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ABSTRACT.11

Analysis of spike and local field potential (LFP) data is an essential part of neuroscientific research. Today12

there exist many open-source toolboxes for spike and LFP data analysis implementing various functionality.13

Here we aim to provide a practical guidance for neuroscientists in the choice of an open-source toolbox best14

satisfying their needs. We overview major open-source toolboxes for spike and LFP data analysis as well as15

toolboxes with tools for connectivity analysis, dimensionality reduction and generalized linear modeling. We16

focus on comparing toolboxes functionality, statistical and visualization tools, documentation and support17

quality. To give a better insight, we compare and illustrate functionality of the toolboxes on open-access18

dataset or simulated data and make corresponding MATLAB scripts publicly available.19

Keywords: spike data, LFP, toolbox, MATLAB, open-source, Python, dimensionality reduction, GLM20

1 INTRODUCTION21

Analysis of spike and local field potential (LFP) data is an essential part of neuroscientific research (Brown22

et al., 2004; Stevenson and Kording, 2011; Mahmud and Vassanelli, 2016). There are many already23

implemented open-source tools and toolboxes for spike and LFP data analysis. However, ascertaining24

whether functionality of the toolbox fits users’ requirements is in many cases time-consuming. Often25

neuroscientists are even not aware that some functionality is already implemented and start writing their own26

scripts from scratch which takes time and is error-prone. We aim to provide a practical guidance for choosing27

a proper toolbox on the basis of toolbox functionality, statistical and visualization tools, programming28

language, availability of graphical user interface, support and documentation quality. Compared to the29

existing reviews (Ince et al., 2009, 2010; Ince, 2012; Mahmud and Vassanelli, 2016; Timme and Lapish,30

2018), we31

- include in the comparison important toolboxes and tools not covered by earlier reviews (e.g., Brain-32

storm, Elephant and FieldTrip);33

- compare in detail common and discuss unique functionality of toolboxes;34

- compare and illustrate functionality of the toolboxes on open-access datasets (Perich et al., 2018;35

Lawlor et al., 2018; Lowet et al., 2015) and simulated data. For readers’ convenience we make the36

corresponding MATLAB scripts publicly available1;37

- overview specialized tools for dimensionality reduction and generalized linear modeling as they are38

widely used in neuroscientific research (Cunningham and Byron, 2014; Truccolo et al., 2005);39

1https://github.com/ValentinaUn/Testing-open-source-toolboxes
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- provide information about documentation and support quality for the toolboxes;40

- indicate bibliometric information2: while popularity among users alone does not guarantee quality, it41

can be an important indicator that toolbox’s functions are easy-to-use and have been tested.42

Scope. We include into our comparison major open-source3 toolboxes (see Table 1) for spike and LFP43

data processing and analysis which have a valid link for downloading, documentation, scientific paper44

describing toolbox’s features or corresponding method, and which were updated during the last five years. In45

Table 1 we provide a summary of the toolboxes we consider, we list all toolboxes with a brief description in46

alphabetical order in Section 7 with paper reference and downloading link.47

Table 1: Features of open-source toolboxes regarding graphical user interface (GUI), visualization tools,
Import/Export of spike and LFP data in various file formats, e.g. recorded with different software/hardware,
principal programming language, availability of documentation, number of citations, and support by updates
at least once per year.

Toolbox, version GUI Visualization Import/ Language Docu- Cited Support
Export mentation

Brainstorm 3.4 + + + MATLAB + >1000 +
Chronux 2.12 v03 – + + MATLAB + >300 In part
Elephant v0.6.0 – – In part Python In part <30 +
FieldTrip 23.11.18 – + + MATLAB + >3000 +
gramm 2.25 – + – MATLAB + <30 +
Spike Viewer 0.4.2 + + In part Python In part <30 +
SPIKY 3.0 + + – MATLAB In part <30 In part

Python

Considered toolboxes were developed in MATLAB4 and Python5 languages which are popular in48

neuroscientific community.49

We have not listed in Table 1 toolboxes FIND (Meier et al., 2008), infotoolbox (Magri et al., 2009) and50

STAtoolkit (Goldberg et al., 2009), since they are not available under the links provided by the authors51

(accessed on 27.03.2019); toolboxes BSMART (Cui et al., 2008), DATA-Means (Bonomini et al., 2005),52

MEA-tools (Egert et al., 2002), MEAbench (Wagenaar et al., 2005), sigTOOL (Lidierth, 2009), SPKTool53

(Liu et al., 2011), STAR (Pouzat and Chaffiol, 2009), since they have not been updated during the last five54

years (since 2008, 2005, 2007, 2011, 2011, 2011, and 2012, correspondingly); toolbox SigMate (Mahmud55

et al., 2012) since it is in beta version; and toolbox OpenElectrophy (Garcia and Fourcaud-Trocmé, 2009)56

which is not recommended for new users by the toolbox authors6.57

Documentation/Support. We have indicated “In part” in Documentation column for Spike Viewer and58

SPIKY since, compared to other toolboxes from Table 1 , they do not provide a description of input parameters59

for most of the functions. This complicates understanding of implementation details for programming-60

oriented users that use only a part of the toolbox functionality in their analysis workflow. gramm toolbox61

specifies function input parameters not in code comments but in separate documentation file7. Considered62

version of Elephant provides only getting started tutorial, more tutorials are to be added8. Chronux and63

SPIKY (MATLAB version) toolboxes are not uploaded to GitHub or other public version control systems,64

2according to Google Scholar in March 2019 (https://scholar.google.com)
3when the code is available under a license which allows free redistribution and the creation of derived works
4https://www.mathworks.com
5https://www.python.org
6https://github.com/OpenElectrophy/OpenElectrophy
7https://github.com/piermorel/gramm/blob/master/gramm%20cheat%20sheet.pdf
8https://elephant.readthedocs.io/en/latest/tutorial.html
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which prevents from tracking version differences and smoothly reporting bugs (Python version of SPIKY is65

on GitHub9).66

Import/Export. We have indicated “In part” in Import/Export column for Elephant and Spike Viewer67

toolboxes since they require Neo-based Python package10,11 (Garcia et al., 2014) for the support of spike file68

formats (Spike2, NeuroExplorer, AlphaOmega, Blackrock, Plexon etc.). This Neo-based package is popular69

in neuroscientific society but requires either a separate installation or data conversion to Neo-compatible data70

format. Brainstorm, Chronux and FieldTrip support working with several spikes file formats (e.g. Blackrock,71

CED, Neuralynx, Plexon etc.)12 as well as working with data from MATLAB workspace or stored as .mat72

files. SPIKY and gramm support working with data from MATLAB workspace; SPIKY also supports73

working with data stored in .mat and .txt file formats.74

Compatibility. Chronux under Macintosh operating system requires recompilation of the locfit13 and75

spikesort packages. All other listed toolboxes are supported by Microsoft Windows, Macintosh and Linux76

operating system. Chronux, FieldTrip, gramm and SPIKY require MATLAB installation, Elephant requires77

Python installation, Brainstorm and Spike Viewer require neither MATLAB nor Python installation.78

Test dataset. We consider for illustration of toolboxes functionality an open-access dataset (Lawlor et al.,79

2018; Perich et al., 2018) and refer to this dataset further as “test dataset”. The dataset contains extracellular80

recordings from premotor (PMd) and primary motor (M1) cortex from a macaque monkey in a sequential81

reaching task where monkey controlled a computer cursor using arm movements. A visual cue specified the82

target location for each reach. The monkey receives a reward after making four correct reaches to the targets83

within the trial.84

In Sections 2 and 3, we compare toolboxes for the general spike and LFP data analysis, correspondingly.85

In Section 4, we compare tools for the analysis of synchronization and connectivity in spike and LFP data.86

Each of Sections 2-4 is subdivided into two subsections: first, we compare common toolboxes functionality,87

then we discuss unique toolboxes functionality, i.e. functionality implemented only in one of the toolboxes88

under comparison. In Section 5, we compare toolboxes with specialized tools for dimensionality reduction89

and generalized linear modeling. Finally, we summarize the comparisons in Section 6. In Section 7, we list90

all the considered toolboxes in alphabetical order with links for toolbox downloading and brief descriptions.91

We do not consider in this review toolboxes specializing on spike sorting and modeling spiking activity. For92

this we refer to (Ince et al., 2010; Mahmud and Vassanelli, 2016) and web-reviews14,15,16 correspondingly.93

2 TOOLBOXES FOR SPIKE DATA PROCESSING AND ANALYSIS94

In Table 2 we compare major open-source toolboxes for spike data analysis, both for point-process data95

and for spike waveforms. Functionality related to synchronization and connectivity analysis (e.g. cross-96

correlation, coherence, joint peri-stimulus time histogram, spike-LFP phase-coupling and dissimilarity97

measures etc.) will be covered in Section 4, and functionality related to dimensionality reduction and98

generalized linear modeling in Section 5.99

From Table 1 and 2 one can see that Brainstorm, Chronux and FieldTrip toolboxes provide more versatile100

functionality (see also below) than others, are highly cited, well-documented and allow import from many101

file formats. The Elephant toolbox has versatile functionality (see Subsection 2.2) but it does not have built-in102

visualization tools (Elephant provides visualization examples in the documentation using matlabplot103

Python library). Compared to other toolboxes from Table 2,104

9https://github.com
10https://github.com/NeuralEnsemble/python-neo
11http://neuralensemble.org/neo/
12see https://neuroimage.usc.edu/brainstorm/Introduction, Chronux folder dataio and http://www.

fieldtriptoolbox.org/dataformat for details, correspondingly
13One can recompile locfit by running locfit/source/compile.m
14https://simonster.github.io/SpikeSortingSoftware/
15https://www.cnsorg.org/software
16https://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
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Table 2: Comparing open-source spike data processing and analysis toolboxes. CV2 – measure of inter-spike
variability (Holt et al., 1996), ISIH – Inter-Spike Interval Histogram, locfit – local regression and likelihood
based analyses (Bokil et al., 2010; Loader, 2006), LV – measure of Local Variation (Shinomoto et al., 2003),
MTF – MultiTaper Fourier transform for point-process data (Jarvis and Mitra, 2001; Bokil et al., 2010),
PSTH – Peri-Stimulus Time Histogram

Toolbox ISIH PSTH Raster Spike Tuning Statistical Unique features
plots sorting curves tools

Brainstorm – – + + + + –
Chronux + + – – – + locfit, MTF
Elephant + + – – – + CV2, Fano factor, LV
FieldTrip + + + + – + waveform statistics
gramm – + + – + + –
Spike Viewer + + + – – – –
SPIKY – + + – – – –

- Brainstorm and FieldTrip include detailed documentation with tutorials and examples (documentation105

of other toolboxes from Table 2 has less examples/tutorials for spike data analysis) and have either a106

forum17 or a discussion list18 where users can ask questions on data analysis; both toolboxes regularly107

hold hands-on courses19,20, while other toolboxes from Table 2 provide neither forums nor courses;108

- Brainstorm and FieldTrip are actively developing by including new functionality;109

- FieldTrip provides many descriptive and inferential statistics mostly not requiring MATLAB statistical110

toolbox (Brainstorm provides statistical tools21 without examples for spike data analysis22 and these111

statistical functions are not part of spike data analysis functions, different to how it is often done in112

FieldTrip and Chronux; Spike Viewer and SPIKY do not provide statistical tools for general spike data113

analysis);114

- FieldTrip and gramm allow versatile data plots customization (color maps, line widths, smoothing,115

errorbars etc.); while gramm provides better and quicker general visualization tools, FieldTrip provides116

plotting customization specific for spike data analysis (conditions/interval/trials/channels and optimal117

bin size selection);118

- for programming-oriented users, Chronux and FieldTrip provide, to our opinion, most convenient and119

well-commented data analysis pipeline with clear uniform data structure (other toolboxes from Table 2120

are lacking at least one of three following components: detailed code comments with description of121

input/output parameters, uniform data structure throughout the analysis pipeline, modular function122

design allowing to easily adapt them into analysis workflow). Chronux reference documentation in the123

function description provides a list of functions which are called from the function and from which the124

function is called, this is convenient for programming-oriented users.125

17https://neuroimage.usc.edu/forums/
18http://www.fieldtriptoolbox.org/discussion_list/
19http://www.fieldtriptoolbox.org/workshop/
20https://neuroimage.usc.edu/brainstorm/Training
21https://neuroimage.usc.edu/brainstorm/Tutorials/Statistics
22https://neuroimage.usc.edu/brainstorm/Tutorials/Statistics

4

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2019. ; https://doi.org/10.1101/600486doi: bioRxiv preprint 

https://neuroimage.usc.edu/forums/
http://www.fieldtriptoolbox.org/discussion_list/
http://www.fieldtriptoolbox.org/workshop/
https://neuroimage.usc.edu/brainstorm/Training
https://neuroimage.usc.edu/brainstorm/Tutorials/Statistics
https://neuroimage.usc.edu/brainstorm/Tutorials/Statistics
https://doi.org/10.1101/600486
http://creativecommons.org/licenses/by/4.0/


Unakafova et al. Open-source spike and LFP toolboxes

2.1 Comparing common tools: peri-stimulus time-histogram, raster plot, inter-126

spike interval histogram and spike sorting127

In this subsection we compare most common spike data analysis functions: peri-stimulus time histogram128

(PSTH), raster plot, inter-spike interval histogram (ISIH) and spike sorting algorithms for toolboxes from129

Table 2. Regarding visualization, the gramm visualization toolbox stands out with its publication-quality130

graphics, which helps avoiding major post-processing. This is illustrated in Figure 1, where we compare131

PSTH and raster plots for test dataset produced in FieldTrip and gramm toolboxes, both of which provide132

most adjustable plot properties compared to other toolboxes from Table 2 (see below a detailed comparison).133

Figure 1: FieldTrip (A) and gramm (B) provide most adjustable peri-stimulus (PSTH) and raster plots
properties (plotting time is averaged over 1000 runs, MATLAB 2016a, here and later for processor 3.2 GHz
Intel Core i5 with 16GB RAM) among toolboxes from Table 2. We considered 50 ms bin size, M1 units
6, 14, 42, monkey MM for the test dataset. PSTHs are presented with standard error of the mean, neural
activity is aligned to trial start for reaches toward the second target in the trial. FieldTrip build-in tools do
not allow to adjust font size in a raster plot and line width in a PSTH plot (one has to do it manually with
MATLAB tools), and do not allow to plot raster and PSTH in separate figures (though one can plot spike
densities in a separate figure). Advantages of gramm toolbox for PSTH and raster plots are quick plotting,
raster plots separation for different units, vertical dashed lines for showing event times of the experiment
protocol, and smooth adjustment of line width, font size, color maps, errorbar, components positions, etc.

We do not provide raster plots and PSTH plots for other toolboxes from Table 2 with visualization tools134

since135

- Brainstorm does not provide PSTH plots; raster plots are available only for one unit per figure23;136

- Chronux does not provide raster plots and allows to plot only smoothed PSTH for one unit per figure137

without built-in tools to adjust line width, font size, colors etc.;138

- in SPIKY raster and PSTH plots are available only for one unit per figure without built-in tools to139

adjust line width, marker size, font style and size, colors (Kreuz et al., 2015, Figure 2) and without140

confidence intervals for PSTHs;141

- in Spike Viewer PSTH plots are available without confidence intervals24.142

Regarding statistical tools when computing PSTHs, Chronux computes PSTH for adaptive or user-defined143

kernel width with Poisson error or bootstrapped over trials (both with doubled standard deviation error).144

23https://neuroimage.usc.edu/brainstorm/e-phys/functions
24https://spyke-viewer.readthedocs.io/en/latest/
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Elephant computes PSTH for fixed user-defined bin size without additional statistics (note that Elephant145

provides many kernel functions for convolutions such as rectangular, triangular, Guassian, Laplacian,146

exponential, alpha function etc.). FieldTrip computes PSTH for optimal (by Scott’s formula (Scott, 1979)) or147

user-defined bin width with variance computed across trials. Besides, FieldTrip, different to other toolboxes148

from Table 2, allows statistical testing on PSTHs for different conditions or subjects25 with a parametric149

statistical or a non-parametric permutation test. Brainstorm provides this functionality by calling FieldTrip150

functions. gramm allows to compute PSTHs with (bootstrapped) confidence intervals, standard error of the151

mean, standard deviation etc26 only for user-defined bin width. Spike Viewer and SPIKY compute PSTH152

only for user-defined bin width and do not compute statistics for PSTHs across trials.153

In Figure 2 we compare visualization of ISIH provided by FieldTrip and Spike Viewer since other154

toolboxes from Table 2 do not provide ISIH visualization (Brainstorm, Chronux and Elephant compute ISIH155

without visualization, see details below).156

Figure 2: Compared to Spike Viewer (B), FieldTrip (A) provides also a second-order statistic on inter-spike
interval histogram (ISIH). We considered test dataset (M1 unit 14 aligned to trial start for reaches towards the
first target, monkey MM) for FieldTrip plot and Spike Viewer test dataset for Spike Viewer plot. Font sizes
in FieldTrip have been adjusted with MATLAB tools since FieldTrip built-in tools do not provide this option.

Regarding statistical tools when computing ISIH, FieldTrip computes ISIH with a coefficient of variation157

(a ratio of the standard deviation to the mean), Shinomoto’s local variation measure (Shinomoto et al., 2005)158

or a shape scale for a gamma distribution fit. Chronux computes ISIH with two standard deviations away159

from the mean calculated using jackknife resampling. Elephant computes ISIH with a coefficient of variation.160

Spike Viewer does not compute statistics on ISIH.161

Brainstorm and FieldTrip provide spike sorting algorithms including spike detection and extraction, i.e.,162

using time-continuous broadband data as input. Spike sorting package is no longer provided by Chronux.163

Brainstorm implements supervised and unsupervised spike sorting according to the methods WaveClus164

(Quiroga et al., 2004), UltramegaSort2000 (Hill et al., 2011; Fee et al., 1996), KiloSort (Pachitariu et al.,165

2016) and Klusters (Hazan et al., 2006). FieldTrip implements k-means and Ward (for several Ward distances)166

sorting methods. While Chronux and FieldTrip do not provide tutorials on spike sorting, Brainstorm has a167

detailed tutorial27.168

Brainstorm provides computing and visualization of tuning curves: they are plotted with one figure per169

unit for selected units, conditions and time interval but without customization of font size, line width and170

colors, no variance statistic across trials is computed28. gramm toolbox provides visualization of tuning171

25http://www.fieldtriptoolbox.org/reference/ft_timelockstatistics/
26https://github.com/piermorel/gramm/blob/master/gramm
27https://neuroimage.usc.edu/brainstorm/e-phys/SpikeSorting?highlight=%28sorting%29
28https://neuroimage.usc.edu/brainstorm/e-phys/functions
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curves including fits from MATLAB curve smoothing toolbox and user-defined functions (also in polar172

coordinates) with (bootstrapped) confidence intervals, standard error of the mean, standard deviation etc. As173

the considered gramm version is not focused on spike data analysis, firing rates averaged per condition need174

to be computed prior to tuning curves visualization (see example in our open MATLAB script).175

2.2 Description of unique tools176

In this subsection we discuss unique tools of toolboxes from Table 2, e.g. fitting tools, and higher order177

statistics (variability and spectral measures) on spike timing.178

Chronux provides two unique tools: local regression package (locfit) and point-process spectrograms.179

locfit is based on local regression methods (Loader, 2006; Parikh, 2009; Hayden et al., 2009) and provides a180

set of methods for fitting functions and probability distributions to noisy data. The idea of local regression is181

that the estimated function is approximated by a low order polynomial in a local neighborhood of any point182

with polynomial coefficients estimated by the least mean squares method (Bokil et al., 2010). In (Bokil et al.,183

2010; Loader, 2006) local regression methods are motivated by their simplicity, non-parametric approach to184

kernel smoothing and by reducing the bias at the boundaries which is present in kernel smoothing methods.185

On the other hand, it was shown that fixed and variable kernel methods (Shimazaki and Shinomoto, 2010,186

Algorithm 2, Appendix A.2) as well as Abramson’s adaptive kernel method (Abramson, 1982) outperform187

locfit for simulated data examples (Shimazaki and Shinomoto, 2010).188

Point-process spectrograms are usually used to illustrate rhythmic properties of otherwise stochastic189

spiking patterns rather than for statistical inference (Deng et al., 2013). We refer to (Hurtado et al., 2004,190

2005) regarding methods to evaluate statistical significance of point-process spectral estimators and to (Jarvis191

and Mitra, 2001; Rivlin-Etzion et al., 2006) for a critical discussion. Chronux provides the only open-source,192

to our knowledge, implementation of point-process spectral estimates which is implemented according to193

(Jarvis and Mitra, 2001; Rivlin-Etzion et al., 2006, Section 4, Formula 11), see example of usage in our open194

MATLAB script.195

Elephant provides several statistical measures for spike timing variability such as Fano factor, CV2196

measure of inter-spike variability (Holt et al., 1996) and a measure of local variation (Shinomoto et al., 2003)197

which were introduced as substitutes of classical coefficient of variation to overcome its sensitivity to firing198

rate fluctuations between trials (Shinomoto et al., 2005).199

FieldTrip allows to compute mean average spike waveform and its variance across trials, one can200

optionally align waveforms based on their peaks, rejects outlier waveforms and interpolate the waveforms.201

3 TOOLBOXES FOR LFP DATA ANALYSIS202

In Table 3 we compare open-source toolboxes for processing and analysis of local field potential (LFP) data.203

Functionality related to synchronization and connectivity analysis will be discussed in Section 4.204

Table 3: Comparing open-source toolboxes for processing and analysis of LFP data. FFT – Fast Fourier
Transform

Toolbox Digital De- FFT Hilbert Line noise Multitaper Wavelet Statistical
filtering trending transform removal methods transform tools

Brainstorm + + + + + + + +
Chronux – + + – + + – +
Elephant + – + + – – + –
FieldTrip + + + + + + + +

From Table 3 one can see that Brainstorm and FieldTrip toolboxes provide most versatile functionality205

for LFP data analysis. Compared to other toolboxes from Table 3,206
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- FieldTrip provides most flexible and versatile digital filtering (in particular, a fast and accurate line207

noise removal technique) and spectral analysis tools (see details in Subsection 3.1);208

- Brainstorm29,30 and FieldTrip31,32 provide detailed tutorials with guidance on parameter choice and209

examples for digital filtering and spectral analysis. Chronux provides examples on parameter choice210

for spectral analysis in manuals33 (Pesaran, 2008);211

- Brainstorm and Elephant provide fast implementation of Morlet wavelet transform (see details in212

Subsection 3.1);213

- Brainstorm, Chronux and FieldTrip provide statistical tools for computing variance across trials and214

for comparing between conditions when estimating spectra; Elephant does not compute statistics on215

the estimated spectra;216

- Brainstorm and FieldTrip allow adjustment of plot properties for spectral analysis such as baseline217

correction, trials and channels selection, colormaps and interactive selection of spectrogram part for218

further processing. Neither Chronux nor Elephant provide these options. Compared to Brainstorm,219

FieldTrip also allows to adjust font sizes, titles, plot limits etc.220

3.1 Comparing common tools: filtering, detrending and spectral analysis221

Digital filtering is implemented in Brainstorm, FieldTrip and Elephant toolboxes. Compared to toolboxes222

from Table 3, MATLAB and Python themselves provide more flexible filtering tools. Yet, it is convenient to223

have filtering within the toolbox pipeline. First, it allows to avoid extra conversion from toolbox’s format224

to MATLAB/Python and back. Second, toolboxes allow simplified setting of filter parameters for typical225

neuroscientific datasets and offer tutorials for their choice for non-experienced users.226

Brainstorm, FieldTrip and Elephant toolboxes provide low/high/band-pass and band-stop filters for227

user-defined frequencies.228

- Brainstorm provides Finite Impulse Response (FIR) filters with Kaiser window based on kaiserord229

functions from MATLAB Signal Processing Toolbox (Octave-based alternatives are used if this toolbox230

is not available). The user can set 40 or 60 dB stopband attenuation, data are padded with zeros at edges231

with a half of filter order length (according to the description of the filtering bst bandpass hfilter232

function used by default);233

- Elephant provides Infinite Impulse Response (IIR) Butterworth filtering with adjustable order using234

scipy.signal.filtfilt (with default padding parameters) or scipy.signal.lfilter standard235

Python functions;236

- FieldTrip provides the most flexible filtering tools with user-defined filter type (Butterworth IIR,237

window sinc FIR filter, FIR filter using either standard MATLAB fir1 or firls function from Signal238

Processing Toolbox or frequency-domain filter using standard fft and ifft MATLAB functions),239

padding type and optional parameters such as window type (Hanning, Hamming, Blackman, Kaiser),240

filter order and direction, transition width, passband deviation, stopband attenuation etc.34. An241

automatic tool to deal with filter instabilities (which MATLAB 2016a, to our knowledge, does not242

provide) is implemented by either recursively reducing filter order or recursively splitting the filter into243

sequential filters.244

29https://neuroimage.usc.edu/brainstorm/Tutorials/ArtifactsFilter
30https://neuroimage.usc.edu/brainstorm/Tutorials/TimeFrequency
31http://www.fieldtriptoolbox.org/example/determine_the_filter_characteristics/
32http://www.fieldtriptoolbox.org/tutorial/timefrequencyanalysis/
33http://chronux.org
34http://www.fieldtriptoolbox.org/reference/ft_preprocessing
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Unakafova et al. Open-source spike and LFP toolboxes

Brainstorm, Chronux and FieldTrip also provide specific tools for line noise removal. Brainstorm reduces245

line noise with IIR notch filter (employing either filtfilt function from MATLAB Signal Processing246

toolbox or MATLAB filter function). Chronux reduces line noise using Thomson’s regression method247

for detecting sinusoids (Thomson, 1982). FieldTrip reduces line noise by two alternative methods: with248

a discrete Fourier transform (DFT) filter (by fitting a sine and cosine at user-defined line noise frequency249

and subsequently subtracting estimated components) or by spectrum interpolation (Mewett et al., 2004). In250

Figure 3 we compare 60 Hz line noise removal by Chronux, FieldTrip and Brainstorm toolboxes on the basis251

of an example provided by MATLAB35 for open-loop voltage across the input of an analog instrument in252

the presence of 60 Hz power-line noise. One can see that FieldTrip selectively and successfully attenuates253

60 Hz while Brainstorm does not fully suppress 60 Hz, Chronux suppresses also frequencies around 62254

Hz, the MATLAB solution contains some remaining oscillations in the beginning of the signal, which is255

also reflected in the periodogram by a slight inaccuracy around 61-62 Hz. In Figure 3 (C) we present mean256

squared error (MSE) between power spectrum values of the original and estimated signal except the values257

estimated in 0.2 Hz vicinity of 60 Hz.258

Figure 3: FieldTrip (discrete Fourier transform filter, default parameters) provides the fastest and the most
accurate line noise removal compared to MATLAB solution (Butterworth notch filter with 2 Hz width),
Chronux (default 5 tapers, bandwidth 3) and Brainstorm (IIR notch filter with 1 Hz width). Filtering times
are averaged over 1000 runs, MATLAB 2016a.

Brainstorm, Chronux and FieldTrip provide detrending tools. Brainstorm removes a linear trend from the259

data, Chronux detrending employs local linear regression36, whereas FieldTrip detrending uses a general260

linear model approach and removes mean and linear trend from the data (by fitting and removing an Nth261

order polynomial from the data)37: Brainstorm, Chronux and FieldTrip offer similar performance in terms262

of processing time and trend removal accuracy for a simple MATLAB example38 (see our open MATLAB263

code).264

Compared to the classic Fourier transform, multitaper methods provide more convenient control of time265

and frequency smoothing (Percival and Walden, 1993; Mitra, 2007). Spectral decomposition with Morlet266

wavelets provides a convenient way of achieving a time-frequency resolution trade-off (van Vugt et al., 2007),267

since it is inherent to the method that wavelets are scaled in time to vary resolution in time and frequency,268

35https://www.mathworks.com/help/signal/ug/remove-the-60-hz-hum-from-a-signal.html
36http : / / chronux . org / chronuxFiles / /Documentation / chronux / spectral _ analysis / continuous /

locdetrend.html
37http://www.fieldtriptoolbox.org/reference/ft_preproc_detrend/
38https://de.mathworks.com/help/matlab/data_analysis/detrending-data.html
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see (van Vugt et al., 2007) for a comparison of multitaper and wavelet methods and (Bruns, 2004) for a269

comparison of wavelet, Hilbert and Fourier transform. Equivalent time-frequency trade-offs can also be270

implemented with short-time Fourier or Hilbert methods via variable-width tapers (Bruns, 2004).271

Chronux and FieldTrip provide multitaper power spectrum estimation using Thomson’s method (Thom-272

son, 1982; Percival and Walden, 1993; Mitra and Pesaran, 1999) with Slepian sequences (Slepian and Pollak,273

1961). Additionally to this, FieldTrip allows also more conventional tapers (e.g. Hamming, Hanning). In274

FieldTrip, the user defines frequencies and time interval of interest, width of sliding window and of frequency275

smoothing. In Chronux, the user defines bandwidth product and number of tapers to be used (see (Prieto276

et al., 2007) for a discussion of multitapers parameter choice).277

Brainstorm, Elephant and FieldTrip implement complex-valued Morlet transform. FieldTrip provides278

time-frequency transformation using Morlet waveforms either with convolution in the time domain or with279

the multiplication in the frequency domain. Brainstorm and Elephant implement convolution in the time280

domain. FieldTrip implements Morlet wavelet transformation methods based on (Tallon-Baudry et al., 1997),281

the user defines the wavelet width in number of cycles and optionally wavelet length in standard deviations282

of the implicit Gaussian kernel. In Brainstorm the user sets the central frequency and temporal resolution.283

Elephant implements Morlet wavelets according to (Le Van Quyen et al., 2001; Farge, 1992), where the user284

sets central Morlet frequencies, size of the mother wavelet and padding type.285

Different to other toolboxes from Table 3 FieldTrip also implements Fourier transform on the coefficients286

of the multivariate autoregressive model estimated with FieldTrip tools (see Subsection 4.1 for more details287

on MVAR implementation in FieldTrip).288

Elephant does not compute statistics on estimated power spectrum whereas Chronux and FieldTrip289

compute confidence intervals and standard error, correspondingly, in a standard way or with jackknife290

resampling. To compare spectrum estimates for different conditions or subjects, Chronux provides a291

two-group test and FieldTrip performs a parametric statistical test, a non-parametric permutation test or a292

cluster-based permutation test (Brainstorm includes these FieldTrip statistical functions).293

MATLAB R2016a, compared to Chronux, FieldTrip and Brainstorm,294

- does not provide detailed tutorials for multitaper and wavelet parameters choice;295

- does not have built-in tools for computing average spectrogram across trials;296

- does not have built-in tools for generating multitaper spectrograms;297

- uses exclusively short-time Fourier transform for standard spectrogram plotting.298

In Figure 4 we compare spectrum estimation methods implemented in Brainstorm (A), Chronux (B),299

Elephant (C), FieldTrip (D-F) and MATLAB (G-H) for two simulated signals, x1(t) and x2(t).300

We generate x1(t) as a sum of sines and x2(t) by sinusoidal frequency modulation, see Eq. 1-2. We add301

normally distributed pseudo-random values with zero mean to the second half of both signals:302

x1(t) = sin(2π8t)+ sin(2π20t)+ sin(2π40t)+ sin(2π60t)+ ε(t) (1)

x2(t) = cos
(
2π40t +6sin(2π2t)

)
+ ε(t) (2)

ε(t) =

{
0, for t = 1,2, . . . ,2000,
∼ N(0,1), for t = 2001,2002, . . . ,4000.

(3)

The instantaneous frequency of the signal x2(t) is defined by the following equation (Granlund, 1949):

f (t) = 40+12cos(2π2t). (4)

To compare quantitatively the spectra estimated by the toolboxes we compute power spectrum values of303

the ideal signal by setting maximum spectrum values at theoretical frequencies of the signals x1 (8, 20, 40304
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Unakafova et al. Open-source spike and LFP toolboxes

Figure 4: Comparing spectral analysis tools provided by the toolboxes. For each toolbox we plot estimated
spectrum of signal x1 (left subpanel) and of signal x2 (right subpanel). For short-time FFT we used 0.512
s moving window with 0.001s step. For multitaper methods we used in Chronux a single taper with time
bandwidth product 2 (left) and 8 (right); in FieldTrip a single taper with 2 Hz (left) and 0.1F (right) frequency
smoothing for time window 0.512s (left) and 8/F (right) at frequency F . For wavelet methods we used
in MATLAB and Brainstorm central frequency 4 (left) and 1.5 (right) Hz; in Elephant and FieldTrip 20
(left) and 10 (right) cycles wavelets resulting in the spectral bandwidth F/10 (left) and F/5 (right) Hz at
frequency F . Spectrum estimating times were averaged over 1000 runs in MATLAB 2016a.

and 60 Hz) and x2 (given by Eq. 4) and minimum at all other frequencies. When setting ideal power spectrum305

values we allow bandwidth of 1 Hz, i.e. we set the maximum power spectrum values also at neighboring306

frequencies. Then we compare in Figure 5 the estimated spectrum values with the ideal spectrum values307

using mean squared error and two-dimensional Pearson correlation coefficient as suggested in (Rankine308

et al., 2005).309

Figure 5: Mean squared error (A) and two-dimensional Pearson correlation coefficient (B) values between
estimated and ideal spectra. These measures were computed for the time span from 1 to 3 s for the signals
generated according to Eqs. 1-2. The lower MSE and the higher correlation coefficient are, the closer is the
estimated spectrum to the ideal spectrum.
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From Figures 4-5 we conclude that310

- MATLAB standard spectrogram tools are less robust with respect to noise than spectrum estimation311

provided by the toolboxes from Table 3 for the signal x2 with changing frequencies;312

- while Brainstorm, Chronux, Elephant and FieldTrip provide equally good accuracy of spectra estima-313

tion, Brainstorm and Elephant provide the fastest computing tools (see spectra computing times in314

subplot titles of Figure 4).315

See in our open MATLAB script an example of spectral analysis with averaging over trials for real-world316

LFP data (Lowet et al., 2015).317

3.2 Description of unique tools318

Compared to other toolboxes from Table 3, Chronux provides several unique features for specialized319

computations (Bokil et al., 2010) such as space-frequency singular value decomposition (SVD) for univariate320

and multivariate continuous signals: for theoretical details we refer to (Mitra and Pesaran, 1999) and for an321

example of possible application to (Makino et al., 2017; Prechtl et al., 1997). Space-frequency SVD can be322

applied to the space-time data as, for example, in (Prechtl et al., 1997), where space-frequency SVD has323

been applied for spectral analysis of transmembrane potentials optically recorded in pixels distributed in324

space. Chronux also provides computation of multitaper spectral derivatives and stationarity statistical test325

for continuous processes based on quadratic inverse theory.326

Elephant provides computing of the current source density from LFP data using electrodes with 2D or327

3D geometries.328

4 TOOLBOXES WITH SYNCHRONIZATION AND CONNECTIVITY ANALYSIS TOOLS329

In Table 4 we compare open-source toolboxes providing tools for spike-spike, field-field (LFP-LFP) or330

spike-field (spike-LFP) synchronization and connectivity analysis. We refer to (Blinowska, 2011; Bastos and331

Schoffelen, 2016) for reviews of functional connectivity analysis methods and their interpretational pitfalls332

(e.g. common reference, common input, volume conduction or sample size problems). We do not include in333

Table 4 the connectivity toolboxes ibTB (Magri et al., 2009) and Toolconnect (Pastore et al., 2016), since334

they are not available under the links provided by the authors (accessed on 27.03.2019). We also do not335

list in Table 4 the following connectivity analysis toolboxes that are not focused on spike and LFP data336

analysis: Inform (Moore et al., 2017), HERMES (Niso et al., 2013), JIDT (Lizier, 2014), MVGC (Barnett337

and Seth, 2014), MuTe (Montalto et al., 2014), PyEntropy (Ince et al., 2009), SIFT (Delorme et al., 2011)338

and TrenTool (Lindner et al., 2011). TrenTool toolbox has a FieldTrip-compatible data structure.339

Compared to other toolboxes from Table 4,340

- Brainstorm, Elephant and FieldTrip provide most versatile set of connectivity measures: while Field-341

Trip provides many classic and recent pairwise connectivity and synchronization measures, Elephant342

provides tools for multivariate analysis of high-order correlations in spike trains (see Subsections 4.1-343

4.2);344

- Brainstorm tutorials for connectivity measures are actively developing 39; Chronux has examples345

for connectivity measures for real-world data in tutorial presentations; FieldTrip provides detailed346

tutorials on connectivity analysis for simulated and real-world data; Elephant provides examples for347

connectivity measures with simulated data;348

39https://neuroimage.usc.edu/brainstorm/Tutorials/Connectivity
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Table 4: Comparison of connectivity analysis toolboxes for spike and LFP data. DTF – Directed Transfer
Function (Kaminski and Blinowska, 1991), JPSTH – Joint Peri-Stimulus Time Histogram, MI – Mutual
Information (Cover and Thomas, 2012), NC – Noise Correlations (Cohen and Kohn, 2011), PDC – Partial
Directed Coherence (Baccalá and Sameshima, 2001), PPC – Pairwise Phase Consistency (Vinck et al., 2010),
PSI – Phase Sloped Index (Nolte et al., 2004), RSEQ – statistical methods for detected Repeated SEQuences
of synchronous spiking (Torre et al., 2016; Russo and Durstewitz, 2017; Staude et al., 2010; Quaglio et al.,
2017), SFC – Spike-Field Coherence, STAT – STATistical tools, STD – Spike-Train Dissimilarity measures,
STTC – Spike Time Tiling Coefficient (Cutts and Eglen, 2014), WPL – Weighted Phase Lag index (Vinck
et al., 2011).

Toolbox (Cross)- Cohe- Granger Phase- Phase- Spike- Spike- Unique
corre- rence causality amplitude locking triggered field features
lation coupling value average cohe-

rence
Brainstorm + + + + + + – STAT
Chronux – + – – – + + STAT
Elephant + + – – – + + RSEQ, STD,

STTC
FieldTrip + + + + + + + DTF, JPSTH, MI,

NC, PDC, PPC,
PSI, STAT, WPL

SPIKY – – – – – – – STD

- Chronux and FieldTrip compute confidence intervals for connectivity measures with jackknife re-349

sampling or variance estimates across trials, correspondingly (see Subsections 4.1-4.2); Brainstorm350

computes significance values for common connectivity measures, Elephant does not compute statistics351

on common connectivity measures.352

To provide a better feeling of connectivity measures, we classify in Table 5 connectivity and synchro-353

nization measures mentioned in Table 4. We indicate for which signals the measure is applicable (Input),354

whether the measure is directed or not (Directed), is defined in time or frequency domain (Domain) and is bi-355

or multivariate (Dimension).356

4.1 Comparing common tools: correlation, cross-correlation, coherence, Granger357

causality, phase-amplitude coupling, phase-locking value, spike-field coherence358

and spike-triggered average359

In this subsection we compare implementations of common synchronization and connectivity measures360

for toolboxes from Table 4: correlation, cross-correlation, coherence, Granger causality, phase-amplitude361

coupling, phase-locking value, spike-field coherence and spike-triggered average.362

Brainstorm and Elephant implement correlation, a pairwise non-directional time-domain connectivity363

measure. Brainstorm computes Pearson correlation coefficient (or optionally covariance) between spike trains364

and p-value of its significance; correlation is computed equivalently to MATLAB corrcoef function but in365

a faster vectorized way for N > 2 input signals. Elephant computes either Pearson correlation coefficient366

between binned spike trains (without additional statistics), pairwise covariances between binned spike trains367

(without additional statistics) or spike time tiling coefficient (STTC) introduced in (Cutts and Eglen, 2014).368

STTC, compared to correlation index introduced in (Wong et al., 1993), is described as not dependent on369

signals firing rate, correctly discriminating between lack of correlation and anti-correlation etc. (Cutts and370

Eglen, 2014). There is also a MATLAB STTC implementation40.371

40https://github.com/Leo-GG/NeuroFun/blob/master/%2Bcorrel/calcSTTC.m
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Table 5: Classification of synchronization and connectivity measures implemented in toolboxes listed in
Table 4 regarding whether the measure is directed or not (Directed), is defined in time or frequency domain
(Domain) and is bi- or multivariate (Dimension).

Measure Directed Domain Dimension
Correlation and cross-correlation (CC) – Time Bivariate
Coherence – Frequency Bivariate
Directed transfer information (DTF) + Frequency Multivariate
Granger causality (GC) + Time, frequency Bivariate
Imaginary part of coherency (iCOH) – Frequency Bivariate
ISI and SPIKE distance, SPIKE synchronization (STD) – Time Bivariate
Joint peri-stimulus time histogram (JPSTH) – Time Bivariate
Mutual information (MI) – Time Bivariate
Noise correlation (NC) – Time Bivariate
Phase amplitude coupling (PAC) – Frequency Bivariate
Partial coherence (pCOH) + Frequency Bivariate
Partial directed coherence (pdCOH) + Frequency Multivariate
Phase-locking value (PLV) – Frequency Bivariate
Pairwise phase consistency (PPC) + Frequency Bivariate
Phase slope index (PSI) + Frequency Bivariate
statistical methods for detecting Repeated SEQuences of – Time Multivariate
synchronous spiking (RSEQ)
Spike field coherence (SFC) – Time Bivariate
van Rossum and Viktor-Purpura spike train dissimilarity – Time Bivariate
measures (STD)
Spike time tiling coefficient (STTC) – Time Bivariate
Weighted phase lag index (WPL) – Frequency Bivariate

Cross-correlation is correlation between two signals computed for different time lags of one signal372

against the other. Elephant and FieldTrip implement cross-correlation, a pairwise non-directional time-373

domain connectivity measure. Between two binned spike trains Elephant computes cross-correlation for374

user-defined window with optional correction of border effect, kernel smoothing (for boxcar, Hamming,375

Hanning and Bartlett) and normalization. Between two LFP signals Elephant computes the standard unbiased376

estimator of the cross-correlation function (Stoica et al., 2005, Eq. 2.2.3) for user-defined time-lags without377

additional statistics across trials; note that biased estimator of the cross-correlation function is more accurate378

as discussed in (Stoica et al., 2005). FieldTrip computes cross-correlation between two spike channels for379

user-defined time lags and bin size (correlogram can optionally be debiased depending on data segment380

length). FieldTrip computes shuffled and unshuffled correlograms: if two channels are independent, the381

shuffled cross-correlogram should be the same as unshuffled.382

Brainstorm, Chronux, Elephant and FieldTrip implement coherence, a frequency-domain equivalent of383

cross-correlation (Bastos and Schoffelen, 2016):384

- Brainstorm implements coherence according to (Carter, 1987) computing also p-values of parametric385

significance estimation;386

- Chronux computes coherence between two (binned) point-processes or LFP signals using multitaper387

methos, with confidence intervals or jackknife resampled error bars;388

- Elephant computes coherence using Welch’s method with phase lags but without additional statistics.389

Computing coherence across trials is not supported in the considered version;390

- FieldTrip computes coherence according to (Rosenberg et al., 1989) with variance estimate across391
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trials. Additionally, FieldTrip provides computing of partial coherence according to (Rosenberg et al.,392

1998), partial directed coherence (Baccalá and Sameshima, 2001) and imaginary part of coherency393

(Nolte et al., 2004) with variance across trials. Partial directed coherence (PDC) is a directional394

measure. Compared to coherence, PDC is shown to reflect a frequency-domain representation of the395

concept of Granger causality (Baccalá and Sameshima, 2001).396

Elephant does not provide built-in tools to compare coherence values between two conditions, Chronux397

provides a two-group test, FieldTrip provides an independent samples Z-statistic via ft freqstatistics398

function by the method described in (Maris et al., 2007), Brainstorm is using FieldTrip ft freqstatistics399

function.400

Brainstorm and FieldTrip implement Geweke’s extension of the original time-domain concept of Granger401

causality (GC) introduced in (Granger, 1969) to the frequency domain (Geweke, 1982). GC implemented in402

Brainstorm and FieldTrip is a frequency-domain pairwise directional measure of connectivity. FieldTrip403

GC implementation is based on (Brovelli et al., 2004). The multivariate autoregressive (MVAR) model in404

FieldTrip uses biosig or BSMART toolboxes implementation on user choice, which are included in FieldTrip.405

FieldTrip computes variance of GC values across trials. Neither Brainstorm nor FieldTrip provide built-in406

tools/prescribed procedure to statistically compare GC values between conditions. Different to FieldTrip,407

Brainstorm computes as well time-resolved GC between two signals using two Wald statistics according408

to (Geweke, 1982) and (Hafner and Herwartz, 2008). The directed transfer function and partial directed409

coherence are multivariate extensions of Granger causality (Blinowska, 2011).410

In Figure 6 we compare values of several connectivity measures computed in Brainstorm, Chronux and411

FieldTrip for simulated data with autoregressive models41 according to Eq. (5) (computing coherence across412

trials is not included in the considered Elephant version).413

Figure 6: Comparing Brainstorm, Chronux and FieldTrip implementations of connectivity measures for
signals simulated by autoregressive models (see Eq. (5)). While coherence is non-directional, Granger
Causality (GC), Directed Transfer Function (DTF, see Subsection 4.2 for more details) and Partial directed
Coherence (PDC) are directional measures. PDC allows to correctly detect interaction between signals (no
direct X → Y interaction). Chronux and FieldTrip provide faster implementations compared to Brainstorm
(see somputing times in plots legends) and return variance across trials. Brainstorm coherence values are
noisier since there Welch method is used in contrast to multitapers (Chronux) or multivariate autoregressive
modeling (FieldTrip).

41http://www.fieldtriptoolbox.org/tutorial/connectivity/
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x(t) = 0.8x(t−1)−0.5x(t−2),
y(t) = 0.9y(t−1)+0.5z(t−1)−0.8y(t−2),
z(t) = 0.5z(t−1)+0.4x(t−1)−0.2z(t−2). (5)

Brainstorm and FieldTrip implement phase-amplitude coupling (PAC), a frequency-domain pairwise414

non-directional measure (Canolty et al., 2006; Samiee and Baillet, 2017; Voytek et al., 2010). FieldTrip415

implements two types of PAC42: mean vector length and modulation index according to (Tort et al., 2010).416

Brainstorm implements PAC according to (Özkurt and Schnitzler, 2011). Both Brainstorm and FieldTrip do417

not compute additional statistics on PAC.418

Brainstorm and FieldTrip implement phase-locking value (PLV), a frequency-domain pairwise non-419

directional measure (Lachaux et al., 1999). PLV checks how consistent the phase relation between the two420

signals is across trials. We refer to (Vinck et al., 2011; Bastos and Schoffelen, 2016) for a comparison of421

different phase synchronization metrics and their biases. FieldTrip computes PLV based on (Lachaux et al.,422

1999) with a variance estimate using jackknife resampling.423

Combination of spiking activity and LFP is often used to study rhythmic neuronal synchronization424

since spike-LFP measures are more sensitive than spike-spike synchronization measures (Vinck et al., 2012;425

Chakrabarti et al., 2014). To this end Brainstorm, Chronux, FieldTrip and Elephant implement a spike-field426

coherence (SFC), a frequency-domain pairwise non-directional measure. Brainstorm implements SFC427

according to (Fries et al., 2001) for user-defined window size around spikes without additional statistics428

computed. Chronux implements SFC with a multitaper approach for user-defined tapers and frequency band,429

computing also a confidence level of coherency and jackknife or standard error bars. FieldTrip computes430

SFC with variance across trials (see details in the corresponding tutorial43). Elephant implements SFC using431

standard Python scipy.signal.coherence() function, no additional statistics is computed.432

One of the first steps in the analysis of spike-field coupling is computing of a spike-triggered average433

(STA) of LFP that is an average LFP voltage within a small window of the time around every spike. While434

neither Brainstorm nor Elephant compute any additional statistic on STA, Chronux computes STA with an435

optional kernel smoothing and calculates bootstrapped standard error on computed values and FieldTrip436

computes mean and variance of STA values.437

4.2 Description of unique tools438

In this subsection we describe unique tools of the toolboxes from Table 4. Elephant provides five recent439

statistical tools to study higher-order correlations and synchronous spiking events in parallel spike trains:440

- ASSET (Analysis of Synchronous Spike EvenTs) implements the method from (Torre et al., 2016)441

and is an extension of the visualization method from (Schrader et al., 2008). ASSET assesses the442

statistical significance of simultaneous spike events (SSE) and aims to detect such events that cannot443

be explained on the basis of rate coding mechanisms and arise from spike correlations on shorter time444

scale;445

- CAD (Cell Assembly Detection) implements the method from (Russo and Durstewitz, 2017) for446

capturing structures of higher-order correlations in massively parallel spike train recordings with447

arbitrary time lags and at multiple time-scale; CAD makes statistical parametric testing between each448

pair of neurons followed by an agglomerative recursive algorithm aiming to detect statistically precise449

repetitions of spikes in the data;450

42http://www.fieldtriptoolbox.org/reference/ft_crossfrequencyanalysis/
43http://www.fieldtriptoolbox.org/tutorial/spikefield/
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- CuBIC (Cumulant Based Inference of higher order Correlations) implements a statistical method451

(Staude et al., 2010) for detecting higher order correlations in parallel spike train recordings;452

- SPADE (Spike Pattern Detection and Evaluation) implements the method from (Quaglio et al., 2017)453

for assessing the statistical significance of repeated occurrences of spike sequences (spatio-temporal454

patterns) based on recent methods in (Torre et al., 2013; Quaglio et al., 2017). SPADE aims to455

overcome computational and statistical limits in detecting repeated spatio-temporal patterns within456

massively parallel spike trains (Quaglio et al., 2017), see (Quaglio et al., 2018) for a recent review of457

methods for identification of spike patterns in massively parallel spike trains;458

- UE (Unitary Event analysis) implements the statistical method from (Grün et al., 1999, 2002) for459

analyzing excess spike correlations between simultaneously recorded neurons. This method compares460

the empirical spike coincidences to the expected number on the basis of firing rate of the neurons.461

Elephant and SPIKY toolboxes allow to compute measures of spike train dissimilarity (also referred as462

measures of spike train synchrony). Elephant implements well-known time-scale dependent van Rossum463

(van Rossum, 2001) and (Victor and Purpura, 1996) dissimilarity distances whereas SPIKY implements three464

recent parameter-free time-scale independent measures: ISI-distance (Kreuz et al., 2007), SPIKY distance465

(Kreuz et al., 2012) and SPIKE synchronization (Quiroga et al., 2002). We refer to (Chicharro et al., 2011;466

Kreuz et al., 2012; Mulansky et al., 2015) for a comparison of dissimilarity measures. Note also MATLAB467

implementations of dissimilarity measures at J.D. Victor44 and T. Kreuz45 web-sites.468

FieldTrip, compared to other toolboxes from Table 4, computes and visualizes46 the following classic469

and recent connectivity and synchronization measures:470

- directed transfer function (DTF) introduced in (Kaminski and Blinowska, 1991) is a multivariate471

frequency-domain directional connectivity measure; FieldTrip computes it according to (Kaminski472

and Blinowska, 1991) from cross-spectral density with a variance across trials. DTF, compared to GC,473

makes a multivariate spectral decomposition, the advantage of this approach is that interaction between474

all channels is taken into account (see, e.g., Figure 6 in Subsection 4.1). However pairwise measures475

yield more stable results since they involve fitting fewer parameters (Blinowska, 2011; Bastos and476

Schoffelen, 2016);477

- joint peri-stimulus time histogram (JPSTH) is a pairwise time-domain non-directional measure between478

spike trains that allows to gain insight into temporal evolution of spike-spike correlations (Brown479

et al., 2004; Aertsen et al., 1987). To check whether the resulted JPSTH is caused by task-induced480

fluctuations of firing rate or by temporal coordination not time-locked to stimulus onset, FieldTrip also481

computes JPSTH with shuffling subsequent trials. We illustrate JPSTH visualization with FieldTrip482

tools in Figure 7;483

- mutual information (MI) is a pairwise time-domain non-directional connectivity measure. FieldTrip484

computes MI using implementation from ibtb toolbox (Magri et al., 2009) without additional statistics;485

- noise correlations (NC) is a non-directional pairwise time-domain measure that can be computed486

between two spike trains; NC measures whether neurons share trial-by-trial fluctuations in their firing487

rate; different to so called signal correlations (SC), these fluctuations are measured over repetitions of488

identical experimental conditions, i.e. are not driven by variable sensory or behaviorally conditions;489

- phase-coupling pairwise spike-field measures compute the phases of spikes relative to the ongoing490

LFP with a discrete Fourier transform of an LFP segment around the spike time (Vinck et al., 2012).491

FieldTrip implements recent methods from (Vinck et al., 2012): angular mean of spike phases, Rayleigh492

44http://www-users.med.cornell.edu/~jdvicto/pubalgor.html
45http://wwwold.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/VanRossum.html
46http://www.fieldtriptoolbox.org/reference/ft_connectivityplot/
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Figure 7: Illustration of FieldTrip functionality: joint peri-stimulus time histogram (JPSTH) (A), shuffled
JPSTH (B) and their difference (C) for test dataset between M1 units 6 and 42, monkey MM (colorbar values
range is different for each subplot, this range is not adjustable outside of FieldTrip).

p-value and pairwise-phase consistency according to the method in (Vinck et al., 2010). We refer to493

(Vinck et al., 2010; Bastos and Schoffelen, 2016) for a discussion and comparison of these measures;494

- phase-slope index (PSI) is a directional pairwise frequency-domain measure that can be computed495

between two signals from their complex-valued coherency. FieldTrip computes PSI according to496

(Nolte et al., 2008) with variance across trials;497

- pairwise phase consistency (PPC) is a directional pairwise frequency-domain measure that can be498

computed from the distribution of pairwise differences of the relative phases. PPC compared to PLV is499

not biased by sample size (Bastos and Schoffelen, 2016). FieldTrip computes PPC with leave-one-out500

variance estimate;501

- weighted phase-lag index (WPL) introduced in (Vinck et al., 2011) is a non-directional pairwise502

frequency-domain measure computed from cross-spectral density between two signals. WPL was503

introduced to solve the problem with sensitivity of phase-lag index (Stam et al., 2007) to volume-504

conduction and noise (Vinck et al., 2011). FieldTrip computes WPL according to (Vinck et al., 2011)505

with variance across trials.506

5 SPECIALIZED TOOLBOXES FOR DIMENSIONALITY REDUCTION AND GENER-507

ALIZED LINEAR MODELING508

In this section we overview specialized toolboxes for dimensionality reduction (Subsection 5.1) and general-509

ized linear modeling (Subsection 5.2). Compared to Table 1, we do not provide in the corresponding tables510

for specialized toolboxes information on511

- Import/Export since none of the considered toolboxes supports importing/exporting from specialized512

spike data formats;513

- GUI since only DataHigh toolbox provides GUI (see details below).514

5.1 Toolboxes for dimensionality reduction515

Dimensionality reduction of neural data allows to obtain a simplified low-dimensional representation of516

neural activity. In Table 6 we compare open-source toolboxes for dimensionality reduction of neural data517

(note also a list of dimensionality reduction software actively updating at B. Yu web-site47). See examples518

for application of DataHigh, dPCA and TCA toolboxes in our open MATLAB script.519

47http://users.ece.cmu.edu/~byronyu/software.shtml
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Table 6: Features of open-source dimensionality reduction toolboxes regarding visualization tools, prin-
cipal and usage programming language, availability of documentation, number of citations, and support
by updates at least once per year. ccpTD – coupled canonical polyadic Tensor Decomposition, DCA –
Distance Covariances Analysis, (GP)FA – (Gaussian Process) Factor Analysis, LDA – Fisher’s Linear
Discriminant Analysis, NMF – Non-negative Matrix Factorization, (d,p)PCA – (demixed, probabilistic)
Principal Component Analysis, (nn)TCA – (non-negative) Tensor Component Analysis

Toolbox, version Visuali- Language Documen- Cited Support Methods
zation tation

DataHigh v.1.2 + MATLAB + <30 In part FA, GPFA, LDA, PCA
DCA v1.0 – MATLAB In part <30 In part DCA

Python
dPCA v0.1 + MATLAB + <300 + dPCA, PCA

Python
GPFA v.2.03 + MATLAB In part >300 In part FA, PCA, pPCA, GPFA
seqNMF + MATLAB + <30 + NMF, PCA
tensor-demo + MATLAB + <30 + TCA

Python
tensortools v0.3.0 + Python + <30 + ccpTD, nnTCA
TD-GPFA v3.0 + MATLAB In part <30 In part FA, GPFA, PCA, pPCA

We have indicated “In part” in Documentation column for GPFA and TD-GPFA toolboxes since they520

provide usage examples and readme files with notes on parameters choice but but neither detailed manual521

nor tutorial, they refer to the original publication (Yu et al., 2009) for details. We have indicated “In part” in522

Documentation column for DCA tool since it provides neither manual nor tutorial (only example of use in523

MATLAB script comments). DataHigh and GPFA toolboxes are not uploaded to GitHub or any other public524

version control system preventing from tracking version changes and submitting bugs. DCA and TD-GPFA525

toolboxes have not been updated during the last 2 years.526

Compared to other toolboxes from Table 6,527

- DataHigh provides a user-friendly GUI illustrating algorithm steps such as choice of bin size, smooth-528

ing, components number etc.;529

- dPCA is applied on trial-averaged spiking activity; dPCA breaks down the neural activity into530

components each of which relates to time (condition-independent component) or a single experimental531

condition of the task; the idea is an easier task-relevant interpretation compared to the standard PCA532

or ICA; the results can be summarized in a single figure (Kobak et al., 2016);533

- TD-GPFA allows to extract low-dimensional latent structure from time series in the presence of delays;534

- tensor-demo and tensortools allow to reduce dimensionality both across and within trials (Williams535

et al., 2018).536

In Table 7 we outline additional dimensionality reduction tools provided by the toolboxes.537

It is important to check whether input data fit model assumptions when applying dimensionality reduction538

methods: whether the data are allowed to be non-stationary, contain outliers, observational noise or be539

correlated, whether recorded activity evolves in a low-dimensional manifold, which sample size is sufficient540

etc. Discussing model assumptions for each of dimensionality reduction methods is beyond the scope of541

this paper, we refer to the original papers and to the model assumptions for applying principal component542

analysis (PCA) formulated in (Shlens, 2014).543
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Table 7: Comparing dimensionality reduction toolboxes: diagnostic and statistical tools. In Statistical tests
column we indicate whether the toolbox provides possibility to measure significance of results and provides
permutation or re-shuffling tests on the data.

Toolbox Cross-validation Tool to select optimal Fitting error, Statistical tests
dimensions number variance explained

DataHigh + + + –
DCA – – - –
dPCA + + + +
GPFA + + + –
seqNMF + + + +
tensor-demo – + + –
tensortools – + + +
TD-GPFA + + + –

5.2 Toolboxes for GLM analysis544

Generalized linear models (GLMs) are often applied for predicting spike counts with the aim to understand545

which factors influence simultaneous spiking activity: whether it is predicted by the past or concurrent546

neural activity of the same or remote brain area or by external covariates. In Table 8 we overview major547

open-source toolboxes for GLM analysis. These toolboxes do not contain any general spike data analysis548

functions besides GLM analysis since they are either GLM tutorials or codes related to particular analysis549

made in the paper.550

Table 8: Features of open-source toolboxes for generalized linear modeling of spike data regarding visualiza-
tion tools, principal and usage programming language, availability of documentation, number of citations (for
the paper with the introduced method), support by updates at least once per year and implemented methods.
cGLM – GLM with coupling filters, gGLM – linear Gaussian GLM, GNM – Generalized Nonlinear Model
(Butts et al., 2011), GQM – Generalized Quadratic Model (Park and Pillow, 2011), pGLM – Poisson GLM
(Truccolo et al., 2005), ppGLM – point-process GLM (Paninski et al., 2007), NIM – Nonlinear Input Model
(McFarland et al., 2013), SHF – Spikes and covariates History Filters, STB – Smooth Temporal Basis

Toolbox, version Methods Visuali- Language Documen- Cited Support
zation tation

Case-Studies pGLM + MATLAB + <30 +
GLMcode1 pGLM + MATLAB + <30 –
GLMcode2 pGLM + MATLAB + <30 –
GLMspiketools v1 cGLM, pGLM, SHF, + MATLAB + >900 +

STB
GLMspike- cGLM, gGLM, + MATLAB + >900 +
traintutorial pGLM, SHF
neuroGLM pGLM, SHF, STB + MATLAB + >90 +
NIMclass v1.0 GLM, GQM, GNM, – MATLAB – >90 +

NIM
nStat v2 ppGLM + MATLAB In part <30 +
spykesML v0.1.dev pGLM, SHF – Python + <30 +

GLMcode1 and GLMcode2 codes are not uploaded to GitHub or any other version control system as they551

implement methods for particular analysis made in the papers (see below) are not supposed to be updated.552

Note that553
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- Case-Studies implements (see folders Chapter 9, 10, 11 on GitHub48) basic steps of Poisson GLM554

fitting with history dependence to the data on sample datasets for the corresponding book (Kramer and555

Eden, 2016);556

- GLMcode1, GLMcode2 implement the code for the papers (Glaser et al., 2018) and (Lawlor et al.,557

2018);558

- examples of use for nStat toolbox are located in helpfiles folder in the corresponding GitHub559

repository;560

- spykesML tool provides comparison of GLM performance with several methods from modern machine561

learning approaches (including neural networks);562

- NIMclass uses MATLAB optimization toolbox and contains many examples for real-world data;563

- GLMspiketraintutorial is a tutorial for teaching purposes. It is not memory-efficient implemented,564

but it makes easy to understand the basic steps of Poisson and Gaussian GLMs fitting, analysis and565

comparison for spike data 49. neuroGLM and GLMspiketools are more advanced tools with efficient566

memory implementation. Additionally to GLMspiketraintutorial, they support some advanced GLM567

features such as smooth temporal basis functions for spike-history filters, different time-scales for568

stimulus and spike-history components etc.569

6 CONCLUSIONS570

In this review we have compared major open-source toolboxes for spike and local field potentials (LFP)571

processing and analysis. We have compared toolboxes functionality, statistical and visualization tools,572

documentation and support quality. Besides summarizing information about toolboxes in comparison tables,573

we have discussed and illustrated particular toolboxes functionality and implementations, also in our open574

MATLAB code. Below we summarize the comparisons that we made for general spike and LFP analysis575

toolboxes and toolboxes with connectivity tools.576

Each considered toolbox has its own advantages:577

- Brainstorm: graphical user interface (GUI), versatile and cross-checked functionality (highly-cited),578

statistical tools, detailed tutorials with recommendations on parameters choice, support of many579

file formats, active user discussion community and regular hands-on sessions, fast Morlet wavelet580

transform implementation;581

- Chronux: versatile and cross-checked functionality (highly-cited), statistical tools (measures of582

variance across trials and statistical comparing between different conditions), detailed documentation,583

convenient data analysis pipeline for programming-oriented users (detailed code comments and584

modular code design);585

- Elephant: support of many file formats, versatile functionality with implementation of classic and586

recent methods for spike-spike connectivity and synchronization analysis, fast Morlet wavelet transform587

implementation;588

- FieldTrip: versatile and cross-checked functionality (highly-cited), statistical tools (measures of589

variance across trials and statistical comparing between different conditions), detailed tutorials with590

recommendations on parameters choice, support of many file formats, active user discussion community591

and regular hands-on sessions, flexible visualization tools, convenient data analysis pipeline for592

programming-oriented users (detailed code comments and modular code design), versatile filtering,593

connectivity and synchronization analysis tools, fast and accurate line noise removal;594

48https://github.com/Mark-Kramer/Case-Studies-Kramer-Eden
49https://github.com/pillowlab/GLMspiketraintutorial
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- gramm: quick publication-quality PSTH, raster plots and tuning curves with many easily adjustable595

plot properties;596

- Spike Viewer: GUI, support of many file formats;597

- SPIKY: GUI, implementation of recent spike train dissimilarity measures.598

7 LIST OF TOOLBOXES AND TOOLS IN ALPHABETICAL ORDER WITH LINKS599

Below all the considered toolboxes are provided with a brief description, reference to the paper where the600

toolbox was introduced and a link for downloading.601

- Brainstorm50,51 (Tadel et al., 2011) – a MATLAB toolbox for the analysis of brain recordings: MEG,602

EEG, fNIRS, ECoG, depth electrodes and animal invasive neurophysiology;603

- BSMART52 (Brain-System for Multivariate AutoRegressive Time series) (Cui et al., 2008) – a604

MATLAB/C toolbox for spectral analysis of continuous neural data recorded from several sensors;605

- Case-Studies53 – a MATLAB set of examples on sample datasets accompanying the corresponding606

book (Kramer and Eden, 2016);607

- Chronux54 (Bokil et al., 2010) – a MATLAB package for the analysis of neural data;608

- DataHigh55 (Cowley et al., 2013) – a MATLAB-based graphical user interface to visualize and interact609

with high-dimensional neural population activity;610

- DATA-MEAns56 (Bonomini et al., 2005) – a Delphi7 tool for the classification and management of611

neural ensemble recordings;612

- DCA57 (Cowley et al., 2017) (distance covariance analysis) – an implementation (MATLAB and613

Python) of the linear dimensionality reduction method that can identify linear and nonlinear relation-614

ships between multiple datasets;615

- dPCA58 (demixed Principal Component Analysis) (Kobak et al., 2016) – a MATLAB implementation616

of the linear dimensionality reduction technique that automatically discovers and highlights the617

essential features of complex population activities;618

- Elephant59,60 (Yegenoglu et al., 2017) – an Electrophysiology Analysis Toolkit in Python. Elephant619

toolbox includes functionality from earlier developed toolboxes CSDPlotter61 (Pettersen et al., 2006)620

and iCSD 2D62, it is a direct successor of NeuroTools;621

50https://neuroimage.usc.edu/brainstorm/Introduction
51https://github.com/brainstorm-tools/brainstorm3
52http://www.brain-smart.org
53https://github.com/Mark-Kramer/Case-Studies-Kramer-Eden
54http://chronux.org
55http://users.ece.cmu.edu/~byronyu/software/DataHigh/datahigh.html
56http://cortivis.umh.es
57https://github.com/BenjoCowley/dca
58https://github.com/machenslab/dPCA
59http://neuralensemble.org/elephant/
60https://github.com/NeuralEnsemble/elephant/commits/master
61https://github.com/espenhgn/CSDplotter
62http://www.neuroinf.pl/Members/szleski/csd2d/toolbox
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- FieldTrip63,64 (Oostenveld et al., 2011) – a MATLAB toolbox for advanced analysis of MEG, EEG,622

and invasive electrophysiological (spike and LFP) data;623

- FIND65 (Meier et al., 2008) – a MATLAB toolbox for the analysis of neuronal activity;624

- GLMcode1 – a MATLAB code implementing data analysis for particular publication (Glaser et al.,625

2018) with GLM fitting to analyze factors contributing to neural activity (this code is available from626

the authors upon request);627

- GLMcode266 (Perich et al., 2018) – a MATLAB code implementing data analysis for particular628

publication (Lawlor et al., 2018) with GLM fitting to estimate preferred direction for each neuron;629

- GLMspikestools67 (Pillow et al., 2008) – a Generalized Linear Modeling tool for single and multi-630

neuron spike trains;631

- GLMspiketraintutorial68 (Pillow et al., 2008) – a simple tutorial on Gaussian and Poisson GLMs for632

single and multi-neuron spike train data;633

- GPFA69 (Gaussian-Process Factor Analysis) (Yu et al., 2009) – a MATLAB implementation of the634

method extracting low-dimensional latent trajectories from noisy, high-dimensional time series data. It635

combines linear dimensionality reduction (factor analysis) with Gaussian-process temporal smoothing636

in a unified probabilistic framework;637

- gramm70,71 (Morel, 2018) – a plotting MATLAB toolbox for quick creation of complex publication-638

quality figures;639

- HERMES72 (Niso et al., 2013) – a MATLAB toolbox for assessing conectivity and sinchronization640

between time series;641

- ibTB73 (Information Breakdown Toolbox) (Magri et al., 2009) – a C/MATLAB toolbox for fast642

information analysis of multiple-site LFP, EEG and spike train recordings;643

- Inform74 (Moore et al., 2017) – a cross-platform C library for information analysis of dynamical644

systems;645

- infoToolbox75 (Magri et al., 2009) – a toolbox for the fast analysis of multiple-site LFP, EEG and646

spike train recordings;647

- JIDT76 (Lizier, 2014) – an information-theoretic Java toolbox for studying dynamics of complex648

systems;649

63http://www.fieldtriptoolbox.org
64https://github.com/fieldtrip/fieldtrip
65http://find.bccn.uni-freiburg.de
66https://crcns.org/data-sets/motor-cortex/pmd-1/about-pmd-1
67http://pillowlab.princeton.edu/code_GLM.html
68https://github.com/pillowlab/GLMspiketraintutorial
69http://users.ece.cmu.edu/~byronyu/software.shtml
70https://www.mathworks.com/MATLABcentral/fileexchange/54465-gramm-complete-data-visualization-

toolbox-ggplot2-r-like
71https://github.com/piermorel/gramm
72http://hermes.ctb.upm.es
73http://www.ibtb.org
74https://github.com/ELIFE-ASU/Inform
75http://www.infotoolbox.org
76https://github.com/jlizier/jidt
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- MEAbench77 (Wagenaar et al., 2005) – a C++ toolbox for multi-electrode data acquisition and online650

analysis;651

- MEA-tools78 (Egert et al., 2002) – a collection of MATLAB-based tools to analyze spike and LFP652

data from extracellular recordings with multi-electrode arrays;653

- MuTe79 (Montalto et al., 2014) – a MATLAB toolbox to compare established and novel estimators of654

the multivariate transfer entropy;655

- MVGC80 (Multivariate Granger Causality MATLAB Toolbox) (Barnett and Seth, 2014) – a MATLAB656

toolbox facilitating Granger-causal analysis with multivariate multi-trial time series data;657

- neuroGLM81 (Park et al., 2014) – an MATLAB tool, an extension of GLMspiketraintutorial allow-658

ing more advanced features of GLM modeling such as smooth basis functions for spike-history659

filters, memory-efficient temporal convolutions, different timescales for stimulus and spike-history660

components, low-rank parametrization of spatio-temporal filters, flexible handling of trial-based data;661

- NIMclass82,83 (McFarland et al., 2013) – a MATLAB implementation of the nonlinear input model. In662

this model, the predicted firing rate is given as a sum over nonlinear inputs followed by a “spiking663

nonlinearity” function;664

- nStat84 (neural Spike Train Analysis Toolbox) (Cajigas et al., 2012) – an object-oriented MATLAB665

toolbox that implements several models and algorithms for neural spike train analysis;666

- OpenElectrophy85,86 (Garcia and Fourcaud-Trocmé, 2009) – a Python framework for analysis of intro-667

and exrta-cellular recordings;668

- PyEntropy87 (Ince et al., 2009) – a Python module for estimating entropy and information theoretic669

quantities using a range of bias correction methods;670

- seqNMF88 (Mackevicius et al., 2019) – a MATLAB toolbox for unsupervised discovery of temporal671

sequences in high-dimensional datasets with applications to neuroscience;672

- SIFT89 (Delorme et al., 2011; Mullen, 2014) – a Source Information Flow MATLAB EEGLAB-673

compatible toolbox for analysis and visualization of multivariate causality and information flow674

between sources of electrophysiological (EEG/ECoG/MEG) activity;675

- SigMate90 (Mahmud et al., 2012) – a MATLAB toolbox for extracellular neuronal signal analysis;676

- sigTOOL91 (Lidierth, 2009) – a MATLAB toolbox for spike data analysis;677

77http://www.danielwagenaar.net/meabench.html
78http://material.brainworks.uni-freiburg.de/research/meatools/
79https://figshare.com/articles/MuTE_toolbox_to_evaluate_Multivariate_Transfer_Entropy/1005245
80http://www.sussex.ac.uk/sackler/mvgc/
81https://github.com/pillowlab/neuroGLM
82http://neurotheory.umd.edu/nimcode
83https://github.com/dbutts/NIMclass
84https://github.com/iahncajigas/nSTAT
85http://neuralensemble.org/OpenElectrophy/
86https://github.com/OpenElectrophy/OpenElectrophy
87https://github.com/robince/pyentropy
88https://github.com/FeeLab/seqNMF
89https://sccn.ucsd.edu/wiki/SIFT
90https://sites.google.com/site/muftimahmud/codes
91http://sigtool.sourceforge.net/
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- Spike Viewer92 (Pröpper and Obermayer, 2013) – a multi-platform GUI application for navigating,678

analyzing and visualizing electrophisiological datasets;679

- SPIKY93,94 (Kreuz et al., 2015) – a MATLAB graphical user interface that facilitates application of680

time-resolved measures of spike-train synchrony to both simulated and real data;681

- SPKTool95 (Liu et al., 2011) – a MATLAB toolbox for spikes detection, sorting and analysis;682

- spykesML96 (Benjamin et al., 2018) – a Python toolbox with a tutorial for comparing performance of683

GLM with modern machine-learning methods (neural networks, random forest etc.);684

- STAR97 (Spike Train Analysis with R) (Pouzat and Chaffiol, 2009) – an R package to analyze spike685

trains;686

- STAToolkit98 (Spike Train Analysis Toolkit) (Goldberg et al., 2009) – a MATLAB package for the687

information theoretic analysis of spike train data;688

- tensor-demo99 – a MATLAB and Python package (available for both languages) for fitting and689

visualizing canonical polyadic tensor decompositions of higher-order data arrays;690

- tensortools100 – a Python package for fitting and visualizing canonical polyadic tensor decompositions691

of higher-order data arrays;692

- TD-GPFA101 (time-delayed Gaussian-Process Factor Analysis) (Lakshmanan et al., 2015) – a MAT-693

LAB implementation of GPFA method extension that allows for a time delay between each latent694

variable and each neuron;695

- ToolConnect102 (Pastore et al., 2016) – a functional connectivity C# toolbox with GUI for in vitro696

networks;697

- Trentool103 (Lindner et al., 2011) – a MATLAB toolbox for the analysis of information transfer in698

time series data. Trentool provides user friendly routines for the estimation and statistical testing of699

transfer entropy in time series data.700

CONFLICT OF INTEREST STATEMENT701

The authors have declared that no competing interests exist.702

AUTHOR CONTRIBUTIONS703

VU performed the reported study. VU wrote and AG edited the paper. Both authors have seen and approved704

the final manuscript.705
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Garcia, S., Guarino, D., Jaillet, F., Jennings, T., Pröpper, R., Rautenberg, P., et al. (2014). Neo: an object794

model for handling electrophysiology data in multiple formats. Frontiers in neuroinformatics 8, 10.795

doi:10.3389/fninf.2014.00010796

Geweke, J. (1982). Measurement of linear dependence and feedback between multiple time series. Journal797

of the American statistical association 77, 304–313. doi:10.2307/2287238798

Glaser, J., Perich, M., Ramkumar, P., Miller, L., and Kording, K. (2018). Population coding of conditional799

probability distributions in dorsal premotor cortex. Nature communications 9, 1788. doi:10.1038/s41467-800

018-04062-6801

Goldberg, D., Victor, J., Gardner, E., and Gardner, D. (2009). Spike train analysis toolkit: enabling802

wider application of information-theoretic techniques to neurophysiology. Neuroinformatics 7, 165–178.803

doi:10.1007/s12021-009-9049-y804

Granger, C. (1969). Investigating causal relations by econometric models and cross-spectral methods.805

Econometrica: Journal of the Econometric Society , 424–438doi:10.2307/1912791806

Granlund, J. (1949). Interference in frequency-modulation reception807

Grün, S., Diesmann, M., and Aertsen, A. (2002). Unitary events in multiple single-neuron spiking activity: I.808

detection and significance. Neural Computation 14, 43–80. doi:10.1162/089976602753284455809

Grün, S., Diesmann, M., Grammont, F., Riehle, A., and Aertsen, A. (1999). Detecting unitary events without810

discretization of time. Journal of neuroscience methods 94, 67–79. doi:10.1016/S0165-0270(99)00126-0811

Hafner, C. and Herwartz, H. (2008). Testing for causality in variance using multivariate GARCH models.812

Annales d’Economie et de Statistique , 215–241doi:10.2307/27715168813

Hayden, B., Smith, D., and Platt, M. (2009). Electrophysiological correlates of default-mode processing in814

macaque posterior cingulate cortex. Proceedings of the National Academy of Sciences 106, 5948–5953.815

doi:10.1073/pnas.0812035106816
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