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Abstract 

Background: Alternative polyadenylation (APA) is a post-transcriptional mechanism that 

contributes to transcriptomic diversity. APA causes shortening or lengthening of the 3ʹ-

untranslated region (3ʹ-UTR) associated with prognosis and drug sensitivity in cancer. We 
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recently identified a trans mechanism of 3ʹ-UTR shortening that disrupts microRNA (miRNA) 

target sites for tumorigenesis. However, due to confounding interactions between APA events 

and miRNA target site modifications, it is challenging to identify which miRNAs contribute to 

tumorigenesis through APA events.  

Methods: To identify miRNAs affected by APA events, we developed Probabilistic Inference of 

MicroRNA Target Site Modification through APA (PRIMATA-APA), a mathematical model 

that globally estimates significance of the APA-mediated target site modification for each 

miRNA.  

Results: PRIMATA-APA identified that global APA events in TCGA breast tumor samples 

significantly modify target sites of particular miRNAs (tamoMiRNAs). TamoMiRNAs are 

enriched for miRNA biomarkers known for breast cancer etiology and treatments and their target 

genes are enriched in cancer-associated pathways such as “growth factor” and “signaling” 

pathways. As tamoMiRNAs are evolutionary more conserved and bind more genes than other 

miRNAs, APA events should effectively regulate the cancer-associated pathways. Moreover, the 

significant correlation between 3ʹ-UTR usage and gene expression through miRNAs that are 

associated with the 3ʹ-UTR usage suggests that APA events heavily contribute to miRNA-

derived interpatient tumor heterogeneity.  

Conclusions: Due to the high impact of APA trans effect on miRNA target site modification in 

cancer, we integrated miRNA target site modification and miRNA expression level profile, 

resulting in a systematic understanding of miRNA function for breast cancer.  

 

Introduction 
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The dynamic usage of the messenger RNA 3ʹ-untranslated region (3ʹ-UTR) through alternative 

polyadenylation (APA) plays an important role in transcription[1], [2]. APA events use 

alternative sites of polyadenylation (polyA) resulting in transcription of distinct isoforms with 3ʹ-

UTR shortening and lengthening. 3ʹ-UTR lengthening (3ʹUL) was recently reported to regulate 

cell senescence[3] with implication for tumor suppressive pathways such as cell cycle inhibitors, 

DNA damage markers, and tumor suppressors[4]–[7]. Widespread 3ʹ-UTR shortening (3ʹUS) 

was reported to be the strong prognostic marker[8] and was also found associated with drug 

sensitivity[9].  

We recently discovered a tumorigenic mechanism of 3ʹUS[10] that removes microRNA 

(miRNA) target sites in the distal region of the 3ʹ-UTRs. Then, the miRNAs released from 3ʹUS 

would be redirected to bind to the genes that would be competing for miRNA targeting 

(competing-endogenous RNA, ceRNA[11]) with the 3ʹUS genes. Since the genes in the ceRNA 

relationship with the 3ʹUS genes are likely to be tumor suppressors, the miRNA-mediated 

repression would then effectively promote tumorigenesis. These results imply that APA events 

globally disrupt the miRNA target sites (APA-derived miRNA target site modification) for tumor 

initiation/progression.  

However, it is challenging to identify for which miRNAs APA events collectively modify 

the target sites in tumor samples in the following reasons. First, while 3ʹUS removes miRNA 

target sites in the 3ʹ-UTRs, 3ʹUL plays a confounding role by adding the target sites back. 

Second, APA events and their associated miRNAs are on many-to-many relationships, making it 

difficult to pinpoint miRNAs whose target sites are modified by particular APA events. To 

address the challenges, we developed a mathematical model that estimates the statistical 

significance of target site modifications due to APA for each miRNA, Probabilistic Inference of 
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MicroRNA Target Site Modification through APA (PRIMATA-APA). Further, we applied 

PRIMATA-APA to analyze TCGA breast cancer data[12] and identified the functional 

consequence of APA-derived miRNA target site modification.  

 

Methods 

TCGA breast tumor RNA-seq and miRNA-Seq data 

Quantified gene expression files (RNASeqV1) for primary breast tumors and their matching 

solid normal samples were downloaded from TCGA Data Portal[13]. We used 106 breast tumor 

samples that have matched normal tissues. 10,868 expressed RefSeq genes (FPKM ≥ 1 in > 80% 

of all samples) were selected for downstream analyses. To better quantify gene expression in the 

presence of 3ʹ-UTR shortening, we only used coding regions (CDS). Exon and CDS annotation 

for TCGA data and miRNA expressions (syn1445790) were downloaded from Sage 

Bionetworks’ Synapse database. 

 

Selection of miRNAs and genes 

Predicted miRNA target sites were obtained from TargetScanHuman version 6.2[14]. Only those 

with a preferentially conserved targeting score (Pct) more than 0 were used[8]. Experimentally 

validated miRNA-target sites were obtained from TarBase version 5.0[15], miRecords version 

4[16] and miRTarBase version 4.5[17]. The target sites found in indirect studies such as 

microarray experiments and high-throughput proteomics measurements were filtered out [18]. 

Another source is the microRNA target atlas composed of public AGO-CLIP data[19] with 
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significant target sites (q-value < 0.05). The predicted and validated target site information was 

then combined to use in this study. 

 

Probabilistic Inference of MicroRNA Target Site Modification through APA (PRIMATA-

APA) 

For transcript 𝑥 with a constitutive proximal 3ʹ-UTR (pUTR) and a distal 3ʹ-UTR (dUTR), we 

previously defined the amount of target sites for miRNA miRj in all copies of transcript x as 

follows[10].  

𝑀𝑖𝑅𝑠_𝑃𝐷𝑈𝐼𝑡(𝑥,𝑚𝑖𝑅𝑗)

= (𝑝𝑈𝑇𝑅(𝑥,𝑚𝑖𝑅𝑗) + 𝑑𝑈𝑇𝑅(𝑥,𝑚𝑖𝑅𝑗) × 𝑃𝐷𝑈𝐼𝑡(𝑥))

× 𝐶𝐷𝑆𝑡(𝑥), 

(Eq. 1) 

where pUTR(x, miRj) and dUTR(x, miRj) are the numbers of miRj target sites in pUTR and 

dUTR of x. PDUIt(x) is the Percentage of dUTR Usage Index[8] of x and CDSt(x) is the 

expression level of x in a tumor sample. Note that 𝑀𝑖𝑅𝑠_𝑃𝐷𝑈𝐼𝑛(𝑥,𝑚𝑖𝑅𝑗) can be calculated for a 

normal sample with PDUIn(x) and CDSn(x). If APA-derived miRNA target site modification is not 

considered, the amount of target sites for 𝑚𝑖𝑅𝑗  in all copies of transcript x would be calculated as 

follows:   

𝑀𝑖𝑅𝑠𝑡(𝑥,𝑚𝑖𝑅𝑗) = (𝑝𝑈𝑇𝑅(𝑥,𝑚𝑖𝑅𝑗) + 𝑑𝑈𝑇𝑅(𝑥,𝑚𝑖𝑅𝑗)) × 𝐹𝑃𝐾𝑀𝑡(𝑥) 
(Eq. 2) 

Based on Eq.1 and Eq.2, PRIMATA-APA calculates 𝑀𝑖𝑅𝑠_𝑃𝐷𝑈𝐼𝑡(𝑚𝑖𝑅𝑗) and 𝑀𝑖𝑅𝑠𝑡(𝑚𝑖𝑅𝑗) 

defined as below.  
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𝑀𝑖𝑅𝑠_𝑃𝐷𝑈𝐼𝑡(𝑚𝑖𝑅𝑗) =∑𝑀𝑖𝑅𝑠_𝑃𝐷𝑈𝐼𝑡(𝑥,𝑚𝑖𝑅𝑗)

𝑥

 

𝑀𝑖𝑅𝑠𝑡(𝑚𝑖𝑅𝑗) =∑𝑀𝑖𝑅𝑠𝑡(𝑥,𝑚𝑖𝑅𝑗)

𝑥

 

With 𝑀𝑖𝑅𝑠_𝑃𝐷𝑈𝐼𝑡(𝑚𝑖𝑅𝑗), 𝑀𝑖𝑅𝑠𝑡(𝑚𝑖𝑅𝑗), 𝑀𝑖𝑅𝑠_𝑃𝐷𝑈𝐼𝑛(𝑚𝑖𝑅𝑗), and 𝑀𝑖𝑅𝑠𝑛(𝑚𝑖𝑅𝑗) in a 

contingency table, PRIMATA-APA estimates significance of target site modifications for 𝑚𝑖𝑅𝑗 

by testing nonrandom association in tumor and normal states (using χ2 test), followed by FDR 

control using FowardStop[20] (FDR < 0.01).  

 

Results 

Collective impact of APA genes for the trans effect 

To identify APA events in large-scale data, several computational tools have been developed that 

use RNA-Seq data[8], [21]–[24]. For example, statistically significant APA genes can be defined 

using the difference in Percentage of Distal polyA site Usage Index (∆PDUI)[8]. Current 

analyses have focused mostly on a subset of the significant APA genes that strongly changed 3ʹ-

UTR usage in tumor by employing an additional cutoff. Specifically, recent large-scale APA 

studies focused on the strong APA genes (∆PDUI < -0.2 for 3ʹUS and ∆PDUI > 0.2 for 3ʹUL) 

selected from significant APA genes (FDR < 0.05) in TCGA human cancer[8] and cell line 

data[9]. However, strong APA genes account for only a small portion of all significant APA 

genes. For example, in TCGA tumor-normal sample pair BH-A1FJ with the greatest number of 

significant APA genes, the strong APA genes account only for 50.5% (1,523) of 3,015 

significant APA genes (Fig. 1A). Across 106 breast tumor-matched normal sample pairs in 
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TCGA, this trend is more pronounced in that only 40.5% of significant APA genes are strong 

APA genes on average (Fig. 1B).  

We found that significant APA genes, strong or not, together elucidate the common trans 

mechanism of APA. In 106 normal/tumor sample pairs, we identified totally 6,825 significant 

3ʹUS genes, of which 82.4% (5,626) are strong in some sample pairs, demonstrating that 

significant 3ʹUS genes in a sample pair are likely to undergo a strong 3ʹ-UTR shortening in other 

sample pairs. Further, while considering all significant 3ʹUS genes increases only 15.9% (6,825 

vs. 5,626) more 3ʹUS genes in total, it enables us to identify much more 3ʹUS genes in common. 

For 20% (21) of the 106 normal/tumor sample pairs, 5.5-fold more 3ʹUS genes are shared if all 

significant 3ʹUS genes are considered (613 significant vs. 110 strong only, Fig. 1C). Especially, 

to characterize the common trans mechanism, all significant 3ʹUS genes need to be considered. 

Since strong 3ʹUS genes are likely strong cis targets of 3ʹUS, they would be reasonable 

candidates to study the 3ʹUS cis effect. However, as 3ʹUS events exert the trans mechanism 

through modifying miRNA target sites[10], significant but not strong 3ʹUS genes would also 

contribute to the trans mechanism by modifying miRNA target sites on their 3ʹUTRs[11], 

especially if they are highly expressed.  

In the same sense, 3ʹUL genes also need to be considered, since they would increase 

miRNA target sites to compensate for those decreased by 3ʹUS genes. Previous studies reported 

smaller numbers of 3ʹUL genes than 3ʹUS from TCGA cancer patients[8] or cancer cell lines[9] 

of diverse types. This was partly because they focused only on strong APA genes common to the 

samples. Considering all significant APA genes in our TCGA breast cancer analysis, we found 

that 3ʹUL is as widespread as 3ʹUS. For example, in TCGA tumor-normal sample pair AC-

A2FB, which has the smallest ratio of strong APA genes to significant APA genes, 90.1% of the 
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significant APA genes are 3ʹUL genes (S. Fig 1B). In 106 breast tumor-matched normal sample 

pairs in TCGA, 56.4% of average significant APA genes are 3ʹUL genes (S. Fig. 1C). As in the 

case of 3ʹUS, considering significant 3ʹUL genes enables to identify much more common 3ʹUL 

genes than considering only strong 3ʹUL genes. In our TCGA breast cancer data, 83.7% of the 

total significant 3ʹUL genes (6,081 of 7,265) are strong and 3.5-fold more 3ʹUL genes are shared 

for 20% of the sample pairs when all significant 3ʹUL genes are considered (993 significant vs. 

288 strong only, S. Fig. 1A). Based on the results, investigating the common trans mechanisms 

of APA requires to consider all significant APA genes of both 3ʹUL and 3ʹUS.  

 

Probabilistic Inference of MicroRNA Target Site Modification through APA (PRIMATA-

APA) 

To quantify miRNA target site modifications due to all significant APA events, either 3ʹ-UTR 

shortening and lengthening, we developed a mathematical model, Probabilistic Inference of 

MicroRNA Target Site Modification through APA (PRIMATA-APA). Previously, we 

successfully predicted gene expression changes based on the estimated number of miRNA target 

sites in the presence of 3ʹUS (𝑀𝑖𝑅𝑠_𝑃𝐷𝑈𝐼𝑡(𝑥,𝑚𝑖𝑅𝑗), Eq. 2)[10]. By extending this estimation, 

PRIMATA-APA estimates the total number of target sites for each miRNA with and without 

consideration of APA events. Based on the difference of the estimations, PRIMATA-APA 

quantifies how much of the target sites are modified, either increased or decreased, by APA 

events for each miRNA (see Methods).  

 

Global miRNA target site modification due to alternative polyadenylation 
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To study APA-derived miRNA target site modification in cancer, we ran PRIMATA-APA on the 

70 breast tumor-matched normal samples out of 106 pairs for which miRNA expression 

information was available. In the data, we considered 588 moderately expressed miRNAs (> 1 

and < 100 FPM on average) and 3,318 expressed genes likely affected by miRNAs (≥5 miRNA 

target sites) to focus on active miRNA targets[10], [25]. In 39 (55.7%) of the 70 breast tumor 

samples, PRIMATA-APA identifies significant target site modifications (FDR < 0.01) for more 

than 100 miRNAs (Fig. 2A, B). Further, in each sample pair, miRNA target sites are either 

mostly increased or decreased, which makes a negative correlation between the number of target 

sites increased and decreased across tumor-normal sample pairs (P=0.006, Fig. 2C).  

Additionally, we found that APA events modify miRNA target sites in a subtype-specific 

manner. The five subtypes of breast cancer by PAM50 are known to involve distinct molecular 

pathways with different clinical outcomes[26]. In our TCGA breast cancer data, none of basal 

and Her2 subtype samples increases target sites for > 100 miRNAs, while 57.1% (4/7) of the 

samples decrease target sites for > 100 miRNAs, indicating a significant (P=0.009) bias toward 

miRNA target site decrease. However, other PAM50 subtypes (Luminal A, B, and Normal-like) 

do not show such a bias (S. Fig. 3). Since both basal and Her2 subtypes are close in terms of 

molecular pathways and worse prognosis (reviewed in [27], [28]), their common pattern in 

miRNA target site modification suggests a similar APA landscapes between them. Altogether, 

the results show that APA globally modifies miRNA target sites for breast cancer in a non-

random and a subtype-specific manner. 

 

APA modifies target sites of miRNAs associated with cancer  
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For further analyses based on miRNAs, we identified target miRNAs whose target sites are 

modified by APA events. Based on the number of tumor samples where the target sites are 

increased or decreased for each miRNA, we selected top half (289) of 588 moderately expressed 

miRNAs, whose target sites are more often modified than the other (299) miRNAs, which will 

be termed target site modified miRNA (tamoMiRNA). APA events modify target sites of 

tamoMiRNAs significantly more than the other miRNAs (P-value=1.12e-28, Fig. 3A). The 289 

tamoMiRNAs are significantly (P=5.8e-5) enriched for cancer etiology and treatments compared 

to the other miRNAs. Specifically, tamoMiRNAs are enriched in the miRNAs that are 

dysregulated in breast cancer with clinical and biological implications[29], regulating diverse 

mechanisms for breast cancer[30], regulatory elements in either adaptive or innate immune 

system[31], or potential prognostic and predictive biomarkers identified for breast 

cancer[32](Fig. 3B, S. Table 1). Among 43 tamoMiRNAs found in the categories, 31 (72.1%) 

occur only in one of the categories (S. Fig. 2), confirming that the high enrichment of 

tamoMiRNAs to the multiple categories reflects their important roles in tumor, not redundancy 

in data curation. Also, we estimated conservation score (PhyloP[33], 46 way Placental) of 202 

tamoMiRNAs and 191 other miRNAs for which miRBase[34] curated the genomic locations. 

TamoMiRNAs have significantly (P= 7.19e-5) larger conservation scores than the other miRNAs 

(Fig. 3C). Altogether, the results indicate that, by selection or design, APA modifies target sites 

of miRNAs that are evolutionary conserved and functionally important for cancer etiology and 

treatments.  

 

APA modifies target sites of miRNAs to effectively regulate biological processes. 
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To investigate the function of the APA-derived miRNA target site modification in cancer, we 

focused on the target genes of tamoMiRNAs (see Methods). First, we identified GO terms 

enriched for tamoMiRs using MiEAA[35]. Probably due to the many-to-many relationships 

between miRNAs and target genes[36]–[38], inputting all tamoMiRNAs and all the other 

miRNAs to MiEAA web server returns mostly under-represented terms. So, we focus MiEAA 

analysis on 99 tamoMiRNAs (with the greatest number of samples in which modified) and 105 

other miRNAs (with the least number of samples in which modified). 125 and 1 biological terms 

are significantly (FDR < 0.01) enriched for tamoMiRNAs and for the other miRNAs respectively 

(S. Table 2). The significant bias (P-value=5.0×10-5) of the number of enriched biological terms 

to tamoMiRNAs suggests that APA events effectively regulate biological functions. 

Additionally, compared to the other miRNAs, tamoMiRNAs are exclusively enriched for 

pathways with keyword “growth factor”, “signaling”, and “circadian”, (Fig. 4A, S. Table 2), 

which are essential for tumor initiation and progression[39].   

To understand their impact in regulating gene expression, we evaluated the number of 

genes targeted by tamoMiRNAs. Among 3,318 expressed genes in the breast tumor data that are 

likely controlled by miRNAs (> 5 miRNA target sites), 3,177 genes (95.7%) have more target 

sites for tamoMiRNAs than for the other miRNAs (Fig. 4B). Further, 911 of 3,177 (27.4%) 

genes have target sites only for tamoMiRNAs in their 3ʹ-UTRs. While expression fold change 

(tumor vs. normal) does not differ between tamoMiRNAs and other miRNAs (P=0.1, S. Fig. 2), 

911 genes targeted only by tamoMiRNAs are significantly more down-regulated in tumor 

(P=3.9e-23) than the same number of genes affected by other miRNAs (Fig. 4C), indicating that 

tamoMiRNAs effectively regulate gene expressions of target genes in tumor. Altogether, the 
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results indicate that APA modifies target sites of miRNAs that effectively regulate genes in 

tumor-associated pathways.  

 

APA regulates tumor-specific progression in association to interpatient heterogeneity. 

We further studied the role of APA-derived miRNA target site modification on the observed role 

of miRNAs for tumor interpatient heterogeneity[40].  In particular, since 3ʹ-UTR shortening 

regulates gene expression by modifying miRNA target sites[10], we hypothesized that variation 

in the degree of APA events across tumor samples diversifies the effect of miRNAs on the target 

genes for tumor interpatient heterogeneity. To test the hypothesis, we compared the expression 

variation of tamoMiRNAs, the other miRNAs and 911 of their target genes defined above. While 

the expression variation across the sample pairs changes equally in tumor for both tamoMiRNAs 

and the other miRNAs (P=0.4, Fig. 5A), the expression variation of genes that are targeted by 

tamoMiRNA is significantly higher than that of the other miRNAs (P=4.9e-15, Fig. 5B) in 

tumors. Since the degree of APA events varies significantly more (P=0.004) in tumor (S. Fig. 

5B), the high variation in tamoMiRNA target gene expression in tumor is attributable to the APA 

events modifying tamoMiRNA target sites in the genes.  

An example is myocin heavy chain 11 (MYH11) that promotes tumorigenesis of various 

cancer types[41]–[45]. In our miRNA-target site information, MYH11 is predicted to have a 

target site for a single miRNA (miRNA-124/124ab/506). Although the expression of MYH11 is 

not correlated with the miRNA expression (S. Fig. 5A), its expression is significantly correlated 

with ΔPDUI values of its ceRNA partner gene, platelet-activating factor acetylhydrolase IB 

subunit alpha (PARAH1B1) (Pearson’s r=0.4, P-value=0.00014, Fig. 5C). The functional role of 
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PARAH1B1 in tumor has not been widely studied, especially in association with MYH11, partly 

because their expression levels are not correlated (e.g. Pearson’s r=0.1, P-value=0.25 in TCGA 

breast cancer). Our analysis found that 3ʹ-UTR of PARAH1B1 undergoes a significant (T-test 

statistic=2.65, P=0.004) shortening in tumors. Since negative ΔPDUI values represent 3ʹ-UTR 

shortening in tumor[8] which is expected to release miRNAs to repress MYH11 (Fig. 5D), the 

positive correlation between MYH11 expression and ΔPDUI of PARAH1B1 (Fig. 5C) supports 

the role of 3ʹUS trans effect differentiating MYH11 expression.  

Further enrichment analyses support that APA-associated, miRNA-mediated[46], [47] 

transcriptomic diversity contributes to interpatient difference in tumor progression. First, 911 

genes targeted only by tamoMiRNAs include significantly more oncogenes than the same 

number of genes targeted by other miRNAs (43 vs. 28, P-value=0.03), suggesting that varying 

degree of APA diversifies the effect of miRNA target activity on oncogenic processes. Second, 

our MiEAA analysis showed that tamoMiRNAs regulate tumor progression pathways such as 

“growth factor” pathways (Fig. 4A). Third, Ingenuity Pathway Analysis showed that cancer 

progression and migration pathways are more enriched in tamoMiRNA target genes than the 

target genes of the other miRNAs (P-value < 10-3, Fig. 5E, S. Table 3). Specifically, they are 

implicated for breast cancer often through miRNAs, e.g. with miR-494 suppressing chemokine 

(C-X-C motif) receptor 4 (CXCR4) for breast cancer progression[48], miR-200c regulating 

Protein kinase A subunits for cancer cell migration[49], and miR-520b targeting Interleukin-8 for 

breast cancer cell migration[50] (see other examples in Fig. 5E). Altogether, APA regulates 

tumor-specific progression by diversifying miRNA target site landscape. 

 

Discussion 
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Here, we studied the effect of miRNA target site modification together with miRNA expression. 

As miRNAs bind and repress their target genes, a comprehensive understanding of miRNAs’ 

function requires investigating not only their expression level but also their target site landscape. 

Unlike previous works focusing on the changes in miRNA expressions, we investigated 

aberration in miRNA target site landscape by taking widespread 3ʹ-UTR shortening and 

lengthening into a mathematical model, PRIMATA-APA.  

Further, our work will shed novel insights into the development of therapeutic miRNAs. 

The high enrichment of tamoMiRNAs to miRNAs validated with clinical implication (Fig. 3B) 

suggest that APA events employ the trans effect as patient-specific APA events[8] are associated 

with tumor progression[10], prognosis[8] and treatment outcomes[51]. Based on this 

observation, further inspection of tamoMiRNAs would effectively narrow down search space to 

identify therapeutic miRNAs. Further, identifying APA events associated with the interpatient 

heterogeneity will help regulate interpatient tumor heterogeneity, which is essential for the 

success of early cancer detection and the development of new effective therapies[52], [53]. For 

example, when MYH11’s oncogenic effect is associated with a varying degree of APA events of 

PARAH1B1 through miRNA-124/124ab/506 in breast cancer, molecular agents for miRNA-

124/124ab/506 may help normalize different MYH11 effect on cancer patients.  
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Figures and Tables 

 

  

 

Figure 1. Collective impact of strong and significant APA events. A. Statistical 

significance of APA target genes in a breast tumor-normal sample pair (TCGA-BH-A1FJ) 

with their ∆PDUI (Percentage of Distal polyA site Usage Index) values (tumor-normal). 

Since PDUI represents the ratio of isoforms with distal 3ʹ-UTR, negative ∆PDUI value 

represent 3ʹ-UTR shortening target genes and positive ∆PDUI value 3ʹUL genes. Strong APA 

target genes are in red, significant but not strong ones in pink and not significant ones in gray. 

B. For 106 breast tumor-normal sample pairs sorted by the number of significant APA target 

sites, upper panel shows the total number of significant APA genes and the lower panel 

shows the ratio of the APA genes by whether it is significant but not strong (orange) or strong 

(red). Black dotted line represent the average ratio of strong APA genes. C. Cumulative ratio 

of 3ʹUS genes shared by sample pairs. Red and orange dotted lines represent the ratio of 

strong and significant 3ʹUS genes shared by < 21 sample pairs, respectively. 
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Figure 2. Tumor-specific APA-mediated microRNA binding site changes. A. The 

heatmap shows tumor-normal samples (row) where the total number of binding sites for each 

microRNA (column) is increased (blue) or decreased (red) due to APA. Not significant 

changes or no changes are not colored. Samples are sorted by the number of increased 

microRNA target site modicifcation. B. The total number of miRNA binding site changes, 

either increased (blue) or decreased (red) due to APA, in breast tumor-normal samples pair 

sorted by the total number of modification per sample pair. C. Number of miRNAs of which 

binding sites are increased (y-axis) or decreased (x-axis) for each tumor-normal sample. The 

red dotted line represents linear least-squares regression.  
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Figure 3. APA modifies binding sites of miRNAs associated with cancer. A. The number 

of tumor-normal samples between which binding sites for each miRNA are increased (x-axis) 

or decreased (y-axis). For further analyses, we dichotomize miRNAs by the amount of 

binding site modification into tamo- (red) and the other (gray) miRNAs. B. Number of 

cancer-related miRNAs in tamo- (red) and the other (gray) miRNAs. C. Distribution of 

phyloP conservation score for 202 tamo and 191 the other miRNAs. 
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Figure 4. TamoMiRNAs effectively regulate biological processes. A. Cancer-associated 

pathways enriched for 99 tamoMiRNAs with their enrichment p-values (red for “signaling”, 

blue for “GF” (growth factor), and green for “circadian”). B. Number of target sites for 

tamoMiRs and the other miRNAs in the genes with more than 5 target sites. C. Expression 

fold change (log2 tumor vs. normal) of 911 genes that are targets of tamoMiRs and other 

miRNAs. 
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Figure 5. APA regulates tumor-specific progression in trans. Distribution of standard 

deviation values across sample pairs on the expression values of A. tamoMiRs and other 

miRNAs and B. their target genes. C. Scatterplot of MYH11 expression fold change values 

against its ΔPDUI values. The red dotted line represents linear least-squares regression. D. 

Illustration of the effect of PARAH1B1’s 3ʹ-UTR shortening on MYH11 expression mediated 

by miR-124/124ab/506. MRE stands for microRNA recognition element. E. IPA comparison 

analysis between gene targets by highly and lowly modified miRNAs for pathways implied 

for cancer progression and migration, NFAT[54], Axonal Guidance[55], MYC Mediated 

Apoptosis[56], Protein kinase A[49], Pigment epithelium-derived factor (PEDF)[57], 

Thrombin[58], CXCR4[48], Erythropoietin[59], Insulin receptor[60], FAK[61], STAT3[62]. 
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S. Figure 1. A. Cumulative ratio of genes with lengthened 3ʹ-UTRs shared by sample pairs. 

Cumulative ratio of 3ʹUS genes shared by sample pairs. Red and orange dotted lines represent 

the ratio of strong and significant 3ʹUS genes shared by < 21 sample pairs, respectively. B. 

Statistical significance of APA target genes in a breast tumor-normal sample pair (TCGA-

BH-A1FJ) with their ∆PDUI (Percentage of Distal polyA site Usage Index) values (tumor-

normal). C. In each of 106 breast tumor-normal sample pairs, the ratio of the APA target 

genes by whether it is significant and not strong or strong, also by whether it is 3’UTR 

shortening or lengthening. They are ordered in consistency with Fig. 1B. 
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S. Figure 2. Number of miRNAs validated for breast tumor progression and treatment 

against how many validation category they are in.  
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S. Figure 3. Number of miRNAs of which binding sites are increased (y-axis) or decreased 

(x-axis) for each tumor-normal sample colored by the breast tumor subtype. The black dotted 

rectangle represents not-high modifications. 
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S. Figure 4. Expression difference (log 2, tumor vs. normal) of tamoMiRNAs and other 

miRNAs.  
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Supplementary Table 1. List of miRNAs with the number of patients in which APA modifies 

the target sites with the indication of whether the miRNA is found for each category of miRNAs 

with clinical potential.  

 

Supplementary Table 2. MiEAA analysis result for 99 tamoMiRs and 109 other miRNAs.  

 

Supplementary Table 3. Ingenuity Pathway Analysis report on tamoMiRNA target genes. 

 

S. Figure 5 A. Scatterplot of MYH11 expression fold change values against expression fold 

change values of the mediating miRNA (miR-124/124ab/506). B. PDUI standard deviation of 

2,862 genes with 3ʹ-UTR usage status in tumor and normal whose PDUI values were 

available for all 70 tumor-normal pairs.  
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