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Abstract

Genome-wide association studies (GWAS) have found hundreds of single nucleotide poly-
morphisms (SNPs) associated with increased risk of cancer. However, the amount of her-
itable risk explained by these variants is limited, thus leaving most of cancer heritability
unexplained.

Recent studies have shown that genomic regions associated with specific biological
functions explain a large proportion of the heritability of many traits. Since cancer is mostly
triggered by aberrant genes function, we hypothesised that SNPs located in protein-coding
genes could explain a significant proportion of cancer heritability.

To perform this analysis, we developed a new method, called Bayesian Gene HERitabil-
ity Analysis (BAGHERA), to estimate the heritability explained by all the genotyped SNPs
and by those located in protein coding genes directly from GWAS summary statistics.

By applying BAGHERA to the 38 cancers reported in the UK Biobank, we identified 1, 146
genes explaining a significant amount of cancer heritability. We found these genes to be tu-
mour suppressors directly involved in the hallmark processes controlling the transformation
from normal to cancer cell; moreover, these genes also harbour somatic driver mutation for
many tumours, suggesting a two-hit model underpinning tumorigenesis.

Our study provides new evidence for a functional role of SNPs in cancer and identifies
new targets for risk assessment and patients’ stratification.

1 Introduction

Decades of research have shown that inherited genomic mutations affect the risk of individuals
of developing cancer [1, 49]. In cancer syndromes, mutations in susceptibility genes, such
as the tumour protein 53 (TP53) [30], and the BRCA1/2 DNA Repair Associated (BRCA1,
BRCA2) genes[34, 58], confer up to an 8-fold increase in cancer risk in first degree relatives
[49]. However, these inherited mutations are rare and highly penetrant and explain only a small
fraction of the relative risk for all cancers [32].
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It has been hypothesized that part of cancer risk could be apportioned to high-frequency
low-penetrant variants, such as single nucleotide polymorphism (SNPs). Genome-Wide Asso-
ciation Studies (GWAS) have been instrumental in identifying SNPs associated with increased
risk of cancer in the broader population [55], including breast [13, 52, 19], prostate [51, 14], tes-
ticular [27, 57, 29], chronic lymphocytic leukaemia [12, 46, 26], acute lymphocytic leukaemia
[53, 36] and several lymphomas [11, 15]. However, the vast majority of SNPs account only
for a limited increase in cancer risk [49, 47] and are usually filtered out by multiple hypotheses
correction procedures applied in GWAS analysis [37].

Although most SNPs have only subtle effects, there is mounting evidence suggesting that
they still contribute to the risk of developing cancer [55, 3]. Recently, we have shown that
low-penetrant germline mutations in p53 pathway genes can directly control cancer related
processes, including p53 activity and response to chemotherapies [60]. Moreover, the Pan-
Cancer Analysis of Whole Genomes (PCAWG) study found that 17% of all patients have rare
germline variants associated with cancer [7]. It is now becoming apparent that quantifying the
contribution of low-penetrance inherited mutations can improve our understanding of cancer
risk and the aetiology of the disease.

Heritability analysis provides the statistical framework to estimate the contribution of all
common SNPs to cancer risk regardless of their statistical significance [54]. The study of
heritability is now becoming a crucial step in recent cancer GWAS studies and has already
provided insights on the risk of developing many malignancies [41], including prostate [31],
cervical [9], testicular germ cell tumour [28] and breast cancer [42, 16].

However, since the functional impact of the SNPs is context-dependent [43], it is impor-
tant to quantify the amount of heritability explained by genomic regions associated with well-
characterised biological functions [17, 18, 45]. For cancer, in particular, which is mostly driven
by mutations in genes rather than regulatory regions, estimating the heritability of SNPs in
protein-coding genes could provide novel insights into the aetiology of this disease. However,
developing analytical methods for estimating heritability at the gene-level has been challenging,
and current methods allow only the estimation of heritability for large functional regions or SNP
categories, such as histone marks or eQTL [18, 45].

Here we developed a new method, called BAyesian Gene HERitability Analysis (BAGHERA),
which implements a hierarchical Bayesian model to obtain simultaneous estimates of the her-
itability explained by all genotyped SNPs (genome-wide heritability) and by those in protein
coding genes (gene-level heritability). BAGHERA is specifically designed to analyse traits with
putative low heritability, such as cancer, and to use GWAS summary statistics rather than geno-
type data; this facilitates cancer heritability analysis across different studies and cancer types.
We performed extensive simulations to assess whether BAGHERA was suitable to study can-
cer GWAS and found that our method provides robust, unbiased genome-wide heritability esti-
mates, and simultaneously identifies genes explaining a higher proportion of heritability, while
controlling the false discovery rate. Comparison with other state-of-the-art methods clearly
showed that BAGHERA provides significantly more accurate heritability estimates for diseases
with heritability lower than 10%.

We then used BAGHERA to analyse the 38 histologically different malignancies reported
in the UK Biobank cohort [6]. Here we provide new genome-wide estimates for all cancers
and a map of 1, 146 genes that have a significant contribution to the heritability of at least 1
cancer. We then showed that the vast majority of these genes are tumour suppressors and are
directly involved in the hallmark processes controlling the transformation from normal to cancer
cells. While we observed pleiotropy across cancers at the functional level, we did not observe
pleiotropy at the gene level; this result suggests that while the functional mechanisms mediating
risk are common to all cancers, the genes affecting these processes are cancer specific.

Our study provides new methods to analyse GWAS data and genetic evidence of a causal
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role for high-frequency inherited mutations in cancer.

2 Results

2.1 Simulation results

We performed extensive testing of our method on simulated data to assess i) the robustness
of genome-wide estimates for low heritability traits and ii) the false discovery rate (FDR) as-
sociated with gene-level predictions. Finally, we compared our method with state-of-the-art
approaches for genome-wide and local heritability analysis. All our datasets were calibrated to
simulate low heritability traits (h2SNP ≤ 0.5), which is a reasonable assumption for cancer. Our
analyses show that BAGHERA provides robust and unbiased genome-wide and gene-level
heritability.

2.1.1 Simulations assessing robustness of genome-wide and gene-level estimates for
low heritability traits

We generated genotype data for M = 100, 000 SNPs of N = 50, 000 subjects using haplotypes
of chromosome 1 from European populations (See Supplementary Methods). Here we studied
two different heritability effects, denoted as dense and gene-level effects; while the former de-
fines constant per-SNP heritability }2 = h2SNP /M , the latter condition the amount of explained
heritability as a function of the gene harbouring the SNP.

Our analyses shows that BAGHERA provides robust unbiased genome-wide estimates un-
der both dense (Fig. 1A) and gene-level heritability (Fig. 1B) models. Interestingly, while
extreme values of gene-level heritability might affect genome-wide estimates, we found that
BAGHERA returns robust estimates both as the median of the posterior genome-wide heritabil-
ity distribution (Fig. 1A-B, green diamond marker) and the sum of single gene-level heritability
contributions (Fig. Fig. 1A-B, red square marker).

We then assessed whether BAGHERA was able to identify heritability genes, that is genes
harbouring SNPs with a contribution to heritability higher than expected under a constant per-
SNP heritability contribution. To do that, we selected 1% of the genes on chromosome 1 (≈
13) as heritability genes and computed Receiver Operator Characteristic (ROC) and Precision
Recall (PR) curves at varying levels of genome-wide heritability. Here we found that BAGHERA
correctly identified heritability genes (Fig. 1C), although precision and recall were significantly
higher for higher genome-wide heritability levels.

However, our simulated datasets have two limitations. First, they take into account M ≈
100, 000 SNPs from a single chromosome, whereas more than 1M are routinely genotyped in
modern studies. This was a necessary restriction to reduce the time and memory required to
simulate genotypes, which is a computationally taxing task. Moreover, fine tuning gene-level
heritability is not trivial with genotype data; low and high gene-level heritability enrichments
produce either undetectable signal or extremely skewed statistics, while LD patterns might
produce spurious signal difficult to control.

We addressed these limitations by developing new model for simulating summary statistics
using only linkage disequilibrium information (see Supplementary Materials). This approach
provides a tractable framework to test varying levels of heritability enrichment, reported in terms
of fold-change with respect to the genome-wide estimate, and to simulate SNPs across the
entire genome, rather than a single chromosome.

Here we found that BAGHERA correctly identifies heritability genes, even with fold-changes
in heritability as low as fc = 5 (see Fig. 1D and supplementary material), although the true
positive rate was significantly lower for low heritability levels. Nonetheless, we found BAGHERA
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to be conservative with a low false discovery rate in all scenarios; this result suggests that our
method is suitable for exploratory analyses, and that significant results are due to true biological
signal.

2.1.2 Comparison with state-of-the-art methods for genome-wide and local heritability
estimation

To the best of our knowledge BAGHERA is the first method specifically designed to analyse
low heritability traits and to provide heritability estimates at the gene level. Nonetheless, a
number of methods have been proposed to estimate genome-wide and local heritability, thus
we proceeded to compare our approach to state-of-the-art methods to perform these analyses.

For the genome-wide analysis, we compared our results with LD score regression (LDsc)
[5]. Since LDsc is routinely applied to estimate heritability for the traits in the UK Biobank
data, we directly retrieved the results for all 38 cancers. Unsurprisingly, since BAGHERA uses
a similar genome-wide estimator, we found strong consensus between the estimates of the
two methods (Supplementary Materials). Nonetheless, BAGHERA is more robust for low heri-
tability traits, since our Bayesian formulation always provides correct genome-wide heritability
estimates, whereas LDsc usually provides negative values.

For local heritability analysis, we compared our performances with the Heritability Estima-
tion from Summary Statistics (HESS) method [45], by using BAGHERA to estimate the heri-
tability of 1703 regions of the original article (See Supplementary Materials). Here we focused
on breast and prostate cancer data, since they are those with higher h2SNP estimates and would
not favour either method. We found a statistically significant correlation between the local esti-
mates of BAGHERA and HESS, with all loci reported as significant by HESS also reported by
BAGHERA. However, BAGHERA is able to identify more loci with increased heritability, while
providing more robust heritability estimates for regions with low h2SNP (see Supplementary Ma-
terials).

Taken together, we have shown that BAGHERA is more robust than existing methods on
low heritability traits and can provide useful insights into the disease risk, being able to scale
up to 15, 000 different loci across the genome.

2.2 Genome-wide estimates of cancer heritability in the UK Biobank

We used BAGHERA to analyse 38 cancers in the UK Biobank [6], a large-scale prospective
study aiming at systematically screening and phenotyping more than 500, 000 individuals, with
age ranging between 37 and 73 years.

We obtained summary statistics for N = 361, 194 individuals ([35], see Table 1), includ-
ing subjects whose tumours were histologically characterised according to the ICD10 classi-
fication, where malignant neoplasms are identified with codes ranging from C00 to C97 (see
Supplementary Material). The number of cases varies significantly across cancers, ranging
from 102 individuals, for malignant neoplasm of base of tongue and other, to 9086 individual,
for malignant neoplasms of the skin. In this cohort, cancer prevalence ranges between 0.29%
and 2.51%, with higher estimates for common malignancies in European populations, such as
breast and prostate cancer [4].

Estimating heritability from non-targeted cohorts can be challenging, due to the small preva-
lence of the disease. To test whether we had sufficient signal for each cancer, we reasoned
that if the SNP test statistic follows a χ2 distribution with 1 degree of freedom, under the null
hypothesis of no association, its expected value is E[χ2] = 1; thus, similar to other studies, we
expected to have sufficient polygenic signal for our analysis if the average χ2 was greater than
1 [18]. Here we found the vast majority of cancers to have an average χ2 ≈ 1, with only 17
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having a deviation greater than 1% from the expected value of the test statistic. We also did
not consider cancers assigned to other malignant neoplasm of the skin (C44), as these usually
comprise tumours of basal and squamous cells, which are mostly caused by sun exposure.
Thus, we restricted our analysis to 16 cancers for which we had enough power to perform our
analysis, although we also report results for the other cancers in the Supplementary Materials.

We then estimated genome-wide heritability of each cancer by computing the median of
the posterior distribution of h2SNP and transforming this value on to the liability scale, h2SNPL

,
to obtain estimates independent from prevalence and comparable across malignancies. We
found cancer heritability to be h2SNPL

= 14.7% on average, ranging from 8% for non-Hodgkin’s
lymphoma and up to 31% for testis (see Table 1) consistent with other available estimates for
this cohort (see Supplementary Materials). While comparison between cancer heritability es-
timates are usually difficult across studies, due to differences in histological classification and
genetic confounders, we found our heritability estimates on the liability scale to be consistent
with those reported for other cohorts, in particular for breast, prostate, testes and bladder [22,
41, 31, 28]. The heritability of testicular cancer (h2SNPL

= 0.3158) is the highest among all ma-
lignancies, consistent with the hypothesis that germline variants have stronger effects in early
onset cancers. However, early onset cancers are underrepresented in the UK Biobank, since
children and young adults were not enrolled in the study, and thus an accurate estimation of the
correlation between age of onset and heritability is not possible. Nonetheless, it is interesting
to note that many malignancies with onset in late adulthood, such as prostate or bladder, still
display a significant heritable component, ranging from h2SNPL

= 0.25 for brain tumours (age of
onset: 59) to h2SNPL

= 0.08 for diffuse non-Hodgkin’s lymphoma (age of onset: 60). Overall, 14
out of 16 cancers (87%) show heritability higher than 10% suggesting a consistent contribution
of SNPs to the heritable risk of cancer.

2.3 Cancer heritability genes across 16 malignancies

We identified 783 heritability genes (η > 0.99), harbouring 1, 146 protein-coding genes, across
16 cancers (Fig. 2), with 53 heritability genes per malignancy on average, ranging from 5 genes
in mesothelioma, to 271 genes for prostate (see Table 1, Figure 3A). It is worth noting that we
are here using the term heritability genes when referring to the genomic, non-overlapping, re-
gions tested by BAGHERA. Gene-level heritability across the selected 16 cancers has a long-tail
distribution (Figure 3B), with a median 16-fold increase compared to the genome-wide estimate,
ranging from 4.4-fold for the Phosphodiesterase 4D (PDE4D) gene to 276-fold for the fibroblast
growth factor receptor 2 (FGFR2) gene in breast cancer. Interestingly, 87% of heritability genes
show per-SNP heritability 10-fold higher than the genome-wide estimate. Only 3 genes have
fold changes below 5 and more than 99% of genes with fold-changes below 10 are found in the
breast and prostate datasets, which have h2SNP > 0.01. Importantly, based on our simulations
for datasets with similar heritability enrichment, our set of heritability genes are expected to
have a limited number of false positives.

Heritability genes represent less than 1% of all the genes in the genome, but they are
significantly more than those harbouring genome-wide significant SNPs (see Supplementary
Materials), consistent with cancer being polygenic. Although we identified a polygenic signal,
heritability genes account for up to 38% of all the heritable risk (breast cancer), suggesting that
a significant amount of heritability could be explained by only few loci (Figure 3A). Consistent
with our hypotheses, when we looked at the contribution of SNPs outside our protein-coding
regions, we did not observe any difference compared to the genome-wide estimate.

We then tested whether heritability genes were shared among multiple cancers to identify
any potential genomic hotspot for pan cancer heritability. We found that only 59 (≈ 8%) of
the 783 heritability genes show a significant heritability enrichment in at least 2 cancers, and
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8 (< 1%)in 3 or more (Figure 3C-D). This observation is consistent with results from tumour
sequencing studies, which have shown that pleiotropic effects are limited to few master regu-
lators, such as TP53 [2]. Nonetheless, after performing literature curation, we found evidence
for a cancer mediating role for 7 of the 11 unique protein coding genes found in at least 3 can-
cers, including 4 genes (CLPTM1L, APAF1, THADA, AGBL1) involved in apoptosis and 3 genes
(PCDH15, DLG2, POU5F1B) involved in cell division, migration and tumorigenesis [44, 21]. It
is important to note that the cisplatin resistance-related protein 9 (CLPTM1L) is the heritability
gene found in most cancers (4) and is one of the gene in the 5p15.33 locus (the other being
TERT), which has been consistently associated with 17 different cancer types [39].

Taken together, our analysis found 784, harbouring 1, 146 protein-coding genes, having a
significant contribution to the heritable risk of at least 1 cancer. We denoted these 1, 146 loci as
cancer heritability genes (CHGs).s

2.4 Cancer heritability genes are recurrently mutated in tumours

Tumour sequencing projects, including the The Cancer Genome Atlas (TCGA) program and the
Pan-Cancer Analysis of Whole Genomes (PCAWG) project, have identified a number of driver
genes, which promote tumorigenesis when acquiring a somatic mutation.

There is also increasing evidence that genes harbouring germline and somatic mutations
can mediate cancer phenotypes [38, 60, 47], thus we tested whether cancer heritability genes
are significantly enriched among known cancer driver genes. To do that, we built a curated
list of driver genes using the COSMIC Cancer Gene Census (Supplementary Table 2). We
found that 60 of the 1, 146 CHGs (≈ 5%) are significantly enriched among known cancer driver
genes (OR = 1.75, P : 1.3 × 10−4). These genes include members of the p53 pathway, such
as CDKN2A, the Tumour Protein 63 (TP63) and MDM4 regulator of p53 (MDM4), as well as
genes mutated across multiple types of cancer, including FGFR2 and the anaplastic lymphoma
kinase (Ki-1) (ALK) gene (Figure 4A and B).

However, the number of cancer driver genes is extremely variable across malignancies and
studies, thus we tested whether the enrichment of CHGs in cancer driver genes was indepen-
dent from the cancer driver gene annotation used. To do that, we collected lists of cancer driver
genes from multiple studies, including the PCAWG project ([7]), the Precision Oncology Knowl-
edge Base (OncoKB, [8]), Memorial Sloan Kettering Impact and Heme gene panels [10], and
the curated list of cancer genes by Vogelstein et al. [56]. Here we found that CHGs are signif-
icantly enriched in each cancer driver gene annotation analysed, with an enrichment ranging
from OR = 1.55 for the PCAWG annotation to 2.47 for OncoKB tumour suppressors (Supple-
mentary Table 2). Interestingly, we did not find any enrichment of CHGs in genes carrying
germline driver mutations; this is consistent with the fact that most germline driver mutations
are rare, and thus are unlikely to be genotyped in GWAS studies.

Taken together, we found 60 cancer heritability genes that are also recurrently mutated in
multiple tumours; this result suggests that SNPs in cancer heritability genes might affect the
same biological programs altered by somatic mutations in tumours.

2.5 Cancer heritability genes underpin biological processes affecting tumori-
genesis

Our gene-level heritability analysis identified 1, 146 loci explaining a significant proportion of the
heritable risk of at least 1 cancer. We then showed that cancer heritability genes are enriched
in known cancer driver genes, suggesting that loci recurrently mutated in tumours also harbour
high-frequency inherited mutations that could mediate cancer risk. Thus, we hypothesised that
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cancer heritability genes could be involved in molecular functions and biological processes
affecting tumorigenesis.

To do that, we characterized CHGs by gene ontology enrichment analysis, using the slim
gene ontology for human (Supplementary Table 1). We found a statistically significant en-
richment for 21 terms (Fisher’s exact test; False Discovery Rate, FDR < 10%, Figure 4C
and Supplementary Table 1), with an average odds ratio of 1.31 and up to 1.55 for growth.
CHGs are genes predominantly involved in biological processes driving cell morphogenesis
(OR : 1.43, P : 2.40 × 10−3), differentiation (OR : 1.20, P : 7.7 × 10−3), which includes the
mammalian target of rapamycin (mTOR) (MTOR) gene, growth (OR : 1.55, P : 2.62 × 10−4)
and cell proliferation (OR : 1.3, P : 3.4 × 10−3), which includes the Poly [ADP-ribose] poly-
merase 1 (PARP1) gene. We also observed a significant enrichment of genes associated with
cytoskeleton organization (OR : 1.40, P : 2.39 × 10−2) and anatomical structure development
(OR : 1.32, P : 6.13 × 10−3), which includes members of the SWI/SNF complex, such as the
AT-Rich Interaction Domain 2 (ARID2).

While these molecular processes drive normal cell fate, survival and proliferation, they are
recurrently hijacked by cancer cells to gain growth advantage and spread through the body
through metastases [48], a process that is considered an hallmark of cancer. We then tested
whether cancer heritability genes are associated with any other hallmark of cancer, which are
processes, common to all malignancies, controlling the transformation of normal into cancer
cells [20]. These lists of biological processes include proliferative signalling, suppression of
growth, escaping immunic response, cell replicative immortality, promoting inflammation, inva-
sion and metastasis, angiogenesis, genome instability and mutation, and escaping cell death.
Interestingly, we found 33 CHGs associated with at least one hallmark (OR : 2.062, P : 3×10−4).
Consistent with our previous analysis, cancer heritability genes are involved in escaping cell
death, mediating proliferative signalling, invasion and metastasis (Figure 4D and Supplemen-
tary Table 3). We then went further to study whether CHGs mediate these cancer processes
by acting either as tumour suppressor genes (TSGs) or oncogenes (see Fig. 4E). To do that,
we used the Precision Oncology Knowledge Base (OncoKB, [8]), a curated list of 519 cancer
genes, including 197 tumour suppressor genes (TSGs), 148 oncogenes and other cancer genes
of unknown function. We found that 27 CHGs are tumour suppressors (OR: 2.47, P : 7.9×10−6),
whereas 17 are reported as oncogene (OR: 1.83, P : 0.0198) of which 4 can function both as
TSG and as oncogene (Figure 4A, D and E and Supplementary tables 2 and 3). Tumour sup-
pressor CHGs include well-known cancer driver genes, such as CDKN2A and MTOR which
regulate cell growth, and DNA repair genes, such as MUTYH and FANCA [25].

Taken together, we found evidence that cancer heritability genes directly mediate processes
underpinning tumorigenesis; interestingly, while we did not observe pleiotropic effects at ge-
nomic level, we found that cancer heritability genes are involved in biological processes com-
mon to all cancers. It is then conceivable that inherited mutations in genes controlling these
biological programs could provide a selective advantage to cancer cells, once they acquire a
driver somatic mutation. Our results suggest a functional role for cancer heritability genes con-
sistent with a two-hit model [24]; while inherited mutations associated with oncogene activation
are likely to be under purifying selection, mutations in tumour suppressor genes can be ob-
served at higher frequency because deleterious effects are only observed upon complete loss
of function.

3 Discussion

Our study provides new fundamental evidence demonstrating a strong contribution of high-
frequency inherited mutations to the heritable risk of cancer. Here we provide a high resolution
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map of the heritable cancer genome consisting of 1, 146 genes showing a significant contri-
bution to the heritable risk of 16 malignancies. We showed that these loci harbour tumour
suppressors controlling growth, cell morphogenesis and proliferation, which are fundamental
processes required for tumorigenesis.

Ultimately, our results support a two-hit model, where inherited mutations in tumour sup-
pressor genes could create a favourable genetic background for tumorigenesis. It is conceiv-
able that SNPs make normal cells more likely to evade the cell-cell contact inhibition of prolifer-
ation, to elude the anatomical constrains of their tissue and to achieve more easily independent
motility in presence of other early oncogenic events. Preliminary support for this model has
been provided by studies in hereditary diffuse gastric cancer (HDGC) [33] and, more recently,
by germline variant burden analyses [38].

Obtaining a genomic map with gene-level resolution required the development of a new
method, we called Bayesian Gene Heritability Analysis (BAGHERA), for estimating heritability
of low heritability traits at the gene-level. We performed extensive simulations to show that
our method provides robust genome-wide and gene-level heritability estimates across different
genetic architectures, and outperforms existing methods when used to analyse low heritability
traits, such as cancer.

We also recognize the limitations of our work. While our method provides accurate esti-
mates of genome-wide heritability, extremely low heritability diseases could lead to negative
gene-level heritability estimates; this was a trade-off to ensure reasonable computational effi-
ciency, although a rigorous model is provided as part of our software. Our analysis does not
incorporate functional information, such as gene expression, which limits our power of detecting
tissue-specific contributions. On this point, as the genes may be expressed in different cellular
compartments, they may contribute to the stromal niches in which cancers develop and their
role in tissue specificity of mutations will be of interest to analyse experimentally.

Taken together, our study provides a new view of the genetic architecture of cancer with
gene-level resolution. We anticipate that the availability of genome editing techniques will en-
able testing of the functional mechanisms mediated by cancer heritability genes. We also
expect that integrating our results with tumour sequencing data will provide new venues for
personalized treatment and patients’ stratification.
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ICD10 Malignancy Cases Prevalence χ̂2 h2SNP h2SNPL
HG

C44 Other malignant neoplasms of skin 9086 0.0252 1.1408 0.0341 0.2422 422

C50 Malignant neoplasm of breast 8304 0.0230 1.0869 0.0170 0.1285 267

C61 Malignant neoplasm of prostate 4342 0.0120 1.0765 0.0191 0.2320 271

C18 Malignant neoplasm of colon 2226 0.0062 1.0399 0.0070 0.1416 33

C43 Malignant melanoma of skin 1672 0.0046 1.0288 0.0051 0.1293 52

C15 Malignant neoplasm of oesophagus 519 0.0014 1.0236 0.0035 0.2296 24

C67 Malignant neoplasm of bladder 1554 0.0043 1.0222 0.0047 0.1254 39

C34 Malignant neoplasm of bronchus and lung 1427 0.0040 1.0208 0.0035 0.1010 17

C20 Malignant neoplasm of rectum 1118 0.0031 1.0130 0.0031 0.1091 15

C62 Malignant neoplasm of testis 221 0.0006 1.0120 0.0024 0.3158 29

C71 Malignant neoplasm of brain 368 0.0010 1.0116 0.0030 0.2578 19

C45 Mesothelioma 150 0.0004 1.0110 0.0012 0.2213 5

C91 Lymphoid leukaemia 349 0.0010 1.0109 0.0018 0.1646 11

C02 Malignant neoplasm of other and unspecified parts of tongue 152 0.0004 1.0106 0.0013 0.2475 23

C16 Malignant neoplasm of stomach 388 0.0011 1.0106 0.0010 0.0868 12

C83 Diffuse non-Hodgkin’s lymphoma 587 0.0016 1.0104 0.0014 0.0824 14

C82 Follicular (nodular) non-Hodgkin’s lymphoma 320 0.0009 1.0101 0.0031 0.3059 21

C90 Multiple myeloma and malignant plasma cell neoplasms 401 0.0011 1.0092 0.0013 0.1020 15

C56 Malignant neoplasm of ovary 693 0.0019 1.0063 0.0012 0.0616 13

C54 Malignant neoplasm of corpus uteri 988 0.0027 1.0063 0.0008 0.0295 14

C48 Malignant neoplasm of retroperitoneum and peritoneum 122 0.0003 1.0053 0.0009 0.2064 5

C64 Malignant neoplasm of kidney except renal pelvis 701 0.0019 1.0043 0.0009 0.0455 10

C01 Malignant neoplasm of base of tongue 102 0.0003 1.0043 0.0014 0.3596 10

C73 Malignant neoplasm of thyroid gland 278 0.0008 1.0042 0.0011 0.1254 13

C49 Malignant neoplasm of other connective and soft tissue 222 0.0006 1.0040 0.0017 0.2229 28

C80 Malignant neoplasm without specification of site 398 0.0011 1.0040 0.0016 0.1300 14

C53 Malignant neoplasm of cervix uteri 192 0.0005 1.0039 0.0005 0.0709 14

C22 Malignant neoplasm of liver and intrahepatic bile ducts 189 0.0005 1.0031 0.0009 0.1353 7

C21 Malignant neoplasm of anus and anal canal 139 0.0004 1.0027 0.0007 0.1436 23

C85 Other and unspecified types of non-Hodgkin’s lymphoma 762 0.0021 1.0023 0.0013 0.0600 9

C09 Malignant neoplasm of tonsil 162 0.0004 1.0022 0.0006 0.1009 5

C92 Myeloid leukaemia 328 0.0009 1.0011 0.0008 0.0764 9

C17 Malignant neoplasm of small intestine 114 0.0003 1.0007 0.0015 0.3596 12

C19 Malignant neoplasm of rectosigmoid junction 498 0.0014 0.9992 0.0006 0.0390 10

C25 Malignant neoplasm of pancreas 403 0.0011 0.9991 0.0005 0.0402 12

C81 Hodgkin’s disease 150 0.0004 0.9989 0.0003 0.0597 5

C69 Malignant neoplasm of eye and adnexa 137 0.0004 0.9970 0.0004 0.0705 14

C32 Malignant neoplasm of larynx 159 0.0004 0.9914 0.0003 0.0450 7

Table 1: Genome-wide heritability of the 38 cancers in the UK BioBank. For each cancer,
we report the number of cases, the prevalence in the cohort, the average χ2 of the GWAS
analysis (χ̂2), the genome-wide estimates of heritability, both on the observed (h2SNP ) and the
liability (h2SNPL

) scale, and the number of heritability genes (HG) reported by BAGHERA as
significant for η > 0.99. In bold, we denote the cancers used to build the cancer heritability
genes (CHGs) panel.
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Figure 1: Performance on simulated data. A) Genome-wide heritability estimates for dense
effects. For each value of h2, we plot the simulated value, the target, the genome-wide (gw)
estimate, which is the median of the posterior of genome-wide heritability term, and the gene-
level estimate which is the sum of all median gene heritability estimate (sum). B) Genome-wide
heritability estimates for datasets with varying gene-level heritability. For each value of h2 we
plot the simulated value, the target, the gw estimate which is the median of the prior heritability
term, and the gene-level estimate which is the sum of all median gene heritability estimate C)
Receiver Operator Characteristic curves and Precision Recall curves, for the performance of
BAGHERA at retrieving positive genes for different values of genome-wide h2. D) Performance
of BAGHERA for different values of h2 and gene level enrichment. We show the AUCs of the
ROC curves, the True Positive Rate and False Discovery Rate (FDR) for η > 0.99. A-B-C show
the performance on simulated genotype data on chromosome 1. D is showing the performance
on the data simulated from summary statistics.
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Figure 2: Cancer heritability genes across the human genome. For each cancer heritability
gene, we report its locus and the associated cancer.
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Figure 3: Heritability genes across 16 cancers in the UK Biobank A) For each malignancy,
we report the observed heritability (h2SNP , left box), the percentage of h2SNP explained by heri-
tability genes (central barplot, dark blue is the percentage explained by HGs) and the number of
heritability genes (right barplot). B) Gene-level heritability density distribution across heritabil-
ity genes, expressed as fold-change with respect to the genome-wide estimate. Highlighted
are the top genes and the median fold-change across all cancers. C) Percentage of cancer
heritability genes associated with multiple cancers. Approximately 8% of HGs are common to
multiple malignancies. D) Cancer heritability genes associated with multiple cancers. We re-
port the 59 HGs common to at least 2 cancers; here the size of the dot is proportional to the
heritability enrichment of the gene in the specific cancer.
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Figure 4: Functional characterisation of cancer heritability genes. A) List of CHGs reported
as cancer driver genes across multiple annotations. With the blue hue, first three columns, we
report the genes annotated by OncoKB, specifying whether they are tumour suppressors (TSG)
or oncogenes (OG). With red and orange, 4-th and 5-th columns, we report the genes that are
included in the COSMIC annotation as drivers and whether the reported mutation is somatic
and germline. In the last four columns, we annotate each gene to the cancer type for which
is denoted as driver in COSMIC. B) Enrichment of CHGs across cancer driver genes annota-
tions; here we report OncoKB (purple), COSMIC database (light blue), different cancer driver
sets (dark blue) and other sets (green) like DNA repair genes and known actionable targets.
Stars indicate statistical significance, with multiple terms having P < 10−4. C) Gene Ontol-
ogy enrichment analysis using Fisher’s exact test. For each significant term, we report the
odds-ratio (x-axis) and −log10(FDR) (color gradients). D) CHGs associated with the hallmark
of cancers; genes in darker grey are tumour suppressors. Each gene is connected to the hall-
marks that it mediates. E) tumour suppressor and oncogene CHGs across cancers. For each
cancer type (y-axis), we report the number of genes (x-axis) reported as tumour suppressors
(TSGs) and/or oncogenes in OncoKB (colour codes).
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Estimation of heritability at the gene level

Narrow sense heritability, h2, is defined as the amount of phenotype variance explained by addi-
tive genetic effects. Genome-wide association studies (GWAS) provide unique opportunities to
study heritability of many diseases; in particular, with the advent of high-density arrays, where
more than 500, 000 single nucleotide polymorphisms (SNPs) are genotyped, the heritability ex-
plained by these variants, h2SNP , represents a reasonable estimate for h2.

Our goal is to identify the portion of h2SNP explained by each protein-coding gene, which
requires a unique assignment of SNPs to genes to avoid biased estimates.

We denote as genome-wide the amount of heritability explained by all genotyped SNPs, M ,
whereas we refer to the amount of heritability explained by the SNPs in a gene as gene-level
heritability. In a model where each SNP has equal contribution to the genome-wide heritability,
the per-SNP heritability is simply }2 = h2SNP /M . Conversely, if variants can have varying
contribution to the genome-wide heritability, we can model the per-SNP heritability as a random
variable, }2M , whose expectation is }2M = E

[
}2j
]
j=1,··· ,M

, whereM denotes the number of SNPs

used to average the per-SNP contribution to heritability.
We hereby demonstrate that the genome-wide heritability can be expressed as the sum of

the gene-level contribution and that the per-SNP genome-wide heritability is the expectation
of the per-SNP gene-level heritability. Let K be the number of non-overlapping genes in the
human genome, each of them with Mk SNPs, the genome-wide heritability can be expressed
as h2SNP =

∑K
k=1

∑
j∈k }2j =

∑K
k=1Mk}2Mk

where Mk}2Mk
is the amount of heritability explained

by all the SNPs in the k-th gene. Thus, let the number of SNPs in each gene and the gene-
level per-SNP heritability be independent random variables, it is straightforward to prove that
the expectation of the gene-level per-SNP heritability is the per-SNP genome-wide estimate
h2SNP /M = E

[
}2Mk

]
K

. However, estimating h2SNP only from SNPs assigned to genes would
lead to biased estimates, since the contribution of the SNPs in intergenic regions would be
neglected; thus, SNPs outside genic regions are assigned to a nuisance gene, such that the
heritability is correctly estimated from all genotyped SNPs.

A hierarchical Bayesian model for heritability estimation

The estimation of heritability can be modelled as a hierarchical Bayesian regression problem,
which provides a robust approach to simultaneously estimate the genome-wide heritability,
h2SNP , and the gene-level heritability, h2k, from the observed data Y . Our base Bayesian re-
gression model can be defined as follows:

h2SNP ∼ F1() with supp(F1()) ∈ [0, 1]
h2k|h2SNP ∼ F2(h

2
SNP )

Y|h2k ∼ F3(h
2
k)

(1)

where F1,F2,F3 are suitable distributions.
SNP heritability, h2SNP , is the ratio of the variance of the additive genetic effects, σ2g , and the

phenotypic variance, σ2P . Let σ2P = σ2g + σ2e , where σ2e are the non-additive and environmental
effects, these quantities can be modelled as random variables with σ2g ∼ Γ(α, θ) and σ2e ∼
Γ(β, θ), respectively. Since Γ(α, θ)/(Γ(α, θ) + Γ(β, θ)) ∼ Beta(α, β), a suitable distribution for
F1,in Eq. 1, would be an uninformative Beta distribution, e.g. Beta(1, 1). In practice, the use of
a Beta distribution as prior for h2SNP allow us to obtain accurate estimates of heritability in the
unit range even for low-heritability diseases, where classical methods are usually unreliable [5].

The gene-level heritability, h2k, can be modelled as a random variable following a Gamma
distribution with shape α = h2SNP and rate β = 1. Therefore, for F2 = Gamma(h2SNP , 1), the
expectation would be h2SNP , which is an unbiased estimator of the genome-wide heritability.
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Finally, our model requires a suitable estimator to regress h2k from the observed data. Re-
cently, many methods have been proposed to estimate heritability from GWAS data [59]; how-
ever, the vast majority requires genotype data, which are both difficult to obtain, due to privacy
concerns, and computationally taxing to analyse, because of high-dimensionality. Thus, we
adopted the LD-score (LDsc) regression model [5], which allows estimation of heritability from
GWAS summary statistics, such as regression coefficients and standard errors, which are read-
ily available [37].

Thus, for F3, we rewrote the LDsc model to estimate gene-level heritability, from summary
statistics of M SNPs in a GWAS with N subjects, as follows:

χ2
j,k ∼ N(Nljh

2
k/M + e,

√
lj) (2)

where χ2
j,k and lj are the χ2 statistic and LD score associated with SNP j in gene k, respectively.

The LD score is a quantity defined as lj =
∑

z r
2
jz, where r2jz is the linkage disequilibrium

between variant j and variant z in a given population [50]. Moreover, setting the standard
deviation to the LD score of the j-th SNP allow us to control for heteroskedasticity of the test
statistics due to linkage disequilibrium, somehow similar to the weighting scheme used in LDsc.
The e term accounts for confounding biases and it is modelled using an uninformative normal
prior.

The Bayesian Gene HERitability Analysis (BAGHERA) software

We implemented our hierarchical model (see Eq. 3) as part of the BAGHERA software, which
allows simultaneous estimation of genome-wide and gene-level heritability, and predicts heri-
tability genes, that are genes with a per-SNP heritability higher than the genome-wide estimate
(see Supplementary Figure 1). Since fitting the Beta-Gamma model is computationally tax-
ing, we relaxed our requirements by modelling h2k as a random variable following a Normal
distribution whose mean is the genome-wide heritability, h2SNP , and the standard deviation is
controlled by an uninformative Inverse-Gamma prior. While this formulation might provide gene-
level heritability estimates outside the unit domain, we found this problem to be well controlled
in practice.

e ∼ N (1, 1)
W ∼ Inv-Gamma(1, 1)

h2SNP ∼ Beta(1, 1)
h2k|h2SNP ,W ∼ N (h2SNP ,W

2)

χ2
j,k|h2k, e, lj , N,M ∼ N (Nljh

2
k/M + e,

√
lj)

(3)

BAGHERA predicts heritability genes by computing the posterior distribution of ηk ∼ I(h2k >
h2SNP ), where I is a function that returns 1 if the evaluated condition is true, and 0 otherwise.
The expectation of the posterior distribution of ηk, E[ηk], is the probability of the heritability of
gene k of being higher than the genome-wide estimate; specifically, we report as heritability
genes, those with E[ηk] ≥ 0.99. For each gene, we also report effect sizes in terms of fold-
change with respect to the genome-wide heritability estimate, fck = h2k/h

2
SNP .

We use the No-U-Turn Sampler as implemented in PyMC 3.4 [40], using 4 chains with 104

sweeps each and a burnin step consisting of 2, 000 samples. Convergence of the sampling
process was assessed based on the Gelman-Rubin convergence criterion.

BAGHERA is released as a Python software package under MIT license, and it is available
on GitHub (https://github.com/stracquadaniolab/baghera), as installable package on Anaconda,
and as a Docker image. BAGHERA also implements the Beta-Gamma model described in the
previous section, called BAGHERA-Γ. Alongside the source code, we also provide a Snake-
make workflow (https://github.com/stracquadaniolab/workflow-baghera).
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UK BioBank summary statistics processing and curation

We used summary statistics of the UK BioBank GWAS for ICD10 classified cancer types [35].
We developed a custom pipeline to assign LD scores to SNPs, and SNPs to human genes
(Supplementary Material). For each dataset, we mapped each SNP to a precomputed LD
score. We used pre-computed LD scores for SNPs on autosomal chromosomes with minor
allele frequency MAF > 0.01 in the European population (EUR) of the 1000 Genomes project.
We removed the SNPs on chr6:26,000,000-34,000,000, since this region contains the Major
Histocompatibility Complex (MHC) that have unusual genetic patterns and is known to affect
GWAS result interpretation [5, 23]. Overall, our analysis is conducted on 1285620 SNPs over
22 chromosomes.

We then used Gencode v31 to determine the genomic coordinates of protein coding genes
in the GRCh37 human genome. We then merged overlapping genes by creating a new pseudo-
gene, whose name reports the merged gene names and whose boundaries are defined as
the first and last base-pair of the overlapping genes. We assigned a SNP to a gene if it is
within ±50kb from the gene boundaries, which allow us to account for cis-regulatory elements,
overall 55% of SNPs were mapped to a gene. For BAGHERA we considered only those genes
harboring at least 10 variants. Our dataset consists of 15025 genes, 12042 of them are harboring
more than 10 SNPs, then they are used for the UKBB analysis.

4.1 Enrichment analyses

We used a one-tailed Fisher’s exact test for all enrichment analyses, with p-value adjusted using
the Benjamini-Hochberg procedure. Since genes in our analysis might represent overlapping
protein-coding regions, we post-processed our gene lists by converting each composed region
into the set of its genes for functional characterization and annotation. The overlap with cancer
datasets has instead been tested with individual one-tailed Fisher’s exact tests.
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