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Abstract

The protein nuclear magnetic resonance (NMR) structure determination is one of the
most extensively studied problems due to its increasing importance in biological
function analysis. We adopt a novel method, based on one of the matrix completion
(MC) techniques–the Riemannian approach, to solve the protein structure
determination problem. We formulate the protein structure in terms of low-rank
matrix which can be solved by an optimization problem in the Riemannian
spectrahedron manifold whose objective function has been delimited with the derived
boundary condition. Two efficient algorithms in Riemannian approach-the
trust-region (Tr) algorithm and the conjugate gradient (Cg) algorithm are used to
reconstruct protein structures. We first use the two algorithms in a toy model and
show that the Tr algorithm is more robust. Afterwards, we rebuild the protein
structure from the NOE distance information deposited in NMR Restraints Grid
(http://restraintsgrid.bmrb.wisc.edu/NRG/MRGridServlet). A dataset with both
X-ray crystallographic structure and NMR structure deposited in Protein Data Bank
(PDB) is used to statistically evaluate the performance of our method. By comparing
both our rebuilt structures and NMR counterparts with the ”standard” X-ray
structures, we conclude that our rebuilt structures have similar (sometimes even
smaller) RMSDs relative to ”standard” X-ray structures in contrast with the reference
NMR structures. Besides, we also validate our method by comparing the Z-scores
between our rebuilt structures with reference structures using Protein Structure
Validation Software suit. All the validation scores indicate that the Riemannian
approach in MC techniques is valid in reconstructing the protein structures from NOE
distance information. The software based on Riemannian approach is freely available
at https://github.com/xubiaopeng/Protein Recon MCRiemman.

Author summary

Matrix Completion is a technique widely used in many aspects, such as the global
positioning in sensor networks, collaborative filtering in recommendation system for
many companies and face recognition, etc. In biology, distance geometry used to be a
popular method for reconstructing protein structures related to NMR experiment.
However, due to the low quality of the reconstructed results, those methods were
replaced by other dynamic methods such as ARIA, CYANA and UNIO. Recently, a
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new MC technique named Riemannian approach is introduced and proved
mathematically, which promotes us to apply it in protein structure determination from
NMR measurements. In this paper, by combining the Riemannian approach and some
post-processing procedures together, we reconstruct the protein structures from the
incomplete distance information measured by NMR. By evaluating our results and
comparing with the corresponding PDB NMR deposits, we show that the current
Riemannian approach method is valid and at least comparable with (if not better
than) the state-of-art methods in NMR structure determination.

Introduction 1

Three-dimensional protein structure plays a vital role in molecular conformation 2

because of both the importance of the protein function and the applications on drug 3

design and disease detection. Protein structures can be determined mainly through 4

delicate experimental methods, including X-ray crystallography, nuclear magnetic 5

resonance (NMR), Cryo-electron microscopy(cryo-EM) and so on. Different from 6

single-crystal X-ray diffraction which has been largely automated, NMR spectroscopy 7

requires skilled manual intervention. However, NMR spectroscopy is an important 8

approach for measuring the 3D structure of proteins in solution under near 9

physiological conditions [1]. 10

The NMR method for protein structure measurement began in 1980s [2], and its 11

spectroscopy provided a network of distance measurements between spatially 12

proximate hydrogen atoms [3] [4]. The typical NMR-based protein structure 13

determination pipeline involves peak picking from NMR spectra, chemical shift 14

assignment (spectral assignment), assignment of geometric restraints and the 15

structural calculation [5]. More specifically, this method has promoted a need for 16

efficient computational algorithms. 17

One approach to obtain molecular conformations is related to the molecular 18

dynamics and simulated annealing [6], such as ARIA [45], CYANA [7] and UNIO [8]. 19

Another approach is to use distance geometry methods [9] where many algorithms 20

such as EMBED [10], DISGEO [11], and DGSOL [12] [13] are proposed to interpret 21

the macromolecular conformation based on NMR experimental data. 22

Recently another technology named matrix completion (MC) [14] [15] is a 23

burgeoning topic drawing the attention of many researchers in the field of model 24

reduction [16], pattern recognition [17] and machine learning [18]. This technology, an 25

offshoot of compressed sensing (CS) [19] [20], seeks explicitly the lowest rank matrix 26

consistent with the known entries by effective algorithms according to the dependence 27

among matrix elements imposed by the low rank structure [21]. In particular, 28

Jawanpuria et al. [22] whose group leads to a generic framework to the structured 29

low-rank matrix learning problem have succeeded in solving the problem of learning a 30

low-rank matrix through Riemannian approach. In the work of Jawanpuria et al. [22], 31

the NP-hard rank minimization problem of MC is transferred into an optimization 32

problem based on the Riemannian spectrahedron manifold. In their work, two efficient 33

algorithms– conjugate gradient (Cg) and trust-region (Tr) are proposed and 34

outperform other algorithms in robust. 35

In this paper, we treat the protein structure determination as a low-rank matrix 36

completion problem since the protein structure can be formulated as a low-rank 37

distance matrix. As a result, we can apply the algorithms of the Riemannian theory in 38

determining the NMR-based protein structure. By taking those algorithms, we can 39

avoid the high-dimensional problems and also provide a correct completed distance 40

matrix for the determination. 41
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Methods 42

Solution to determinate protein structure 43

The distance between all pairs of atoms in a large molecule can be transformed into a 44

protein distance matrix D with nonnegative entries and zero diagonal [23], such that: 45

Dij = ⟨xi − xj , xi − xj⟩

=
[
xTi xTj

] [ I −I
−I I

] [
xi
xj

]
= V ec(X)T (ϕij ⊗ I)V ec(X)

=
⟨
ϕij , X

TX
⟩

(1)

Where the corresponding coordinates are defined as X := x1, x2, · · · , xn ∈ ℜ in the 46

three-dimensional cartesian coordinate system. 47

V ec(X) =
[
xT1 , x

T
2 , · · · , xTn

]T ∈ ℜ, ϕij =
(
ei − ej

) (
ei − ej

)T
, ⊗ denotes the Kronecker 48

product. 49

Consider the Gram matrix G := XTX which is the inner-products of X. Then we 50

conveniently define an operator P(G) equals to D. 51

D = P(G) := diag(G)1T − 2G+ 1diag(G)T (2)

The Gram matrix and the Euclidean distance matrix are linearly related by formula 52

Eq (2). Consider the singular value decomposition of G: 53

G = UΣV T , Σ = diag({σi}1≤i≤r) (3)

where U and V are n× r matrices with orthogonal columns, and the singular values σi 54

are positive. We then have 55

X = Σ1/2V T (4)

The estimation of the atomic coordinates X in the molecule is vital to the NMR 56

techniques for structure determination. We propose a solution to the protein atomic 57

coordinates by recovering the Gram matrix from known entries using optimization 58

framework based on Riemannian measurement. 59

Models 60

Generally, only some subsets of the distance information can be measured by the 61

NMR experiments. Such a set of data contains important structural information, but 62

it is far insufficient for the complete determination of the structure. The fact that the 63

Gram matrix which is related to distance information is extremely low rank motivates 64

us to apply the matrix completion technique to recover the uncompleted Gram matrix 65

based on very limited observed distance information. This motivates us to apply the 66

MC algorithm in protein structure reconstruction. We first set up a toy 67

model—PDB-deposited-model to check our algorithms’ validity and robustness. After 68

validation, we apply the same algorithms in real NMR proteins deposited in protein 69

data bank(PDB) [24], which we name as NOE-based-model for avoiding confusion. We 70

notice that in protein the distance constraints between the covalent [25] or coplanar 71

atoms [26] only depends on the residue type, and can be always considered as 72

pre-known distances for both models as long as we know the sequence. 73

In PDB-deposited-model, we extract all the distances between hydrogen atoms 74

within 5Å [4] [27] [28] directly from the PDB file, and additionally consider them as 75

pre-known distances. With these distances together with the covalent/coplanar atom 76
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distances as known elements in distance matrix, the corresponding 77

PDB-deposited-model is recovered. Obviously, the toy-model contains much more 78

distance information than real NMR experiment and hence is only used to verify the 79

feasibility of the method. In NOE-based-model, we take the NOE distances deduced 80

from NMR experiments instead of the hydrogen distances with 5Å. We notice that 81

these NOE distances usually are not the actual but the upper limits. However, in our 82

method we first simply consider them as actual distances in MC stage and then further 83

refine them in the post-processing stage. Different from the PDB-deposited-model, 84

with only the NOE distances and the distance constraints between the covalent or 85

coplanar atoms as known elements in distance matrix, it is still impossible to use the 86

MC algorithm since the distribution of the known distances is too sparse and 87

non-uniform. In MC theory, one can recover most low-rank matrices only when the 88

number of samples m obeys m > Cnrlogn and they are nearly uniformly 89

distributed [29], where C is a positive number (usually C is larger than 1, and n is the 90

dimension of matrix). In our case, both conditions are violated. To get the condition 91

of MC algorithms satisfied, we add more distance elements from distances estimated 92

by the triangle inequality according to the known elements, for the details see [30]. 93

Riemannian method 94

formulation 95

The Gram matrix G with its rank r can, in principle, be recovered if it is the unique 96

matrix with rank less than or equal to r that is consistent with the data [15]. In other 97

words, the low-rank matrix G can be solved exactly by the following convex 98

optimisation problem even though the measurable entries have surprisingly small 99

cardinality. 100

min rank(G)

s.t.
⟨
G, diag(eie

T
i 1 + eje

T
j 1)− (eie

T
j + eje

T
i )

⟩
= Dij (5)

Unfortunately, rank minimization is an NP-hard problem for which the practical 101

solutions take doubly exponential computation time. In order to solve this problem, 102

we follow the work of [22] by rewriting formula Eq (5) as an universal formulation for 103

low-rank MC and adding the boundary constraints: 104

min
Gϵℜn×n

1

2
z(G) + EΓ(G,Y )

s.t.
⟨
G, diag(eie

T
i 1 + eje

T
j 1)− (eie

T
j + eje

T
i )

⟩
= Iij

⟨ϕij , G⟩ ≥ Vij

G ∈ Ω

(6)

Here, Y ∈ ℜn×n is a given matrix, Γ : ℜn×n ×ℜn×n → ℜ is a loss function(e.g. 105

ℓ1 − loss function), z is a low-rank promoting regularizer, E > 0 is the cost parameter 106

and Ω is the structural constraints related to linear subspace. Iij is an initialized 107

distance matrix, Vij denotes lower bound restricted by van der Waal’s spheres between 108

pairs of atoms. This type of constraint is designed to prevent structural dislocation 109

from infiltrating each other in non-bonding atoms [31] [32]. 110

Based on the duality theory [33], the solution to problem Eq (6) can be written as 111

G =WWT (S +Q), where W ∈ ℜn×r and S,Q ∈ ℜn×n. 112
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Then the squared trace norm regularizer is applied to solve the problem Eq (6), 113

min
Θ∈ϱn

min
G∈ℜn×n

1

2
⟨Θ+G,G⟩+ EΓ(Y,G)

s.t. J (G) = 0, range(G) ⊆ range(Θ)⟨
G, diag(eie

T
i 1 + eje

T
j 1)− (eie

T
j + eje

T
i )

⟩
= Iij

⟨ϕij , G⟩ ≥ Vij

G ∈ Ω

(7)

The low-rank constraint on G is shifted to Θ ∈ Pn since the ranks of Θ and G are 114

equal at optimality [34]. 115

We consider Θ =WWT , and ∥W∥F = 1. Then the minimized object Eq (7) can be 116

written as follows: 117

min
W∈ℜn×r,∥W∥F=1

h(W ), (8)

where 118h(W ) = max
S∈ℜn×n,a∈ℜm

−EΓ∗(−S/E)− 1

2
∥WT (S + J ∗(a))∥2F (9)

By definition, the gradient of h(W ) above is achieved through the values of 119

variables S and a. So the recovered matrix G is presented as WWT (S + J ∗(a)). Two 120

effective algorithms are proposed to deal with the problem Eq (9): 1) The Riemannian 121

Cg algorithm: to compute the Riemannian conjugate gradient direction with the 122

step-size by retraction 2) The Riemannian Tr algorithm: to calculate the Riemannian 123

trust-region sub-problem at every iteration [35] [22]. In the end, the local refinement 124

procedure is performed on the Gram matrix, as is usually done in SNL 125

problems [36] [37]. 126

Postprocessing 127

In fact, the Gram matrix after recovered are not completely accurate since the entries 128

sampled from the triangle inequality measurement and NOE experiment have some 129

errors. We perform a postprocessing system to improve accuracy of the rebuilt 130

structures [38]. 131

Fixing chiralities: Chirality is an essential factor to discuss the asymmetry in 132

stereochemistry [39] [40]. We perform two types of chirality constraints according 133

to [41]. First, we check the ramachandran angle Φ: if the fraction of positive Φ is 134

larger than 0.5, we simply fix the chirality by adding a negative sign in the 135

x-component of the atom coordinates. Second, every amino acid (except glycine) has 136

two isomeric forms(L- and D-forms). And only L-form is correct enantiomer in life. 137

When the D-form appears at the chiral centers, we fix it by exchanging the 138

coordinates of the group NH2 and COOH. 139

BFGS refinement: It is a method for solving the unconstrained nonlinear 140

optimization problems [42]. We employ the functions and parameters in ref [41] to 141

operate the BFGS-based refinement. Using this refinement, we make complements on 142

our MC reconstruction algorithm, where we have treated upper limit as accurate 143

distances in both triangular inequality estimation and NOE distances. 144

EM optimization: It is a process to relax the structure to appropriate bonds and 145

angles. The structure is optimized by minimizing the energy functions of 146

AMBER99SB-ILDN force field [43] in TIP3P water model using simple steepest 147

decent algorithm. 148

Xplor-NIH: We employ Xplor-NIH which is an versatile structure determination 149

and refinement software to improve the resolution of stereostructure [32] [44]. Note 150
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that we only use the water refinement part instead of the whole Xplor software 151

here [45]. 152

Finally, we outline the process of reconstructing proteins using the Riemannian 153

method in the form of a flow chart, as shown in Fig 1. 154

Fig 1. The flow chart of reconstructing the protein structures.

Assessment 155

Template Modeling Score (TM-score) and Global Distance Test Score 156

(GDT-TS): TM-score [46] and GDT-TS [47] were computed to evaluate the 157

structural similarity between protein pairs. According to statistics of structures in the 158

PDB, TM-score below 0.17 corresponds to randomly generated unrelated proteins 159

whereas a score above 0.5 is expected to have the same fold in SCOP/CATH. In 160

general, the higher TM-score and GDT-TS are, the better a rebuilt model is in 161

comparison to reference structure. 162

Protein Structure Validation Software suite: The Protein Structure 163

Validation Software suite (PSVS) [48] is a server to systematically assess and validate 164

the protein structures. PSVS reports knowledge-based quality scores and constraint 165

analyses, such as Z scores, restraint violations, and RMSDs. Z scores contain five 166

geometric validation measures: Verify3D score [49], ProsaII score [50], Molprobity 167

clash-score [51], Procheck Phi-Psi and all dihedral angle G-factor [52]. And higher 168

Z-scores indicate better structures. 169

Ramachandran analyses: Ramachandran Plot is a figure that specifies an 170

enormously allowed conformational region permitted by backbone dihedral angles ψ 171

and ϕ [53]. 172

MolProbity score: MolProbity score (MPscore) combines the clashscore, 173

rotamer, and Ramachandran evaluations into a single score, normalized to be on the 174

same scale as X-ray resolution. The MPscore provides a single value to measure the 175

quality of the prediction structure statistically. Hence, a structure with numerically 176

lower MPscore indicates a more reasonable structure. 177

Results and Discussion 178

50 proteins are picked randomly with different sizes range from 5 to 23 kDa. In the 179

PDB-deposited model, 8 proteins are tested to verify the feasibility of protein structure 180

determination using the Riemannian approach. And in the NOE-based-deposited 181

section, 43 proteins which have both X-ray crystal graphical structure and NMR 182

structure are rebuilt by using Riemannian approach and evaluated with various 183

structure quality assessment metrics. All the coordinate files used are download from 184

PDB database, including reference NMR structures and their X-ray counterparts. The 185

NMR restraints files are extracted in the NMR Restraints Grid of BMRB [54] [55]. 186

PDB-deposited-model 187

The detailed recovery results on eight proteins rebuilt by Cg algorithm are shown in 188

Table 1. The performance of Tr algorithm is similar to Cg algorithm, therefore 189

displayed in S1 Table. Table 1 shows that the sampling rate drops sharply with 190

increasing protein atoms n. This demonstrates that objects can be perfectly 191

reconstructed from very limited information using Riemannian approach. The 192

backbone RMSDs in well defined (RMSD bb wdf) are no more than 1.06Å for most of 193
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the tested proteins, indicating the rebuilt structures with very high resolution can be 194

achieved using Riemannian approach. 195

Table 1. Reconstruction results of Cg algorithm in PDB-deposited-model

Entry Molecule Seq. Atoms Samp. RMSD bb wdf/Cg(Å)
5jxv Immunoglobulin 56 855 0.0350 0.54± 0.09
1g6j Ubiquitin 76 1228 0.0244 0.50± 0.07
2mx2 DUB 81 1327 0.0226 0.29± 0.06
2fnb Fibronectin 95 1416 0.0212 0.46± 0.07
2k49 UPF 118 1823 0.0164 0.74± 0.11
5h3n Gelsolin 133 2091 0.0143 1.02± 0.18
5o1t Protein NRD1 179 2788 0.0108 0.32± 0.22
6bf2 Bcl-2-like protein 1 212 3237 0.0093 1.06± 0.13

Moreover in order to evaluate the robustness of the method to noisy data, the 196

uncertainty in the distance between hydrogen atoms is analyzed. We assume that the 197

distances between pairs of hydrogen are perturbed by random noises and can be 198

written as follows: 199

D
′

i,j = Dij |1 + τεij | (i, j) ∈ ℜ (10)

where Dij is the actual distance between hydrogen atom i and j. εij ∈ N (0, 1) is 200

independent standard Normal random variable. The noise is expressed in terms of 201

noise factor τ . We implement the low-rank reconstruction on the synthetic data, 202

which simulates the distance data and varies the percentage of the additive noise data. 203

We take two selected proteins as examples (the other proteins have the similar 204

curve) and present how RMSD bb wdf changes over τ in S3 Fig. Obviously, it causes 205

increasing RMSD bb wdf of Tr or Cg algorithm respectively as the noise factor τ 206

grows. The results present that when the RMSD bb wdfs of the two tested proteins 207

are equal to 2Å, the noise factor values τ are 3.09 (2mx2) and 2.16 (2k49) for Tr 208

algorithm, 3.12 (2mx2) and 2.88 (2k49) for Cg algorithm respectively. Meanwhile, the 209

RMSD bb wdf of Tr algorithm rises obviously slower than that of Cg algorithm below 210

4Å for the two proteins. This indicates that the Tr algorithm is more robust to the 211

data noise in determining protein structures. 212

NOE-based-model 213

We compare the rebuilt structures using Riemannian approach with NMR structures 214

in terms of metrics on structure similarity, stereochemical quality, restraint violations, 215

and Ramachandran analysis. The NMR structures which are deposited in the PDB 216

are labeled as reference structures. 217

Structure similarity. We take the X-ray structure as the standard structure, and 218

calculate the TM-score/GDT-TS with respect to them for the rebuilt structures and 219

reference structures, respectively. The results are shown in Fig 2, where we can see 220

that among 43 proteins 20 of them reveal higher TM-score/ GDT-TS values (rising an 221

average of 3.48%/3.18%, respectively) for the rebuilt structures with Riemannian 222

approach compared with the reference NMR deposits. In Fig 2 we also see that for 223

most proteins (31/43) Tr algorithm give higher scores than Cg algorithm. 224

The RMSD values of reference structure and rebuilt structure are measured based 225

on corresponding X-ray structure, respectively. We calculate the ratio of the two 226

RMSD values (r rmsd) to characterize the quality of our reconstructed results. When 227

the ratio is not larger than 1, we say our result is comparable with the PDB reference; 228

otherwise, our reconstruction is worse. The results are shown in Fig 3 and S3 Table. 229

We can see that more than half of the rebuilt structures are comparable or even better 230
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Fig 2. The TM/GDT-TS scores of reference structure and rebuilt
structure. (a)/(b) is the TM/GDT-TS score of reference structure and rebuilt
structure (with Riemannian approach) using the X-ray counterparts as template. The
TM/GDT-TS value of the reference structure is plotted on the X-axis. While the
value of Riemannian approach is displayed on the Y-axis. And the oblique lines in
(a-d) represent y=x.

in comparison to reference structures. We calculate the average percentage of the 231

pre-known distances for the proteins with r rmsd<1 and r rmsd>1, respectively. For 232

the former one, the percentage is about 0.72%± 0.24%, while for the latter one it is 233

about 0.56%± 0.15%. Hence, we argue that the bad performance for some proteins is 234

due to limited distance measurements. In Fig 4, we select four proteins with r rmsd<1 235

and show the superimposition of X-Ray, NMR, and rebuilt structure by Tr algorithm. 236

Clearly, the rebuilt structure appears closer to the X-ray counterparts compared with 237

reference structure. For clarity, we calculate the Cα pairwise distances between the 238

reconstructed structure and X-ray counterpart as well as those between the reference 239

structure and X-ray (as shown in Fig 5). we can see that in some region our rebuilt 240

structure are significantly similar to X-ray structure than PDB NMR deposits. These 241

regions may be significant on biological conformation [56]. 242

Fig 3. The histogram of backbone and heavy atom RMSD ratio in
well-defined region based on X-ray counterpart. The RMSD ratio (r rmsd) is
defined as RMSD rebuilt/RMSD reference. The histogram (a) and (c) are rebuilt
structures by Tr algorithm, and the Histogram (b) and (d) are rebuilt structures by
Cg algorithm.

Fig 4. Superimposition of rebuilt structure and reference structures.
Superimposition of X-ray crystal structure (blue), reference structure (greencyan),
structure rebuilt by Tr algorithm (magenta).The protein entries are
(a)-1gb1;(b)-1g6j;(c)-2hfi;(d)-2k5p.

Fig 5. The Cα interatomic distance between rebuilt structure/reference
structure and corresponding X-ray structure.

Stereochemical quality. Five metrics of Z scores are statistically measured by 243

graphical means of boxplot as shown in Fig 6. The average of MolProbity Clash score 244

values using Riemannian approach is almost at parity or slightly lower compared with 245

that of the reference NMR structures, so do ProsaII and Verify3D values. As to Tr 246

algorithm, both Procheck phi-psi and all dihedral angle G-factors are expectedly 247

better than that of the reference structures. This may be due to the help of the 248

dihedral angle and NOE restraints [52]. 249

Fig 6. The boxplot of the Z scores for reference structures, structures with
and without Riemannian approach, respectively. From (a) to (e), the Z scores
orderly are Procheck phi-psi and all dihedral angle, MolProbity Clash score, ProsaII,
and Verify3D.

Restraint violations. The distance violation and dihedral angle violation are 250

depicted in Fig 7. Distance restraint violation is assessed in terms of ratio (i.e. the 251

number of distance violations divided by the number of distance constraints). 252
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Dihedral angle violations per structure are divided into two categories: 1− 10◦ and 253

> 10◦. The distance violation ratio of rebuilt structure by Riemannian approach is 254

slightly higher than that of the reference structure. However, the maximum distance 255

violation of rebuilt structure using Riemannian approach is lower than that of the 256

reference structure. As to dihedral angle violation, although the performance of the 257

rebuilt structure by Riemannian approach is slightly higher on the 1− 10◦ dihedral 258

angle violation, is lower on the > 10◦ dihedral angle violation compared with the 259

reference structure. 260

Fig 7. The boxplot of the restraint violations for reference structures,
structures with and without Riemannian approach, respectively. The
boxplot of (a) is the ratio of the distance restraint violations, (b) is maximum distance
violation, (c) is the number of dihedral angle violations between 1◦ and 10◦, and (d) is
the number of dihedral angle violations larger than 10◦.

Ramachandran analysis. Ten reconstructed proteins are picked out to analyze 261

all-atom contacts and geometry [51] for further assessment. As depicted in S1 Fig., the 262

MPscores reduce appreciably to the values less than that of the reference structures 263

with the help of Tr algorithm. And the angle distribution in favored region for tested 264

proteins has a remarkable improvement owing to Tr algorithm-(except for 1r36 and 265

2hfi). 266

Relation between MC algorithm and post-processing. In the end, we 267

identify the individual contributions of our MC algorithm and post-processing in 268

reconstruction separately. First, we show that with only MC algorithm but without 269

post-processing our reconstructed structure can still have the correct fold(TM score 270

roughly larger than 0.5), but the detailed structure is much worse than the PDB 271

deposits. (as shown in RMSD columns in S2 Table.) Then we illustrate that the MC 272

algorithm is necessary by the following procedure (we labeled this procedure as 273

Un Rem): we randomly assign the reasonable unknown elements in distance matrix 274

while keeping the known elements intact, and then perform exactly the same 275

post-processing. Then we perform the same assessments on the result of Un Rem 276

procedure: In S2 Fig., we show the TM-score, where we can see that the Un Rem 277

method gives very poor results(Even the folds are wrong for most proteins). Besides, 278

we also check the PSVS Z-scores for Un Rem as shown in Fig 6. Again, the Un Rem 279

method show very low Z-score indicating the structures from Un Rem are 280

unreasonable. Hence, we come to the conclusion that the MC algorithm is necessary 281

for get the correct fold of the protein model from the NOE measurements. However, 282

with only MC algorithm, the structure may not be very precise. After proper 283

post-processing, we reduce the errors and improve the quality of reconstructed protein 284

model. As a result, the MC algorithm and post-processing procedure are both 285

important for obtaining high quality protein model from NOE measurement. 286

Overall, the Tr algorithm in Riemannian approach shows a slight improvement 287

compared with that of Cg algorithm both in quantity and in the magnitude of rise on 288

metrics of structure similarity, stereochemical quality, restraint violations, and 289

Ramachandran analysis. This matches with the analysis of the robustness in 290

PDB-deposited-model: Tr algorithm has better anti-noise performance with the noise 291

factor grows. Not all the reconstructed performance of the tested proteins exceeds the 292

reference structures on all the metrics, but there are still many proteins achieving 293

admirable results. One of the reasons for the worse performance may be that the 294

quantity of the known accurate distance entries is much small. The other may be 295

stemmed from the structural complexity for different proteins. Additionally, the 296

reference NMR structure directly downloaded from the PDB is determined by 297

combining the state-of-the-art methods and perfect refinements. In contrast, the 298
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approach we proposed here to determine the protein structure is a general workflow 299

and only used the limited distance geometry information. Even so, there are still many 300

rebuilt structures achieving closer to the X-ray counterparts compared with that of 301

the reference structures. As shown in Table 1 of PDB-deposited-model, the rebuilt 302

structure gains lower RMSD value at so tiny sampling rate. It motivates us to improve 303

the reconstruction results by adding more equality constraints into the distance matrix 304

to solve the problem in NOE-based-model. 305

Conclusion 306

In this paper, the matrix completion technique is presented to the protein structure 307

determination since the Gram matrix, which had linear relation with the protein 308

distance matrix, is extremely low rank. The triangle inequality is introduced to 309

estimate some unknown distance since the known data are too sparse to complete the 310

Gram matrix. The Riemannian approach is proposed and offers two algorithms to 311

recover two models we established. A system of postprocessing is utilized to guarantee 312

the accuracy. The results in the PDB-deposited-model section present high accuracy 313

both for the two algorithms indicating that the Riemannian approach can be use to 314

reconstruct the protein structure. This may be due to the known accurate entries that 315

are enough to rebuild the structures, although these elements are still tiny to the 316

whole matrix. Besides, in NOE-based-model, the rebuilt proteins are assessed from 317

different metrics, such as structure similarity (RMSD and TM/GDT-TS scores), 318

stereochemical quality (Z scores), restraint violations (violations of distance and 319

dihedral angle) and Ramachandran analysis (MPscore and Ramachandran regions). In 320

comparison with the Un Rem structures, the Riemannian approach achieves a 321

performance that is significantly better on the above metrics. And the Riemannian 322

approach enables for some proteins to more close to their X-ray counterparts than that 323

of reference structures. Our results suggest that the Riemannian approach is a feasible 324

technique to determinate the protein structure and the technique can be expected to 325

obtain high precision results if more distance information is collected. 326

Supporting information 327

S1 Code. The software of protein structure determination based on 328

Riemannian approach. 329

S1 Fig. Ramachandran analysis. Ramachandran analysis of the reference NMR 330

structures and structures rebuilt by Tr algorithm. And the ten proteins are plotted on 331

the X-axis. (a): the Molprobity score. (b): the angle distribution in favored regions. 332

(c): the outliers of the angle distribution. 333

S2 Fig. TM/GDT-TS scores of the rebuilt structure (a)/(b) is the 334

TM/GDT-TS score of rebuilt structure (with and without Riemannian procedure) 335

using reference structure as template. The TM/GDT-TS value of Tr algorithm is 336

plotted on the X-axis. While the values of Cg algorithm and Un Rem are displayed on 337

the Y-axis, respectively. 338

S3 Fig. Noise analysis. RMSD errors of the tested proteins with noise parameter 339

τ (The value of RMSD bb wdf is produced by comparing our rebuilt structures with 340

corresponding Model 1 of reference NMR structure.) 341
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S1 Table. Reconstruction results of Tr algorithm in 342

PDB-deposited-model. 343

S2 Table. Analysis of rebuilt structure without postprocessing. The 344

comparison on values of RMSD, TM-score between rebuilt structure by Tr algorithm 345

and reference structure. 346

S3 Table. RMSD ratios based on the X-ray structure. The backbone/heavy 347

atom RMSD ratio of structures between rebuilt structure by Tr algorithm and 348

reference structure. 349
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