θ,x) is some mathematical operation (or model) from RM to R, 57

θ ∈ RNθ are model parameters, and ε is the prediction error. 58

We denote the set of M features with N samples as the N ×M feature matrix 59

X ∈ RN×M , which can be mapped to a vector of N target variables y ∈ RN according 60

to 61

y =M(θ,X) + ε, (2)

where ε ∈ RN is the vector of prediction errors. While Eq. 2 describes the general 62

regression problem common to most machine learning algorithms, the actual form of 63

M(θ,X) varies according to the specific approach. We introduce a few of these 64

machine learning approaches as follows. 65

Neural network regression model 66

A feed-forward neural network regression model applies a series of parameterized 67

activation functions organized in layers to map features in a sample to a continuous 68

target variable. Each layer of a feed-forward neural network is composed of a set of 69

nodes which apply a nonlinear transformation to the sum of the product of inputs from 70

the previous layer and weight parameters plus an additional bias parameter. A 71

stochastic gradient descent algorithm minimizes the cost function by adjusting model 72

parameters (weights and bias values for each layer) via a process called error 73
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back-propagation, which updates model parameters in each layer based on the gradient 74

of the cost function with respect to model parameters. The rate at which model 75

parameters change during training can be adjusted by a learning rate hyper-parameter, 76

and the cost function can be adjusted with a regularization hyper-parameter, which 77

ensures that model parameters do not reach disproportionate values [1]. We built a 78

feed-forward neural network regression model using Theano [26] and Python 3.7 with 79

a randomized search algorithm for determining model hyper-parameters implemented 80

with Scikit-learn [20]. As a default, the model includes a single hidden layer with 15 81

nodes with sigmoid activation functions and a single output layer with a linear 82

activation function. A randomized hyper-parameter search uses the training data set to 83

find the optimum hidden layer size, learning rate, and regularization coefficient. Our 84

model applies the mean squared error between predicted and true values as a cost 85

function for use with the training and validation analyses. Training the neural network 86

model is an iterative process, where each iteration is called a training epoch. In each 87

training epoch, the total set of training data is divided and trained over randomly 88

chosen mini-batches. Once the cost function applied to the validation data set fails to 89

decrease over a default of ten training epochs, training stops. For this study, the model 90

was trained with 257 training samples and tested with a held-out set of test data with 91

51 samples. To assess the correlation between true DOC and predicted DOC for each 92

sample, Pearson’s correlation coefficient was computed for training and testing results. 93

Neural network feature selection 94

Methods for evaluating feature importance using a neural network model often focus on 95

weights assigned to individual features after training of the model [7, 16]. Our proposed 96

feature selection tool employs a similar approach, where the gradient of the model 97

output with respect to weights associated with each feature is used to determine the 98

feature importance vector. Each element of the feature importance vector corresponds 99

to an individual feature, where the magnitude of each element is indicative of feature 100

importance for predicting the target variable, and the sign indicates whether the feature 101

has a positive or negative impact on the predicted variable. 102

For a feed-forward neural network model with M features as inputs that connect to 103
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J nodes in the first hidden layer, we can denote the M × J matrix of weights connecting 104

each feature to each node as θIn ∈ RM×J , where θIn is a subset of the full parameter 105

set θ. The gradient of the model output with respect to θIn provides the M × J feature 106

importance matrix, F (θ,x) ∈ RM×J , which we define as 107

Fmj(θ,x) =
∂

∂θInmj

M(θ,x). (3)

Marginalizing the feature importance matrix over all nodes in the first hidden layer 108

produces a M -dimensional vector, which we will call the feature importance vector 109

f(θ,x), whose elements are 110

fm(θ,x) =
1

J

J∑
j=1

Fmj(θ,x). (4)

After training the model, we determine the sensitivity of the model to each feature, 111

denoted as the M -dimensional vector s ∈ RM , by calculating the average value of the 112

feature importance vector over the set of training data with K samples 113

sm =< fm >=
1

K

K∑
k=1

fm(θ,xk). (5)

To gain confidence in the importance assigned to features, feature importance is 114

determined using a bootstrap method, which randomly samples 80% of the training 115

data set over a default of 50 iterations. The average feature ranking values determined 116

over all iterations represents the most confident set of ranked features. 117

Random forest regression model 118

Decision tree based machine learning methods map features to target variables by 119

splitting the set of possible target variables based on the values of individual 120

features [1, 4]. An internal node is a point at which the value of a feature determines a 121

split in the set of possible target variables, and the nodes that follow an internal node 122

are called leaf nodes [1]. The random forest method constructs a set of decision trees 123

constructed from randomly selected subsets of the feature space and computes the 124
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model output by averaging the predictions from individual decision trees [11]. Using the 125

random forest regressor from Scikit-learn [20], a random forest regression model is 126

instantiated with a mean squared cost function, two samples required to split an internal 127

node, and one sample required to be at a leaf node as the default. Hyper-parameters for 128

the model include the number of samples required to split an internal node, the number 129

of samples required to be at a leaf node, and the number of features to consider in each 130

decision tree. These hyper-parameters can be optimized with the training set using 131

Scikit-learn’s randomized search algorithm. During training, the random forest 132

regressor model fits an ensemble of 1000 decision trees trained on randomly selected 133

sub-samples of the data set. All random forest results from this study use identical 134

training and testing data to allow direct comparison to the neural network model. 135

Random forest feature selection 136

The random forest regressor made available by Scikit-learn [20] returns an array of 137

feature importance values of length equal to the array of input features. Decision tree 138

algorithms, such as random forest, assess feature importance by examining how well a 139

feature (often referred to as variable in literature [4]) can split the potential output 140

labels. In other words, a highly significant feature provides the greatest reduction of 141

potential labels for a given sample. Additionally, feature importance is determined as 142

part of the boot-strap method used for assembling random decision trees, where feature 143

importance is greater for variables that result in greater prediction performance when 144

included in the decision trees [4]. To gain confidence in the rank assigned to features, 145

feature ranking is determined using a bootstrap method that randomly samples 80% of 146

the training data set over a default of 50 iterations. The highest average feature ranking 147

values determined over all iterations represent the most confident ranked features. 148

Indicator species analysis for feature selection 149

Indicator species analysis [5, 10] is used for comparison with the feature selection results 150

determined by the above machine learning methods. Indicator species (hereafter we use 151

‘taxa’, not ‘species’, for accuracy) are defined as the features that are most indicative of 152

changes in DOC across different samples. To determine indicator taxa, a correlation 153
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value is calculated for each feature as the product of specificity and fidelity for a 154

particular taxon in association with either high or low DOC samples [10]. Specificity 155

measures how much a taxon associates with a single label (e.g., high or low DOC), and 156

fidelity measures how frequently a taxon associates with that label. Specificity would be 157

maximized if a taxon were only present in sites with a particular label, and fidelity 158

would be maximized if a taxon were present at all sites associated with a particular 159

label. A confidence score is assigned to each feature using a boot-strap algorithm that 160

compares the correlation value for each feature determined using correct labels with 161

correlations determined using randomly assigned labels. If the correlation statistic 162

between features and site labels determined using random labels is not consistently 163

lower than the correlation statistic using correct labels, then the confidence score for 164

that feature-site correlation is low. Only taxa with at least a 95% confidence (features 165

with correlation values greater than 95% of correlations determined with random labels) 166

are considered in this study. Indicator taxa analysis was implemented in Python 3.7 167

with the methods described in Dufrene and Legendre, 1997 [10]. 168

Data acquisition and data pre-processing 169

Microbiome data (16S rRNA gene profiles) were obtained from a prior study of pine 170

needle litter decomposition in laboratory microcosms [28] (supporting information S1 171

Dataset). In brief, the microbial community in each of 206 soil samples was suspended 172

in water, inoculated into three replicate microcosms containing sterile sand and pine 173

litter, and incubated 45 days at 25C. At 45 days, the amount of DOC in the microcosms 174

was measured, DNA was extracted from a subset of microcosms, and 16S rRNA gene 175

amplicons were sequenced on an Illumina MiSeq. Because the composition of bacterial 176

communities among replicate microcosms diverged over the 45-day incubation period, 177

the replicates were treated as independent samples. For machine learning analysis, 178

however, the training and testing data were prohibited from sharing replicate samples to 179

ensure independence between training and testing data sets (supporting information S2 180

Dataset, S3 Dataset). The bacterial community profiles from 308 samples were rarefied 181

to 1023 sequences, which yielded a matrix with a total of 1709 bacterial taxa. By 182

default, our tool standardizes features such that each feature is zero mean with unit 183
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variance over the training data set. The test data is similarly scaled but only using the 184

sample statistics determined from the training data set. 185

Results 186

Our feed forward neural network regression model was trained with 257 community 187

samples to predict level of DOC (Fig 1A). Our model was tested with a held out set of 188

51 test samples which yielded a Pearson’s correlation coefficient of .636 between true 189

and predicted DOC (Fig 1B) and a mean squared error of .565. The random forest 190

regression model was trained and tested with identical sets of data used with the neural 191

network model. Test results using the random forest regression model yielded a 192

Pearson’s correlation coefficient of .676 (Fig 1D) and a mean squared error of .516. A 193

scatter plot of the prediction error using the neural network model versus the prediction 194

error with identical test samples using the the random forest model are positively 195

correlated with a Pearson’s correlation coefficient of 0.781 (Fig 1E) . 196

Fig 1. DOC prediction with neural network and random forest regression
models. (A) Scatter plot of fitted DOC versus true DOC from training data samples
(n=257) using neural network model. (B) Scatter plot of predicted DOC versus true
DOC from test data samples (n=51) using neural network model. (C-D) Same as above
but using random forest model. Training and testing data are identical for both
methods. (E) A scatter plot of the prediction errors using the neural network model
versus the prediction errors with identical test samples using the random forest model.

To illustrate the degree of agreement of feature importance for predicting DOC 197

between random forest, neural network, and indicator species approaches, Fig 2A shows 198

a Venn diagram comparing feature selections. Feature selection was performed on the 199

same training set used to produce Fig 1. Out of a feature set with 1709 taxa, 285 taxa 200

were significant indicator taxa. Of the top 285 ranked features from the machine 201

learning methods, 112 bacterial taxa were shared between random forest and neural 202

network feature selections, and of these, 86 bacterial taxa overlapped with the set of 203

indicator taxa. To further investigate agreement of feature importance between 204

methods, Fig 2B shows how the shared set of ranked features determined by the neural 205

network, random forest, and indicator taxa analysis varies as a function of feature rank. 206

To investigate the significance of our feature selection results, we compared the number 207

of features in the consensus set to the number of shared features that would occur if 208
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features were selected from three randomly organized sets. We applied a Monte Carlo 209

approach that sampled features from three randomly organized sets of 1709 features and 210

counted the number of features that were commonly selected in a pair of sets or within 211

the intersection of all three sets. We plotted the mean and 99% confidence interval from 212

1,000 simulations as a function of the number of sampled features (a separate plot with 213

just the Monte Carlo simulation curve is included in the supporting information S4 214

Figure). The number of features in the consensus set is consistently greater than the 215

number of shared features expected from random sampling, suggesting that each feature 216

selection approach exploited similar, non-random trends in the data. Figs 2A,B show 217

that feature importance determined by the neural network has greater agreement with 218

indicator taxa compared to feature importance determined by random forest. 219

Indicator species analysis not only provides a feature importance metric, but also 220

identifies which features are correlated with different labels, such as high DOC samples 221

or low DOC samples. Feature importance determined by the neural network can be 222

interpreted in the same way, where positive feature importance values imply a direct 223

relationship with DOC, and negative values imply an inverse relationship. All 180 224

features shared by the neural network and the indicator species methods exhibit the 225

same feature-label correlations. Fig 2C shows how prediction performance of the neural 226

network and random forest models change as the number of features included in the 227

model increases from a minimum of 10 features to a maximum of 86 features. The order 228

in which features were included in each subsequent prediction corresponds to the rank 229

determined by each feature selection method, such that the highest ranked features were 230

included first. Both models reach close to peak prediction performance with only 86 231

features. 232

Fig 2. Feature ranking determined by neural network, random forest, and
indicator species analysis. (A) Venn diagram demonstrates agreement of 86
bacterial taxa out of the top 285 ranked taxa from machine learning methods. (B) Plots
of the number of shared features between NN and IS (blue), RF and IS (orange), RF and
NN (green), and all methods (red) as a function feature rank over 285 features. Monte
Carlo simulation of the number of shared features expected by randomly sampling from
3 sets of 1709 features is plotted with a 99% confidence interval (black line, purple
confidence inteval). The black dotted line indicates perfect agreement between the three
sets of ranked features. (C) Plot of prediction performance on test data as measured by
Pearson’s correlation coefficient versus number of features included in machine learning
models. The data are binned such that each point represents the average prediction over
5 trials, where each subsequent trial includes an additional feature.

April 2, 2019 10/21

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/599704doi: bioRxiv preprint 

https://doi.org/10.1101/599704


One might expect that the most informative features for DOC prediction would be 233

those with highest or lowest abundances within communities. To examine this 234

expectation, Fig 3A shows a histogram of bacterial abundance of the consensus set for 235

selected features compared to the histogram of bacterial abundance for the entire data 236

set. This shows that feature selection techniques are not biased towards selection of 237

taxa with low or high abundance, but rather the consensus set of taxa selected by 238

random forest, neural network, and indicator species analysis had abundance levels 239

mostly in the moderate range. Abundance values in the figure were determined for each 240

taxon by taking the average number of reads over the entire set of samples. Fig 3B 241

shows the distribution of prevalence of bacterial species of the consensus set of selected 242

features, where prevalence was calculated as the frequency in which taxa were present in 243

each sample. The distribution of prevalence of selected taxa shows that prevalence was 244

not a crucial factor in selecting features for prediction of DOC. 245

Fig 3. Distributions of bacterial abundance and prevalence of all taxa and
the consensus set of taxa selected by all methods. (A) Histogram of abundance
of taxa in the consensus set plotted over a histogram of abundance of all taxa in the
data set. Abundance was calculated as the average number of taxa over the entire
sample set. (B) Histogram of prevalence of taxa in the consensus set plotted over a
histogram of prevalence of all taxa in the data set. Prevalence was calculated based on
how frequently taxa were present in each sample.

To test generality of the above results, we determined the Pearson’s correlation 246

coefficient for testing data under 50 randomly generated permutations of training and 247

testing data with roughly 260 training samples and 50 test samples (exact sample sizes 248

varied between 254 and 262 samples for training data and between 46 and 54 samples 249

for test data due to variations in the number of replicates per experimental condition). 250

Fig 4 shows histograms of test performance of the neural network model and the 251

random forest model using the full feature set (Fig 4A,C) and the reduced feature set 252

(Fig 4B,D). While the neural network model performed better using the reduced set of 253

86 features (two tailed t-test, P = .047), the distribution of prediction errors using the 254

random forest model with the reduced feature set was not significantly different (two 255

tailed t-test, P = .98). The neural network model produced greater prediction accuracy 256

using the reduced feature set on 70% of test samples, and the random forest model 257

yielded greater prediction accuracy on 48% of test samples. The random forest model 258
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significantly outperformed the neural network model with the full feature set (two tailed 259

t-test, P < 0.001) but only marginally so with the reduced feature set (two tailed t-test, 260

P = 0.11). 261

Fig 4. Distribution of prediction errors for 50 different permutations of
training and testing data. (A) Distribution of Pearson’s correlation coefficients on
test data performance using the neural network model without feature reduction. Mean
R value = .627, standard deviation = .097. (B) Distribution of Pearson’s correlation
coefficients on test data performance using the neural network model with the reduced
feature set. Mean R value = .668, standard deviation = .103. (C) Distribution of
Pearson’s correlation coefficients on test data performance using the random forest
model without feature reduction. Mean R value = .699, standard deviation = .100. (D)
Distribution of Pearson’s correlation coefficients on test data performance using the
random forest model with the reduced feature set. Mean R value = .700, standard
deviation = .095. For these permutations, feature reduction improved neural network
prediction performance (two tailed t-test, P = 0.047), and random forest outperformed
neural network with the full feature set (two tailed t-test, P < 0.001) and with the
reduced feature set (two tailed t-test, P = 0.11).

To investigate how sample size affects model performance, prediction performance of 262

the neural network and random forest regression models was measured with an 263

increasing number of samples included in the training set (Fig 5). The random forest 264

model consistently outperformed the neural network over the range of training data 265

sample sizes, with more accurate predictions and less variability in prediction 266

performance. Model performance of either method reaches near optimal levels after 267

inclusion of only half of the training set or 150 training samples. Although variability in 268

prediction performance continued to decrease as the fraction of training data increased, 269

these results suggest that future experiments could be conducted with lower sample 270

sizes without sacrificing model performance. 271

Fig 5. Sensitivity analysis of model prediction performance as the fraction
of the total training data set (n=257) increases. Performance was measured
using the average Pearson’s correlation coefficient after training over 10 random
samplings of a fraction of the data set, with error bars representing 1 standard deviation
from the mean. (A) Prediction performance on fixed testing data by the neural network
model. (B) Prediction performance on fixed testing data by the random forest model.

Discussion 272

While random forest outperformed the neural network for prediction tasks in this study, 273

both methods can be used to predict DOC entirely from microbial community profiles 274
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and to provide measures of feature importance. The random forest method is relatively 275

easy to implement, and performs well with little adjustment to model hyper-parameters. 276

Sensitivity analyses with the data set in this study (Fig 5) shows that the random forest 277

model is less sensitive to sample size of the training data set, which makes random 278

forest an attractive machine learning model for analysis of microbiome data. A benefit 279

of the neural network model is that it provides more easily interpreted results for 280

feature selection, which include the direction in which taxa affect environmental 281

variables. The site correlations determined by the neural network and indicator taxa 282

analysis show perfect agreement in sign among the entire set of taxa. Furthermore, 283

because ground truth for which taxa drive changes in environmental variables is not 284

known, the joint set of selected features from random forest, neural network, and 285

indicator taxa approaches provides greater confidence than the set from one method 286

alone (feature selection results are included in the supporting information S5 Dataset). 287

Machine learning approaches for analyzing microbiome data have proven successful 288

in applications such as forensics, medicine, and agroecology [8, 12,23]. Recently, 289

machine learning algorithms such as random forest and K-means clustering have 290

successfully determined the postmortem interval (PMI) using postmortem skin 291

microbiome [12]. In medicine, machine learning models such as random forest have been 292

used for identification of gut microbiomes associated with irritable bowel syndrome in 293

pediatric patients [23]. In another study focusing on soil microbiomes, a random forest 294

model was applied to predict crop yields from soil microbiome composition [8]. With 295

increasing access to machine learning software and high-dimensional microbiome data, 296

machine learning is emerging as a powerful tool for understanding how microbial 297

communities affect their environment. 298

Although there are several examples of platforms that facilitate use of machine 299

learning techniques with microbial community data, our platform provides several 300

unique options that make it more accessible and useful for microbial ecologists. 301

QIIME [3] includes the “sample classifier” plugin [2], which provides access to a host of 302

Scikit-learn [20] implemented machine learning classification and regression models 303

for use with microbiome data. Although the sample classifier QIIME plugin includes 304

hyper-parameter optimization and feature selection of important bacterial taxa, it does 305

not provide insight into directional relationships between bacterial taxa and target 306
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variables. Moreover, the sample classifier plugin is not set up to provide combined 307

feature selection results determined from different machine learning methods, and 308

feature selection is not determined using different permutations of the training data. 309

MetAML [19] is another available software for implementing machine learning methods 310

with microbiome data, but the methods are implemented exclusively for classification 311

problems. For implementation of a neural network regression model with microbial 312

abundance data, Neuroet [18] provides a simple GUI that can be used to train and 313

test a single-layer, feed-forward neural network. Neuroet includes a procedure to 314

optimize neural network architecture and identify important features for predicting 315

model output, though optimization of hyper-parameters such as learning rate and the 316

regularization coefficient is not available. While these platforms achieve a similar goal of 317

applying machine learning techniques to microbiome data, no existing software packages 318

include both neural network and random forest models and most do not provide insight 319

into correlations between features and target variables. To provide the most confident 320

set of important taxa, our tool produces the joint set of selected features from indicator 321

species analysis, random forest, and neural network approaches. To aid in experimental 322

design, our tool also provides a built-in tool for analyzing model sensitivity to 323

experiment sample sizes. 324

Machine learning models offer the ability to determine hypothetical microbial 325

communities that could promote increased levels of DOC. Recent studies have shown 326

that microbial communities play an important role in carbon cycling and can potentially 327

be manipulated to increase the abundance of DOC for transport and sequestration in 328

deeper soil layers [9, 13,17,21,24]. Enhancing carbon sequestration in soil is a strategy 329

to combat climate change, as sequestration has the potential to offset fossil-fuel 330

emissions by 0.4 to 1.3 gigatons (5 to 15 percent) of atmospheric carbon per year [13]. 331

Under the assumption that a trained machine learning model has learned a general 332

relationship between microbial abundance and DOC, we can use the model to determine 333

a hypothetical microbial community that could potentially maximize DOC. In 334

consideration of this task, the random forest and neural network models are markedly 335

different. Although the random forest model has been at least as good as the neural 336

network model to predict DOC levels that lie within the range of the previous training 337

data, the random forest model is restricted by its formulation to a finite set of values 338
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corresponding to leaf nodes of decision trees. As a result, the random forest model is 339

incapable of predicting values outside of the range presented in the training data. 340

Conversely, the neural network model could in principle extrapolate to make predictions 341

outside of the range present in the training data, which would enable specification of 342

hypothetical microbial communities predicted to increase DOC beyond empirically 343

observed levels. Furthermore, because the feature importance vector, s, produced by the 344

neural network model is calculated as the gradient of the model output with respect to 345

weights applied to features, s provides a potential direction in which features could be 346

adjusted to increase levels of soluble carbon. 347

Fig 6A shows how the trained neural network model predicts responses to changes in 348

microbial communities. In this simulation, communities (a) and (b) were initialized as 349

the specific communities xa and xb that had the highest and lowest DOC and then 350

adjusted in the direction defined by the feature importance vector according to 351

xnew = x + αs, where α denotes the magnitude of the perturbation made to the 352

community. The dashed trajectories represent DOC predictions made from simulated 353

communities also initialized at the highest and lowest DOC, but with perturbations in 354

random directions generated from a zero mean multivariate Gaussian distribution scaled 355

by magnitude α. As the microbial community profiles were adjusted in the direction of 356

the gradient determined by the neural network, the level of predicted DOC increased 357

(see communities (a) and (b) in Fig 6A). When the same initial communities were 358

adjusted randomly, predicted DOC never exceeded DOC predictions determined from 359

communities xa and xb (see dashed blue and orange lines stemming from the same 360

initial values as in communities xa and xb). For the neural network model, community 361

(a) results in predicted DOC levels that exceed the greatest DOC prediction from the 362

training set, thus generating testable hypotheses to supplement communities to increase 363

dissolved organic carbon. When the same simulated microbial communities were 364

analyzed on a trained random forest model (Fig 6B), the model predicted a similar 365

trend towards increasing DOC for community (b). Due to the nature of the algorithm, 366

however, the level of DOC predicted by the random forest model could never exceed 367

that of community (a). Simulation results using either model suggest that simulated 368

communities informed by the trained neural network model are not random and 369

produce theoretical microbiomes that could promote greater levels of carbon in soil, 370
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though future experiments are needed to test these designs and verify these predictions. 371

Fig 6. DOC predictions of trained machine learning models with
synthesized microbial communities. Simulated communities (a) and (b) were
specified by the training data communities with the highest and lowest DOC values,
respectively. Each was then adjusted in the direction of the average gradient of
maximum DOC increase determined by the neural network model, and each
perturbation was scaled by magnitude α. Dashed lines stemming from the initial values
of communities (a) and (b) represent DOC predictions from communities adjusted by a
random vector with similar magnitude. (A) DOC prediction from hypothetical bacterial
communities made by the neural network. (B) DOC prediction made by the random
forest model with identical communities used in panel A.

Machine learning methods presented in this paper are intended to be easily applied 372

to any data set that relates microbial communities to a scalar variable. To make this 373

readily accessible, we have implemented all methods as a user-friendly platform 374

available at https://github.com/MunskyGroup/Microbiome. For users without 375

substantial knowledge of machine learning techniques, our tool enables application of 376

machine learning regression models with optimized model parameters in a few lines of 377

code. Tutorials for installing dependencies and using our machine learning tool can also 378

be found on the GitHub repository. In this study, we applied machine learning 379

approaches to elucidate the relationship between bacterial communities and carbon flow 380

from plant litter decomposition by developing regression models to predict dissolved 381

organic carbon (DOC) concentrations. For the dataset we analyzed from [28], a strong 382

relationship exists between bacterial community composition and DOC abundance. 383

Moreover, we found a consistent set of bacterial taxa identified by multiple methods – 384

in this case neural network, random forest, and indicator species approaches. 385

With our platform, a table of feature selection results from random forest, neural 386

network, and indicator species analysis is easily produced with a built-in feature 387

selection function. Model sensitivity to sample sizes is also easily visualized using a 388

built-in sensitivity analysis that plots prediction performance on testing data as the size 389

of the training data set increases. The combination of machine learning tools and 390

indicator species analysis reduced the feature set of 1709 taxa to 86 taxa, which is a 391

critical step towards elucidating mechanistic relationships between microbial 392

communities and environmental factors. Sensitivity analysis performed with the neural 393

network and random forest models suggests that future studies could be performed with 394

smaller sets of samples. Feature importance determined by the neural network could 395
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direct future studies by proposing microbial communities that enhance a functional 396

outcome of interest, such as increased carbon flow into soil. In this context, the proposed 397

machine learning tools provide a framework for designing experiments to further 398

investigate how microbial communities function together to affect their environment. 399
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