1	Spatial density estimates of Eurasian lynx (Lynx lynx) in the French Jura and Vosges
2	Mountains
3	
4	Olivier Gimenez ¹ , Sylvain Gatti ² , Christophe Duchamp ³ , Estelle Germain ⁴ , Alain Laurent ² ,
5	Fridolin Zimmermann ⁵ , Eric Marboutin ²
6	
7	¹ CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier,
8	France
9	² Office National de la Chasse et de la Faune Sauvage, ZI Mayencin, Gières, France.
10	³ Office National de la Chasse et de la Faune Sauvage, Parc Micropolis, Gap, France.
11	⁴ Centre de Recherche et d'Observation sur les Carnivores (CROC), 4 rue de la banie, 57590,
12	Lucy, France
13	⁵ KORA, Thunstrasse 31, 3074, Muri, Switzerland
14	
15	Abstract
16	
17	Obtaining estimates of animal population density is a key step in providing sound
18	conservation and management strategies for wildlife. For many large carnivores however,
19	estimating density is difficult because these species are elusive and wide-ranging. Here, we
20	focus on providing the first density estimates of the Eurasian lynx (Lynx lynx) in the French
21	Jura and Vosges mountains. We sampled a total of 413 camera trapping sites (with 2 cameras
22	per site) between January 2011 and April 2016 in seven study areas across seven counties of
23	the French Jura and Vosges mountains. We obtained 592 lynx detections over 19,035 trap
24	days in the Jura mountain and 0 detection over 6,804 trap days in the Vosges mountain. Based
25	on coat patterns, we identified a total number of 92 unique individuals from photographs,

26	including 16 females, 13 males and 63 individuals of unknown sex. Using spatial capture-
27	recapture (SCR) models, we estimated abundance in the study areas between 5 (SE = 0.1) and
28	29 (0.2) lynx and density between 0.24 (SE = 0.02) and 0.91 (SE = 0.03) lynx per 100 km ² .
29	We also provide a comparison with non-spatial density estimates and discuss the expected
30	discrepancies. Our study is yet another example of the advantage of combining SCR methods
31	and non-invasive sampling techniques to estimate density for elusive and wide-ranging
32	species, like large carnivores. While the estimated densities in the French Jura mountain are
33	comparable to other lynx populations in Europe, the fact that we detected no lynx in the
34	Vosges mountain is alarming. Connectivity should be encouraged between the French Jura
35	mountain, the Vosges mountain and the Palatinate Forest in Germany where a reintroduction
36	program is currently ongoing. Our density estimates will help in setting a baseline
37	conservation status for the lynx population in France.
38	
39	Introduction
40	
41	Obtaining estimates of animal population density is a key step in providing sound
42	conservation and management strategies for wildlife [1]. For many large carnivores however,
43	estimating density is difficult because these species are elusive and wide-ranging, resulting in
44	low detection rates [2]. To deal with these issues, non-invasive techniques, such as camera
45	trapping and DNA sampling, are increasingly used [3]. These non-invasive techniques
46	generate data that can be analyzed with capture-recapture methods to estimate densities [4].
47	Standard capture-recapture models for closed populations [5] have long been used to
48	estimate animal abundance and density, including many large carnivores [6,7]. However,

49 when converting abundance into density, density estimates are highly sensitive to the size of

50 user-defined area assumed to reflect the effective sampling area [8]. In addition, individual

51 heterogeneity on the detection due to spatial variation in the distance of home ranges to the 52 sampling devices may lead to biased density estimates [5]. Spatial capture-recapture (SCR) 53 models deal with these issues by explicitly incorporating spatial locations of detections [9– 54 12], and they are increasingly used to estimate densities of large carnivores [13-18]. 55 Here, we focus on the threatened Eurasian lynx (Lynx lynx) in the French Jura and 56 Vosges mountains (see [19] for a map of its distribution in Europe; see also 57 https://www.lcie.org/Large-carnivores/Eurasian-lynx for recent updates). As in many regions of western Europe [20], lynx were extirpated from France between the 17th and 20th centuries 58 59 due to habitat degradation, persecution by humans and decrease in prey availability [21]. 60 Shortly after their initial reintroduction in Switzerland in the 1970s [22], lynx naturally 61 increased their range and started recolonizing France by repopulating forests on the French 62 side of the Jura [21]. Reintroductions also occurred in the French Vosges mountain between 63 1983 and 1993 with the perspective of establishing a population there [23]. The species is 64 listed as endangered in the IUCN Red list and is of conservation concern in France due to 65 habitat fragmentation, poaching and collisions with cars and trains. Currently, the French 66 population of lynx is restricted to three mountain ranges, the Vosges, in northeastern France, 67 the Jura and the Alps, with little connectivity between them most likely due to human-made 68 linear infrastructures. While the Northern Alps are slowly being recolonized with lynx mostly 69 coming from the Jura [24], the Jura holds the bulk of the French lynx population. In contrast, 70 the lynx presence in the Vosges mountain remained stable following the reintroductions and 71 then, has been continuously decreasing since 2005 [25]. 72 Despite their conservation status, little information on abundance and density of lynx 73 in France exist. In this study, we used SCR and standard capture-recapture models to provide

74 the first estimate of lynx abundance and density using camera-trap surveys implemented in

- the French Jura and Vosges mountains from 2011 to 2016. Based on these results, we discuss
- research and management priorities for the effective conservation of lynx in France.
- 77

```
78 Methods
```

79

```
80 Ethics statement
```

81 We used non-invasive methods for data collection, which did not involve manipulation or

82 handling of any living organism. Therefore, approval from an animal ethics committee was

83 not required. Cameras were set on public or private forests with the permission of local

84 authorities or local owners, respectively. We advertised the study and the presence of camera

traps to the local stakeholders and the public visiting the areas. In agreement with French

86 legislation, we deleted photos permitting the identification of goods or people.

87

88 Study area and sampling design

89 The study area encompassed three counties of the French Jura mountain, namely Ain, Doubs 90 and Jura and four counties of the Vosges mountain, namely Vosges, Haut-Rhin, Bas-Rhin and 91 Moselle (Figure 1). Elevation ranged from 163 and 1,718 m above sea level in the Jura 92 mountain and from 104 to 1,422 m in the Vosges mountain. The human population density 93 was 88 per km^2 in the Jura mountain and 170 per km^2 in the Vosges mountain. Forests cover 94 50% on average of the Jura mountain [26] and 70% of the Vosges mountain [27]. Sampling 95 occurred over 6 years, between January 2011 and April 2016, mostly in winter and spring, 96 with surveys lasting between 2 and 4 months. We considered two study areas in 2011, 2014 97 and 2015, three study areas in 2013 and one study area in 2012 and 2016 through camera 98 trapping (Figure 1).

99

100	[Figure 1 about here]
101	
102	We divided each study area into a grid of 2.7 x 2.7 km cells applying a systematic
103	design where one out of two cells was sampled [28], hence ensuring that at least one camera
104	trap was set in each potential lynx home range (between 100km ² and 250km ² , see [29]). To
105	maximize detectability, we set (non-baited) camera traps in forested habitats, based on
106	previous signs of lynx presence and on local knowledge, at optimal locations where landscape
107	and terrain features were likely to channel lynx movements on more predictable paths (on
108	forest roads, hiking trails and to a lesser extent on game paths) [30]. Camera were settled on
109	within a single session design continuously during 60 days between February and beginning
110	of March with little variation between sites.
111	At each trapping location, we set two Xenon white flash camera traps (models:
112	Capture, Ambush and Attack; Cuddeback, WI, USA) with passive infrared trigger
113	mechanisms to photograph both flanks of an animal. We checked camera traps weekly to
114	change memory cards, batteries and to remove fresh snow after heavy snowfall. Based on
115	unique coat patterns, we identified individual lynx on photographs [31]. The recognition of
116	individual was computer-induced, not fully automated. We used the Extract-compare ©
117	software that compares the lynx spot pattern with a library of previously extracted pattern and
118	proposes potential matches according to a score
119	(http://conservationresearch.org.uk/Home/ExtractCompare). The observer can confirm the
120	lynx identification or not and browse through the highest-ranking proposed matches. The final
121	decision is made by the observer based on an additional visual examination of the entire photo
122	set for this particular lynx. Pictures for which no match was found with the software were
123	visually checked against our entire photo library. Only when the match is undeniable is the
124	individual recorded as a match, otherwise it was recorded as a new individual. All captures

125	that do not fit automated or associated visual confirmation with no doubt, because of a poor
126	picture quality (e.g. blurry, overexposed), were classified as "unconfirmed" and excluded
127	from the analyses. We recorded the date, time, sex whenever possible, and location of each
128	photographic capture of a lynx. During the time of year our study took place, juvenile lynx (<
129	1 year old) can still be with their mother [32]. In our analysis, we retained only independent
130	lynx, i.e. adult lynx or emancipated individuals based on physical characteristics or previous
131	knowledge of their age or status (from photographic evidence). We defined a capture occasion
132	as 5 successive trap nights [30], dissociating trapping events from individual photo to avoid
133	pseudo-replications.
40.4	

134

135 Spatial capture-recapture analyses

136 We used spatial capture-recapture (SCR) models to estimate lynx densities [4]. In contrast 137 with standard (non-spatial) capture-recapture models, SCR models use the spatial locations of 138 captures to infer the activity center (or home range) of each individual. We assumed that 139 individual encounters are Bernoulli random variables with individual- and trap-specific 140 detection probabilities. More precisely, the detection probability p_{ii} of an individual i at trap i 141 is assumed to decrease as the distance (d_{ii}) from its activity center increases according to a detection function. We used the half-normal detection function, $p_{ii} = p_0 \exp(-d_{ii}^2/(2\sigma^2))$, 142 143 where p_0 is the probability of detecting an individual when the trap is located exactly at its 144 center of activity and σ is the spatial scale (or movement) parameter that controls the shape of 145 the detection function. For one of the two study areas in the French Jura mountain in years 146 2011 and 2013, we detected only a few individuals (see the columns Doubs in Table 1). To 147 increase the effective sample size, we combined the data from the two sampling areas using 148 common detection and spatial parameters for both areas, while estimating density separately 149 (e.g., [33]). We defined a state-space, i.e. the area encompassing all potential activity centers

150	of the observed individuals, by building a grid that buffered outermost camera trap locations
151	by 15 km (corresponding to at least 2σ [4]) with a resolution of 1.5 km (or pixels of area 2.25
152	km ²). We fitted SCR models in the maximum likelihood framework using the R package
153	oSCR [34,35].
154	For comparison, we also estimated abundance using standard (non-spatial) capture-
155	recapture models [5]. We dropped the spatial information and considered only the detections
156	and non-detections for each individual. We considered two models, M0 in which the detection
157	probability is the same for all individuals, and Mh in which the detection probability varies
158	among individuals. We fitted standard models in the maximum likelihood framework using
159	the R package Rcapture [36]. We estimated density as the ratio of estimated abundance over
160	an effective trapping area (ETA). ETA was estimated by adding a buffer to the trapping area
161	equal to the mean maximum distance moved (MMDM) or half of it (HMMDM). We
162	calculated the MMDM by averaging the maximum distances between capture locations for all
163	individuals detected at more than one site.
164	
165	Results
166	
167	We collected data from 413 camera trapping sites (2 camera traps were set per site) resulting
168	in 25,839 trap days (Table 1). In total, we identified 92 lynx over 532 detection events in the
169	Jura mountain, including 16 females, 13 males and 63 individuals of unknown sex. The
170	number of detections per individual was 2.6 on average and varied from 1 up to 11. In
171	contrast, we collected no lynx photo in the Vosges mountain, therefore we did not proceed
172	with analyses for this area.
173	
174	[Table 1 about here]

1	7	Ε.
1	. /	Э.

176	For the Jura mountain, abundance estimates were similar whether we used spatial or
177	non-spatial models, although always slightly higher for the former. Estimated abundance
178	among study areas varied between 5 (SE = 0.1) and 29 (0.2) lynx in the spatial analyses,
179	between 4 (0.7) and 23 (0.7) with model M0, and between 5 (1.7) and 28 (3.6) with model
180	Mh. Estimated density varied between 0.24 (0.02) and 0.91 (0.03) lynx per 100 km^2 in the
181	spatial analyses (Table 2). In the non-spatial analyses, the density varied between 0.31 (0.05)
182	and 0.78 (0.02) lynx per 100 km^2 under model M0 and between 0.34 (0.06) and 0.95 (0.12)
183	under model Mh when the MMDM was used. When we used HMMDM, the density varied
184	between 0.57 (0.10) and 1.46 (0.16) lynx per 100 km^2 under model M0 and between 0.67
185	(0.12) and 1.43 (0.16) under model Mh.
186	
187	[Table 2 about here]
188	
189	From the spatial analyses, we used the model estimates to produce density surfaces
190	within the state-space (Figure 2). The density per pixel of area 2.25 km^2 ranged from 0 to 0.20
191	individuals in the Jura mountain.
192	
193	[Figure 2 about here]
194	
195	Discussion
196	
197	By using camera-trap sampling and SCR models, we provided the first multi-site density
198	estimates for lynx that will help in setting a baseline conservation status for the French lynx
199	population. The multi-site dimension of our study allows exploring variability in the density

200 estimates across landscapes. Our study is yet another example of the potential of combining 201 SCR methods and non-invasive sampling techniques to estimate abundance and density for 202 elusive and wide-ranging species, like large carnivores [13–18]. 203 When examining densities across study areas in the French Jura mountain, we found 204 spatial variation between the three counties, with Doubs area having the lowest densities, Ain 205 the highest densities, and Jura intermediate densities. Our density estimates were of similar 206 magnitude to other lynx populations in Europe: 1.47 and 1.38 lynx / 100 km^2 in the 207 Northwestern Swiss Alps [13], 0.58 (Štiavnica mountains) and 0.81 individuals / 100 km² (Velká Fatra National Park) in Slovakia [37] and 0.9 individuals / 100 km² in the Bavarian 208 209 Forest National Park in Germany [38]. 210 While [13] and [37] used SCR models, [38] used standard capture-recapture models 211 with HMMDM to estimate densities, which makes them difficult to compare [39]. Indeed, in 212 other carnivore studies, the use of HMMDM also produced similar density estimates to SCR 213 models [13], while in others, including ours, the SCR estimates were closer to the MMDM 214 estimates [2] or intermediate between the MMDM and HMMDM estimates [40]. When 215 looking at reference values for densities across the distribution range of the species, it may be 216 biologically meaningful to use the MMDM density estimate as a reference as it covers the 217 whole potential of animal movements. On the other hand, because SCR models make space 218 explicit whereas standard model-based densities are sensitive to the definition of the effective 219 sampling area, we recommend the use of SCR models to estimate lynx densities. Our lynx 220 density estimates might suffer from potential sources of bias that need to be discussed. First, 221 the period of sampling is important to account for when setting up camera trap surveys [41]. 222 We conducted our survey outside the dispersal period, during the lynx mating season 223 (February-March mostly). We did so to avoid capturing transient individuals and to increase 224 detectability because of high lynx activity and relatively reduced human activities [31].

225	However, some individuals might have moved in and out of the study areas, especially males
226	who cover greater distances during the mating season. Whereas the presence of non-resident
227	individuals can affect the calculation of (H)MMDM, and in turn density estimated with
228	standard capture-recapture models, SCR density estimates were found to be robust to the
229	presence of transient individuals [42]. Second, males have larger home ranges than females
230	[13], which leads to heterogeneity in the SCR model parameter estimates. Because there were
231	too few males and females identified and lots of individuals with unknown sex, sex-specific
232	SCR analyses [43] produced unreliable abundance and density estimates (results not shown).
233	If detection heterogeneity is ignored in capture-recapture models, abundance is
234	underestimated [44], therefore our density estimates are probably biased low and should be
235	considered as a conservative metric. The determination of sex could be improved by i)
236	combining the photographic surveys with genetic surveys, ii) conducting deterministic
237	surveys over several years (e.g., [13]), iii) conducting an opportunistic camera trapping survey
238	all over the years and setting camera trap at fresh lynx kills, iv) setting infrared flash camera
239	traps capable of taking burst of images in rapid sequence at marking sites regularly used by
240	the lynx (e.g., [45]). Last, we did not detect any individuals in the Vosges mountain, even
241	though the sampling effort was similar to that implemented in the Jura mountain (Table 1).
242	This finding is likely to be representative of the current critical situation of the lynx in the
243	Vosges mountain.
211	We envision several perspectives to our work. First, while density estimates are of

We envision several perspectives to our work. First, while density estimates are of primary interest for conservation, understanding the mechanisms underlying trends in abundance is required to make sound conservation decisions [1]. SCR models have been extended to open populations [46] and can be used to estimate demographic parameters (survival, reproduction) of large carnivores [47]. Unfortunately, because of logistic constraints, we could not sample the same areas over several years, which precludes a

250	standard application of these models. A solution may lie in the combination of the data we
251	collected through systematic camera-trap surveys with additional data in the SCR framework,
252	such as occupancy data [48] or opportunistic camera-trap data [49]. Second, in addition to
253	traffic-induced mortality and conflicts with human activities, the expansion of lynx
254	populations is limited by habitat fragmentation [50], hence the need to assess connectivity
255	with other populations [51]. SCR models can be used to quantify landscape connectivity by
256	replacing the Euclidean distance between camera traps and home range centers by the
257	least-cost path [52,53]. For lynx, this will require setting up traps across a gradient of habitat
258	types, not only forested habitats, so that resistance to movement can be estimated.
259	In conclusion, our lynx density estimates for the French Jura mountain complement
260	nicely the estimates recently provided for the Northwestern Swiss Alps [13]. The use of
261	camera-trapping coupled with SCR models in both France and Switzerland was the result of a
262	cooperation between the two countries with the perspective of a transboundary monitoring
263	[54,55]. This approach would prove useful to accurately estimate densities in other areas
264	where habitats and prey availability might differ, and overall lynx detectability varies. Also,
265	collecting and adding movement data from GPS-collared lynx would be useful [49,56] to try
266	and infer the connections between subpopulations.
267	The case can be made for monitoring the return of the lynx in the French Alps. Indeed,
268	small-scale camera-trapping surveys and opportunistic observations are currently active and
269	producing signs of lynx presence. However, the lack of a coordinated and intensive sampling
270	effort prevents us from being able to estimate abundance and density and inferring trends.
271	In contrast, the situation in the Vosges mountain is alarming with no individuals
272	detected over the study period. Because the Vosges mountain are located between the French
273	Jura mountain and the Palatinate Forest in Germany where a reintroduction program is

274 ongoing (program LIFE13 NAT/DE/000755), the lynx colonization in the Vosges mountain

275	remains possible both by the north and the south. Incidentally, two cases of lynx dispersal in
276	the Vosges mountain from neighboring mountains have been recently observed ([57];
277	program LIFE13 NAT/DE/000755). To ensure the detection of lynx in the Vosges mountain,
278	we recommend reinforcing collaborative monitoring by involving all field stakeholders and
279	enhancing communication on the species signs of presence.
280	In this context, obtaining accurate and comparable lynx densities will be crucial to
281	closely monitor population trends at the national scale and inform management policies for
282	the effective conservation of the Eurasian lynx in France.
283	
284	Acknowledgments
285	We thank the staff from the French National Game and Wildlife Agency (ONCFS), the
286	CROC, the Forest National Agency, the "Directions Départementales des Territoires", the
287	"Fédérations Départementales des Chasseurs" the Regional Natural Parks, the environmental
288	protection associations and all the volunteers from the "Réseau Loup Lynx" who collected the
289	photographs during the camera-trapping session. OG was funded by CNRS and the "Mission
290	pour l'Interdisciplinarité" through the "Osez l'Interdisciplinarité" initiative. CD, EM and SG
291	were funded by ONCFS. CEFE and CROC were funded by CIL&B, MTES (ITTECOP) and
292	FRB through the research program ERC-Lynx. CROC was funded by the European Union
293	within the framework of the Operational Program FEDER-FSE "Lorraine et Massif des
294	Vosges 2014–2020", the "Commissariat à l'Aménagement du Massif des Vosges" for the
295	FNADT ("Fonds National d'Aménagement et de Développement du Territoire"), the DREAL
296	Grand Est ("Direction Régionale pour l'Environnement, l'Aménagement et le Logement"),
297	the "Région Grand Est", the "Zoo d'Amnéville", the "Fondation d'entreprise UEM", the
298	"Fondation Nature & Découvertes", the "Fondation Le Pal Nature", and the Chasseur

299	d'images magazine. This study could not have been conducted without authorizations from		
300	and agreements with municipalities, environmental managers and owners.		
301			
302	Author contributions		
303	OG wrote the paper and all co-authors commented on the manuscript. OG and SG analyzed		
304	the data. AL, CD, EG, EM and SG coordinated the study designs, the data collection and		
305	interpretation, with help from FZ for setting the experimental design in the Jura mountain.		
306			
307	Data accessibility		
308	The Eurasian lynx is an endangered species with high conservation stakes. Interactions with		
309	human activities are problematic and lead to poaching and anthropogenic pressures. Providing		
310	accurate information on lynx locations can be detrimental to the conservation status of the		
311	species. As a consequence, the original data could not be shared.		
312			
313	References		
314	1. Williams BK, Nichols JD, Conroy MJ. Analysis and management of animal		
315	populations. San Diego: Academic Press; 2002.		
316	2. Obbard ME, Howe EJ, Kyle CJ. Empirical comparison of density estimators for large		
317	carnivores. Journal of Applied Ecology. 2010;47: 76-84. doi:10.1111/j.1365-		
318	2664.2009.01758.x		
319	3. Kelly M, Betsch J, Wultsch C, Mesa B, Mills L. Noninvasive Sampling for		
320	Carnivores. Carnivore Ecology and Conservation: A Handbook of Techniques. Oxford		
321	University Press. 2012. pp. 47–69.		
322	4. Royle JA, Chandler RB, Sollmann R, Gardner B. Spatial Capture-Recapture [Internet].		
323	New York, USA: Academic Press, New York; 2014. doi:10.1016/C2012-0-01222-7		

324	5.	Otis DL, Burnham KP, White GC, Anderson DR. Statistical Inference from Capture
325	Data on Closed Animal Populations. Wildlife Monographs. The Wildlife Society; 1978. pp.	
326	3–135	. doi:10.2307/2287873
327	6.	Mumma MA, Zieminski C, Fuller TK, Mahoney SP, Waits LP. Evaluating
328	noninv	asive genetic sampling techniques to estimate large carnivore abundance. Molecular
329	Ecolog	gy Resources. 2015;15: 1133–1144. doi:10.1111/1755-0998.12390
330	7.	Gerber BD, Ivan JS, Burnham KP. Estimating the abundance of rare and elusive
331	carniv	ores from photographic-sampling data when the population size is very small.
332	Popula	ation Ecology. 2014;56: 463–470. doi:10.1007/s10144-014-0431-8
333	8.	White GC, Anderson DR, Burnham KP, Otis DL. Capture-recapture and removal
334	metho	ds for sampling closed populations. Los Alamos, NM: Los Alamos National
335	Labora	atory; 1982 p. 14. Available: http://pubs.er.usgs.gov/publication/70120390
336	9.	Royle JA, Young KV. A hierarchical model for spatial capture-recapture data.
337	Ecology. 2008;89: 2281–2289. doi:10.1890/07-0601.1	
338	10.	Borchers DL, Efford MG. Spatially Explicit Maximum Likelihood Methods for
339	Captur	re-Recapture Studies. Biometrics. 2008;64: 377-385. doi:10.1111/j.1541-
340	0420.2	2007.00927.x
341	11.	Efford M. Density estimation in live-trapping studies. Oikos. 2004;106: 598-610.
342	doi:10	.1111/j.0030-1299.2004.13043.x
343	12.	Borchers D. A non-technical overview of spatially explicit capture-recapture models.
344	Journa	l of Ornithology. 2012;152: 435–444.
345	13.	Pesenti E, Zimmermann F. Density estimations of the Eurasian lynx (Lynx lynx) in
346	the Sw	viss Alps. Journal of Mammalogy. 2013;94: 73-81. doi:10.1644/11-MAMM-A-322.1
347	14.	Stetz JB, Mitchell MS, Kendall KC. Using spatially-explicit capture-recapture models
348	to exp	ain variation in seasonal density patterns of sympatric ursids. Ecography. 2018;

349 doi:10.1111/ecog.03556

- 15. López-Bao JV, Godinho R, Pacheco C, Lema FJ, García E, Llaneza L, et al. Toward
- 351 reliable population estimates of wolves by combining spatial capture-recapture models and
- non-invasive DNA monitoring. Scientific Reports. 2018;8. doi:10.1038/s41598-018-20675-9
- 353 16. Goldberg JF, Tempa T, Norbu N, Hebblewhite M, Mills LS, Wangchuk TR, et al.
- 354 Examining Temporal Sample Scale and Model Choice with Spatial Capture-Recapture
- 355 Models in the Common Leopard Panthera pardus. Aegerter CM, editor. PLOS ONE. 2015;10:
- 356 e0140757. doi:10.1371/journal.pone.0140757
- 357 17. Broekhuis F, Gopalaswamy AM. Counting Cats: Spatially Explicit Population
- 358 Estimates of Cheetah (Acinonyx jubatus) Using Unstructured Sampling Data. Festa-Bianchet
- 359 M, editor. PLOS ONE. 2016;11: e0153875. doi:10.1371/journal.pone.0153875
- 360 18. Alexander JS, Gopalaswamy AM, Shi K, Riordan P. Face Value: Towards Robust
- 361 Estimates of Snow Leopard Densities. Margalida A, editor. PLOS ONE. 2015;10: e0134815.
- 362 doi:10.1371/journal.pone.0134815
- 19. Chapron G, Kaczensky P, Linnell JDC, von Arx M, Huber D, Andren H, et al.
- 364 Recovery of large carnivores in Europe's modern human-dominated landscapes. Science.
- 365 2014;346: 1517–1519.
- 366 20. Breitenmoser U. Large predators in the Alps: The fall and rise of man's competitors.
- 367 Biological Conservation. 1998;83: 279–289. doi:10.1016/S0006-3207(97)00084-0
- 21. Vandel J-M, Stahl P. Distribution trend of the Eurasian lynx Lynx lynx populations in
- 369 France. Mammalia. 2005;69. doi:10.1515/mamm.2005.013
- 370 22. Breitenmoser U, Breitenmoser-Würsten C, Capt S. Re-introduction and present status
- of the lynx (Lynx Lynx) in Switzerland. Hystrix It J Mamm. 1998;10. doi:10.4404/hystrix-
- 372 10.1-4118
- 23. Vandel J-M, Stahl P, Herrenschmidt V, Marboutin E. Reintroduction of the lynx into

- the Vosges mountain massif: From animal survival and movements to population
- development. Biological Conservation. 2006;131: 370–385.
- 376 doi:10.1016/j.biocon.2006.02.012
- 377 24. Marboutin E, Duchamp C, Moris P, Briaudet P-E, Léonard Y, Catusse M. Survey of
- the Lynx distribution in the French Alps : 2005-2009 update. Acta biologica Slovenica.
- 379 2012: 29–34.
- 380 25. Laurent A, Léger F, Briaudet PE, Léonard Y, Bataille A, Goujon G. Evolution récente
- 381 (2008-2010) de la population de Lynx en France. Faune Sauvage. 2012;294: 38–39.
- 382 26. Breitenmoser U, Breitenmoser-Würsten C, Capt S, Molinari-Jobin A, Molinari P,
- Zimmermann F. Conservation of the lynx Lynx lynx in the Swiss Jura Mountains. Wildlife

Biology. 2007;13: 340–355. doi:10.2981/0909-6396(2007)13[340:COTLLL]2.0.CO;2

- 385 27. DREAL Grand Est. Diagnostic partagé du massif des Vosges pour une vision
- transversale du territoire et de ses enjeux. 2018.
- 28. Zimmermann F, Breitenmoser-Würsten C, Molinari-Jobin A, Breitenmoser U.
- 388 Optimizing the size of the area surveyed for monitoring a Eurasian lynx (Lynx lynx)
- population in the Swiss Alps by means of photographic capture-recapture. Integr Zool.
- 390 2013;8: 232–243. doi:10.1111/1749-4877.12017
- 391 29. Breitenmoser-Würsten C, Zimmermann F, Stahl P, Vandel J-M,
- 392 Molinari-Jobin A, Molinari P, Capt S, Breitenmoser U. Spatial and Social stability of a
- 393 Eurasian lynx Lynx lynx population: an assessment of 10 years of observation in the Jura
- 394 Mountains. Wildlife Biology. 2007;13: 365–380. doi:10.2981/0909-
- 395 6396(2007)13[365:SASSOA]2.0.CO;2
- 396 30. Blanc L, Marboutin E, Gatti S, Gimenez O. Abundance of rare and elusive species:
- 397 Empirical investigation of closed versus spatially explicit capture-recapture models with lynx
- as a case study. The Journal of Wildlife Management. 2013;77: 372–378.

399 doi:10.1002/jwmg.453

- 400 31. Zimmermann F, Foresti D. Capture-recapture methods for density estimation. Camera
- 401 Trapping for Wildlife Research. Pelagic Publishing. Exeter, UK; 2016. pp. 95–141.
- 402 32. Zimmermann F, Breitenmoser-Würsten C, Breitenmoser U. Natal dispersal of
- 403 Eurasian lynx (Lynx lynx) in Switzerland. Journal of Zoology. 2005;267: 381–395.
- 404 doi:10.1017/S0952836905007545
- 405 33. Rocha DG da, Sollmann R, Ramalho EE, Ilha R, Tan CKW. Ocelot (Leopardus
- 406 pardalis) Density in Central Amazonia. Hagen CA, editor. PLOS ONE. 2016;11: e0154624.
- 407 doi:10.1371/journal.pone.0154624
- 408 34. Sutherland C, Muñoz DJ, Miller DAW, Grant EHC. Spatial Capture–Recapture: A
- 409 Promising Method for Analyzing Data Collected Using Artificial Cover Objects.
- 410 Herpetologica. 2016;72: 6–12. doi:10.1655/HERPETOLOGICA-D-15-00027
- 411 35. Sutherland C, Royle JA, Linden DW. oSCR: a spatial capture–recapture R package for
- 412 inference about spatial ecological processes. Ecography. 0. doi:10.1111/ecog.04551
- 413 36. Baillargeon S, Rivest L-P. Rcapture: Loglinear Models for Capture-Recapture in R.
- 414 Journal Of Statistical Software. 2007;19: 1–31.
- 415 37. Kubala J, Smolko P, Zimmermann F, Rigg R, Tám B, Iľko T, et al. Robust monitoring
- 416 of the Eurasian lynx Lynx lynx in the Slovak Carpathians reveals lower numbers than
- 417 officially reported. Oryx. 2017; 1–9. doi:10.1017/S003060531700076X
- 418 38. Weingarth K, Heibl C, Knauer F, Zimmermann F, Bufka L, Heurich M. First
- 419 estimation of Eurasian lynx (Lynx lynx) abundance and density using digital cameras and
- 420 capture-recapture techniques in a German national park. Animal Biodiversity and
- 421 Conservation. 2012; 11.
- 422 39. Gerber BD, Karpanty SM, Kelly MJ. Evaluating the potential biases in carnivore
- 423 capture–recapture studies associated with the use of lure and varying density estimation

techniques using photographic-sampling data of the Malagasy civet. Popul Ecol. 2012;54: 43–

- 425 54. doi:10.1007/s10144-011-0276-3
- 426 40. Reppucci J, Gardner B, Lucherini M. Estimating detection and density of the Andean
- 427 cat in the high Andes. Journal of Mammalogy. 2011;92: 140–147. doi:10.1644/10-MAMM-
- 428 A-053.1
- 429 41. Weingarth K, Zeppenfeld T, Heibl C, Heurich M, Bufka L, Daniszová K, et al. Hide
- and seek: extended camera-trap session lengths and autumn provide best parameters for
- 431 estimating lynx densities in mountainous areas. Biodiversity and Conservation. 2015;24:
- 432 2935–2952. doi:10.1007/s10531-015-0986-5
- 433 42. Royle JA, Fuller AK, Sutherland C. Spatial capture–recapture models allowing
- 434 Markovian transience or dispersal. Population Ecology. 2016;58: 53–62. doi:10.1007/s10144-
- 435 015-0524-z
- 436 43. Sollmann R, Furtado MM, Gardner B, Hofer H, Jácomo ATA, Tôrres NM, et al.
- 437 Improving density estimates for elusive carnivores: Accounting for sex-specific detection and
- 438 movements using spatial capture–recapture models for jaguars in central Brazil. Biological
- 439 Conservation. 2011;144: 1017–1024. doi:10.1016/j.biocon.2010.12.011
- 440 44. Cubaynes S, Pradel R, Choquet R, Duchamp C, Gaillard J-M, Lebreton J-D, et al.
- 441 Importance of accounting for detection heterogeneity when estimating abundance: the case of
- 442 French wolves. Conservation Biology. 2010;24: 621–6. doi:10.1111/j.1523-
- 443 1739.2009.01431.x
- 444 45. Vogt K, Zimmermann F, Kölliker M, Breitenmoser U. Scent-marking behaviour and
- social dynamics in a wild population of Eurasian lynx Lynx lynx. Behavioural Processes.
- 446 2014;106: 98–106. doi:10.1016/j.beproc.2014.04.017
- 447 46. Gardner B, Reppucci J, Lucherini M, Royle JA. Spatially explicit inference for open
- 448 populations: Estimating demographic parameters from camera-trap studies. Ecology. 2010;91:

449 3376-3383.

- 450 47. Whittington J, Sawaya MA. A Comparison of Grizzly Bear Demographic Parameters
- 451 Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models. Boyce
- 452 MS, editor. PLOS ONE. 2015;10: e0134446. doi:10.1371/journal.pone.0134446
- 453 48. Blanc L, Marboutin E, Gatti S, Zimmermann F, Gimenez O. Improving abundance
- 454 estimation by combining capture-recapture and occupancy data: Example with a large
- 455 carnivore. Journal of Applied Ecology. 2014;51: 1733–1739.
- 456 49. Tenan S, Pedrini P, Bragalanti N, Groff C, Sutherland C. Data integration for
- 457 inference about spatial processes: A model-based approach to test and account for data
- 458 inconsistency. Rocchini D, editor. PLOS ONE. 2017;12: e0185588.
- 459 doi:10.1371/journal.pone.0185588
- 460 50. Kramer-Schadt S, Revilla E, Wiegand T, Breitenmoser U. Fragmented landscapes,
- road mortality and patch connectivity: Modelling influences on the dispersal of Eurasian lynx.
- 462 Journal of Applied Ecology. 2004;41: 711–723. doi:10.1111/j.0021-8901.2004.00933.x
- 463 51. Zimmermann F, Breitenmoser U. Potential distribution and population size of the
- 464 Eurasian lynx Lynx lynx in the jura Mountains and possible corridors to adjacent ranges.
- 465 Wildlife Biology. 2007;13: 406–416. doi:10.2981/0909-
- 466 6396(2007)13[406:PDAPSO]2.0.CO;2
- 467 52. Royle JA, Chandler RB, Gazenski KD, Graves TA. Spatial capture–recapture models
- 468 for jointly estimating population density and landscape connectivity. Ecology. 2013;94: 287–
- 469 294. doi:10.1890/12-0413.1
- 470 53. Sutherland C, Fuller AK, Royle JA. Modelling non-Euclidean movement and
- 471 landscape connectivity in highly structured ecological networks. Methods in Ecology and
- 472 Evolution. 2015;6: 169–177. doi:10.1111/2041-210X.12316
- 473 54. Gervasi V, Brøseth H, Gimenez O, Nilsen EB, Odden J, Flagstad ., et al. Sharing data

- 474 improves monitoring of trans-boundary populations: The case of wolverines in central
- 475 Scandinavia. Wildlife Biology. 2016;22: 95–106. doi:10.2981/wlb.00142
- 476 55. Vitkalova AV, Feng L, Rybin AN, Gerber BD, Miquelle DG, Wang T, et al.
- 477 Transboundary cooperation improves endangered species monitoring and conservation
- 478 actions: A case study of the global population of Amur leopards. Conservation Letters. 2018;
- 479 e12574. doi:10.1111/conl.12574
- 480 56. Linden DW, Sirén APK, Pekins PJ. Integrating telemetry data into spatial capture-
- 481 recapture modifies inferences on multi-scale resource selection. Ecosphere. 2018;9: e02203.
- 482 doi:10.1002/ecs2.2203
- 483 57. Hurstel A, Laurent A. Première preuve de dispersion du Lynx d'Eurasie (Lynx lynx)
- 484 du Jura vers les Vosges. Ciconia. 2016: 1–6.
- 485 58. Efford M. secr: Spatially explicit capture-recapture models. R package version 3.2.1.
- 486 [Internet]. 2019. Available: https://CRAN.R-project.org/package=secr
- 487

488

489 Figures

490

491	Figure 1: Map of the study area in the French Jura and Vosges mountains. The study
492	area encompassed seven counties (Ain, Jura and Doubs in the Jura mountain and Vosges,
493	Haut-Rhin, Bas-Rhin and Moselle in the Vosges mountain) that were monitored through 418
494	camera trapping sites (298 in the Jura mountain and 115 in the Vosges mountain; two camera
495	traps were set per site), each within a 2.7 x 2.7 km cell. The inset map represents the French
496	counties (grey borders), the counties that were considered in the study (black borders), the
497	Jura mountain (green shaded area) and the Vosges mountain (red shaded area).
498	
499	
500	
501	Figure 2: Lynx (Lynx lynx) density maps in the French Jura mountain. The density scale
502	is in lynx per 2.25 km^2 (pixel resolution is 1500m x 1500m). We obtained the estimated
503	abundance in each map by summing up the densities in each pixel altogether. Yellow is for
504	low densities, green for medium densities and blue for high densities; the density scales are
505	specific to each map. Note that the interpretation of these plots as density maps is subject to
506	caution (see the vignette "secr-densitysurface" of the SECR R package [58]).
507	
508 509 510	

Table 1: Main characteristics and results of the lynx camera-trap survey carried out in a) the French Jura mountain and b) the French
Vosges mountain.

a. Year/County	2011/Doubs	2011/Jura	2012/Jura & Doubs	2013/Doubs	2013/Ain & Jura	2014/Ain	2015/Ain
Period of trap activity	Jan-Apr	Feb-Apr	Feb-Apr	Feb-Apr	Feb-Apr	Feb-Apr	Feb-May
Number of active camera traps	48	66	148	44	142	118	30
Number of trapping days (average/area)	63	59	69	63	58	59	99
Number of capture occasions ⁱ	15	15	17	14	13	13	21
Number of detections	22	42	130	25	117	158	38
Number of detected individuals	4	9	21	6	19	23	10
Number of females, unknown, males	1, 1, 2	1, 7, 1	2, 14, 5	1, 4, 1	2, 13, 4	4, 16, 3	2, 8, 0
Number of detections / ind: mean, min, max	3, 2, 4	2.8, 1, 6	2.5, 1, 10	2.7, 1, 6	3.6, 1, 11	3.3, 1, 9	2.2, 1, 5

b. Year/County	2013/Haut-Rhin & Vosges	2014/Bas-Rhin & Moselle	2015/Bas-Rhin & Moselle	2016/Bas & Haut-Rhin
Period of trap activity	Dec-Jan	Feb-Apr	Feb-Apr	Feb-Apr
Number of active traps	60	50	60	60
Number of trapping days (average/area)	52	59	57	59
Number of detections	0	0	0	0

ⁱA capture occasion is defined as 5 successive trap days.

Table 2: Lynx abundance and density estimates obtained from spatial and non-spatial capture-recapture analyses of camera-trapping data collected in the French Jura mountain. Densities are provided in number of lynx per 100 km². For 2011 and 2013, parameters of the spatial capture-recapture model (p_0 and σ) are common to both areas in each year. Acronyms are defined in the footnoteⁱ.

Year/County	2011/Doubs	2011/Jura	2012/Jura-Doubs	2013/Doubs	2013/Ain-Jura	2014-Ain	2015-Ain
SCR abundance (SE)	5 (0.1)	12 (0.1)	29 (0.2)	7 (0.1)	21 (0.1)	29 (0.2)	12 (0.1)
SCR density (SE)	0.24 (0.02)	0.44 (0.02)	0.67 (0.02)	0.36 (0.02)	0.54 (0.02)	0.91 (0.03)	0.64 (0.03)
p_{θ} logit scale (SE)	-2.94	(0.24)	-2.01 (0.20)	-2.5	7 (0.20)	-2.34 (0.19)	-3.01 (0.42)
σ log scale (SE)	8.89	(0.14)	8.54 (0.08)	8.95 (0.06)		8.80 (0.07)	8.97 (0.19)
M0 abundance (SE)	4 (0.7)	9 (0.7)	21 (0.6)	6 (0.3)	19 (0.8)	23 (0.7)	11 (1.2)
Mh abundance (SE)	5 (1.7)	10 (1.8)	25 (2.8)	7 (1.2)	25 (4.1)	28 (3.6)	11 (1.2)
MMDM (km)	9.1	16.2	8.9	9.1	18.2	13.6	12.1
ETA with MMDM (km ²)	1991	2930	3089	1171	4954	2936	1549
M0 density MMDM (SE)	0.31 (0.05)	0.31 (0.02)	0.68 (0.02)	0.51 (0.02)	0.38 (0.02)	0.78 (0.02)	0.71 (0.08)
Mh density MMDM (SE)	0.39 (0.13)	0.34 (0.06)	0.81 (0.09)	0.60 (0.10)	0.50 (0.08)	0.95 (0.12)	0.70 (0.08)
ETA with HMMDM (km ²)	697	1491	2111	659	2673	1668	753

M0 density HMMDM (SE)	0.57 (0.10)	0.60 (0.05)	0.99 (0.03)	0.91 (0.05)	0.71 (0.03)	1.38 (0.04)	1.46 (0.16)
Mh density HMMDM (SE)	0.72 (0.24)	0.67 (0.12)	1.18 (0.13)	1.06 (0.18)	0.93 (0.15)	1.68 (0.21)	1.43 (0.16)

ⁱAcronyms used: ETA is for Effective Trapping Area, MMDM for Mean Maximum Distance Moved, HMMDM for Half Mean Maximum

Distance Moved, SCR for spatial capture-recapture, M0 for the (non-spatial) capture-recapture model with homogeneous detection probability,

Mh for the (non-spatial) capture-recapture model with heterogeneous detection probability and SE for standard error.

Figure 1

