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SUMMARY 27 

Genome-wide DNA methylation profiling has shown that epigenetic abnormalities are 28 

biologically important in glioma and can be used to classify these tumors into distinct prognostic 29 

groups. Thus far, DNA profiling has required surgically resected glioma tissue; however, 30 

gliomas release tumoral material into biofluids, such as blood and cerebrospinal fluid, providing 31 

an opportunity for a minimally invasive testing. While prior studies have shown that genetic and 32 

epigenetic markers can be detected in blood or cerebrospinal fluid (e.g., liquid biopsy [LB]), 33 

there has been low sensitivity for tumor-specific markers. We hypothesize that the low 34 

sensitivity is due to the targeted assay methods. Therefore, we profiled the genome-wide CpG 35 

methylation levels in DNA of tumor tissue and cell-free DNA in serum of glioma patients, to 36 

identify non-invasive epigenetic LB (eLB) markers in the serum that reflect the characteristics of 37 

the tumor tissue. From the epigenetic profiles of serum from patients diagnosed with glioma 38 

(N=15 IDH mutant and N=7 IDH wildtype) and with epilepsy (N=3), we defined glioma-specific 39 

and IDH-specific eLB signatures (Glioma-eLB and IDH-eLB, respectively). The epigenetic 40 

profiles of the matched tissue demonstrate that these eLB signatures reflected the signature of the 41 

tumor. Through cross-validation we show that Glioma-eLB can accurately predict a patient's 42 

glioma from those with other neoplasias (N=6 Colon; N=14 Pituitary; N=3 Breast; N=4 Lung), 43 

non-neoplastic immunological conditions (N=22 sepsis; N=9 pancreatic islet transplantation), 44 

and from healthy individuals (sensitivity: 98%; specificity: 99%). Finally, IDH-eLB includes 45 

promoter methylated markers associated with genes known to be involved in glioma 46 

tumorigenesis (PVT1 and CXCR6). The application of the non-invasive eLB signature discovered 47 

in this study has the potential to complement the standard of care for patients harboring glioma. 48 

 49 
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INTRODUCTION 50 

Gliomas are a heterogenous group of intracranial tumors that are constantly evolving, generally 51 

recur, and frequently progress to more malignant subtypes. Recently, genomic and epigenomic 52 

alterations have defined subtypes of glioma (e.g., IDH mutation, 1p19q chromosomal deletion, 53 

and Glioma-CpG Island Methylator Phenotype [G-CIMP]) with distinct prognostic outcomes 1–6. 54 

Currently, this molecular diagnosis and classification, which guides clinical management, is 55 

dependent on tissue profiling obtained by invasive surgical approaches (tissue biopsy or 56 

excision). However, this surgery-centered approach does not allow serial tissue evaluation to 57 

capture the dynamic molecular evolution of these tumors, may not be feasible in surgically 58 

inaccessible tumors, requires the risk of an invasive procedure in an often comorbid population, 59 

and may delay the diagnosis of this disease to later stages due to procedure risks and diagnostic 60 

sensitivity. MRI is a relevant non-invasive approach to diagnose and follow patients with glioma; 61 

however, limitations remain for differential diagnosis (e.g., lymphoma), detection of minimal or 62 

remnant tumoral burden, and in distinguishing progression from pseudo-progression caused by 63 

radiation-induced necrosis or treatments such as immunotherapy 7,8. In addition, serial 64 

assessments may be costly and cumbersome procedures for patients. Therefore, the discovery of 65 

a minimally or non-invasive approach that allow earlier identification of sensitive and specific 66 

molecular biomarkers that reflect tumor burden and its dynamic evolution in real-time is 67 

desirable. An approach that meets the above criteria is liquid biopsy (LB) of biofluids (e.g., 68 

blood, and cerebrospinal fluid [CSF]) which detect materials shed by the tumors such as 69 

circulating tumor cells and genomic specimens (e.g., circulating tumor DNA) 9,10.  70 

In the past decade, investigation of the diagnostic, prognostic and predictive applications of LB 71 

throughout a patient's disease course has been feasible in many tumors 11–16. For instance, in 72 
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central nervous system (CNS) neoplasms, including gliomas, CSF has been a relevant source of 73 

molecular markers 10,17–29 and can be used to track the glioma tumor evolution 30. However, 74 

obtaining CSF is an invasive, complex and risky procedure which can cause, for instance, 75 

brainstem herniation due to increased intracranial pressure and/or risk of bleeding due to 76 

thrombocytopenia caused by chemotherapy in patients harboring CNS tumors.  In addition, serial 77 

assessment of CSF markers throughout a person’s disease follow-up as standard clinical 78 

management raises additional concerns of patient compliance, impact on quality of life, 79 

feasibility to perform test (e.g., patients on anticoagulation or those unable to lie flat) and 80 

additional risks secondary to repeated use of this procedure. In contrast, blood LB is minimally 81 

invasive, quick and feasible to perform longitudinally; however, one limitation of blood-derived 82 

LB is the dismal and often low yield of molecular material released into the blood by CNS 83 

tumors (likely due to the blood brain barrier) which may hinder the detection of molecular 84 

features, such as specific and rare tumor mutations or novel and clinically relevant molecular 85 

markers shed by the tumor 10,21,31,32. To overcome these limitations, the performance of a more 86 

comprehensive “omics” approach (e.g., DNA methylomic or genomic) has been proposed 10,33 87 

and implemented for certain cancer types 31,34. Although genomic LB associated with gliomas 88 

has been performed 10,26, the anticipated success of highly specific LB markers has been 89 

hampered by the low mutation frequency of the associated glioma tumor (0.5-2.6%) 3,35. In 90 

addition, genetic alterations are generally site specific (e.g., frame-shift, point mutation) which 91 

may limit their detection in the fragmented DNA released into the circulation 36. The low 92 

likelihood of detecting at least one of the 75 significantly mutated genes (somatic)3 associated 93 

with glioma in any cell-free DNA assay renders the feasibility of genomic-specific LB a 94 

challenge. On the other hand, DNA methylation is a stable marker that is tissue specific, 95 
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clinically relevant to gliomas, and altered in large regions of the genome. Thus, DNA methylome 96 

profiling is an attractive approach for the identification of diagnostic, prognostic and predictive 97 

markers in LB 34,37. In the tumoral tissue, genome-wide DNA methylation profiling has shown 98 

that epigenetic abnormalities play important biological and clinical roles in CNS tumors, 99 

particularly in gliomas 3,38–41. For instance, G-CIMP is a subset of glioma with extensive 100 

epigenomic alterations that confers a stronger prognostic value than age, grade and histology 101 

1,3,41. However, the relevance of comprehensive DNA methylation profiling in the blood-based 102 

circulating free tumor DNA of patients with gliomas has not been explored. Herein, we 103 

hypothesized that genome-wide methylome profiling is a useful approach to identify methylome-104 

specific markers associated with glioma in cfDNA. To address this hypothesis, we profiled the 105 

genome-wide CpG methylation landscape of matching serum and tissue from 22 patients 106 

diagnosed with gliomas (N=15 IDH mutant and N=7 IDH wildtype) and from 3 patients with a 107 

non-neoplastic brain disease (i.e., epilepsy). We identified a set of epigenetic signatures in the 108 

serum LB (herein referred to as eLB) that resembles the tissue epigenomic landscape associated 109 

with glioma. We showed that the eLB could differentiate glioma from non-tumoral brain tissue 110 

and stratify gliomas based on prognostic class (e.g., IDH mutation status). We further observed 111 

that the specificity of the eLB allowed accurate discrimination of patients with glioma from 112 

patients with tumors of other origins and from patients with immune-related disease states 113 

(pancreatic islet transplantation and sepsis). The IDH-eLB signature includes promoter 114 

methylated markers associated with genes known to be involved in glioma tumorigenesis (e.g., 115 

PVT1 and CXCR6). Finally, we propose a novel clinical approach to apply the eLB panels to 116 

complement the standard of care in the diagnosis and follow-up. The ability to monitor patients 117 
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by eLB has the potential to improve the pre- and post-surgical quality of care for patients 118 

harboring gliomas. 119 

RESULTS 120 

Glioma cell-free DNA methylome 121 

In this study, we selected 22 matching pairs of primary glioma tissue and serum, stored at the 122 

Hermelin Brain Tumor Center (HBTC) bank from patients who underwent neurosurgery at the 123 

Henry Ford Health System, Detroit, Michigan. Serum was collected immediately prior to dura 124 

incision at the time tumor tissue was surgically resected. According to the current World Health 125 

Organization (WHO) 2016 criteria for glioma classification, our HBTC cohort comprised 3 126 

grade IV, 11 grade III, and 8 grade II gliomas among which 15 IDH mutants (IDHmut) and 7 127 

IDH wildtypes (IDHwt) were included (Table 1, Extended Data Table S1). As expected, we 128 

observed a significant overall survival difference between patients with IDHmut and IDHwt 129 

tumors (mean (95% CI): 62.62 months (53.72-73.32) versus 26.86 months (8.85-33.6), Extended 130 

Data Fig. S1A). Total extracted serum cfDNA quantity, normalized to the genomic size 131 

(Genomic Equivalents [GE]/ml, see Methods), showed that patients with glioma had 132 

significantly higher serum cfDNA in relation to patients who underwent surgery for epilepsy in 133 

the absence of tumor (mean±s.e.: 12268.8±9269.1 versus 3777.4±2324.7 GE/ml, respectively, 134 

student t-test p-value=0.003216; Fig. 1A). This is consistent with the hypothesis that tumors tend 135 

to release more cfDNA. Aligned with the hypothesis that increased cfDNA is associated with 136 

aggressive tumors, likely due to brain-blood barrier breakdown 42,43, we also observed a trend, 137 

albeit not statistically significant, wherein IDHwt serum had more cfDNA than IDHmut 138 

(mean±s.e.:15799.3±8645.4 vs 10621.2±9364.9 GE/ml; respectively, student t-test p-139 
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value=0.2255, Extended Data Fig. S1B) suggesting that cfDNA is altered during gliomagenesis 140 

and may be released more abundantly in more aggressive subtypes. 141 

We performed an epigenome-wide profile of the glioma cfDNA using Infinium Human 142 

Methylation 850K (HM850K). Filtering and pre-processing steps were taken to align these data 143 

with that of serum methylome data from colorectal cancer (N=2) 44 and pituitary adenoma 144 

(N=14, unpublished data), as well as from glioma tissue 3 (see Methods). Principal component 145 

analysis (PCA) showed a distinct separation between gliomas and non-tumor specimens as well 146 

as other neoplasms (Fig. 1B). We estimated the source or content of the released cfDNA, and 147 

DNA of the matched tissue specimens, by deconvoluting the methylome using primary non-148 

cancer cell-type methylation-based signatures 45. We observed that in relation to non-tumor 149 

specimens, the methylomes from both serum and tissue of glioma patients tended to present less 150 

glial (52% lower proportion on average in tumor compared to non-tumor) and more neuronal 151 

cell-related (79% greater proportion on average in tumor compared to non-tumor) epigenetic 152 

signatures (Fig. 1C, Extended Data Table S2). Interestingly, for specific signatures related to the 153 

immune cells, the serum from glioma patients showed a distinct makeup in relation to their 154 

matching tissue and non-tumor serum. For instance, B-cell and CD8 T-cell-related signatures in 155 

the glioma-patient serum were lower than in the tissue, but glial-related specimens were higher 156 

than the associated non-tumor specimens (1.9 and 22 fold increase in means for serum, 157 

respectively; 12 and 130 fold increase in means for tissue, respectively; Fig. 1C). On the other 158 

hand, CD4 T-cell-related signatures were depleted in the tumor serum in relation to non-tumor 159 

serum (0.38 fold decrease) and undetectable in the tumor and non-tumor tissue. Notably, the 160 

serum from both non-tumor and glioma patients included signatures associated with higher 161 

proportions of neutrophil- and monocyte-related cell types. Together, these results indicate that 162 
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the cfDNA methylome contains signatures that are specifically related to glioma as well as to the 163 

immune system, which may be related to a response to changes in the tumor microenvironment 164 

or release of immune invasion from the glioma tumor. 165 

Considering the full methylome profile, we investigated whether glioma subtype-specific 166 

epigenetic signatures defined at the tumor tissue level could be detected in the serum of glioma 167 

patients. Interestingly, despite evidence that brain tumors release circulating tumor DNA into the 168 

blood and that the release mechanism is dependent on a phenotype modification (e.g., 169 

mesenchymal glioma subtype) 46, the published epigenetic signatures 3,6 were undetectable in the 170 

serum methylome (Fig. 1D & Extended Data Fig. S1C-F). This is consistent with previous 171 

findings using whole-genome sequencing that have shown a low detection of tumor genetic 172 

hotspot mutations associated with gliomas in the cfDNA 10,26. However, given that we observed 173 

epigenome-wide differences in the tissue of glioma patients in relation to other tumor types and 174 

non-tumor tissue samples (Fig. 1E), it is plausible that other relevant CpG methylation sites, not 175 

previously included in glioma marker panels, could be released into the serum by the brain tumor 176 

and, consequently, be detectable via analysis of the serum methylome.  177 

Glioma eLB derived from cell-free DNA in serum can identify patients with glioma 178 

We performed an epigenome-wide differential analysis to identify specific, serum-based, 179 

epigenetic markers associated with glioma compared to non-glioma serum methylome, which we 180 

named Glioma-eLB (N=1075 differential CpG sites overlapping autosomal chromosomes, 181 

Wilcoxon-rank sum test p-value < 0.001, Extended Data Fig. S2A-B). We confirmed the origin 182 

of the Glioma-eLB by evaluating the measured DNA methylation for each CpG in the matching 183 

glioma tissue. The glioma tissue-derived methylome was analyzed as part of TCGA project using 184 

the Illumina HM450K array, a reduced content compared to the HM850K. We identified 185 
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567/1075 differential CpGs measured on the HM450K array, of which 384 (68%) of the 186 

detectable Glioma-eLB were present in the matching tissue and distinct from serum methylome 187 

of other neoplasias (Fig. 2A-B, Extended Data Fig. S2C, Extended Data Table S3). We explored 188 

the specificity of the Glioma-eLB signature using independent primary glioma tissue and other 189 

non-glioma tumor methylomes and confirmed that glioma serum methylome clustered with 190 

primary glioma (Fig. 2C, Extended Data Fig. S2D), corroborated our initial observation that the 191 

eLB measurements reflected the glioma-tissue methylome. To further investigate the content of 192 

the Glioma-eLB signature, we analyzed the similarity matrix across available non-cancer cell-193 

type signatures based on methylation (brain-, neural- and immune-associated cell types) and 194 

observed that Glioma-eLB was more similar to neutrophils, monocytes, and normal glia- and 195 

neuronal-cell-related signatures than any other normal cell types originating from different cell 196 

lineages (Fig. 2D, Extended Data Fig. S2C). Interestingly, the Glioma-eLB signature segregated 197 

with non-tumor serum that in turn clustered with brain and glial signatures, suggesting that 198 

Glioma-eLB signature also captures tissue-of-origin signatures. Overall, we found that non-199 

invasive serum-derived Glioma-eLB signature is detectable and may reflect the expected 200 

heterogeneous cell population present in glioma tissue. 201 

Next we annotated the genomic location of the Glioma-eLB. We observed 167 CpG probes (see 202 

Extended Data Table S3) that overlapped with known promoters; 64 were hypermethylated and 203 

not significantly enriched in promoters (OR=0.92, 95% CI: [0.69, 1.21], chi-square test p-204 

value=0.564) while 103 were hypomethylated and this observation was enriched in promoters 205 

(OR=2.36, 95% CI: [1.84, 3.04], chi-square test p-value=4.49E-12) above expected distribution 206 

for the methylation platform (Extended Data Table S4). The lack of matching gene expression 207 
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data to the normal brain tissue DNA methylation limited our ability to investigate the biological 208 

context of this Glioma-eLB signature. 209 

Given the specificity of the detectable Glioma-eLB, we developed a machine learning (ML) 210 

model to predict the presence of glioma. To determine the robustness of our eLB signature, we 211 

applied a cross-validation method as follows: First, we redefined a new set of Glioma-eLB 212 

relative to non-tumor controls using 11 randomly selected cases from the initial cohort (N=22). 213 

Next, we trained a ML model (RandomForest) using the Glioma-eLB on the training set. This 214 

provided us with a Glioma-eLB Index (GI), which estimates the probability that a sample is 215 

likely a glioma (high GI or close to 1) or non-glioma (low GI or close to 0). We evaluated the 216 

performance of the ML model and GI by applying it to the serum methylome of gliomas of the 217 

test set (serum specimens left out of the training set, N=11), as well as to other serum cfDNA and 218 

plasma methylomes from patients with non-tumor conditions (sepsis, pancreatic islet transplant 219 

recipient) and other neoplasias (colorectal, breast, lung, pituitary and cancers of unknown 220 

primary). To assess the stability of the GI development method, we replicated the test-set 221 

selection, ML generation, and application steps 1000 times. The averaged GI for each of the 222 

1000 models revealed glioma tissue and serum (test set) methylome samples carried the highest 223 

GI (>0.5), whereas the plasma and/or serum of other non-glioma tumors (pituitary tumor, CRC, 224 

breast carcinoma, etc.) carried a lower GI (<0.5) (Fig. 2E, Extended Data Table S5). Notably, 225 

inflammatory conditions such as sepsis which carry a higher immune response, were not 226 

classified as glioma (Fig. 2E), suggesting that despite the close association between Glioma-eLB 227 

and immune cell signatures (Fig. 2D), the immune response captured in the cfDNA is specific to 228 

gliomas. We evaluated each model’s GI value at increments of 0.05 and determined that a GI of 229 

0.60 accurately (mean±s.e.: 99.3%±0.000278) classified a glioma with 98% sensitivity and 99% 230 
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specificity (±s.e.: 0.001507 and 0.0002612, respectively, Fig. 2F, Extended Data Table S5). In 231 

summary, we conclude that a classification model based on the Glioma-eLB signature can 232 

predict a patient's glioma-like status from other neoplasias, non-cancer diseases or conditions 233 

using the methylome profiles identified from a serum sample. 234 

Identification of prognostic glioma classes by non-invasive eLB 235 

Somatic mutation in one of the isocitrate dehydrogenase genes (IDH1, IDH2, [IDH]) is a 236 

prognostic marker for adult glioma (WHO Grade II-IV) which is traditionally identified from 237 

excised glioma tissue. We sought to define IDH mutation status by analyzing the cfDNA 238 

methylation data of serum from IDHwt and IDHmut tumors, using the same approach used to 239 

define the Glioma-eLB. Since our cohort carried a low sample size for the IDHmut 1p19q 240 

codeletion (N=5) and IDHmut 1p19q intact (N=10), we combined these two good prognostic 241 

subtypes into one class, IDHmut (N=15). Applying a supervised method and restricting our 242 

analysis to CpGs within autosomal chromosomes (chrom 1-22), we identified 2647 IDH-eLB 243 

that distinguished IDHmut from IDHwt gliomas (Fig. 3A, Extended Data Table S6) further 244 

refined by selecting those with a similar methylation pattern in the matching tissue (CpGs 245 

overlap HM450K = 1525/2647) which generated specific IDHmut-eLB and IDHwt-eLB 246 

signatures (N=114/1525, 7.5% and N=124/1525, 8%, respectively, Fig. 3A, Extended Data Fig. 247 

S3A). Harnessing the matching tissue methylome as well as pan-glioma methylome data from 248 

adult patients, we observed that the IDH-specific eLB discriminates the two IDH subtypes at the 249 

primary tissue level and the respective IDH serum methylome (IDHwt and IDHmut) clusters 250 

with the respective tissue subtype (Fig. 3B-C, Extended Data Fig. S3B-D) corroborating the 251 

specificity of the identified IDH-eLB. 252 
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We then investigated the potential functional or biological role of the IDH-eLB by analyzing the 253 

methylome and transcriptome from the matching glioma tissue (see Methods). IDHwt specific 254 

eLB overlapping CpG islands, shores and open seas were significantly enriched or depleted 255 

when compared to the expected distribution set by the platform (chi-square test p-value 3.7E-04 256 

enriched, 7.8E-05 enriched, 8.9E-05 depleted, respectively, Extended Data Fig. S3E). We 257 

identified 28 IDH-eLB-specific signatures linked to a gene promoter (Table 2) of which, 14 258 

transcripts were differentially expressed in IDHmut vs IDHwt tissues. Ten out of 14 transcripts 259 

were inversely expressed in relation with the promoter methylation state (i.e. hypermethylated 260 

promoter and down-regulated expression or vice-versa) (summarized in Table 2, Extended Data 261 

Fig. S4A). For instance, CXCR6 is a chemokine related to CSCL16, that is overexpressed in 262 

glioma and associated with poor prognosis 47–49. CXCR6 expression has been reported as a 263 

predictor of recurrence and survival in hepatocellular carcinoma, in addition to intratumoral 264 

neutrophils 50 and interestingly, CXCR6 knockout glioma mice survived longer 47. Congruent 265 

with these reports, IDH-eLB signature include the promoter hypomethylated state of CXCR6 and 266 

this gene is overexpressed in both TCGA and HBTC IDHwt glioma tissues (Fig. 3D). PVT1 is a 267 

long noncoding RNA (lncRNA) that when highly expressed is associated with progression and 268 

poor prognosis in a pan-cancer cohort from TCGA. PVT1 overexpression has also been 269 

associated with poor response to chemotherapy in gliomas and squamous cell carcinoma of the 270 

head and neck 51–53. In line with these findings, hypomethylation of the PVT1 promoter was 271 

detected in our IDH-eLB in association with overexpression of the correspondent gene in the 272 

worst prognostic subtype (IDHwt), in both the TCGA and the current cohort samples (Fig. 3E). 273 

Altogether, these findings suggest that with the selected IDH-eLB were able to differentiate the 274 

various prognostic subtypes of glioma by utilizing the serum methylome. Moreover, the 275 
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associated CpG methylation in promoter genes which carry a biological and prognostic value in 276 

gliomas, support the idea that these non-invasive eLB signatures are feasible for detection and 277 

specific to glioma tumors.  278 

DISCUSSION 279 

In a review by Wan et al 33, studies to define non-invasive blood-based markers for cancer has 280 

mainly focused on identifying circulating tumor DNA (ctDNA) somatic mutations. And as such, 281 

the focus has been on obtaining ctDNA from plasma since blood cell lysis during the preparation 282 

of serum samples could release DNA from non-cancerous cells and thus dilute any ctDNA 283 

markers and complicate the detection of ctDNA 33. However, in glioma in particularly, low 284 

sensitivity and reliability of extracting any glioma-specific ctDNA from plasma remains a 285 

challenge because of the low frequency in somatic mutation and the targeted approach 36. Since 286 

epigenetic reflect the cell-of-origin 54 and in glioma, somatic DNA methylation aberrations are 287 

widespread 1,3,39,41, we focused on profiling the DNA methylation of the released DNA to detect 288 

glioma status (Glioma-eLB)  and associated prognostic subtypes (IDH-eLB) by blood 289 

(summarized in Fig. 4A). In addition, epigenetic profiling has the advantage of providing 290 

information about the tumor microenvironment, which usually lacks somatic mutations 33. 291 

Deconvolution analysis allowed us to estimate that the Glioma-eLB were associated with 292 

signatures from immune, neuronal, and glial cells; however, specific contribution of the 293 

individual cells that comprise glioma could not be fully assessed as the information regarding the 294 

methylome of the individual tumor cells is currently lacking. The signatures that characterize 295 

Glioma-eLB are evidence in favor of leakage of the tumor microenvironment, or from the tumor 296 

itself, as well as of a systemic immune response due to the presence of the glioma 55. The 297 

application of a variety of integrative approaches using matching methylome and transcriptome 298 
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of the primary tumor as well as available serum/plasma methylome from other non-glioma 299 

patients highlighted the sensitivity and specificity of the detected Glioma-eLB. For instance, the 300 

ML algorithm using the Glioma-eLB as the input correctly classified glioma tissues as such, in 301 

contrast to the serum or tissue of other tumors and non-neoplastic conditions that were not 302 

classified as gliomas (Fig. 2E). Despite Glioma-eLB comprising immune-cell-signatures, 303 

patients with pro-inflammatory processes, such as sepsis, were not classified as glioma 304 

suggesting that Glioma-eLB signatures related to the immune cells were related to the presence 305 

of glioma (Fig. 2E). Many previous studies had limited success in detecting well known 306 

prognostic markers, currently used in clinical practice and accrued from tissue analysis (such as 307 

MGMT status, IDH, PTEN, EGFR, etc.) 10,56,57; however, our holistic approach of unbiased 308 

screening allowed us to detect IDH-eLB overlapping promoters of genes which transcripts have 309 

been well characterized as having a functional role in glioma tumorigenesis (e.g., PVT1, LOXL, 310 

CXCR6, etc.) even though they are not currently utilized as part of the clinical treatment strategy. 311 

These results also highlight that the IDH-eLB signatures are capturing glioma-tissue specific 312 

markers. 313 

Once validated in the proper settings (e.g., independent cohort), the potential clinical 314 

implications of our findings could pave the way for altering current standard diagnostic measures 315 

and therapies for glioblastoma, and possibly other brain tumors. Although still in its infancy, the 316 

detection of glioma in the blood using a probability score generated by a ML algorithm based on 317 

the methylome profile of the patient could challenge the current paradigm of a high-risk tissue-318 

dependent diagnosis prior to definitive treatment. For instance, the application of this approach 319 

to patients with tumors not amenable to a meaningful resection due to comorbidities or 320 

neuroanatomical surgical limitation such as deep or eloquent regions in the brain could have a 321 
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major impact in their management. In such scenarios, patients and physicians could proceed to 322 

chemoradiotherapy without tissue diagnosis, negating the morbidity associated with biopsy or 323 

subtotal resections that offer limited therapeutic benefit while starting definitive treatment 324 

sooner. In our proposed model (Fig. 4B-C) and as described by others, the liquid biopsy could 325 

also help differentiate glioma from other conditions (e.g., CNS lymphoma; demyelinating 326 

disease or metastatic disease) and solve the dilemma of radiographic confounders, such as 327 

pseudoprogression from radiation necrosis or immunotherapy agents from true disease 328 

progression. The ability to diagnose and characterize the type of glioma prior to surgical 329 

procedures could also aid neurosurgeons in tailoring the surgical approach to offer optimal 330 

benefit such as surgical planning for maximal resection when typically a diagnostic biopsy 331 

would be performed or clinical trial screening prior to initial surgical intervention which may 332 

include intraoperative surgical trials and neoadjuvant therapies. In addition, a possible advantage 333 

of detecting and characterizing the IDH status of aggressive gliomas rekindles the concept of 334 

neoadjuvant therapy prior to surgical resection, a frontier that has yet to be fully explored in this 335 

type of pathology. Recently, IDH mutation status of a solid tumor has been shown to change 336 

during tumor progression possibly due to drug response 40, which is only confirmed during 337 

recurrence by biopsy or resection. However, as suggested by Mazor et al 40, longitudinal 338 

monitoring of IDH status during treatment offers significant opportunities to understand the role 339 

of IDH1 inhibitors. Last, but not least, although the cost of profiling whole-epigenome arrays 340 

may currently limit its potential application, the discovery of an alternative, sensitive and more 341 

cost-effective method to profile the epigenome of cfDNA has shown promise in several tumors 342 

34. Once validated, the ML approach using detected eLB may be carried out after the detection 343 

and initial treatment stages and used as real-time surveillance where frequent blood sampling 344 
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could aid the treatment team in monitoring disease status, progression to a more or less 345 

aggressive phenotype, and response to specific treatment modalities. This could be done from the 346 

comfort of the physician’s office or anywhere a blood sample can be obtained rather than relying 347 

solely on diagnostic imaging or surgical excision, as these require accumulation of tissue prior to 348 

recognition of tumor activity, and offer the possibility of early intervention and preventative 349 

approaches. Serial real-time monitoring of gliomas with the relative safety of a blood test has the 350 

potential to redesign primary brain tumor diagnosis, surveillance, and therapeutic endpoints 351 

which may shed light on new opportunities that improve outcomes for patients with malignant 352 

primary brain tumors. 353 

In summary, we developed a glioma index based on the glioma-specific CpG methylation 354 

landscape that accurately predicted the presence of these tumors. These encouraging results 355 

provide the framework to develop a blood-based epigenetic panel marker that will not only 356 

provide real-time information regarding tumor features and burden but can also be used to 357 

monitor disease progression and treatment response using a minimally invasive approach in ever-358 

evolving tumors such as malignant gliomas. 359 

  360 
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SUBJECTS AND METHODOLOGY 361 

EXPERIMENTAL DESIGN 362 

Patients 363 

We performed a retrospective study entailing archival serum and tissue from patients who 364 

received surgery to resect gliomas (N=22; composed of 15 IDHmut and 7 IDHwt; 4 MGMT-365 

negative and 18 MGMT-positive, Extended Data Table S1) at the Henry Ford Health System 366 

(HFHS). The samples selected for this study had both serum and primary tissue available at the 367 

tumor bank of the Hermelin Brain Tumor Center (HFHS, Detroit, MI). As an early tumor tissue 368 

source site, matching tissue was submitted to TCGA from the HFHS and analyzed along with 369 

1,122 other primary gliomas in a comprehensive pan-glioma study reported by our team 3. 370 

Additional serum samples from 3 non-tumor subjects were included (N=3, epilepsy). Clinical 371 

data comprised of demographic features, and pathology report (e.g., grade, histology, molecular 372 

markers, imaging, time to death, time to recurrence/progression, and treatment type) were 373 

extracted from patient medical records. The project was approved by the HFHS Institutional 374 

Review Board (IRB# 12490) and patients consented to have their specimens used for research 375 

purposes. Tissue samples were blindly reviewed by two neuropathologists (A.M. and D.C.) to 376 

determine which part of the tumor was feasible for DNA extraction (based on the percentage of 377 

necrosis, hemorrhage, infiltration, and adjacent brain, etc.) and to confirm the molecular status 378 

by immunohistochemistry and/or PCR (e.g., IDH and MGMT status). Detailed information about 379 

our cohort demographics is depicted in Table 1 and Extended Data Table S1. 380 

Serum collection and processing 381 

Peripheral blood (15 mL) was drawn for each subject into 2 BD Vacutainer SSTs (Becton 382 

Dickinson) at the time of surgery, before the opening of the dura-mater. Serum sample was 383 
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separated within 1 hour from collection by centrifugation at 1,300 x g for 10 minutes at 20°C; 384 

aliquoted into up to five 2 mL cryovials and stored at -80°C until processing.  385 

cfDNA isolation, quantification, and DNA methylation data generation 386 

cfDNA was extracted from 2.2-9.3 mL aliquots of serum (Extended Data Table S1) using the 387 

Quick-cfDNA Serum & Plasma Kit according to the manufacturer protocol (Zymo Research - 388 

catalog # D4076). DNA concentration was measured with Qubit (Thermo Fisher Scientific). The 389 

concentration of cfDNA in the serum was calculated by dividing the total amount of cfDNA 390 

extracted by the amount of serum used for extraction. We then converted the concentration of 391 

cfDNA in the serum (ng/mL) into haploid genome equivalents/mL by multiplying by a factor of 392 

303 (assuming the mass of a haploid genome 3.3 pg) 45. 393 

The extracted DNA (30-300 ng) was bisulfite-converted (Zymo EZ DNA methylation Kit; Zymo 394 

Research) and profiled using an Illumina Human EPIC array (HM850K), at the USC Epigenome 395 

Center, Keck School of Medicine, University of Southern California, Los Angeles, California. 396 

The amount of bisulfite-converted DNA as well as the completeness of bisulfite conversion for 397 

each sample was assessed using a panel of MethyLight-based real-time PCR quality control 398 

assays as described previously 58. Bisulfite-converted DNAs were then repaired using the 399 

Illumina Restoration Kit as recommended by the manufacturer (Zymo EZ DNA methylation Kit; 400 

Zymo Research). The repaired DNA was used as a substrate for the Illumina EPIC BeadArrays, 401 

as recommended by the manufacturer and first described in Moran et al., 2016 59. The raw DNA 402 

methylation data reported in this paper has been deposited to Mendeley Data (CURRENTLY 403 

embargo) at https://data.mendeley.com/datasets/cgrz6zztfg. 404 

DNA methylation pre-processing 405 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 8, 2019. ; https://doi.org/10.1101/601245doi: bioRxiv preprint 

https://doi.org/10.1101/601245


19 
 

Methylation array data were processed with the minfi package in R. The raw signal intensities 406 

were extracted from the *.IDAT files and corrected for background fluorescence intensities and 407 

red-green dye-bias using the ‘noob’ function (preprocessNoob) as described by Triche et al., 408 

2013 60. The beta-values were calculated as (M/(M+U)), in which M and U refer to the (pre-409 

processed) mean methylated and unmethylated probe signal intensities, respectively. 410 

Measurements in which the fluorescent intensity was not statistically significant above 411 

background signal (detection p value > 10-16) were removed from the data set. Before the 412 

analyses, we filtered out probes that were designed for sequences with known polymorphisms or 413 

probes with poor mapping quality (complete list of masked probes provided by Zhou et al. 61) 414 

and the X and Y chromosomes.  415 

Deconvolution 416 

To tease out the origin of the cfDNA in the serum, we applied a previously described 417 

methodology 45 to deconvolute the relative contribution of cell types to a given sample. Briefly, 418 

we selected 100 of the most specific hypermethylated and hypomethylated CpG probes for each 419 

cell line of interest. Given the availability of public data and the nature of our study, we included 420 

healthy cell lines and isolated cells from the blood, brain, vascular endothelial cells and 421 

adipocytes. We then used our DNA methylation derived signature and the non-negative least 422 

squares method to deconvolute our serum cohort using the standalone program provided by 423 

Moss and colleagues 45. We then normalized the percentages generated by the standalone 424 

program for each cell type from 0 to 100 by serum and tissue separately. 425 

Supervised analysis 426 
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We performed a supervised analysis taking into account clinical-pathological attributes in both 427 

tissue or serum and used the Wilcoxon rank-sum test to identify differentially methylated sites 428 

between two groups of study (i.e., glioma vs non-glioma, IDHmut vs IDHwt)  429 

Probes were considered differentially methylated when p-values were less than 0.01 in the 430 

comparison between IDHmut vs IDHwt glioma samples (IDH-eLB), or 0.001 between glioma 431 

with non-tumor samples (Glioma-eLB). To identify differentially methylated probes in the serum 432 

that were tissue-specific, we calculated the differences in DNA methylation between the serum 433 

and tissue, by patient. Next we calculated the mean of the difference for each probe across 434 

glioma samples. For the IDH-specific analysis we calculated the mean of the difference across 435 

IDHmut and IDHwt samples. We then selected probes with less than 5% difference between 436 

tissue and serum and considered them tissue-specific.  437 

Random Forest 438 

We used a random forest ML model with the aim to classify available cfDNA methylation 439 

(serum or plasma and tissue) derived from tumor patients, patients with metastasis of unknown 440 

primary, non-tumor conditions (sepsis, pancreatic islet transplantation recipient) and non-441 

tumor/non-diseased cell-free DNA and non-tumor brain and glioma tissue from TCGA. 442 

To validate the performance of our ML model, for this specific approach, we randomly selected 443 

11 glioma serum samples and used this set to compare to the 3 non-tumor serum samples and 444 

derived a new glioma-tissue specific signature (top 1000 most significant probes). We then used 445 

this set of 11 glioma serum samples and 3 non-tumor serum samples to train the random forest 446 

ML model. We tested the remaining 11 glioma serum samples using our model, ensuring to 447 

bootstrap 1000 times to reduce training/test biases. We named the output probability score of the 448 

random forest model Glioma-eLB index (GI). 449 
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Gene Expression and integrative analysis 450 

First, we stratified the IDH-eLB CpG probes into distinct genomic regions 41,54 defined as 451 

“OpenSeas” (N=51 IDHmut, N=33 IDHwt), “Shores” (N=26 IDHmut, N=44 IDHwt), “Shelves” 452 

(N=10 IDHmut, N=4 IDHwt) and “CpG Islands” (N=27 IDHmut, N=43 IDHwt) (Extended Data 453 

Fig. S3E). We annotated our IDH-specific eLB prognostic probes (from the comparison IDHmut 454 

vs IDHwt serum samples) to their genomic location and selected probes mapped to the promoter 455 

of genes (defined as 2000 base pairs upstream and 200 base pairs downstream the TSS). We then 456 

looked into the DNA methylation levels of promoter CpGs in the corresponding glioma tissue 457 

and selected the probes in which the methylation status (i.e. hypermethylated or hypomethylated) 458 

was the same in both tissue and serum samples. Finally, we investigated the expression levels of 459 

the corresponding gene in glioma tissue and annotated their identified roles in prior cancer 460 

studies. 461 
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Fig. 1: Genome-wide DNA methylation profile of Glioma serum cfDNA.
A) Total serum cfDNA concentration normalized to the genomic size (Genomic Equivalents/ml) is represented in two 
boxplots (non-tumor vs glioma). B) Epigenome-wide cell-free DNA methylation (serum-based) derived from Glioma, 
Pituitary tumor, Colorectal carcinoma (CRC), and non-tumor patients presented by a similarity method: Principal 
Components Analysis (PCA). Each dot represents a sample cfDNA methylation (epigenome-wide) and colored based on 
tissue/tumor of origin. Total percent variance is indicated along all three axes. C) Cell-type CpG methylation-based 
deconvolution of our patients’ cfDNA methylome is divided into three relevant categories: Neural, Immune and Other 
cell types. Y-axis represents normalized percent of each cell-type and separately by serum and tissue present in the 
cfDNA methylome. Eleven sets of boxplots are each divided into two categories; non-tumor (grey) vs glioma (blue). 
The plots are further divided by tissue (non-tumor-light grey or glioma- light blue) and cfDNA serum (non-tumor- dark 
grey or glioma- dark blue). D) Published tissue-derived epigenetic signatures from Ceccarelli et al. 2016 (top 
heatmaps) and Sturm et al. 2012 (bottom heatmaps) are undetectable in Glioma cfDNA methylome. Levels of CpG 
methylation in our HBTC cohort divided by glioma tissue (left two heatmaps, respectively) vs matching serum cfDNA 
(right two heatmaps). Columns indicate patients with clinical and molecular annotation tracks listed on top of 
heatmaps and rows indicates CpG probe. Beta-value (DNA methylation levels) are indicated in the legend from 0 (low 
CpG methylation) to 1 (high CpG methylation). E) Glioma-tissue epigenome-wide PCA highlights the difference 
between glioma and non-tumor and between IDHmut and IDHwt patients. TCGA Pan-Glioma DNA methylation data 
from Ceccarelli et al. 2016 is represented in a Principal Component Analysis to evaluate similarities genome-wide. The 
first two principal components are plotted using all available DNA methylation data points (~400,000 CpGs, 
unfiltered). The variance total percentage is labeled along both axes. Fifty-four total non-glioma tissue (grey) were also 
included in this analysis to highlight the epigenome-wide difference between glioma and non-tumor. The glioma cohort 
is further divided by available known IDH status and by our recent epigenomic subtypes.
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Fig. 2: Identification of Glioma-specific Epigenetic Liquid Biopsy (eLB) as a Diagnostic Marker for 
Gliomas. 
A) Epigenome-wide mean DNA methylation across our patient cohort’s serum cfDNA methylation (y-axis: three non-
tumor samples and x-axis: 22 glioma-patient-derived serum samples). Non-significant CpG methylation probes (p-
value > 5%) are condensed into a density heatmap by calculating the 2D kernel density estimation to the power of 
0.1. Identified cfDNA methylation signatures associated with glioma patients (N=1,075) are selected by different p-
values (black, p-value < 0.05; blue, and red, p-value < 0.001). Glioma-eLB signatures (p-value < 0.001) are further 
divided into CpGs that are measurable (Glioma tissue specific, red) or not measurable in the matching glioma tissue 
(Non-tissue specific, blue). B) Principal Component Analysis using the Glioma-eLB signatures as input. Serum 
methylome from glioma, pituitary tumors, CRC and non-tumor samples are represented. C) Glioma-specific tissue-
matching eLB (N=384) was used to subset the published primary tumor tissue DNA methylation and using t-SNE (t-
distributed stochastic neighbour embedding) dimensionality reduction to visualize the similarities of each sample. 
As expected, each primary tumor type (circles) clusters with its known cell-of-origin. Serum cfDNA methylation of 
our patients cohort (triangles) clusters with the primary glioma tissue DNA methylation profiles. D) Dendrogram of 
non-tumor cell types in comparison to Glioma-eLB (N=384). Based on the mean DNA methylation across each cell 
type, this dendrogram shows that glioma serum cfDNA clusters with relevant immune cell-types along with glial-
derived cells and bulk brain (non-tumor) samples. E) Machine learning (ML) application (Random Forest) using our 
defined Glioma tissue-specific eLB to classify tumors and available cfDNA methylation (serum or plasma) derived 
from tumor patients, patients with metastasis of unknown primary, non-tumor conditions (e.g., sepsis, pancreatic 
islet transplantation recipient) and non-tumor/non-diseased cell-free DNA. Y-axis represents the ML similarity index 
based on Glioma-eLB signatures averaged across 1000 iterations. Zero indicates low probability of a glioma, while 1 
indicates high probability of a sample being a glioma. Dash line indicates cutoff to determine glioma classification. 
F) Receiver operating characteristic curve derived from the average across 1000 cross validation. Specificity and 
sensitivity calculated at 0.05 increments (N=21) from 0 to 1 Glioma-eLB signature index. 
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Fig. 3: IDH Specific eLB Prognostic Markers.
A) Mean DNA methylation of 750,000 CpG across 15 IDH mut-patient derived serum (x-axis) vs 7 IDH wt- 
patient derived serum (y-axis). Non-significant CpG methylation probes are condensed into a density heatmap 
by calculating the 2D kernel density estimation to the power of 0.1. Proposed prognostic glioma-specific eLB 
(N=1,075) selected by p-values are represented by colored dots (black, p-value < 0.05; blue, red and yellow, 
p-value < 0.01). Similarities across selected tumor tissue and serum, using IDH mut- tissue specific eLB levels 
(red circles) and IDH wt- tissue specific eLB levels (yellow circles). B-C) Similarities across Pan-Glioma tissue 
(N=259 IDH mut and 160 IDH wt) and IDH glioma cfDNA methylation (N=15 IDH mut, 7 IDH wt), using IDH 
mut- tissue specific eLB signatures B) and IDH wt- tissue specific eLB signatures C) as input in a t-SNE analysis 
to visualize the similarities by sample. Circles represent primary tissue and triangles represents tumor serum 
cfDNA. Red indicates IDH mut and purple indicates IDH wt. D-E) scatter plot between DNA methylation (x-axis) 
and Gene expression (y-axis) for all pan-glioma primary tumor tissue. 2D kernel density indicates all glioma 
samples divided by IDH status (purple = IDH wt, orange = IDH mut). Circles indicate the HBTC primary tumor 
tissue DNA methylation and expression values. D) DNA methylation and expression scatter plot for promoter 
CpG associated with CXCR6. E) DNA methylation and expression scatter plot for promoter CpG associated with 
PVT1. 
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is isolated and profiled using DNA methylation microarray (profile >700,000 CpGs across the entire human genome) and entered into a ML algorithm to 
generate a index (Glioma-index). C) According to the predetermined index threshold (0.6, sensitivity: 98%; specificity: 99%), the new sample is classified 
as glioma or non-glioma and according to IDH status (mutant or wildtype). The discovered glioma specific eLB (N=1,075) can be used to complement 
current clinical diagnostic and monitoring events. Prognostic IDH-eLB could be used at time of diagnosis and for monitoring during active treatment 
through survivorship care. Complementing the MRI findings, eLB could improve detection, reduce false-positive and increase tumor identification (glioma 
vs necrosis vs non glioma conditions), assess treatment outcome and help tailor treatment options for patients with glioma. eLB could also foster early 
detection of glioma progression to improve treatment outcomes. Future clinical trials are needed to evaluate the robustness of our eLB signatures for 
clinical application.
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Extended Data Fig. 1. 
A)  Kaplan-Meier survival curves showing samples separated by IDH status (left) and IDH status combined with 
1p/19q co-deletion (right). Tick represents censorship. B) Total serum cfDNA concentration normalized to the 
genomic size (Genomic Equivalents/ml) in non-tumor, IDHmut and IDHwt samples. C) Heatmap of DNA 
methylation probes mapped the promoter region of MGMT gene. DNA methylation beta-values are represented as 
a color gradient from low (blue) to high (red) in C, D, and E. D) Heatmap of DNA methylation of probes that define 
epigenetically regulated genes in glioma subtypes. Rows represent EReg probes described by Ceccarelli et al., 
2016. E) Predictive biomarkers for glioma progression. Rows represent probes that stratify gliomas into risk for 
aggressive recurrence (deSouza et al., 2018). Each marker was coded as white if methylated and black if 
unmethylated according to the published cutoffs. F) Stemness index defined by DNA methylation as described by 
Malta et al. 2018. Samples are stratified by genomic group and by sample type.
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 Extended Data Fig. 2.
A) Heatmap of DNA methylation of Glioma-eLB probes (N=1075 CpG sites). B) DNA methylation levels of 
Glioma-eLB and previously published probes (Ceccarelli et al., 2016) in the serum and in the tissue of a 
representative patient. C) Dendrograms of non-tumor cell types and serum using Glioma non-tissue-specific 
CpGs (N=186, left) in comparison to tissue-specific (N=384, right) CpGs. D) Glioma-specific tissue-matching 
eLB (N=384) was used to subset the published primary tumor tissue DNA methylation (N=33 tumor types) 
and using t-SNE (t-distributed stochastic neighbour embedding) dimensionality reduction to visualize the 
similarities of each sample. As expected, each primary tumor type (circles) clusters with its known cell-of-
origin. Serum cfDNA methylation of our patients cohort (triangles) clusters with the primary glioma tissue 
DNA methylation profiles.
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Extended Data Fig. 3.
A) Heatmap of DNA methylation of IDH-eLB probes (N=114 IDHmut-eLB and 124 IDHwt-eLB CpG sites). B) 
Comparison between DNA methylation levels of glioma tissue (y-axis) and serum (x-axis) of one representative 
IDHmut glioma patient on the left and one representative IDHwt glioma patient on the right. C-D) IDH-eLB (N=114 
IDHmut-eLB and 124 IDHwt-eLB CpG sites) was used to subset the published primary tumor tissue DNA methylation 
data and using t-SNE (t-distributed stochastic neighbour embedding) dimensionality reduction to visualize the 
similarities of each sample. C) t-SNE using IDHmut-eLB CpGs on the left and IDHwt-eLB CpGs on right with primary 
TCGA tumor tissue from tumor types (N=9) with known IDH mutation. As expected, each primary tumor type 
(circles) clusters with its known cell-of-origin. Serum cfDNA methylation of our IDHmut patients cohort (triangles) 
clusters with the IDHmut primary glioma tissue and serum cfDNA methylation of our IDHwt patients cohort 
(triangles) clusters with the IDHwt primary glioma tissue. D) t-SNE using IDHmut-eLB CpGs on the left and IDHwt-
eLB CpGs on right with primary TCGA tumor tissue (N=33 tumor types). E) Odds-ratio for the frequencies of 
IDHmut-eLB probes (left) and IDHwt-eLB (right), respectively, that overlap a particular molecular feature relative to 
the expected genome-wide distribution of the methylation platform.
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A

Extended Data Fig. 4: 
A) DNA methylation (x-axis) and expression (y-axis) scatter plot for promoter CpG associated with the corresponding gene. Each dot 
represents a sample. Red represents IDHmut glioma tissue samples, dark purple represents IDHwt glioma tissue samples, orange 
represents IDHmut glioma serum cfDNA and light purple IDHwt glioma serum cfDNA.
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