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Abstract:  

Synergistic interactions between gene functions drive cellular complexity. However, the 
combinatorial explosion of possible genetic interactions (GIs) has necessitated the use of scalar 
interaction readouts (e.g. growth) that conflate diverse outcomes. Here we present an analytical 
framework for interpreting manifolds constructed from high-dimensional interaction phenotypes. 
We applied this framework to rich phenotypes obtained by Perturb-seq (single-cell RNA-seq 
pooled CRISPR screens) profiling of strong GIs mined from a growth-based, gain-of-function GI 
map. Exploration of this manifold enabled ordering of regulatory pathways, principled 
classification of GIs (e.g. identifying true suppressors), and mechanistic elucidation of synthetic 
lethal interactions, including an unexpected synergy between CBL and CNN1 driving erythroid 
differentiation. Finally, we apply recommender system machine learning to predict interactions, 
facilitating exploration of vastly larger GI manifolds. 

 

One Sentence Summary: Principles and mechanisms of genetic interactions are revealed by 
rich phenotyping using single-cell RNA sequencing. 
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Main Text: 

 

Introduction: 

A major principle that has emerged from modern genomic and gene expression studies is that the 

complexity of cell types in multicellular organisms is driven not by a large increase in gene 

number but instead by the combinatorial expression of a surprisingly small number of 

components (1). This is possible because specific combinations of genes exhibit emergent 

properties when functioning together, enabling the generation of many diverse cell types and 

behaviors. Understanding such genetic interactions has important practical and theoretical 

applications. For example, they can reveal synthetic lethal vulnerabilities in tumors, identify 

suppressors of inherited and acquired disorders, guide the design of cocktails of genes to drive 

differentiation between cell types, inform the search for missing inheritance in genetic studies of 

complex traits, and enable systematic approaches to define gene function in an objective and 

principled manner (2–5). Defining how genes interact is thus a central challenge of the post-

genomic era.  

Given the virtually infinite number of possible combinations and diversity of outcomes, it 

remains a major challenge to systematically and quantitatively measure combinatorial gene 

functions in a scalable and information-rich manner.  Classically, efforts have focused on 

measuring pairwise genetic interactions (GI), defined as the extent to which perturbing one gene 

affects the phenotypic consequences (typically growth rate or viability) of perturbing a second 

gene (6–10). Pioneering efforts in yeast have demonstrated that large-scale maps of GIs reveal a 

unique buffering and synthetic sick/lethal (SSL) GI profile for each gene, which further enables 

prediction of that gene’s function by clustering of GI profiles (2–4, 6, 7, 11–17). More recently, 
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human GI mapping platforms have enabled unbiased characterization of human gene function 

(18–28). 

A limitation of most efforts at GI mapping to date is their dependence on univariate 

readouts of phenotype with low information content (e.g., growth rate), such that GIs are 

necessarily classified as simply buffering or SSL (i.e., more/less fit than expected). This obscures 

critical information about how gene combinations lead to emergent properties. For instance, the 

reprogramming of a pluripotent cell to a terminally differentiated one would modulate the 

observed growth phenotype as much as altering its metabolism. Put simply, there are many ways 

for cells to be equally unfit, making it challenging to understand the mechanistic or molecular 

basis for any particular interaction.  

Emerging approaches for rich phenotyping of individual cells present a potential solution 

to these problems. For example, there is a much more direct relationship between a cell’s 

“phenotype” in a general sense and its transcriptional state than there is with its growth rate (5). 

We and others have recently developed the Perturb-seq approach, which allows libraries of 

CRISPR-mediated genetic perturbations to be introduced to cells in pooled format and then 

measured by single-cell RNA sequencing (29–32). Each cell is then in effect an independent 

experiment, enabling highly parallelized studies linking perturbations of individual genes or gene 

combinations—mediated by single or multiple sgRNAs—to their transcriptional consequences. 

Rapid advances in single-cell sequencing technologies have enabled Perturb-seq on ~100,000 

cells in a single experiment, and million-cell-scale experiments are already feasible (29, 33, 34). 

This technique thus has the potential to address both the limitations on information content and 

the scaling challenges of profiling GIs for single and multi- gene perturbations (29, 30).  
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Here, we present an experimental and computational approach for analyzing and 

interpreting genetic interactions using the transcriptome as a high-dimensional phenotypic 

readout. Using CRISPR-mediated activation (CRISPRa) (35), we constructed a large-scale, gain-

of-function GI map in human cells of genes that modified cell fitness and then broadly sampled 

the interaction landscape with Perturb-seq. This ensemble of Perturb-seq measurements 

describes the structure of a manifold—a nonlinear, high-dimensional surface—populated by 

transcriptional phenotypes. The manifold, analogous to Waddington’s canal in differentiation, 

represents the cell states reachable from a given starting point through genetic perturbations. The 

local shape of the manifold thus reflects how genes interact, so we refer to it as a GI manifold. 

This high-dimensional, geometric approach to GIs allows one to generalize the concepts of 

buffering and SSL interactions to reveal critical functional distinctions previously obscured by 

describing GIs in a single dimension.  

Specifically, we found the use of rich phenotypes enabled us to distinguish cell death, 

slow growth, and differentiation to a variety of cell states as mechanisms underlying fitness-level 

GIs. Exploration of the GI manifold also allowed us to determine the order of genes in linear 

pathways and identify distinct modes of interaction—for example, by distinguishing between 

epistatic relationships and genetic suppressors that could each underlie buffering interactions. 

Finally, we applied machine learning on the transcriptional phenotypes to predict fitness-level 

interactions, an approach we propose to further mitigate the scaling challenges of screening for 

novel GIs in a sparse landscape. We expect the conceptual and computational frameworks 

presented here will be broadly applicable to genetic interactions obtained via other rich 

phenotyping approaches (e.g. proteomics, imaging) and methods of perturbation (e.g. 

knockdown, knockout, mutagenesis, chemical perturbations). 
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Results: 

 

A CRISPRa fitness-level genetic interaction map 

In order to generate a large and diverse set of gene pairs for examination by rich phenotyping, we 

focused on genes that modified cell fitness when overexpressed. We chose fitness since it is a 

complex and readily measured phenotype that integrates many different physiological processes. 

We chose gain-of-function perturbations as they are an effective way of exploring cell states (5, 

36–38), and with CRISPRa are now feasible to implement systematically for quantitative 

interaction studies. From a previous genome-wide CRISPRa screen, we selected 112 hit genes 

whose activation enhanced or retarded growth of K562 cells (Fig. 1A) (35). As strong GIs are 

expected to be sparse in the overall GI landscape (2, 3), we reasoned that pairs of genes with 

primary effects were more likely to strongly interact when combined.  

 To systematically measure these interactions, we adapted a technology we previously 

developed for constructing genetic interaction maps in human cells using CRISPRi (18) (fig. 

S1A-B). Briefly, each candidate interaction was probed by constructing a cassette containing two 

sgRNAs targeting the two constituent genes along with a unique barcode sequence. Each gene 

was targeted using two distinct sgRNAs, generating a genetic interaction (GI) library composed 

of 57,121 cassettes in total (28,680 unique sgRNA pairs). K562 cells stably expressing the 

SunTag CRISPRa system (39) were transduced with the CRISPRa GI library by pooled lentiviral 

transduction, and sgRNA pair abundance was compared at the start of the screen and after ten 

days of growth to infer fitness phenotypes (expressed as γ, the log2 enrichment of sgRNA pair 

abundance scaled by number of cell doublings in the screen). We used a custom sequencing and 

analysis pipeline that corrects for lentiviral recombination events ((18); see methods; fig. S2, A 
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and B) and calculates sgRNA GIs by measuring deviation relative to the average trend 

determined by a quadratic fit of fitness measurements (fig. S2C). Gene-level GIs were computed 

by averaging all sgRNA pairs targeting a given interaction. We found high sgRNA- and gene-

level GI concordance between independent replicates (gene-level GI R=0.80, p<10-300; Fig. 

S2D). Importantly, the GI profiles for sgRNAs targeting the same gene were much more similar 

than the background of all sgRNA GI correlations (median R=0.50 compared to 0.04; Fig. 1B 

and fig. S2, D, E and F). 

 We then clustered genes according to the similarity of their GI profiles to produce a GI 

map (Fig. 1C; larger version with gene labels provided in fig. S3A). The map had low-rank 

structure: that is, groups of genes interact similarly so that there are fewer overall degrees of 

freedom than genes, resulting in block-like structure.  Unbiased DAVID term annotation showed 

that multiple blocks corresponded to known biological units of organization (40, 41), such as 

forkhead box-containing transcription factors, cell cycle inhibitors, and the direct physical 

interactors PLK4 and STIL (42). The map also shed light on some genes of unknown function. 

For example, the transcription factor ZBTB10 clustered alongside Snail (SNAI1) and DLX2, 

suggesting a possible role in epithelial-to-mesenchymal transition (43). We therefore conclude 

that CRISPRa GI maps, like past efforts based on loss-of-function alleles (18), can assign 

function to individual genes by the similarity of GI profiles. 

Additionally, we found that individual GIs in the CRISPRa GI map can generate 

hypotheses consistent with known biology. For instance, the pro-apoptotic factors Bak and Bim 

(BAK1 and BCL2L11) are strongly buffering (Fig. 1C), as they function in a linear signaling 

pathway to promote cell death and upregulation of either factor is sufficient to elicit a strong 

growth defect (44). However, the origins of many specific interactions were difficult to deduce, 
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as each interaction is characterized only by a single scalar value in a fitness-level map. 

Furthermore, not all the large-scale hierarchical structure of the clustered map could be readily 

explained. Therefore, although GI mapping allows us to efficiently screen many candidate 

interactions to identify those that are surprising, higher resolution is needed to understand the 

biological underpinnings of specific interactions and correlations.  

 

Perturb-seq reveals diverse phenotypes driving growth defects 

Ultimately, the limitation with both loss- and gain-of-function GI maps is that one-dimensional 

readouts such as fitness are a coarse readout of a cell’s state. If cellular phenotype in a broad 

sense is thought of as lying on a high-dimensional manifold, different genetic perturbations may 

push that cell to drastically different positions that nevertheless result in similar fitness defects 

(Fig. 2A). Rich phenotyping techniques such as Perturb-seq present a potential solution to this 

problem by providing a more complex measure of cellular phenotype, allowing us to define the 

structure of this manifold (29). 

 We thus set out to profile genetic interactions via Perturb-seq. Given the low-rank 

structure of the GI map, we reasoned that we could sample most of the biology present in our GI 

map without measuring all gene pairs, as many blocks of interactions are likely explained by 

similar mechanisms. We picked 132 gene pairs from throughout the map, chosen both within and 

between blocks of genes with similar interaction profiles, and targeted each with CRISPRa 

sgRNA pairs (Fig. 1A and fig. S4A). We also profiled all single gene perturbations to enable 

direct comparison of individual perturbations and genetic interactions (i.e. single gene A, single 

gene B, and pair AB). In total we obtained transcriptional readouts for 287 perturbations 

measured across ~110,000 single cells (Fig. 2A, fig S1C-D, and Table S7). 
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Using these data, we first assessed the performance of our CRISPRa reagents (Table S7). 

The levels of target gene activation spanned a broad range both in terms of fold-change from 

baseline expression level (Fig. 2B and fig. S4B) and of absolute transcript abundance (fig. S4C). 

As a general trend, genes that were poorly expressed could be induced more than those that were 

highly expressed, similar to previous findings (Fig. S4, B and C) (45), although this did not 

explain most of the variation in activation. Expression of genes neighboring the target was 

generally unperturbed with the exception of transcripts that shared promoter regions (Methods; 

fig. S5, Table S8). The A and B positions of the sgRNA cassette produced similar activation 

levels (Fig. 2B), number of differentially expressed genes (Fig. S4D), and highly-correlated 

transcriptional profiles (Fig. S4F). Finally, there was no correlation between fold activation and 

the number of differentially expressed genes (R=0.07; Fig. 2C), implying that even a relatively 

small increase in the mRNA abundance of a target gene can radically alter a cell’s state. We did 

observe a relationship between the number of differentially expressed genes and the degree of 

fitness defect (fig. S4E).  

As with GI profiles, Perturb-seq profiles of single gene perturbations can be used to 

cluster genes and predict functional associations (29). To compare this gain-of-function Perturb-

seq map, we applied the same GI clustering and annotation pipeline to all pairwise Pearson 

correlation coefficients between single gene overexpression profiles (fig. S6A). This map largely 

recapitulated many of the DAVID-annotated clusters identified in the GI map. Although there 

was overall concordance between GI and Perturb-seq correlations (R=0.29, p<10-103; fig. S6B), 

for some genes the transcriptional phenotype produced a far broader range of correlations (e.g. 

CDKN1A) and vice versa (e.g. BAK1; fig. S6, C and D), indicating that transcriptional and fitness 

maps produce complementary information. 
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To explore the ability of rich phenotyping to better resolve genetic interactions, we 

examined examples of buffering and SSL interactions that exhibited similar GI scores in the 

fitness-level map but appeared to behave differently on a transcriptional level. We first 

considered two strong buffering interactions that each had GI scores of +10.1, KLF1/CEBPA and 

PTPN12/SNAI1. (GI scores were approximately normally distributed and ranged from -18.0 to 

+11.5 with 5th and 95th percentiles -3.5 and +3.3; Fig. S3B.) The buffering GI between 

KLF1/CEBPA is explained by near complete genetic epistasis of CEBPA over KLF1 (Fig. 2D). 

Meanwhile, the interaction between PTPN12/SNAI1 (Fig. 2E) results from genetic suppression, 

as the GI transcriptional signature is a superposition of weaker versions of the two single gene 

perturbations. We observed similarly diverse behaviors among SSL interactions. For example, in 

the FEV/CBFA2T3 interaction (GI score: -9.2), the addition of the otherwise weak CBFA2T3 

perturbation appeared to strongly potentiate the effects of the FEV perturbation (Fig. 2F). 

Meanwhile, combining perturbations of CBL and CNN1 (calponin) (GI score: -11.9) resulted in a 

profile that resembled but exceeded the additive expectation (Fig. 2G and fig. S7A). These 

results demonstrate that rich phenotyping identifies modes of interaction that are missed by 

scalar GI measurements. 

We were intrigued by the unexpected SSL interaction between CBL and CNN1. CBL is a 

negative regulator of receptor tyrosine kinase signaling (46). CNN1 is a poorly characterized 

gene that is annotated as a smooth-muscle-specific protein, although CNN1 is expressed in many 

cell types (47–49). Single-cell analysis revealed an apparent progression of phenotype from 

unperturbed through to doubly-perturbed CBL/CNN1 cells (Fig. 2H). Among the most strongly 

induced genes in the doubly-perturbed cells were hemoglobin genes (6 – 39-fold), an iron 

importer involved in heme biosynthesis (SLC25A37, 13-fold), and the blood group antigen 
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CD235a (GYPA, 2-fold) (Fig. 2G). Enrichment analysis of these markers and others showed 

similarity to an erythroblast transcriptional signature (Fig. 2I), suggesting that rather than arising 

from cell death, this interaction is driven at least in part by erythroid differentiation and a 

concomitant decrease in proliferation. Consistent with this finding, K562 cells have been widely 

used to study erythroid and other myeloid differentiation programs (50, 51).  

To validate this hypothesis, we turned to cDNA overexpression experiments in K562 

cells and in HUDEP2 cells, an immortalized human erythroid progenitor cell line that can 

undergo erythroid differentiation and enucleation (52). We transduced each cell line with 

lentiviral vectors encoding CBL and CNN1 cDNAs alone and in combination, and again 

observed strong induction of markers of erythroid differentiation (Fig 2J and fig. S7, B and C). 

Even under HUDEP2 self-renewal conditions that normally do not support erythroid 

differentiation, these cells produced hemoglobin to the extent that centrifuged cell pellets turned 

red, suggesting this induced differentiation program dominates over self-renewal signaling (Fig. 

2K). Together, these results show how Perturb-seq analysis can quickly lead to a hypothesis 

about the biology underlying a genetic interaction even when one of the components is poorly 

understood. 

 

Constructing a high-dimensional GI manifold 

Encouraged by our examples showing that Perturb-seq could identify both how perturbations 

combined and the mechanisms underlying specific genetic interactions, we next turned to a 

global view. Geometrically, each possible cellular transcriptional state defines a point on the 

surface of the GI manifold. By applying and analyzing a sufficiently diverse set of perturbations, 

the shape of this surface can then be inferred. Given the low-rank nature of our GI map, we 
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reasoned that our set of perturbations sampled many of the states reachable from a control 

population, enabling us to construct a representative view of the GI manifold governing fitness-

level GIs in K562 cells (Fig. 3A). 

 To visualize this GI manifold, we used UMAP (uniform manifold approximation and 

projection) to project our 287 mean expression profiles into a two-dimensional plane (Fig. 3B) 

(53). This projection identified groups of genetic perturbations driven by similar mechanisms.  

For example, the CBL/CNN1 SSL interaction was one of many inducing erythroid 

differentiation, thus explaining a large block of activity in the GI map (Fig. 3, B to D and fig. 

S8). Most of these interactions surrounded CBL, its regulators UBASH3A/B, and several multi-

substrate tyrosine phosphatases (e.g. PTPN9/12). Given the role of these genes in regulating 

receptor tyrosine kinases, one possible explanation for their overall behavior is that reduction in 

BCR-ABL signaling, which is the driver oncogene in K562 cells, induces an erythroid 

differentiation program (50, 51).  

We inspected our data to look for evidence of perturbations promoting other 

differentiation states. Additional groups of perturbations were characterized by their expression 

of granulocyte and megakaryocyte markers (Fig. 3C and fig. S8), suggesting that our 

perturbations explore multi-lineage potential (Fig. 3D). For example, the granulocyte cluster 

mostly involved canonical regulators such as C/EBP-α, -β, -ε (CEBPA/B/G) and PU.1 (SPI1) 

(54). These perturbations also significantly lowered fitness and increased production of both pro- 

and anti-apoptotic genes (fig. S8G). Intriguingly, the cluster expressing the canonical 

megakaryocyte marker CD41 did not appear transcriptionally similar to differentiating 

megakaryocytes, and did not adopt any of the characteristic morphological features of 

megakaryocytes by microscopy (fig. S8H and I), suggesting that these cells are perhaps only 
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primed towards megakaryocytic differentiation (55, 56). This result highlights how dependence 

on single marker gene expression to define a cell’s state can be misleading (57). Nevertheless, 

primed cells may still be a useful starting point for future screens with additional perturbations. 

By simultaneously detecting signatures of multiple differentiation states, our approach can 

support and enhance higher-order combinatorial perturbation screens aimed at improving 

protocols for driving cells into distinct differentiation states. 

We also observed two clusters driven by perturbations that increased fitness, arising 

either from interactions with MAP2K3/6 (and a likely role in p38 MAPK signaling) or the major 

erythroid developmental regulator KLF1 (Fig. 3E). More generally, however, both fitness and GI 

scores (Fig. 3E-F) were distributed throughout the GI manifold, consistent with the idea that 

univariate fitness measurements collapse the much larger landscape of transcriptional states. 

The projection of the GI manifold is ultimately the product of ~110,000 single-cell 

transcriptomes, and so it is also sensitive to single-cell phenotypes. For example, we observed 

that a group of interactions involving CDK inhibitor genes all caused arrest in G1, CKS1B 

overexpression and the PLK4/STIL interaction induced arrest in G2/M, and the KIF18B/KIF2C 

interaction (a previously identified physical interaction for which we measured a GI score of -

10.7) caused accumulation in M phase (Fig. 3G) (58). These phenotypes are all consistent with 

the known functions of these genes and demonstrate how our approach is sensitive to both first- 

(mean) and second- (variance) order properties of phenotypes.  

 

Quantitative modeling of high dimensional genetic interactions  

If each transcriptional state defines a point on the surface of the GI manifold, then each genetic 

perturbation defines a possible direction in which cells can be pushed (Fig. 4A). Understanding 
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how genes interact therefore corresponds to understanding how the doubly-perturbed state can be 

reached from the unperturbed state by traveling along some combination of the directions given 

by the two single perturbations. This can be estimated to first order by fitting a regression model 

𝜹𝜹𝜹𝜹𝜹𝜹 = 𝑐𝑐1𝜹𝜹𝜹𝜹 + 𝑐𝑐2𝜹𝜹𝜹𝜹 + 𝝐𝝐, 

that represents the transcriptional effect of the combined perturbation 𝜹𝜹𝜹𝜹𝜹𝜹 in terms of the two 

single perturbations (Table S9). To minimize the influence of outlier genes, we fit this model by 

robust regression (Methods). The relative sizes of the coefficients 𝑐𝑐1 and 𝑐𝑐2 then measure how 

much of the pair phenotype is accounted for by each single perturbation (Fig. 4A), and the 

model’s fit, which we quantified via distance correlation (d, Methods) measures the amount of 

novel behavior that arises when combining perturbations.  

This simple linear fit model explained more than 70% of the variance in gene expression 

on average (Fig. 4B and fig. S9A; mean R2 = 0.71)—markedly better than an additive model of 

interaction (fig. S9B; mean R2 = 0.43). As with fitness-based GI scores (2, 11, 18), overall 

correlation of expression profiles was somewhat predictive of interactions (R = 0.42; fig. S9C). 

Notably, we observed a robust anti-correlation (R = -0.72) between the magnitude of 

these coefficients and the fitness-based GI score (Fig. 4C), with larger coefficients indicating 

SSL interactions and smaller ones buffering interactions. The strength of this relationship was 

somewhat surprising given that the two measures of interaction were derived by unrelated 

analysis methods from different datasets. Comparing the two demonstrated that a GI score of 0 

corresponded to a coefficient magnitude of 1 (Fig. 4C). An intuitive explanation of the 

relationship further emphasizes the utility of the GI manifold—buffering interactions travel less 

“far” than expected both in high-dimensional space and when projected to one-dimensional 

fitness space, and vice versa for SSL interactions (Fig. 4A). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601096doi: bioRxiv preprint 

https://doi.org/10.1101/601096
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

 The model allowed us to quantify how transcriptional profiles combined to yield 

interactions. For example, buffering interactions could arise either from epistasis, in which one 

perturbation largely canceled the effects of the other (e.g. KLF1/CEBPA, 𝑐𝑐1 = 0.19, 𝑐𝑐2 = 0.72, 

Fig. 2D and fig. S9D), or via suppression, when two perturbations attenuated each other’s 

activities (e.g. PTPN12/SNAI1, 𝑐𝑐1 = 0.60, 𝑐𝑐2 = 0.57, Fig. 2E and fig. S9E). See also our analysis 

of DUSP9/MAPK1/ETS2 in Figure 4 and 6. By contrast, many synthetic lethal interactions arose 

from synergy between transcriptionally similar perturbations (e.g. CBL/CNN1, 𝑐𝑐1 = 1.24, 𝑐𝑐2 = 

0.8, Fig. 2G and fig. S9G). Novel behavior (i.e. lower values of d) arose either via potentiation, 

in which a perturbation that had little transcriptional effect on its own appeared to enhance the 

effects of a partner (e.g. FEV/CBFA2T3, 𝑐𝑐1 = 1.46, 𝑐𝑐2 = 1.17, d = 0.74, Fig. 2F and fig. S9F), or 

by relatively rare instances where double phenotypes were predominantly neomorphic (e.g. 

PLK4/STIL,  𝑐𝑐1 = 0.42, 𝑐𝑐2 = 0.75, d = 0.53, fig. S9H). 

The model’s parameters (Table S9) thus provide a simple, useful summary of how 

perturbations combine, essentially acting as a generalization of the one-dimensional “buffering 

vs. synthetic lethal” paradigm that has typically been used to categorize genetic interactions. 

However, because the model is derived from rich phenotypes, it provides insights that are 

obscured with scalar measures of interaction. 

One of the simplest benefits that results is that buffering interactions can be oriented 

based on which single perturbation better explains the double. For example, the DUSP9 

phenotype strongly dominated the DUSP9/ETS2 interaction (GI score: 5.7, 𝑐𝑐1 = 0.75, 𝑐𝑐2 = 0.25, 

Fig. 4D), suggesting that DUSP9 directly or indirectly inhibits ETS2 activity. Meanwhile, 

DUSP9 and MAPK1 clearly antagonized each other’s activities (GI score: 11.0, 𝑐𝑐1 = 0.39, 𝑐𝑐2 = 

0.23, Fig. 4E). Finally, examining the ETS2/MAPK1 interaction (GI score: -2.5, 𝑐𝑐1 = 0.47, 𝑐𝑐2 = 
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1.07, Fig 4F) showed that the two perturbations induced similar overall phenotypes. More 

specifically, the ETS2 transcript was as overexpressed in MAPK1-perturbed cells (9.3 fold) as in 

ETS2-perturbed cells (9.2 fold), and that the two perturbations synergized (35.8 fold 

overexpression in ETS2/MAPK1). This behavior, in which a second perturbation acts at least 

partly by upregulating its interaction partner, was uncommon in our dataset (fig. S9I). Taken 

together, these three results suggest a linear regulatory pathway in which DUSP9 inhibits 

MAPK1, which activates ETS2—an example of classical gene epistasis. Our data are consistent 

with the known roles of these gene families: dual specificity phosphatases such as DUSP9 can 

dephosphorylate ERK family kinases, such as MAPK1 (Fig. 4G) (59). Similarly, ERK family 

kinases can phosphorylate and activate transcription factors such as the ETS proteins. We further 

discuss the mutual suppression of DUSP9 and MAPK1 in Figure 6 at single-cell resolution. More 

generally, these results show how rich phenotyping can directly generate hypotheses about gene 

regulation. Following this logic, we can for example orient all the buffering interactions in which 

one perturbation is epistatic to another (Fig. 4H).  

 

Dimensionality reduction reveals structure in genetic interactions 

Because the model coefficients are not dependent on specific biological phenotypes, they 

also provide a means to look for large-scale structure in the types of interactions that exist. We 

used a two-dimensional visualization technique (60) to project properties of each interaction 

along two axes (Fig. 5A and Table S9; Methods). The first axis was defined by properties of the 

model: the magnitude of the coefficients (measuring interaction strength), the asymmetry of the 

coefficients, and the model fit. In the second axis we compared the transcriptional profiles 

directly: how similar the single profiles were to the double, to each other, and whether one single 
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profile was more similar to the double than the other. The resulting plot (Fig. 5B) showed that 

the model can act as a type of dimensionality reduction, projecting each interaction onto an 

archetype of behavior. This analysis demonstrates that the examples previously presented of 

epistasis (Fig. 2D and 4D and fig. S9D), suppression (Fig. 2E and 4E and fig. S9E), redundancy 

(Fig. 3G and 4F) and neomorphism (fig. S9H) are representative of structural features of how 

genes interact within our dataset, and that distinct behaviors can underlie “buffering” and 

“synthetic” interactions. Since this approach does not depend on specific features of gene 

expression data, it can also be applied to other high-dimensional readouts, yielding a simple 

strategy for defining, measuring, and qualitatively characterizing genetic interactions measured 

with any rich phenotyping technology. 

 

Single-cell heterogeneity reveals the trajectory of genetic interactions 

The assertions made by our model above are derived from an averaged phenotype for 

each perturbation. We reasoned that in some instances, exploiting the single-cell resolution of 

our measurements would provide more information, as heterogeneity among cells with the same 

perturbation would allow a wider swath of phenotypic space to be measured (Fig. 6A). 

For example, further inspection of the DUSP9/MAPK1/ETS2 interactions showed that the 

single-cell data largely recapitulated the average behavior for the DUSP9/ETS2 (Fig. 6B) and 

MAPK1/ETS2 (fig. S10A) interactions. However, cells bearing DUSP9/MAPK1 perturbations 

showed a range of phenotypes in which doubly-perturbed cells comingled with and bridged the 

gap between cells bearing the two single perturbations (Fig. 6C). This behavior may reflect direct 

antagonism of MAPK1 by DUSP9, so that small differences in levels of activation lead to 
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relatively large differences downstream because each additional active kinase molecule has a 

relatively large effect. 

To investigate this antagonism, we defined a pseudotime axis ((61); Methods) along the 

direction of principal variation and averaged cell expression profiles along this. Examining 

differentially expressed genes (Fig. 6D) showed an apparent continuum of phenotype. Highly 

expressed marker genes, which can be more reliably measured in each individual cell, showed 

distinctly different patterns of accumulation along this axis (Fig. 6E). Consistent with the UMAP 

projection, these markers showed similar expression patterns within only doubly-perturbed cells 

(Fig. 6F) as they did within all cells considered (Fig. 6G), suggesting that phenotypic 

heterogeneity within doubly-perturbed cells led to individual cells with phenotypes that were 

indistinguishable from cells bearing each of the two single perturbations. This variation did not 

appear to be the result of stable differences in the expression levels of MAPK1 and DUSP9 (fig. 

S10B). DUSP9 and MAPK1 therefore appear to oppose each other’s activity entirely and thus are 

true suppressors. As each of these enzymes can be regulated by many factors (59), a scalable 

assay that can be used to determine which interactions are strongest in a given context is a useful 

means to understand cell type-specific kinase and phosphatase dependencies.  

 

 

Predicting pairs of interacting genes using a recommender system 

Regardless of experimental approach, any study of GIs must ultimately confront the challenge 

posed by their intractable scaling in the number of genes considered. Because of the low-rank 

structure of the GI map, we hypothesized that an optimal route to explore GI space could be to 

measure a subset of interactions at a fitness level and computationally predict the remainder. 
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 We reasoned that there is a substantial similarity between this problem and that of 

predicting a person’s shopping preferences based on past buying behavior, a so-called 

“recommender system.” Recommendations are typically made in a regime in which 

measurements are very sparse, as each user has generally purchased only a tiny fraction of items 

(62). A critical component in these approaches is that they can leverage side information 

obtained by other means to improve predictive power. To apply this framework to genetic 

interactions, we used the similarity of transcriptional profiles (initially measured by pairwise 

correlation) to constrain a low-rank matrix factorization model aimed at predicting deviations 

from expected fitness when perturbations are combined (fig. S11A; Methods). We then predicted 

unobserved GIs using this model trained on different fractions of randomly sub-sampled 

interactions (Fig. 7A; Methods). At 10% sampling, the end result (Fig. 7, B and C) preserves 

much of the large-scale structure of the map, and the rank order of all interactions is reasonably 

well-preserved (Spearman ρ = 0.5; Fig. 7D). The model is substantially better than random 

sampling at predicting the top 10% of interactions (Fig. 7E), preserves pairwise distances among 

GI profiles (cophenetic correlation 0.7 – 0.8 at 15% sampling; Fig. 7F and fig. S11B). Notably, 

the use of Perturb-seq-derived side information significantly improved performance (compare to 

Figs. S11E-G). 

Ultimately, predicting novel GIs is difficult precisely because strong GIs deviate from the 

average interaction behavior. In contrast to model performance for GIs, for example, we 

observed high predictive power for raw fitness (Spearman ρ ~ 0.96 at 10% sampling, fig. S11C). 

By using biased sampling and different side information we could modestly improve GI 

prediction performance (fig. S11D; Methods). Moving forward, strategies for each of these steps 

could be computationally learned in larger data sets, further enhancing predictive power.  
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Finally, scaling issues can also be addressed by measuring fewer cells per perturbation, 

so that more GIs can be measured in a single experiment. To model this approach, we down-

sampled our measured perturbations (gathered at a median of 273 cells per condition) and re-

performed some of our general analyses. The correlation distances used to organize perturbations 

in Figure 3 and the coefficients in our linear model of interaction were both quite stable to 

downsampling (Fig. 7, G to J), suggesting as few as 50 cells per perturbation could be sufficient. 

Moreover, stability can be improved by performing model fits using only more highly-expressed 

genes (Fig. 7, I and J; Methods). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601096doi: bioRxiv preprint 

https://doi.org/10.1101/601096
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

Discussion: 

Understanding how genes interact is key to understanding how complex biological phenomena 

arise from a finite number of genes. To address this challenge, we leveraged both a high-density 

genetic interaction map, which allows many candidate interactions to be systematically and 

rapidly profiled (18), and rich phenotyping via Perturb-seq, which provides high-dimensional 

measures of their phenotypic consequences at single-cell resolution (29). This synthesis had two 

direct advantages over approaches that rely solely on univariate measures such as growth. First, 

transcriptional phenotypes provide specific insights into the underlying biological mechanism of 

action. Second, it provides a more natural setting to consider how genes interact to generate 

complex phenotypes: a cell’s state can be thought of as a point on a high-dimensional manifold 

defined by its transcriptional profile. Genetic perturbations push cells in different directions 

along this manifold, and interactions emerge when, for example, combinations of perturbations 

push cells more (SSL) or less (buffering) than expected when combined. 

 Three broad principles emerge from this approach. First, in fitness-based GI screens 

information is inevitably lost when genetic interactions are categorized by the umbrella terms 

“buffering” or “synthetic lethal”—in essence, this implements a type of dimensionality reduction 

that irreversibly compresses all possible phenotypes onto a line, thereby conflating very different 

functional relationships. Our geometrically-motivated model of interaction achieves a similar 

goal but retains more information: instead of being defined by a single number, each interaction 

is defined by a quantitative model of how the two single perturbations combine. Despite the 

diversity of our perturbations, this simple linear model fits well (mean R2 score=0.71), and yields 

useful, actionable insights. For example, we could distinguish classes of behavior such as 

epistasis, suppression, and neomorphism, and order genes into linear pathways. Potential 
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practical applications of this advance include the comprehensive search for true molecular 

suppressors of disease-causing gene alleles. 

 Second, unbiased measurements of combinatorially perturbed cells yield direct insight 

into the mechanisms underlying genetic interactions. For instance, we observed differentiation to 

multiple distinct cell types, cell cycle arrest, and apoptotic cell death as explanations for 

synthetic growth defects. Notably, our unbiased activation screen reidentified many of the 

canonical transcriptional regulators of hematopoiesis, and importantly provided a quantitative 

description of the regulatory relationships among them. We also identified completely 

unexpected, widely expressed factors such as calponin (CNN1) with equally strong primary and 

synergistic effects on erythroid differentiation. As rich phenotyping via Perturb-seq enables 

screen designs that are sensitive to multiple outcomes or with incomplete penetrance, it is a 

natural strategy to pursue combinatorial searches for factors driving (trans)differentiation, or for 

genes modifying complex phenotypes that cannot be encapsulated by single markers (5, 27). 

 Finally, single-cell rich phenotyping methods have the potential to transform the study of 

complex genetic traits. Recent advances (33) now make these methods both highly scalable and 

highly informative. Combinatorial interaction spaces quickly grow to an intractable size. With 

Perturb-seq, each cell serves as an individual experiment, allowing facile multiplexing of 

hundreds of thousands of rich phenotypes at a time. These high-dimensional measurements 

provide a handle to apply more powerful machine learning methods (62). We showed that the GI 

map underlying a complex trait, fitness, can be computationally predicted from far fewer 

measurements. This example highlights the possibility of using similar approaches to understand 

disease-relevant traits. Further, it identifies the challenges and opportunities moving forward: can 

better ways to compare genetic perturbations (i.e., a data-driven metric on the GI manifold) be 
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learned and can single-cell phenotypic heterogeneity, as seen in the DUSP9-MAPK1 interaction, 

be exploited to improve predictive power? 

Critically, our framework for probing and understanding genetic interactions is 

compatible both with the many emerging tools for perturbing the state of individual cells—

genome editing, base editors, epigenome editing—and the many tools for measuring it—

transcriptome, chromatin state, proteome, imaging etc. (63). The power of these tools is further 

enhanced by new computational methods that allow improved design of experiments, such as 

recommender systems (62) and compressed sensing(64, 65). Finally, approaches leveraging 

allelic series of sgRNAs with different inhibition/activation levels (35), or with paired 

CRISPRi/a systems to look for suppressive interactions (19) may be able to exploit single-cell 

phenotypic heterogeneity to more finely dissect gene-level perturbation responses at scale. The 

promise of such an approach is exemplified by our analysis of DUSP9/MAPK1 as robust 

suppressors. Ultimately, the many diverse cell types and cellular behaviors we observe are the 

product of a finite number of genes working together. By intelligently measuring and exploring 

the genetic interaction manifold, we can start to create a global view of the nonlinear mapping 

between genotype and phenotype. 
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Figure 1. A CRISPRa fitness-level genetic interaction map. (A) Construction of a 
CRISPRa GI map. (Left) A theoretical genome-wide genetic interaction map is sparsely 
populated with strong genetic interactions. (Middle) Genes with a fitness phenotype upon 
overexpression with CRISPRa were selected from a genome-scale screen performed in K562, 
the majority of which did not have a fitness phenotype upon repression with CRISPRi (35). 
Two sgRNAs targeting each gene were cloned into a lentiviral dual sgRNA expression 
library. (Right) A GI map was constructed by quantifying sgRNA pair fitness phenotypes in 
K562 relative to the expected pair phenotypes. (B) sgRNA GI correlations from two 
independent replicates. sgRNAs targeting the same gene had high GI profile correlations 
relative to all sgRNA pairs (see also Figure S1D). (C) CRISPRa fitness-level GI map. Gene-
level GIs were clustered by average linkage hierarchical clustering based on Pearson 
correlation between genes. Clusters were annotated by assigning DAVID annotations if a 
DAVID term was significantly enriched in that cluster (hypergeometric ln(p) ≤ -7.5) and 
more enriched than in any other cluster (see Methods). 
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Figure 2. Dissecting genetic interactions using rich phenotypes. (A) Representation of the 
GI manifold model. (Left) A given cell’s transcriptional state defines a point on a high-
dimensional surface. Genetic perturbations push cells to different points on this manifold. 
Distant points on the manifold may result in similar scalar fitness measurements. (Right) 
Sampling of pairs from GI map for profiling by Perturb-seq. (B) Comparison of fold 
activation of target genes when the targeting sgRNA is in the A or B position in the dual 
sgRNA expression cassette. (C) Fold activation of the target gene compared with the total 
number of differentially expressed genes. (D)-(G) Examples of rich phenotyping of GIs with 
Perturb-seq. For each GI, average transcriptional profiles for the two constituent single 
perturbations are compared to the double perturbation. Heatmaps show deviation in gene 
expression relative to unperturbed cells. (H) UMAP projection of single-cell Perturb-seq data 
in the CBL/CNN1 interaction. Each dot is a cell colored according to genetic background. (I) 
ARCHS4 cell type term enrichment for genes showing large expression changes in 
CBL/CNN1 doubly-perturbed cells (66). (J) Expression of hemoglobin in HUDEP2 cells 
upon cDNA overexpression of CBL or CNN1. Hemoglobin was labeled with anti-HbF 
antibody and measured by flow cytometry. (K) Pelleted HUDEP2 cells. Hemoglobin 
expression appears red. 
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Figure 3. Visualization of the GI manifold. (A) Using diverse genetic perturbations, the 
structure of the GI manifold can be inferred and then visualized by dimensionality reduction 
to a plane. (B) UMAP projection of all single gene and gene pair Perturb-seq profiles. Each 
dot represents a genetic perturbation. Clusters of transcriptionally similar perturbations are 
colored identically, while grey dots are genes that do not fall within stable clusters. (C) 
Expression of marker genes for different hematopoietic cell types. Color is scaled by mean 
expression Z-score of the marker gene panel. (D) Hematopoietic differentiation hierarchy. 
K562 cells are a poorly differentiated erythroid cell line. (E) Fitness measurements from the 
GI map, expressed as gene pair growth phenotypes (γ). (F) GI scores from the fitness-level GI 
map. Single gene perturbations are not included. (G) Cell cycle phenotypes. (Left) Cell cycle 
deviation scores. Stronger scores indicate alteration from the distribution of cell cycle 
positions observed in unperturbed cells. (Right) Relative enrichment or depletion of cell cycle 
phases relative to unperturbed cells induced by selected genetic perturbations. 
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Figure 4. A quantitative model for high-dimensional GIs. (A) Model of transcriptional 
genetic interactions. Different transcriptional states define points on the surface of the GI 
manifold and genetic perturbations define vectors of travel. The model decomposes double 
perturbations as a linear combination of the two constituent single perturbations. (B) Model 
fit across all measured double perturbation Perturb-seq profiles. (C) Magnitude of model 
coefficients in Perturb-seq experiment compared to GI score from the fitness-level GI map. 
(D)-(F) Application of the model to selected GIs measured using Perturb-seq. For each GI, 
transcriptional profiles for the two constituent single perturbations are compared to the double 
perturbation, the model fit, and the model residual. Heatmaps show deviation in gene 
expression relative to unperturbed cells. (G) Model of genetic interactions among DUSP9, 
MAPK1, and ETS2 inferred from model fits. (H) Epistatic buffering interactions oriented 
using the genetic interaction model. Each arrow denotes a genetic interaction, originating in 
the gene that dominates when the two genes are simultaneously perturbed. Arrow size denotes 
the degree of dominance as measured by the asymmetry of model coefficients. Genetic 
perturbations with similar transcriptional profiles are colored identically. 
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Figure 5. Categorizing GIs using features derived from rich phenotyping. (A) Schematic 
of approach to summarize GIs. Each GI was characterized using features derived from the 
model (x-axis) and by measures of similarity among the transcriptional profiles (y-axis). 
These two viewpoints were each clustered and collapsed using UMAP to a single dimension 
to define the two axes. (B) Visualization of all measured GIs in Perturb-seq experiment. The 
features defining the two axes are plotted next to them. Categories of GIs are annotated based 
on features shared within the clusters. 
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Figure 6. Single-cell trajectories of GIs. (A) Stochastic heterogeneity can cause individual 
cells (dots) bearing a given genetic perturbation to explore the space on the GI manifold 
surrounding the average direction of travel (arrows). (B) UMAP projection of single cells 
with overexpression of DUSP9 and/or ETS2. Cells with DUSP9 overexpression overlap with 
DUSP9/ETS2, largely recapitulating the population average behavior (Fig. 4D). (C) UMAP 
projection of single cells with overexpression of DUSP9 and/or MAPK1. Black line represents 
the principal curve, which tracks the primary direction of variation in the dataset and defines a 
scalar “pseudotime” that can be used to order all cells. (D) Gene expression averaged along 
the principal curve. Each row denotes a cell ordered according to position along the principal 
curve. The left three columns indicate that cell’s genetic background. At each point, cells that 
are close on the principal curve are averaged to produce a local estimate of median gene 
expression. The heatmap shows normalized expression of differentially expressed genes. The 
DUSP9 and MAPK1 expression columns show the same data for the targeted genes. (E) 
Accumulation profiles of two highly expressed marker genes with different behaviors. (F) 
Expression profiles of two highly expressed markers averaged over those cells in (C) bearing 
the DUSP9/MAPK1 double perturbation (G) The same profiles averaged over all cells in (C). 
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Figure 7. A recommender system enables prediction of fitness GIs. (A) Schematic of 
prediction strategy. Fitness phenotypes of a limited subset of GIs are measured. Each single 
gene is characterized by its Perturb-seq transcriptional profile, and similarity among these 
profiles is used as side information to constrain a recommender system model to impute 
remaining fitness GIs. (B) True vs. predicted GI map obtained by prediction from 10% of 
randomly sampled fitness-level GIs. (C) Scatter plot of true and predicted GI scores from (B). 
The dashed lines show 5% and 95% quantiles, here used to designate strong GIs. (D) 
Spearman correlation between true and predicted GIs at different levels of random sampling 
of measured GIs. Fifty random subsets were measured for each sampling level. (E) At each 
sampling level, recall denotes the fraction of strong GIs that are correctly scored as strong in 
the predicted GI map as in panel (C). (F) Cophenetic correlation as a function of sampling 
level, measuring the similarity of correlation structure in the true and predicted GI maps. (G) 
To assess robustness, random subsets of cells bearing given genetic perturbations were 
randomly sampled at different levels of representation. Analytical results were recomputed 
across many iterations and compared to the results obtained using all cells. (H) Cophenetic 
correlation between downsampled and true transcriptional profiles used to construct the GI 
manifold visualization of Figure 3. (I) Downsampling analysis of the magnitude of the model 
coefficients used in Figure 4 and 5, which can be improved by fitting to genes expressed at 
higher average UMI counts. (J) Equivalent analysis for the dominance of model coefficients, 
used to orient buffering interactions. 
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Figure S1. Technical details of GI map and Perturb-seq experiments. (A) Schematic of 
GI map library construction and screen protocol. (B) GI map analysis pipeline and statistics at 
key steps of the pipeline. (C) Schematic of Perturb-seq library construction and screen 
protocol. (D) Perturb-seq analysis pipeline and statistics at key steps of the pipeline. 
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Figure S2. Analysis of sgRNA- and gene-level phenotypes and GIs. (A) sgRNA single 
phenotypes (γ) for sgRNAs in the A or B position in the dual sgRNA expression vector. 
Points represent the mean and standard deviation of a given sgRNA paired with all non-
targeting sgRNAs in the opposite position. sgRNA pair read counts were measured by 
aligning barcodes only (left) or by aligning both sgRNA positions and barcodes (“triple 
sequencing,” right). (B) sgRNA pair phenotypes (γ) from independent replicates. Contours 
correspond to 99th, 95th, 90th, 75th, 50th, and 25th percentiles of data density. (C) Strategy 
for calculating sgRNA GIs. (Left) Schematic depicting single sgRNA phenotypes versus 
sgRNAs paired with a query sgRNA. GIs are calculated from the deviation from the average 
trend as determined by quadratic fit. (Right) Single versus double phenotypes and sgRNA GIs 
for a query sgRNA targeting DUSP9 (DUSP9_+_152912564.23-P1). (D) sgRNA- and gene-
level GIs and GI profile correlations from replicates. Red points indicate non-targeting control 
sgRNA pairs and dashed line indicates a radius of 6 standard deviations from non-targeting 
controls. sgRNA GI correlations are as in Figure 1B. (E) sgRNA GI correlations from 
replicate-averaged screens. Smoothed histograms of all pairs of sgRNAs or only sgRNA pairs 
targeting the same gene were generated with Gaussian kernel density estimation. (F) 
Relationship between sgRNA single phenotypes and same-gene sgRNA pair GI correlation. 
Points represent sgRNAs with lines connecting sgRNAs targeting the same gene. Points are 
colored according to the median read count at screen endpoint across pairs with that sgRNA 
in the A position. 
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Figure S3. Labeled CRISPRa fitness-level GI map. (A) As in Figure 1C, with gene labels 
along y-axis. (B) Histogram of all gene-level GI scores. 
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Figure S4. Perturb-seq vector performance. (A) Schematic of Perturb-seq dual sgRNA 
expression vector used for targeting pairs of interacting genes. (B) Comparison of target 
activation to target expression in control cells containing non-targeting sgRNAs. Each dot 
corresponds to an sgRNA in either the A (blue) or B (orange) position of the vector. (C) 
Equivalent analysis as in (B) but comparing the mean expression difference (in UMI) between 
cells containing targeting sgRNAs to control cells. (D) Comparison between the number of 
differentially expressed genes (as reported by a Kolmogorov-Smirnov test) when a given 
sgRNA is in the A or B position of the vector. (E) Relationship between fitness (from GI 
map) and number of differentially expressed genes (as reported by a Kolmogorov-Smirnov 
test) observed in Perturb-seq experiment for each perturbation. (F) Pairwise correlation of 
expression profiles for all perturbations containing a single targeting sgRNA (in either A or B 
position) and one non-targeting sgRNA. Presented to assess similarity between phenotypes 
induced by sgRNAs when present in different positions. 
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Figure S5. Assessing off-target effects near targeted genes. (A) The plot shows expression 
of transcripts in the neighborhood of the target of each sgRNA. Color indicates the fold 
change in expression, with gray indicating that expression was indistinguishable from that in 
control cells containing non-targeting sgRNAs (bootstrap test, p < 0.05). A “#” sign in the x-
axis titles indicates perturbations that induce large changes in total transcriptome size, which 
may lead to many differentially expressed transcripts that are not the result of off-target 
effects. (B) Plot comparing fold expression change of targeted transcripts (gray), the two 
transcripts up and downstream of the targeted one (orange), and 19 other neighboring 
transcripts in each direction (blue) as a function of genomic distance. 
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  Figure S6. Functional clustering via single sgRNA perturb-seq expression correlation. 
(A) Heatmap of differential expression correlation between pairs of genes upon 
overexpression with CRISPRa. Pearson correlation was calculated based on variably 
expressed genes across all perturbations, excluding targeted genes. Hierarchical clustering 
and cluster annotation were performed as in Figure 1C. (B) Relationship between fitness-level 
GI correlations and perturb-seq differential expression correlations. (C) As in B, with gene 
pairs that include selected genes highlighted. For all genes and for the highlighted genes, line 
represents the first principal component with the slope in parenthesis. (D) Histogram of GI 
correlation vs perturb-seq correlation slopes for each gene in the map. 
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Figure S7. Validating CBL/CNN1 interaction. (A) Comparison of expression data from Fig. 
2G to an additive model of genetic interaction. (B) Median expression of CD235a measured 
by flow cytometry of antibody-stained K562 cells upon cDNA overexpression of the 
indicated genes. (C) Equivalent analysis for CD71. (D) Cytospin images showing benzidine 
staining of hemoglobin in HUDEP2 cells upon cDNA overexpression of the indicated genes. 
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Figure S8. Expression of developmental markers in Perturb-seq experiment. (A)-(E) The 
panels show term enrichment of genes overexpressed in either the erythroid or granulocyte 
clusters of Figure 3 within the indicated databases. Analyses were performed using Enrichr 
(67). (F) Expression of curated developmental marker genes in perturbations belonging to the 
erythroid and granulocyte clusters. Color indicates fold change in expression, with gray 
indicating that a marker was not detected. (G) Apoptotic activity within Figure 3. Color is 
scaled by mean Z-normalized expression of a panel of pro- and anti-apoptotic genes. (H) 
May-Grünwald Giemsa staining of K562 CRISPRa cells expressing either non-targeting 
sgRNAs (unperturbed) or ETS2/MAPK1-targeting sgRNAs. (I) Differentiation time course 
experiment. RNAseq profiles of human CD34+ cells induced to differentiate were obtained at 
the indicated time points. The plots compare how correlated these transcriptional profiles are 
with the indicated transcriptional profiles of K562 cells in the Perturb-seq experiment. 
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Figure S9. Properties of model of transcriptional genetic interactions. (A) Distance 
correlation between model prediction and true double profile for all perturbations in the 
Perturb-seq experiment. 𝑑𝑑 = 𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑(𝑐𝑐1𝛅𝛅𝛅𝛅 + 𝑐𝑐2𝛅𝛅𝛅𝛅,𝛅𝛅𝛅𝛅𝛅𝛅). Cf. Figure 4B. (B) Comparison of 
model fit (measured by R2 score) for the linear model of genetic interactions and a fixed 
additive model in which 𝛅𝛅𝛅𝛅𝛅𝛅 = 𝛅𝛅𝛅𝛅 + 𝛅𝛅𝛅𝛅. (C) Comparison between correlation of 
transcriptional profiles and magnitude of coefficients in the model of genetic interactions. 
(D)-(G) Scatter plots comparing expression in the indicated double perturbation backgrounds 
and model predictions from the corresponding single perturbations. Each dot denotes a gene 
used in fitting the model. Models are fit by robust regression, so outlier genes are censored 
during fitting. (H) Perturb-seq dissection of the neomorphic PLK4/STIL combination. Cf. 
Figure 2. (I) Analysis assessing the extent to which genetic interactions may derive from 
direct activation of one interaction partner by the other. If the target gene (bolded) is more 
expressed in a given double perturbation (e.g. ETS2/MAPK1) than in the equivalent single 
(e.g. ETS2/control), it will lie to the right, and vice versa. Blue dots make the comparison for 
targets in the first (A) position of the vector, and orange dots in the second (B) position. 
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Figure S10. Single-cell trajectories of GIs. (A) UMAP projection of single cells (dots) 
involved in the ETS2/MAPK1 interaction, which largely recapitulate the average behavior. Cf. 
Figure 4F. (B) Expression of DUSP9 and MAPK1 in DUSP9/MAPK1-perturbed cells (dots) 
ordered by pseudotime. The lines show median-filtered expression. 
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Figure S11. Approach to predicting fitness-level genetic interactions. (A) Schematic of 
approach. Each step is explained in detail in Methods. (B) Cophenetic correlation as a 
function of sampling level, measuring the similarity of correlation structure in the true and 
predicted GI maps. This figure uses Euclidean distance instead of cosine distance, cf. Figure 
7F. (C) Spearman correlation between true and predicted fitness phenotypes at different levels 
of random sampling. Fifty random subsets were measured for each sampling level. (D) 
Improving prediction performance through altered sampling and side information. A biased 
strategy to sample interaction pairs and modified side information (see Methods) were used as 
inputs to prediction. The figure compares performance to the results from Figure 7D 
(“unbiased sampling”). (E)-(G) The recommender system can also be used in the absence of 
side information to perform inference. The figures compare performance with and without 
Perturb-seq side information. Compare with Figs. 7D-F. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601096doi: bioRxiv preprint 

https://doi.org/10.1101/601096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Tables 

Table S1. Genes targeted in CRISPRa GI map. 

Table S2. sgRNAs and barcodes in CRISPRa GI map library. 

Table S3. GI map sgRNA pair read counts and phenotypes. 

Table S4. GI map sgRNA-level GIs and GI correlations. 

Table S5. GI map gene-level GIs and GI correlations. 

Table S6. DAVID annotations for clusters annotated in (A) GI map and (B) Perturb-seq correlation map. 

Table S7. Perturb-seq experiment statistics for each perturbation. 

Table S8. Effects of CRISPRa on neighboring genes. 

Table S9. Fit statistics for the GI manifold linear model by perturbation. 
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Experimental Methods 
 
Cell Lines and Lentivirus 
K562, HEK293 and HUDEP2 cell lines were cultured at 37°C 5% CO2 in standard cell culture 
incubators. K562 (female) cells were grown in RPMI-1640 with 25mM HEPES and 2.0 g/L 
NaHCo3 in 10 % fetal bovine serum (VWR Seradigm), 2 mM glutamine (ThermoFisher), 100 
units/mL streptomycin and 100 µg/mL penicillin (ThermoFisher). HEK293T (female) cells used 
for packaging lentivirus were grown in Dulbecco’s modified eagle medium (DMEM) in 10 % 
fetal bovine serum (VWR Seradigm), 100 units/mL streptomycin and 100 µg/mL penicillin with 
2mM glutamine (ThermoFisher). HUDEP2 cells were cultured in SFEM (StemCell 
Technologies) with 1µM dexamethasone, 1µg/ml doxycycline, 50ng/mL hSCF (Peprotech), 
50ng/mL EPO (Peprotech) and 100 units/mL streptomycin and 100 µg/mL penicillin (52). 
Lentivirus was produced by transfecting HEK293T with standard packaging vectors using 
TransIT®-LTI Transfection Reagent (Mirus, MIR 2306). Viral supernatant was harvested 72 
hours following transfection and filtered through a 0.45 μm PVDF syringe filter. We used our 
previously published CRISPRa K562 cell line for all CRISPRa experiments. Briefly, to construct 
the CRISPRa K562 cell line, we lentivirally transduced K562 cells to stably express scFV-
sfGFP-VP64, rtTA and a doxycycline inducible dCas9-10xGCN4-P2A-mCherry construct (39). 
We added doxycycline to activate dCas9-10xGCN4-P2A-mCherry expression then sorted the 
CRISPRa K562 cells by flow cytometry using a BD FACS Aria2 for stable co expression of 
mCherry and GFP signal which marks expression of dCas9-10xGCN4-P2A-mCherry and the 
scFV-sfGFP-VP64 proteins respectively. We plated this polyclonal CRISPRa population to 
single cell clones and characterized CRISPRa activity as described (39) to generate our 
CRISPRa K562 cell line. K562 are originally obtained from ATCC. HUDEP2 are a gift from 
Jacob Corn. All cell lines were routinely tested for mycoplasma (MycoAlert, Lonza).  
 
CRISPRa, sgRNA and cDNA plasmids  
We used previously described lentiviral vectors to express the CRISPRa scFV-sfGFP-VP64, 
rtTA and a doxycycline inducible dCas9-10xGCN4-P2A-mCherry constructs (39). The sgRNA 
constructs and libraries used for GI mapping and perturb-seq experiments are described in detail 
in the GI and perturbs-seq sections of the methods below. To confirm individual GI and manifold 
phenotypes by CRISPRa we used two sgRNA vectors that each encodes a modified mouse U6 
promoter that drives expression of an optimized S. pyogenes sgRNA constant region (68) as well 
as either GFP or BFP and a puromycin resistance cassette separated by a T2A sequence from an 
Ef1Alpha promoter. For cDNA experiments that confirm manifold phenotypes, we cloned each 
specified cDNA into the LeGo iG2 and iC2 cDNA overexpression vectors by blunt ligation (69).  
 
GI dual sgRNA library plasmid design and construction  
The GI dual sgRNA library vector is a previously published sgRNA lentiviral plasmid (18). In 
the final GI library sgRNA vector, modified mouse and human U6 promoters express the 5’ and 
3’ sgRNAs respectively. Each sgRNAs encodes the same optimized S. pyogenes sgRNA constant 
region (68). To enable measurement of lentiviral vector recombination during reverse 
transcription by Illumina sequencing, we encoded 4 randomized 16 base pair DNA barcodes in 
the GI library dual sgRNA vector as previously described (18). The GI lentiviral sgRNA 
construct co-expresses BFP and a puromycin resistance cassette separated by a T2A sequence 
from an Ef1Alpha promoter.  
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The GI CRISPRa libraries were prepared by library cloning protocols as previously described 
(18). Briefly, we encoded each sgRNA on two oligonucleotides (Integrated DNA Technologies) 
which were annealed and ligated into a modified pSICO vector (pLG_GI1) encoding the 
optimized S. pyogenes sgRNA constant and two 16 base pair random DNA barcodes. We sanger 
sequenced each vector to assign DNA barcodes to each sgRNA in the library and then pooled the 
library manually. This starting sgRNA library lacks U6 promoters. As previously described, we 
cloned either a modified human or modified mouse U6 promoter into our pooled sgRNA library 
by restriction digest with XhoI/BstXI followed by ligation, creating two libraries where each 
vector encodes 1 U6-sgRNA cassette and 2 unique barcodes (pLG_GI2 and pLG_GI3). Finally, 
we restriction digested the mouse U6-sgRNA library with AvrII and KpnI and the human U6-
sgRNA library with XbaI and KpnI, we gel isolated the appropriate fragments of DNA and 
ligated these two libraries together creating our final GI sgRNA library vector. This GI dual 
sgRNA library encodes 2 sgRNAs with the 5’ sgRNA expressed from the mouse U6 promoter 
and the 3’ position from the human U6 promoter as well as the 4 unique DNA barcodes 
(pLG_GI4) as previously described (18).  
 
CRISPRa GI screening  
CRISPRa K562 cells were infected with CRISPRa GI dual sgRNA libraries by spinoculation for 
2 hours at 1000g in the presence of 8 µg/mL polybrene (35). The lentiviral infection was scaled 
such that on average each cell is infected with one GI dual sgRNA library vector as measured by 
the lentivirally encoded BFP signal.  At each point of the CRISPRa GI screen we maintained a 
library coverage of at least 3000 cells per GI perturbation except at the initial infection where we 
infected 250 cells per sgRNA. Two days after lentiviral infection, cells were selected with 0.9-1 
μg / mL puromycin (Sigma) for 2 days, and recovered with addition of fresh media for a ~48 
hour recovery. For the screen, populations of K562 cells expressing the CRISPRa GI library 
were harvested at the outset of the experiment or after ~8-9 population doublings. Two 
biological replicates of the GI screen were performed. Genomic DNA was harvested from each 
sample; the sgRNA and barcode encoding regions were amplified by PCR and then sequenced at 
high coverage as previously described (18).  
 
Perturb-seq plasmid design and construction  
To generate our library of dual sgRNA expression Perturb seq vectors, we began by cloning 
sgRNAs into single sgRNA expression vectors. sgRNAs destined for position A of the dual 
sgRNA vector were cloned into pBA439 (Addgene, #85967), which expresses sgRNAs with 
constant region 1 from an mU6 promoter, while sgRNAs destined for position B were cloned 
into pMJ117 (Addgene, #85997), which expresses sgRNAs with constant region 3 from an hU6 
promoter. sgRNAs (ordered as annealed oligos from IDT with BstXI/BlpI overhangs) were 
ligated into parental vectors after vector digestion with BstXI and BlpI. We then performed 
clonal isolation and Sanger sequencing to establish our library of single sgRNA expression 
vectors. Next, we prepared inserts and vectors for Gibson assembly. We PCR amplified the 
sgRNA expression cassettes consisting of a U6 promoter, protospacer, and constant region. 
pBA439-derived cassettes were amplified with oMJ0571 
(GCTGAGTGTAGATTCGAGCAAAAAAAGCACCGACTCG) and oMJ0572 
(gaagttattaggtccctcgac) while pMJ117-derived cassettes were amplified with oBA276 
(cggtaatacggttatccacg) and oBA281 (GCTCGAATCTACACTCAGC). We Gibson assembled 
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XhoI/HpaI-digested pBA571 (Addgene, pooled library #85968), pBA439-derived cassettes, and 
pMJ117-derived cassettes to generate dual sgRNA expression vectors. We performed clonal 
isolation and Sanger sequencing of the two protospacers and corresponding GBCs to establish a 
library of uniquely barcoded dual sgRNA expression Perturb seq vectors (Table S2) 
 
Perturb-seq viral production and lentiviral titering  
Lentivirus for the 295 dual sgRNA expression Perturb seq vectors was produced in array to 
prevent sgRNA-barcode uncoupling. To control the representation of sgRNAs in cells at the time 
of scRNA-seq (7 days after transduction), viral pooling was performed after titering to account 
for packaging variability and sgRNA effects on cell growth over the course of the experiment. 
To titer, sgRNA expression constructs were transduced into CRISPRa K562 cells (stably 
expressing the sunCas9 system (39)) via centrifugation (2 hours at 1000 x g). Cells were grown 
without selection for 7 days and analyzed by flow cytometry on a LSR-II flow cytometer (BD 
Biosciences). BFP expression was used to gate for transduced cells. The final lentiviral pooling 
was corrected for both this viral titer and desired representation (for example, negative control 
vectors were included at 6-fold higher representation to ensure adequate sampling).   
 
Perturb-seq screening  
Our pooled dual sgRNA CRISPRa library was spinfected into CRISPRa K562 cells (39) (2 hours 
at 1000 x g) with a target multiplicity of infection (MOI) of 0.04. Post centrifugation, cells were 
transferred to a spinner flask for growth. After 3 days of growth, we measured (by BFP 
expression) an MOI of ~0.03 and transduced cells were sorted to near purity on a BD 
FACSAria2. Cells were maintained at >88% viability and >94% GFP+BFP+ over the course of 
the experiment, indicating stable CRISPRa and sgRNA vector expression. On day 7 post-
transduction, cells were separated into droplet emulsions using the Chromium Controller across 
8 lanes of the Chromium Single Cell 3’ Gel Beads v2 (10x Genomics). Cells were loaded to 
recover ~13,000 cells per lane at an estimated coverage of ~350 cells per sgRNA.  
 
Library preparation and sequencing  
The scRNA-seq library for our GBC Perturb-seq screen was prepared according to the 
Chromium Single Cell 3’ Reagent Kits v2 User Guide (10x Genomics CG00052). Library 
molecules containing guide barcodes (GBCs) were specifically amplified using KAPA HiFi 
ReadyMix with 180 ng of the final library as template and 0.6 mM of the custom P5 primer 052-
P5 (5'-AATGATACGGCGACCACCGAGATCTACAC-3') and 0.6 mM of custom i7-barcoded 
specific amplification primers (table below). PCR cycling was performed according to the 
following protocol: (1) 95 C for 3 min, (2) 98 C for 15 s, then 70 C for 10 s (14 cycles) (3) 72 C 
for 1 min. The resulting GBC sequencing library was purified via a 0.8X SPRI selection 
followed by selection of fragments length 350-525 bp using the BluePippin (Sage Science).  
 
All scRNA-seq and GBC sequencing libraries were sequenced on 1 lane of a NovaSeq S2. The 
libraries were sequenced with a 26 bp Read 1, 90 bp Read 2, and 8 bp Index Read 1.  
 

055-N703 CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGCTCGGAGA
TGTGTATAAGAGACAGGACCTCCCTAGCAAACTGGGGCACAAG (Tm=64.4C) 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601096doi: bioRxiv preprint 

https://doi.org/10.1101/601096
http://creativecommons.org/licenses/by-nc-nd/4.0/


63 
 

055-N704 
CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCGTGGGCTCGGAG
ATGTGTATAAGAGACAGGACCTCCCTAGCAAACTGGGGCACAAG 
(Tm=64.4C) 

055-N705 
CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCGTGGGCTCGGAG
ATGTGTATAAGAGACAGGACCTCCCTAGCAAACTGGGGCACAAG 
(Tm=64.4C) 

055-N706 
CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCGTGGGCTCGGAG
ATGTGTATAAGAGACAGGACCTCCCTAGCAAACTGGGGCACAAG 
(Tm=64.4C) 

055-N707 
CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTCTCGTGGGCTCGGAG
ATGTGTATAAGAGACAGGACCTCCCTAGCAAACTGGGGCACAAG 
(Tm=64.4C) 

055-N708 
CAAGCAGAAGACGGCATACGAGATCCTCTCTGGTCTCGTGGGCTCGGAG
ATGTGTATAAGAGACAGGACCTCCCTAGCAAACTGGGGCACAAG 
(Tm=64.4C) 

055-N709 
CAAGCAGAAGACGGCATACGAGATAGCGTAGCGTCTCGTGGGCTCGGAG
ATGTGTATAAGAGACAGGACCTCCCTAGCAAACTGGGGCACAAG 
(Tm=64.4C) 

055-N710 
CAAGCAGAAGACGGCATACGAGATCAGCCTCGGTCTCGTGGGCTCGGAG
ATGTGTATAAGAGACAGGACCTCCCTAGCAAACTGGGGCACAAG 
(Tm=64.4C) 

 
 
CRISPRa and cDNA validation experiments   
Individual phenotype re-test experiments for sgRNA or cDNA pair phenotypes from the GI and 
perturb-seq screens were performed as pure population assays or as dual color (BFP/GFP) 
immunophenotyping experiments on a partially transduced population of CRISPRa K562, K562 
or HUDEP2 cells. Briefly, for multiplexed immunophenotyping cells were co- transduced at ~5-
60% infection with two lentiviral vectors marked with either BFP, mCherry or GFP each 
encoding a single sgRNA or cDNA. This assay enables us to track uninfected cells, cells that 
express each single sgRNA or cDNA or cells that express a pair of sgRNAs or cDNAs within 
one internally controlled sample by flow cytometry over time to quantify how each single 
perturbation or pair of perturbation influences cell phenotypes. Three to six days following 
infection, cells were counted and stained with APC, APC-Cy7 or PE-Cy7 conjugated antibodies 
as indicated (BioLegend) and then analyzed by flow cytometry on a BD LSR-II. For hemoglobin 
and cell morphology assays, infected cell populations were sorted to purity by flow cytometry 
using a BD FACS Aria2 or a Sony SH800S Cell Sorter for stable BFP, mCherry or GFP signal 
which marks sgRNA or cDNA expression 2 days following infection and then cultured for 
additional 3-4 days. 
 
Cytology 
CRISPRa K562 or HUDEP2 cells were concentrated by cytocentrifugation at 400g for 8 
minutes onto glass slides using a Shandon Cytospin 3 (Thermo Fisher Scientific). Slides were 
fixed in methanol for 30 seconds, stained in May-Grünwald solution (Sigma-Aldrich) for 10 
minutes, and stained in a 1:5 dilution of Giemsa solution (Sigma-Aldrich) in distilled water for 
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20 minutes. Stained slides were then rinsed in distilled water and allowed to dry before being 
covered with a coverslip. Cells were imaged on a Zeiss AxioImager M1. 
 
Hemoglobin expression analysis 
Hemoglobin expression was visualized by flow cytometry on a BD LSR-II by staining cells with 
PE conjugated anti-human HbF antibody as per manufacturers protocol (BD Biosciences). For 
histochemical analysis of hemoglobin, HUDEP2 cells were stained with o-dianisidine. Briefly, 
cytospun slides were fixed in methanol for 30 seconds, stained in o-dianosidine solution (Sigma-
Aldrich, 1% w/v in methanol) for 5 minutes, and stained in peroxide solution (1 vol. 30% H2O2 
and 11 vol. 70% EtOH) for 2.5 minutes. Slides were then counterstained with May-Grünwald 
solution for 10 minutes, rinsed with distilled water, dried, and covered with a coverslip. Cells 
were imaged on a Zeiss AxioImager M1. 
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Computational Methods  
 
 
GI map analysis 
 
Availability 

All analysis of GI map experiments was performed using a custom package built in Python. This 
package was previously published in part (18), but the complete package used in the present 
manuscript and the associated notebooks (names appear underlined) used to process the data and 
generate all the figures will be released alongside the paper. 

GI map gene and sgRNA selection 
 
(GI_library_construction) 

 
Genes with a gene growth phenotype (γ) of absolute value greater than or equal to 0.05 in a 
CRISPRa v1 growth screen in K562 (Table S1; (35)). The gene set was further filtered for genes 
with a “discriminant score” (the product of the phenotype Z-score and -log(Mann-Whitney P-
value) ), of 20 or greater in at least one screen in our CRISPRa activity score dataset (70). The 
two sgRNAs targeting each gene with the greatest absolute value growth phenotype were 
selected, standardizing CRISPRa v1 sgRNA length to G(N19)NGG and excluding sgRNAs 
containing BstXI, BlpI, SbfI, XhoI, AvrII, and XbaI sites. 16 non-targeting sgRNA controls were 
randomly selected from CRISPRa v1 with the same length adjustment and restriction site filters. 
sgRNAs were ordered as pairs of individual oligonucleotides (Integrated DNA Technologies, 
San Diego, CA) with the following flanking sequences: 
 
Top oligo: TTG + G (N19) + GTTTAAGAGC 
Bottom oligo--reverse complement of: CTTGTTG + G(N19) + GTTTAAGAGCTAA 
 
sgRNA sequences are provided in Table S2. 
 
GI map screen data processing 
 
(GI_data_processing) 
 
Sequence alignment  
Read alignment was performed as previously described (18). Sequencing reads resulting from 
triple sequencing were obtained as three parallel fastq files representing the upstream and 
downstream sgRNAs and the reverse-complement of the pair barcode. sgRNAs and barcodes 
were aligned to the sequences present in the CRISPRa GI map library using custom Python 2.7 
scripts (github.com/mhorlbeck/GImap_tools/tripleseq_fastqgz_to_counts.py), allowing for one 
mismatch in each of the sgRNAs and barcodes. Only reads in which the sgRNAs and barcodes 
all mapped to the library and matched to the same pair ID were counted for downstream analysis 
(with the exception of the “barcodes only” analysis in Figure S2A). The barcode did not match 
the A position in ~4% of reads and did not match the B position in ~16% of reads, roughly 
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proportional to their distances in the paired sgRNA vector and consistent with our previous 
findings (18). Raw reads are deposited with GEO (GSENNNNN) and read counts are provided 
in Table S3.  
  
Calculating GI scores 
Phenotypes, sgRNA-level GI scores, and gene-level GI scores were calculated essentially as 
described in (18) using custom Python 2.7 scripts 
(github.com/mhorlbeck/GImap_tools/GImap_analysis.py). sgRNA pair phenotypes were 
obtained by calculating the log2 enrichment of read counts at the endpoint compared to T0, with 
a pseudocount of 10 and filtering all sgRNAs for which there were fewer than a median of 15 
reads across all pairs with that sgRNA in either the A or B position. The log2 enrichment values 
were divided by the number of cell doublings between T0 and endpoint (replicate 1: 8.079, 
replicate 2: 8.322) to obtain the growth phenotype γ (71). Replicate phenotypes were then 
averaged except for analyses directly comparing replicates. Finally, corresponding AB and BA 
sgRNA pair phenotypes were averaged. Phenotypes are provided in Table S3. 
 
Single sgRNA phenotypes were calculated from the mean of all sgRNA x negative control pairs. 
sgRNA-level GI scores were then calculated by fitting a quadratic curve to the relationship of 
single phenotypes to the sgRNA pair phenotype when paired with a given query sgRNA (Figure 
S2C). The y-intercept of the quadratic curve was set at the single phenotype for the query 
sgRNA. For each pair, the GI score equaled the difference between the measured pair phenotype 
and the fit expectation at the single phenotype, standardized to the standard deviation of the 
query x negative control pairs. The query-sample and sample-query GI values for each sgRNA 
pair were averaged to obtain the sgRNA-level GI. For each gene pair, all sgRNA x sgRNA pairs 
corresponding to those genes (generally 2x2 except in cases where sgRNAs were filtered) were 
averaged to obtain the gene-level GI. Negative control gene pairs were simulated by calculating 
the GI from all combinations of 2 negative control sgRNAs. sgRNA and gene level GIs are 
provided in Table S4 and S6 respectively. 
 
Handling of GIs in which primary phenotypes are positive 
When both single perturbations result in a fitness defect, positive and negative GIs can easily be 
interpreted as buffering or SSL, respectively. When one or both of the perturbations results in 
increased fitness, however, the interpretation becomes more difficult. Several approaches have 
been proposed, including changing the sign of the GI value according to the sign of the expected 
double phenotype (71), but these methods necessarily result in discontinuous data and 
complicate downstream clustering and analysis. For this reason, we did not change the sign of 
GIs and refer to all positive and negative GIs as buffering and SSL for simplicity. 
 
Figure 1 
 
GI map clustering and annotation (GI_map_all_figures) 
 
For the GI map and Perturb-seq correlation map (Figures 1C, S3, and S4A; see also Figure 3 
methods), clustering was performed by average linkage hierarchical clustering using Pearson 
correlation as the distance metric (SciPy hierarchy package). Principled annotation was 
performed similar to (18) using updated custom Python 2.7 scripts (will be available as 
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github.com/mhorlbeck/hierarchical_annotation.py). Briefly, all DAVID 6.8 default functional 
annotations ((40, 41); accessed 12/17/2018), including GO BP/MF/CC, BIOCARTA, COG, 
KEGG, INTERPRO, OMIM, PIR, SMART, and Uniprot, were obtained for each gene in the 
CRISPRa GI map. Nodes were considered enriched for a given annotation if the log 
hypergeometric P-value for gene leaves in that node was less than or equal to -7.5 and the node 
was more enriched for the term than any other node. In cases where a parent of a given node was 
also enriched for a term and the gene sets overlapped by over 90% or the terms were redundant 
with a Cohen’s kappa over 0.4, the child node was folded into the parent. Full annotation names 
were shortened for figures. All node annotations, member genes, and short names are provided in 
Table S7. 
 
To characterize the relationship between GI and Perturb-seq correlations for specific genes, 
principal components analysis was performed (scikit-learn 0.20.2). The slope of the relationship 
was then calculated from the first principal component. 
 
Perturb-seq analysis and modeling of transcriptional genetic interactions  
 
Availability 

All analysis of Perturb-seq experiments was performed using a custom package built in Python. 
This package and the associated notebooks (names appear underlined) used to process the data 
and generate all the figures will be released alongside the paper. 

Cell barcode and UMI calling, perturbation calling, data normalization and averaging 

(GI_call_barcodes and GI_generate_populations) 

Raw sequencing data from 10x experiments was converted to UMI count tables using the default 
settings of Cellranger 2.1.1. Perturbation identities were called from separate targeted sequencing 
of Perturb-seq barcodes as described in (29). In a departure from the standard 10x workflow, we 
called perturbation identities for any cell barcode with greater than 2000 UMIs, as Cellranger 
tended to discard cells bearing perturbations that induced strong growth defects. Any cell 
barcode passing this UMI threshold and bearing an unambiguous unique perturbation barcode 
was deemed a cell (i.e., no cell doublets or cells that had received multiple distinct lentiviral 
integrations) and included in all subsequent analyses. 

Normalized expression data for each cell were then derived by (1) equalizing UMI counts across 
cells, and (2) z-normalizing the expression of each gene with respect to the mean and standard 
deviation observed in control cells bearing nontargeting sgRNAs within the same gemgroup (i.e. 
same lane on the 10x), as described in (29). This normalization does two things: (1) It sets the 
average expression profile across all genes to be the all-zero vector for unperturbed cells—that 
is, unperturbed cells define the origin of the resulting coordinate system; and (2) because the 
normalization is performed within gemgroups, it acts as a simple means of correcting for any 
batch effects that appear across gemgroups.  
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For each perturbation (i.e. combination of sgRNAs, representing a distinct genetic background), 
pseudo-bulk average profiles of normalized and unnormalized UMI count data for all genes were 
then obtained by averaging across all cells containing that perturbation.  

 

Figure 2 

Technical performance of sgRNAs (GI_sgRNA_performance) 

Activation performance was computed either as the fold activation (the ratio of the average 
number of UMIs in perturbed cells vs the average number of UMIs in control cells bearing non-
targeting sgRNAs) or the difference (of average UMI counts of the target in perturbed and 
control cells).  

When comparing activation in the A and B position of the vector, cells contain sgRNAs in either 
of the below configurations:  
 
single_A  pos A: targeting sgRNA   pos B: non-targeting control sgRNA  
single_B  pos A: non-targeting control sgRNA  pos B: targeting sgRNA 
 
To compare the number of differentially expressed genes as a function of activation level, we 
executed the following procedure. We restricted our attention to genes with expression greater 
than 0.25 UMI per cell on average within the experiment. We then compared the distribution of 
normalized expression within each perturbed cell population to its normalized expression within 
unperturbed cells using a two-sample Kolmogorov-Smirnov test. p-values were corrected for 
multiple hypothesis testing by the Benjamini-Yekutieli procedure at an FDR of 0.001. The plot 
in Fig. 2C shows the number of differentially expressed genes called by this procedure as a 
function of activation level for all perturbations with targeting sgRNAs in the A position and 
non-targeting control sgRNAs in the second position. 

To compare the number of differentially expressed genes for sgRNAs targeting the A and B 
positions, we (randomly) downsampled each the single_A- and single_B-containing cell 
populations to contain the same number of cells (whichever number was lower) and called 
differentially expressed genes as above. 

Example gene expression heatmaps (GI_CBL-CNN1_example) 

To identify genes that were differentially expressed across the three genetic backgrounds (single 
perturbation a, single perturbation b, and doubly-perturbed cells ab), we used a random forest 
classifier as described in (72). Briefly, each cell was used as a training data point, and the 
classifier was then trained to predict the genetic perturbation a cell contained from its gene 
expression profile. All genes with mean expression greater than 0.05 UMI per cell were 
considered as possible distinguishing features. The figures show the top 30 genes with the 
highest predictive power. Notably, this procedure will tend to identify genes that show large, 
reproducible differences in expression across condition. 
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Term enrichment (GI_CBL-CNN1_example) 

Differentially expressed genes in CBL/CNN1 cells were scored with the Kolmogorov-Smirnov 
test as described above, and then the top 50 genes by p-value were submitted to Enrichr (67) for 
term enrichment in the ARCHS4 database of cell-type-specific gene expression (66). 

Measuring off-target activation in the neighborhood of the targeted gene 
(GI_activation_of_neighboring_genes) 

To evaluate off-target activation, we used a bootstrap test to evaluate whether the mean 
expression of genes in the neighborhood of the targeted gene was altered. Specifically, let 𝒚𝒚 and 
𝒛𝒛 denote the observed vectors of (unnormalized) expression of a given gene in perturbed and 
unperturbed cells. We wish to test whether 𝜇𝜇𝑦𝑦 = 𝜇𝜇𝑧𝑧. To do so, let �̅�𝑥 be the mean over all 
observations and define shifted distributions 𝑦𝑦𝚤𝚤� = 𝑦𝑦𝑖𝑖 − 𝑦𝑦� + �̅�𝑥 and 𝑧𝑧𝚤𝚤� = 𝑧𝑧𝑖𝑖 − 𝑧𝑧̅ + �̅�𝑥. We draw 
10,000 bootstrap replicates from 𝒚𝒚� and 𝒛𝒛� and test for equality of means in each replicate (𝒚𝒚∗, 𝒛𝒛∗) 
via a t-statistic: 

𝑡𝑡(𝒚𝒚∗, 𝒛𝒛∗) =
𝑧𝑧∗� − 𝑦𝑦∗���

�𝜎𝜎𝑧𝑧∗

𝑛𝑛
+

𝜎𝜎𝑦𝑦∗

𝑚𝑚

, 

where n and m are the number of unperturbed and perturbed cells. A p-value is assigned as 

𝑝𝑝 = #{𝑡𝑡(𝒚𝒚∗, 𝒛𝒛∗) ≥ 𝑡𝑡(𝒚𝒚,𝜹𝜹)}/10,000 

For genes for which we reject the hypothesis at a significance of p < 0.05, we then present log2 
fold changes relative to unperturbed cells. In the figure we mark perturbations that induce large 
changes in total transcriptome size (<80% of the size in unperturbed cells) with a “#” symbol, as 
this may indicate widespread changes in gene expression that are not the result of direct sgRNA-
induced effects. We applied this testing procedure to the 20 nearest neighbors of the targeted 
gene in each direction on the chromosome. 

 

Figure 3 (GI_optimal_umap) 

Constructing mean expression profiles 

Average normalized gene expression profiles were obtained for all 287 perturbations in the 
Perturb-seq dataset containing all genes with mean expression level of 0.25 UMI or higher per 
cell (~4800 genes). Expression of each gene was then standardized by dividing by the standard 
deviation across all mean expression profiles. (The average normalized gene expression is close 
to 0 for all genes by construction since most genes on average are not strongly perturbed away 
from the unperturbed state.) 

Clustering of mean expression profiles 

Expression profiles for all perturbations were clustered using HDBSCAN with the following 
parameters: metric='correlation', min_cluster_size=4, min_samples=1, 
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cluster_selection_method='eom', alpha=1. HDBSCAN only places perturbations into clusters 
that are “stable”: that is, they are supposed to be somewhat resilient to choices of parameters and 
subsampling of the data. Profiles that are not part of a stable cluster are left as unclustered outlier 
points and are gray in the UMAP figure. 

UMAP projection 

UMAP dimensionality reduction was performed on the mean expression profiles using the 
following parameters: metric=‘correlation’, n_neighbors=10, min_dist=1, spread=2. UMAP is a 
randomized algorithm, so the precise results depend on the random seed used. Dimensionality 
reduction was thus performed 10,000 times using different random seeds. For each run, the 
distance correlation (73) was computed between the matrix of mean expression profiles and the 
reduced matrix of all two-dimensional positions after UMAP dimensionality reduction. We then 
selected the projection with the highest distance correlation as being most representative of the 
original high-dimensional data. Points were then colored according to cluster membership 
determined above. 

Developmental markers 

In the UMAP, expression of different lineage-specific markers were used to define perturbations 
that were primed towards different differentiation states: 

Erythroid: HBG1, HGB2, HBZ, HGA1, HBA2, GYPA (CD235a), ERMAP 
Granulocyte: ITGAM (CD11b), CSF3R, LST1, CD33 

The expression of these and other markers are summarized for perturbations in the erythroid and 
granulocyte clusters in Figure S8F. Note that lowly expressed transcripts and non-protein 
markers cannot be reliably detected by single-cell RNA seq, so some of the canonical clusters of 
differentiation (CD) surface markers cannot be measured. For each category, the score was 
defined as the mean normalized expression of genes in the marker panel. 

Cell cycle scores 

Cell cycle positions were called for each cell using scores derived from panels markers specific 
to each cell cycle stage as in (72). The relative occupancy of cells in each cell cycle stage was 
then computed for each perturbation. The heatmap of deviations in Figure 3G shows the 
percentage change in each cell cycle stage relative to the distribution observed in control cells 
bearing non-targeting sgRNAs. The deviation shown in the paired heatmap shows the correlation 
distance between occupancy profiles for the given perturbations and unperturbed cells: i.e., the 
fractions in each cell cycle stage and in each condition are collected into vectors x and y and the 
distance is computed as (1 − 𝜌𝜌(𝒙𝒙,𝒚𝒚))/2. 

Term enrichment in Figure S8A-E 

Perturbations in each of the two clusters were collected together and an average normalized 
expression profile was computed. Genes with expression greater than 1 in this profile (indicating 
that their expression was at least one standard deviation above the range observed in unperturbed 
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cells within the cluster on average) were then submitted to Enrichr for term enrichment. The 
reported scores are Enrichr’s “combined scores” within the indicated databases. 

Marker gene expression Figure S8F 

Specific markers were chosen primarily from (74) or (75) based on restricted expression within 
the branches below the common myeloid progenitor (i.e. restricted to either cells derived from 
proerythroblasts or myeloblasts). A handful of additional markers were included based on strong 
expression in the data set and restricted expression based on literature searches: 

Gene Description 
KLF1 Erythroid Krüppel-like factor 1, one of the major regulators of terminal erythropoiesis (76). 
LST1 Leukocyte specific transcript 1. Expressed in leukocytes of the myeloid lineage and not in 

K562 cells (77).  
CSF3R Granulocyte colony stimulating factor receptor, the major cytokine regulating 

granulopoiesis. Expression of the receptor is restricted to myeloid progenitors and derived 
cells (78). 

 
Throughout the text we refer to the clusters of cells expressing these markers as the “erythroid 
cluster” and the “granulocyte cluster.” This terminology is a shorthand, and the precise 
placement of these cells in the classical hematopoietic hierarchy is unclear. They may in fact 
represent transitional, primed, or intermediate states, as indicated by markers such as CD71 
(whose expression rises and then falls during erythropoiesis; (75)), and CD45/CD123 (used to 
distinguish erythroid and myeloid progenitors; (75)). 

To produce the heatmap, the unnormalized average expression profiles for the perturbations were 
first scaled so that the total UMI count was the same as observed in control cells bearing non-
targeting sgRNAs (i.e. we scaled out any global reduction in transcriptome size induced by the 
perturbation). The heatmap shows log2 fold enrichments relative to unperturbed cells. The 
heatmap is clustered according to the data presented (so the separations of myeloid and erythroid 
markers and of the two UMAP clusters (53) is not forced). 

Apoptosis scores 

Anti- and pro-apoptotic genes were taken from the Qiagen Human Cell Death Pathway Finder 
RT2 Profiler PCR Arrays. Specifically, we used: 

Pro-apoptotic: ABL1, APAF1, ATP6V1G2, BAX, BCL2L11, BIRC2, CASP1, CASP3, CASP6, 
CASP7, CASP9, CD40, CD40LG, CFLAR, CYLD, DFFA, FAS, FASLG, GADD45A, NOL3, 
SPATA2, SYCP2, TNF, TNFRSF1A, TNFRSF10A, TP53 
Anti-apoptotic: AKT1, BCL2, BCL2A1, BCL2L1, BIRC3, CASP2, IGF1R, MCL1, TNFRSF11B, 
TRAF2, XIAP 

Genes with average expression less than 0.05 UMI per cell were dropped. The total apoptosis 
score was the mean normalized absolute expression of these genes, representing the total pro- 
and antiapoptic activity in cells. 
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Comparisons to erythroid and megakaryocyte developmental time courses 
(GI_comparison_to_timecourse) 

We compared some of our transcriptional signatures to RNAseq profiles taken from various time 
points of human CD34+ mobilized peripheral blood cells that had been induced to differentiate 
through erythropoietin or thrombopoietin treatment. To compare this time course experiment to 
our Perturb-seq experiment, we first subsetted our transcriptional profiles to genes represented in 
both data sets with mean expression greater than 0.1 UMI per cell in the Perturb-seq experiment, 
and then normalized transcriptional profiles from both experiments via the transformation 𝑥𝑥� =
log2(𝑥𝑥 + 1). Within the time course data sets, we then characterized genes by their absolute 
differential expression between first and last time points (i.e. we computed |𝑥𝑥�(𝑡𝑡0) − 𝑥𝑥�(𝑡𝑡final)|), 
and chose the top 5% of genes by this metric as a signature of differentiation. We then computed 
Spearman correlations between the time course profiles of these genes at each time point to the 
perturbation-induced expression profiles in our Perturb-seq experiment. As the null expectation 
is not necessarily a correlation of 0 (since K562 cells are a hematopoietic cell line and likely 
share some features with CD34+ cells), so we provide the results for unperturbed K562 cells as a 
baseline.  

 

Figure 4 

Fitting the model by robust regression (GI_model_fits) 

To analyze each double perturbation, we consider pseudo-bulk average RNAseq profiles for 
three different populations of cells defined as below: 

Name sgRNA in A position sgRNA in B position Example 
a Targeting gene a Non-targeting control sgRNA CBL_NegCtrl0 
b Non-targeting control sgRNA Targeting gene b NegCtrl0_CNN1 
ab Targeting gene a Targeting gene b CBL_CNN1 

 
Each genetic perturbation induces changes in expression relative to unperturbed control cells. 
We can therefore equivalently view, for example, the expression profile a in terms of the 
deviations it induces relative to unperturbed cells: 

𝜹𝜹a = a − u 

where u is the gene expression observed in unperturbed cells. By construction, our normalization 
procedure (see “Cell barcode and UMI calling, perturbation calling, data normalization and 
averaging” above) makes this profile all 0 on average for control cells. Thus if we use the 
pseudo-bulk average normalized expression profiles, unperturbed cells define the origin of the 
coordinate system and a and 𝜹𝜹a are equivalent. 

Our model of genetic interaction then seeks to decompose the perturbation induced by a and b 
together in terms of the action of each alone: 

𝜹𝜹𝜹𝜹𝜹𝜹 = 𝑐𝑐1𝜹𝜹𝜹𝜹 + 𝑐𝑐2𝜹𝜹𝜹𝜹 + 𝝐𝝐 
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To be clear, here 𝜹𝜹𝜹𝜹𝜹𝜹, for example, is the vector of normalized gene expression observed in ab-
perturbed cells, 𝑐𝑐1 and 𝑐𝑐2 are constants that are fit to the data, and 𝝐𝝐 is a (vector) error term that 
collects deviations from the overall fit. Geometrically, this can be thought of as trying to best 
explain the path between unperturbed cells and doubly-perturbed cells as a linear superposition 
of the two single perturbations. 

The goal of fitting the model is to summarize the overall average behavior when perturbations 
combine, so the coefficients 𝑐𝑐1 and 𝑐𝑐2 must necessarily average effects over the many genes 
composing the profiles. Standard least squares regression can be arbitrarily corrupted by outliers 
(e.g. single genes that undergo massive induction). To reduce this effect, we fit the model 
coefficients using robust regression, specifically the Theil-Sen estimator (fit on 10,000 random 
subsamples of 1,000 genes at a time, scikit-learn estimator TheilSenRegressor with parameters 
fit_intercept=False, max_subpopulation=1e5, max_iter=1000, random_state=1000). We obtained 
similar results using the implementation of robust linear models in the statsmodels package with 
the Tukey biweight, but all results in the paper are calculated using the Theil-Sen estimator. 

When fitting the model we used all genes with mean expression greater than 0.5 UMI per cell 
(~2,800 genes). 

Evaluating model fit (GI_model_fits) 

Model fit was evaluated in two ways. The first was the simple R2 score, which measures: 

𝑅𝑅2(𝒚𝒚,𝒚𝒚�) = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑖𝑖
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑖𝑖

  

where 𝑦𝑦� is the sample mean and in this case 𝒚𝒚 = 𝜹𝜹𝜹𝜹𝜹𝜹 and 𝒚𝒚� = 𝑐𝑐1𝜹𝜹𝜹𝜹 + 𝑐𝑐2𝜹𝜹𝜹𝜹. 

However, because robust regression by definition does not minimize R2, this is an imperfect 
metric by which to gauge model fit. In several instances we also evaluated fit via distance 
correlation (73). This metric varies between 0 and 1 and has several advantages over Pearson 
correlation: 

1. it can quantify both linear and nonlinear dependence 
2. 𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑(𝒙𝒙,𝒚𝒚) = 0 ⇔ 𝑥𝑥 is independent of 𝑦𝑦 
3. because it is a function of pairwise distances among rows, 𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑(𝒙𝒙,𝒚𝒚) for example still 

makes sense when 𝒙𝒙 is a vector (i.e. a univariate statistic) and 𝒚𝒚 is a matrix (i.e. a 
multivariate statistic) with the same number of rows (observations) as 𝒙𝒙 

4. again likely because it is a function of pairwise distances among rows, it in our hands is 
less sensitive to the effects of individual outlier features (genes) 

One disadvantage is that distance correlation is not signed, so positive and negative relationships 
are not distinguished. In this case, to evaluate fit we computed 

𝑑𝑑 ≔ 𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑(𝜹𝜹𝜹𝜹𝜹𝜹, 𝑐𝑐1𝜹𝜹𝜹𝜹 + 𝑐𝑐2𝜹𝜹𝜹𝜹) 

Larger errors will result in smaller values of d, which we use to evaluate the degree of 
neomorphic (i.e. unexpected) behavior. We used the implementation in the dcor Python package. 
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Example gene expression heatmaps (GI_DUSP9-MAPK1-ETS2_example) 

These were constructed as described above for Figure 2, except that 100 genes are displayed and 
we only considered genes with mean expression greater than 0.5 UMI (as this was the threshold 
used for model fitting). 

Orienting buffering interactions (GI_orienting_buffering_interactions) 

We looked for interactions that were asymmetrical – i.e. where one single perturbation accounted 
for substantially more of the double’s behavior than the other. To measure this behavior 
(examined further in Figure 5), we computed an index of asymmetry as |log10(𝑐𝑐1/𝑐𝑐2)|. We 
considered all interactions where this metric exceeded 1.25 and that had fitness GI scores of 3 or 
more. In the figure we draw an arrow pointing from the gene with the stronger influence on the 
double to the one with the weaker influence. The colors were added by taking the expression 
data as normalized in Figure 3 and clustering it by hierarchical clustering (using the linkage 
given by setting method=’average’ and metric=’correlation’) to identify perturbations with 
similar transcriptional profiles. 

Additive model 

In Figure S9, we compared the linear model fit to the additive expectation given by  

𝜹𝜹𝜹𝜹𝜹𝜹�additive = 𝜹𝜹𝜹𝜹 + 𝜹𝜹𝜹𝜹 

Comparing expression correlation and coefficient magnitudes 
(GI_dimensionality_reduction_and_statistics) 

Expression data was normalized (as in Figure 3) for all of the “single_A” perturbations (i.e. all 
perturbations with a targeting sgRNA in the A position of the vector and a non-targeting control 
sgRNA in the B position). Figure S9C then examines the extent to which correlation of these 
expression profiles is predictive of interaction as determined by the magnitude of the model 
coefficients. 

Evaluating effects of partner upregulation (GI_model_fits) 

Some interactions (like the ETS2/MAPK1 example) may partly arise when, for example, 
perturbation of gene a also leads to upregulation of gene b, so that when both a and b are 
perturbed together there is a direct synergy. To evaluate this across our dataset, we compared 
activation levels within singly- and doubly-perturbed cells. To do this we computed the 
following ratios: 

UMI of 𝑎𝑎 in 𝜹𝜹𝜹𝜹 cells
UMI of 𝑎𝑎 in 𝜹𝜹 cells

×
total UMI in 𝜹𝜹 cells
total UMI in 𝜹𝜹 cells

 

The second factor scales out apparent changes in activation level due to global changes in 
transcriptome size. The figure plots the log10 of these ratios. 
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Figure 5 (GI_dimensionality_reduction_and_statistics) 

Figure 5 presents an adaptation of the OneSENSE method (60) that uses UMAP (53) instead of t-
sne as the core dimensionality reduction method. Broadly speaking, the goal is to visualize 
structure among the interactions in two distinct ways: 

(1) in terms of the quantitative model of phenotype we infer in Figure 4 
(2) a “model-free” view based on how similar the transcriptional profiles are to each other 

 
The comparison then identifies commonalities and differences between these viewpoints. (E.g. 
many, but not all, strong synthetic lethal interactions arise from single perturbations that induce 
similar transcriptional changes.) Accordingly, we constructed transcriptional profiles for each 
double interaction ab and the constituent single interactions a and b as in Figure 4. We then 
defined two axes by projecting two sets of variables to a single dimension using UMAP (53): 
 
x-axis: 

Model fit 𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑(𝑐𝑐1a + 𝑐𝑐2b, ab) 
Dominance (i.e. how much larger one coefficient 
is than the other) 

|log10(𝑐𝑐1/𝑐𝑐2)| 

Magnitude of coefficients, measuring the 
“strength” of interaction as in Figure 4C 

(𝑐𝑐12 + 𝑐𝑐22)1/2 

 

y-axis: 

Similarity of single transcriptional profile to 
double transcriptional profile. Here the notation 
[a,b] refers to the concatenated matrix with the 
two single profiles as columns. Distance 
correlation retains a meaning in this case as 
discussed in the Methods for Figure 4. 

𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑([a,b], ab)  

Similarity of single transcriptional profiles 𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑(a, b) 
Equality of contribution. This metric measures the 
extent to which one single transcriptional profile 
is more similar to the double transcriptional 
profile than the other. 

 
min�𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑(𝛅𝛅, 𝛅𝛅𝛅𝛅),𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑(𝛅𝛅, 𝛅𝛅𝛅𝛅)�
max�𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑(𝛅𝛅, 𝛅𝛅𝛅𝛅),𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑(𝛅𝛅, 𝛅𝛅𝛅𝛅)�

 

 

Each of these features was normalized to the same range by dividing by the standard deviation 
across all of the perturbations considered. The projection was performed using UMAP with 
parameters: n_neighbors=5, min_dist=0.05, spread=0.5. As the results from UMAP depend on 
random seed, we chose the specific visualization presented as follows. First, we performed the 
reduction 10,000 times. In each iterate, we counted the number of clusters formed for the x and y 
axes, and qualitatively assessed what number of clusters yielded an appropriate tradeoff between 
interpretability and granularity (i.e. do not subdivide so much that every interaction is unique, 
and do not average so much that the clusters were not informative). For each axis we then chose 
the projection with the chosen number of clusters that had the highest distance correlation with 
the original three-dimensional data. 
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Figure 6 (GI_DUSP9-MAPK1-ETS2_example) 

Single-cell UMAP projections 

To identify genes that varied across the genetic backgrounds shown, we used the same random 
forest classifier approach as used in Figure 2 (to make gene expression heatmaps), selecting 200 
genes with expression greater than 0.5 UMI per cell. We then projected the matrix of single-cell 
normalized gene expression data (for all cells from the indicated genetic backgrounds) to two 
dimensions using UMAP (n_neighbors=10, metric=’euclidean’). 

Deriving a principal curve and local median filtering 

As part of performing dimensionality reduction, UMAP constructs a weighted similarity graph 
among all cells considered. To identify a principal curve, we reduced this graph to a single 
dimension using Laplacian eigenmaps, taking this first component as representing the dominant 
axis of variation in the dataset. 

The principal curve allows single cells to be ordered, and hence averaged together. All 
expression profiles are made by local median filtering: (1) we order the cells along the principal 
axis (which runs from t = -0.0242 to t = 0.0273 (2) for each cell along this curve, we compute the 
median expression over all cells in its neighborhood (distance < 0.001). 

The heatmap shows these median filtered data for the genes used in the UMAP projection 
described above. To distinguish different accumulation patterns, each gene/column (which was 
itself the z-normalized expression data) was further normalized to a 0-1 scale by performing the 
transformation 

𝒙𝒙� =
𝒙𝒙 − min𝒙𝒙

max𝒙𝒙  − min𝒙𝒙
 

In the panels showing the expression of specific markers, “normalized expression” refers to the 
z-normalized expression described in “Cell barcode and UMI calling, perturbation calling, data 
normalization and averaging” while “expression accumulation” refers to the 0-1 scaled versions.  

GI prediction analysis 

Figure 7 (GI_prediction) 

Predicting genetic interactions 

In the analytical approach we have applied to quantify fitness-based genetic interactions (18), 
individual GI scores are not directly observable since they are the result of a fitting procedure 
that ultimately depends on all of the pairwise fitness measurement. This highlights the general 
difficulty of predicting GIs: the interactions that are the most interesting are often the ones that 
are in the tails of the distribution, and are hence the least likely to follow average behavior. 

Our procedure for predicting GIs is thus actually a procedure for predicting the distribution of all 
raw pairwise fitness measurements, which we then use to recompute estimated GI scores. To 
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allow for comparison with past work we have retained the GI estimation procedure from (18), 
but we will highlight an alternative route below as well. 

The general workflow of our prediction approach is shown in Figure S11. 

(1) We randomly sample fitness measurements for interaction pairs from the full fitness data set 
at a given sampling rate. For example, at 10% sampling we would sample 10% of pair fitness 
measurements (we treat a-b and b-a pairs as identical when doing this), as well as all of the 
single perturbation fitness measurements. 

(2) Fitness GIs ultimately result from double perturbations that are “surprisingly” more or less fit 
than expected given the two single fitness phenotypes. To define an expected fitness when 
combining perturbations, we take the fitness measurements from above and fit a quadratic 
relationship: 
 

𝑓𝑓𝛅𝛅𝛅𝛅 = 𝑐𝑐0 + 𝑐𝑐1𝑓𝑓𝛅𝛅 + 𝑐𝑐2𝑓𝑓𝛅𝛅 + 𝑐𝑐3𝑓𝑓𝛅𝛅2 + 𝑐𝑐4𝑓𝑓𝛅𝛅2 + 𝑐𝑐5𝑓𝑓𝛅𝛅𝑓𝑓b 
 
where, for example, 𝑓𝑓𝛅𝛅 is the fitness of cells with single perturbation a. We enforced 
symmetry in this fit by adding equivalent “ba” pairs for each ab interaction, so that 𝑐𝑐1 = 𝑐𝑐2 
and 𝑐𝑐3 = 𝑐𝑐4. The notable deviation of this fitting procedure from that in (18) is that that paper 
performed the fit on a per gene basis (i.e. each gene had its own fitness expectation). Here we 
perform randomized measurements over all pairs and so don’t have full fitness profiles for 
every gene. 

(3) We then convert the raw fitness measurements that we have to unexplained “deltas”: 
 

𝛿𝛿𝛅𝛅𝛅𝛅 = 𝑓𝑓𝛅𝛅𝛅𝛅 − 𝑓𝑓𝛅𝛅𝛅𝛅�  
 

where 𝑓𝑓𝛅𝛅𝛅𝛅�  is the expectation from the previous step. These deltas represent deviations from 
expected fitness, and hence behave similarly as GI scores (as can be seen by comparing the 
“True deltas” and “True GI map” panels in Figure S11A).  

(4) We then predict unobserved deltas using a “recommender system” approach. Many such 
algorithms have been developed in the context of trying to predict users’ shopping 
preferences. Analogous to the scenario we consider here, these predictions often have to be 
made in regimes with very sparse measurements (e.g. a given user has generally purchased 
only a tiny fraction of available items). 
 
The specific approach we use exploits matrix completion, the two-dimensional analog of 
compressed sensing. Briefly, matrix completion methods take a limited set of measured 
entries from a matrix and “completes” them to yield an estimate of the whole matrix. Since 
without constraints this problem is ill-posed, matrix completion approaches will for example 
assume that the matrix is low rank, which under certain conditions allows it to be perfectly 
reconstructed even without observing all of the entries. (A low rank matrix has a limited 
number of degrees of freedom, which implies relationships among the entries that allow them 
to be perfectly inferred.) A survey of these methods can be found in (79). 
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Though matrix completion can be used alone to make predictions from the fitness 
measurements, methods also exist to leverage side information to enhance predictive power 
by suggesting how rows and columns might relate to each other. In the shopping context, 
side information might be for example include a user’s age or geographical location, or a 
movie’s genre or plot keywords. Given the correlation we observed between transcriptional 
profile correlation and GI score (fig. S6B), we reasoned that the pairwise correlation among 
these profiles would serve as useful side information to constrain reconstruction. 
 
To start, we generated an expression matrix with all single perturbations (i.e. with targeting 
sgRNAs in the A position and non-targeting control sgRNAs in the B position) as rows and 
the unnormalized expression of all genes with mean expression greater than 0.2 UMI per cell 
as columns. Each gene/column was then normalized to the same scale by performing the 
transformation 
 

𝒙𝒙� =
𝒙𝒙 − min𝒙𝒙

max𝒙𝒙  − min𝒙𝒙
 

 
We then computed the pairwise correlation matrix of this expression matrix among all genes 
Σ. We reasoned that an estimate for the deltas could then be found in the form 
 

Δ� = Σ1/2𝑍𝑍Σ1/2 
 

where 𝑍𝑍 is an unknown matrix that we fit and Σ1/2 is the matrix square root of Σ (unique 
because the covariance matrix is positive definite). In effect, this posits that the GIs are a 
“reweighting” of the observed pattern of correlations among transcriptional profiles of genes. 
 
As mentioned above, we sought a low-rank 𝑍𝑍. Specifically, we sought to solve the following 
problem: 
 

 min
Z
‖𝑍𝑍‖∗       such that 𝒫𝒫Ω(Δ) = 𝒫𝒫Ω(Σ1/2𝑍𝑍Σ1/2) 

 
where the 𝒫𝒫 condition indicates that the two matrices agree on the set of entries Ω that have 
been measured directly and ‖𝑍𝑍‖∗ = ∑𝜌𝜌𝑖𝑖 denotes the nuclear norm with 𝜌𝜌𝑖𝑖 the singular values 
of 𝑍𝑍. We solved this problem by applying the Maxide method (80) which efficiently solves a 
relaxed problem: 
 

min
Z
‖𝑍𝑍‖∗  + 

𝜇𝜇
2
�𝒫𝒫Ω(Σ1/2𝑍𝑍Σ1/2 − Δ)�

𝐹𝐹
2

  

 
where ‖⋅‖𝐹𝐹 denotes the Frobenius norm. In all of the results we present we set the Lagrange 
multiplier 𝜇𝜇 = 0.0005. If �̂�𝑍 is the result of this optimization, our final estimate is then 
 

Δ� = Σ1/2�̂�𝑍Σ1/2 
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(5) We then convert this estimate back to an estimate for raw fitnesses by adding back the 

expected fitness for the pair: 
 

𝑓𝑓𝛅𝛅𝛅𝛅� = 𝛿𝛿𝛅𝛅𝛅𝛅� + 𝑓𝑓𝛅𝛅𝛅𝛅�  
 

(6) Finally, we estimated GI scores according to the fitting procedure of (18), except for a 
difference in normalization. The procedure presented there normalizes the range of GI scores 
by the standard deviation in fitness observed when a given sgRNA is paired with a series of 
negative control sgRNAs (essentially scaling observed the fitness variation due to genetic 
perturbations by the amount of variation expected to arise due to technical variation). We did 
not perform this normalization because obtaining these scale factors experimentally would 
require many more pairwise fitness measurements to be made, which explains why the GI 
scale seen here is different than in Figure 1. All comparisons in Figure 7 are made to a 
recomputed version of the GI map made without these normalizations, but with access to the 
full set of pairwise fitness measurements. 
 
It is worth noting that it could also be reasonable to skip this step and the previous one, and 
merely use the estimate Δ� directly as a measure of GIs. In fact, our performance estimating Δ� 
is better, likely simply because it involves fewer steps. Whether it makes sense to fit the 
expectations for fitness deviation (Step 2) on a per gene basis or to all genes simultaneously 
may vary depending on context, and we present the results as is for comparison with past 
work. 

 

Evaluating performance 

We evaluated performance in three ways. First, to evaluate raw predictive performance over all 
interactions, we measured the Spearman correlation (testing similarity of rank order) between 
predicted GIs and true GIs. 

Second, we tested similarity at the level of GI profiles for each gene. This we evaluated via 
cophenetic correlation: i.e. we computed the (Pearson) correlation between vectors containing all 
pairwise distances of columns in the predicted and true GI maps. Performance varied by distance 
metric—in Figure 7 we present the results when columns are compared using cosine distance, 
which has been used to cluster GI maps in the past (18). In Figure S11 we compared columns 
using Euclidean distance, which is somewhat better preserved. 

Finally, we wished to evaluate the ability to predict strong GIs. We did this by testing recall. We 
defined GIs as strong if they fell either below the 5th percentile or above the 95th percentile of all 
GI scores. The recall is the fraction of these that then fell in the same bins in the predicted GI 
map. Random sampling will discover these with uniform probability, so e.g. 5% random 
sampling will be expected to find 5% of strong GIs. 

Matrix completion can also be performed without side information. To assess the improvement 
in predictive power made by using the Perturb-seq side information, Figures S11E-G show 
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comparisons of the data from Figure 7D-F to predictions made with the side information set to 
the identity matrix. 

Routes to improving performance  

In principle performance could be improved using biased sampling or different side information. 
To illustrate this qualitative point, we employed two simple modifications to the procedure 
described above. 

First, we did non-random sampling of interaction pairs. Following the same reasoning as when 
constructing our side information matrix above, we thought that a biased sampling of pairs based 
on the correlation of their profiles might improve performance. We first generated a matrix 𝑀𝑀 
consisting of all the pairwise distance correlations among transcriptional profiles (which were 
constructed as in Step 4 above). We then centered this matrix by subtracting the median distance 
correlation over all pairs. Finally, we performed random sampling of its entries according to their 
magnitude as in the LELA (Leveraged Element Low-rank Approximation) algorithm in (81). 
Briefly, this approach approximates the leverage scores of each entry in the matrix (which in a 
sense measure how much information a given entry carries about the matrix’s structure) to 
construct a biased sampling distribution. Practically speaking, this will less frequently sample 
regions of the matrix that behave similarly (like the coherent blocks seen in GI maps or in 
pairwise correlation matrices). 

Second, we constructed a different side information matrix. This matrix Σ2 was constructed in 
the same was as the original one, but with the z-normalized gene expression data instead of the 
unnormalized UMI counts and with genes with standard deviation greater than 6 across 
perturbations filtered out (to remove genes showing extreme perturbation-specific induction). As 
the final side information input, we used Σ1/2 + Σ2

1/2. The minimizer �̂�𝑍 is then forced to be 
consistent with two different scalings of our gene expression data—one “raw” scale, and one that 
has been normalized so that it expresses deviations from unperturbed cells. 

Each of these changes individually improves performance, and the combination, which we 
present in Figure S11D, improves performance further. Though the gains we observe are modest 
and the reasoning behind each of these alterations is largely ad hoc, they do show qualitatively 
that improvements in performance are possible through rational interventions. With larger data 
sets we envision that the principles needed to design both better sampling strategies and more 
informative side information can be learned. 

Downsampling analysis (GI_downsampling_analysis) 

Downsampling analyses were performed by randomly the given number of cells from each 
genetic perturbation background 50 times, and then re-executing the identical clustering analysis 
used in Figure 3 (“Clustering of mean expression profiles”) and the model fitting procedure from 
Figure 4. 

To evaluate the similarity of measured transcriptional phenotypes, we computed the cophenetic 
correlation (Pearson correlation of all pairwise distances computed using the ‘correlation’ 
metric) between each downsampled population and all cells we gathered. 
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To evaluate robustness of the model fitting procedure, we compared the measured coefficient 
magnitude (measuring interaction strength) and dominance (measuring asymmetry of 
contributions of the two single perturbations to the double’s phenotype). As genes with low 
expression are more sensitive to noise when fewer cells are measured, we also refit model 
coefficients using only genes with mean expression greater than 1 UMI per cell.   
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