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ABSTRACT 

Alternative polyadenylation (APA) is a post-transcriptional mechanism that regulates gene 

expression. In human cancer, shortening of the 3ʹ-untranslated region (3ʹ-UTR) through APA is 

widespread affecting thousands of genes[1]. We previously identified that 3ʹ-UTR shortening 

(3ʹUS) disrupts the competing-endogenous RNA (ceRNA) network (3ʹUS-ceRNA effect) to 

promote breast cancer[2]. As different breast cancer subtypes are associated with different 

molecular mechanisms[3], we identified distinct 3ʹUS profiles of different breast cancer subtypes 

in this work, calling for the characterization of subtype-specific 3ʹUS-ceRNA effect in the 

ceRNA network. A quantitative challenge is that different sample sizes available for the different 

breast cancer subtypes can result in a systematic bias on size and topology of the constructed 

ceRNA networks. We addressed the bias by normalizing the networks in two-way, first between 

and second within the subtypes. Using the two-way network normalization, we built comparable 

ceRNA networks for estrogen receptor negative (ER-) and positive (ER+) subtype breast tumor 

samples of different size. Functional enrichment analyses associated subtype-specific 3ʹUS-

ceRNA effect with ER-’s aggressive phenotype[4] and unique growth mechanism[5]. Especially, 

for ER- specific growth mechanism, subtype-specific 3ʹUS-ceRNA effect disrupts ceRNA 

crosstalk of housekeeping genes, which help maintain similar ceRNA network topology for ER- 

and ER+ normal samples. As ER- specific 3ʹUS-ceRNA effect is associated with ER-’s 

pathological features, aggressive phenotype and unique growth mechanism, our study provides 
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new insights into the interactive mechanism of 3ʹUS and ceRNA for ER- specific cancer 

progression. 
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INTRODUCTION 

Approximately, 70% of human genes contain multiple polyadenylation (polyA) sites in the 3ʹ-

untranslated region (3ʹ-UTR)[6]. Through alternative polyadenylation (APA) during 

transcription, messenger RNAs (mRNA) from the same gene can have various lengths of 3ʹ-

UTR. Since 3ʹ-UTR contains regulatory regions such as microRNA (miRNA) target sites, 

mRNAs with shortened or lengthened 3ʹ-UTRs may effectively diversify transcriptomic 

dynamics in diverse pathological conditions such as cancer[7]. In human cancer, 3ʹ-UTR 

lengthening (3ʹUL) was associated with cell senescence[8] with implication for tumor-associated 

processes such as cell cycle inhibitors, DNA damage markers, and tumor suppressors[9]–[12]. 

Widespread 3ʹ-UTR shortening (3ʹUS) was directly implicated for oncogene activation in cell 

line experiments[6]. Further, some 3ʹUS genes demonstrate an additional prognostic power 

beyond common clinical and molecular covariates[1] and are associated with drug 

sensitivity[13]. These results suggest that APA events, both 3ʹ-UTR shortening and lengthening, 

play important roles in tumor etiology and response to treatment.  

 3ʹ-UTR is also implicated in competing-endogenous RNA crosstalk (ceRNA)[14] that co-

regulate each other RNAs by competing to bind shared microRNAs (miRNA). When 3ʹ-UTR 

shortening genes lose miRNA target sites in the 3ʹ-UTR, the associated miRNAs bind to the 3ʹ-

UTR of the ceRNA partners, which would be competing for the binding of the miRNAs. As a 

result, 3ʹ-UTR shortening disrupts ceRNA crosstalk (3ʹUS-ceRNA effect). We recently reported 

that 3ʹUS-ceRNA effect globally down-regulates tumor suppressors, promoting human cancer, 

including breast cancer[2].  

Human cancers can be divided into different subtypes based on molecular and/or clinical 

features for more accurate treatment plans and prognosis. For example, breast cancer can be 

strictly classified into two major subtypes based on estrogen receptor (ER) status, a central 

component of the pathological evaluation of breast cancer[15]. Estrogen receptor negative (ER-) 

breast tumors have unique molecular dynamics compared to estrogen receptor positive (ER+) 

breast tumors including the unique growth mechanism. ER+ tumors can be treated with 

endocrine therapy, blocking ER activity or depleting estrogen levels, however, this therapeutic 

approach does not have efficacy in ER- breast tumors due to their difference in growth 

mechanism. In that sense, ER- breast tumors show worse prognosis than ER+ breast tumors[16] 

with more aggressive phenotype[4], [17].  

To develop targeted therapies that effectively treat ER- breast cancer, its molecular 

dynamics needs to be understood comprehensively, especially for its aggressive phenotype and 

unique growth mechanism. With the profound tumorigenic effect of 3ʹUS-ceRNA[2], we now 

hypothesize that 3ʹUS-ceRNA effect specific to ER- breast tumor contributes to its unique 

molecular feature, aggressive phenotype and unique growth mechanism. To test this hypothesis, 

we compared ER- ceRNA networks with ER+ with regards to 3ʹUS.  

Global APA events differ between ER+ and ER-  

To study the role of 3ʹ-UTR shortening genes for subtype-specific breast tumor, we divided 97 

breast tumor and the matched normal samples available in TCGA (see Methods) into 77 ER-

positive (ER+) and 20 ER-negative (ER-) sample pairs. Using DaPars[1], we identified 3ʹUTR 
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shortening (3ʹUS, ΔPDUI < -0.2 and FDR < 0.05) and 3ʹUTR lengthening (3ʹUL, ΔPDUI > 0.2 

and FDR < 0.05) genes. As there are totally 5,876 3ʹUS and 5,379 3ʹUL genes, both 3ʹUS and 

3ʹUL events are widespread in both subtypes (Fig. 1A). In each normal/tumor sample, 3ʹUS and 

3ʹUL events occur equally highly on genes (S. Fig. 1A, 1B). To identify common mechanisms 

across tumor samples, we further identified recurrent 3ʹUS and 3ʹUL genes (occurring in > 20% 

of the tumor samples[1], S. Fig. 1C, 1D). Although there are similar numbers of 3ʹUS and 3ʹUL 

genes in terms of total number and in each sample pair (S. Fig. 1A, 1B), more 3ʹUS genes recur 

(occurring in > 20% of the sample pairs[1]) than 3ʹUL genes (Fig. 1D, E e.g. P=5.0×10-5 for 

ER+). The less recurrence of 3ʹUL genes partially explains why previous identifications, which 

focused on recurrent events[1], [13], observed less 3ʹUL genes than 3ʹUS. Further analyses 

showed that 3ʹUS and 3ʹUL play distinct roles for cancer. First, the recurrent 3ʹUS and 3ʹUL 

genes show little overlap both for ER+ and ER- (1 and 13 genes in common for ER+ (P=1.27e-6) 

and ER- (P=3.97e-9), respectively, Fig. 1D, 1E). Second, the number of 3ʹUL events is not 

correlated with that of 3ʹUS events across the tumor samples (P=0.35 for ER+ and P=0.61 for 

ER-, Fig. 1B, 1C). Third, IPA pathway analysis (S. Fig. 1E) shows that the recurrent 3ʹUS and 

3ʹUL genes are enriched for distinct sets of pathways in ER+ and ER- tumor samples. With our 

interest in the common mechanism of APA, we will focus on the function of recurrent 3ʹUS 

genes. 

Two-way Pairwise Normalization of ER+ and ER- ceRNA network 

To study subtype-specific 3ʹUS-ceRNA effect, we set out to compare the ceRNA networks from 

ER+ and ER- tumor and normal samples. While a network can be defined as a set of edges 

between genes, ceRNA networks can have edges between the genes that share a significant 

number of microRNA (miRNA) target sites and whose expression levels across samples are 

correlated (co-express)[2], [18]. For gene pairs that share a significant number of miRNA target 

sites (FDR < 0.05 based on hypergeometric test e.g. [2], [18]), co-expression cutoffs needs to be 

determined to build comparable ceRNA networks for ER+ and ER-. Using the common co-

expression cutoff (e.g. Pearson’s ρ > 0.6) would inflates the number of edges for ER- compared 

to ER+ (160,687 in ER- normal vs. 88,275 in ER+ normal, Fig. 2A). Our simulation study (using 

cutoff of Pearson’s ρ 0.6) further confirmed that the network size difference (in terms of the 

number of edges) is attributable to the sample size difference. When smaller numbers of ER+ 

normal samples are used to construct the ceRNA network, the network size increase (S. Fig. 2A), 

consistent to the trend for ER- and ER+ network size (Fig. 2A). Further, the simulation shows 

that the actual size of ER- normal network (with 20 samples) falls in the non-outlier range of 

ER+ normal network size when 20 samples are used.  

Although the network size difference should make a systematic bias in network comparison, it is 

not straightforward to address the network size difference. One might want to sample the number 

of ER+ normal samples to the same number of samples available for ER- (n=20) to remove the 

bias. Then, the ceRNA networks constructed from the subsample lose topological consistency 

within them (Fig. 2B), making it difficult to represent ER+ ceRNA dynamics. Also, if ER- 

ceRNA network is constructed using the expression correlation cutoff for the same statistical 

significance to ER+ (based on a permutation test, see Methods), it will drastically deflate the 

number of edges (Fig. 2C), making another systematic bias for comparison. To address this 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601526doi: bioRxiv preprint 

https://doi.org/10.1101/601526


issue, we first construct the reference network from normal samples of larger size (ER+) using 

the common correlation cutoff (Pearson’s ρ > 0.6). Based on the assumption that normal samples 

would have similar molecular dynamics between ER+ and ER-, we seek to find an expression 

correlation cutoff for ER- normal network that makes most topological similarity to the ER+ 

reference network. To estimate topological similarity, we employed normalized Laplacian 

Matrix Eigenvalue Distribution that discovers ensembles of Erdős–Rényi graphs better than 

other metrics such as Sequential Adjacency or Laplacian[19] (see Methods). While ER- normal 

network topology changes drastically by different correlation cutoff values (S. Fig. 2B, 2C), we 

found that cutoff of 0.68 makes ER- normal network most similar to the ER+ reference network 

(2,846 and 2,864 nodes for ER+ and ER-, respectively Fig. 2D). Correlation cutoff 0.68 is 

supported again when normal ER- network with the correlation cutoff makes the closest average 

clustering coefficient to the reference network, another measure of network similarity[20] (0.39 

for the ER- network with cutoff 0.68 and 0.40 for the reference ER+ network, S. Fig. 2D). We 

further applied the subtype-specific cutoff (0.68 for ER- and 0.6 for ER+) to build tumor ceRNA 

networks (1,392 and 2,039 nodes for ER+ and ER-, respectively). Since this method normalizes 

ceRNA networks across different subtypes of normal samples (by identifying correlation cutoff 

for topological similarity) and within each subtype (between normal and tumor), we call it two-

way network normalization.  

3ʹUTR shortening is associated with ER- tumors’ aggressive metastatic phenotypes in 

ceRNA. 

To identify ER- specific function of 3ʹUS-ceRNA effect, we compared ER- and ER+ ceRNA 

networks after two-way normalization. Among 1,783 ceRNA partners of 521 3ʹUS genes (3ʹUS 

ceRNA partners) in normal ER- ceRNA network, 498 (27.9%) are only in ER- (ER- 3ʹUS 

ceRNA partners), whereas 1,285 (72.1%) are also in ER+ as 3ʹUS ceRNA partners (common 

3ʹUS ceRNA partners, Fig. 3A). We found that 118 IPA canonical pathways significantly (P < 

0.01) enriched for the ER- 3ʹUS ceRNA partners (S. Table 2) are linked with several aspects of 

ER- specific tumor phenotypes (Fig. 3B). The first aspect of the pathways are “cancer” pathways 

(pathways with keyword “cancer”). For example, “Molecular Mechanisms of Cancer” pathway 

(P=10-5.25) is, according to IPA knowledgebase, a set of genes whose disruptions have been 

shown to drive tumor progression. Specific to breast cancer, the enrichment to “Breast Cancer 

Regulation by Stathmin1” (P=10-3.92) pathway is interesting, since overexpression of Stathmin1 

correlates with the loss of ER [21] and with aggressive phenotypes[22] of breast tumor. The 

second category of pathways underlies the aggressive metastasis of ER- tumors more directly. 

For example, 8 pathways were experimentally confirmed in association with breast tumor 

metastasis [23], and 5 of them are significantly enriched for ER- 3ʹUS ceRNA partners with an 

exception of PI3K/AKT, whose enriched p-value is just below our cutoff (P=10-1.95). Also, 

previous studies associated breast tumor malignancy and poor survival with abnormal control of 

Ephrin A (reviewed in [24]), which is enriched for ER- 3ʹUS ceRNA partners (P-val=10-5.05). 

Together, ER- specific 3ʹUS ceRNA partners control pathways for cancer signaling and 

aggressive metastatic phenotypes in normal samples. However, in ER- tumors, 81.7% of 3ʹUS 

ceRNA partners lost the ceRNA relationship (S. Fig 3A), likely losing the normal control for the 

metastatic phenotypes. Further, as ER+ tumors also lost the 3ʹUS ceRNA partners (95.4%, S. Fig 

3B), ER- and ER+ share less 3ʹUS ceRNA partners in tumor (35 of 416 (8.41%) 3ʹUS ceRNA 
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partners in ER- shared with ER+ (Fig. 3C)). Altogether, ER- specific loss of 3ʹUS ceRNA 

partners can interrupt cancer signaling and aggressive metastasis pathways for ER- tumors.  

Housekeeping genes keep normal ceRNA networks similar between ER- and ER+. 

To identify the role of different gene classes for the ceRNA network dynamics, we first 

identified housekeeping (HK), tumor-associated (tumor suppressors or oncogenes, TA), and 

transcription factor (TF) genes in the ceRNA networks. Out of 3,804 HK[25], 932 TA[26], and 

1,020 TF genes[27] curated in public databases (see Methods), the ceRNA networks consist of 3-

fold more HK genes than TA or TF genes (Fig. 4A for normal and S. Fig. 4A for tumor). 

Expectedly, HK genes form 5 ~ 7 folds more edges than the other gene classes in both normal 

and tumor ceRNA networks for ER+ and ER- subtypes (S. Fig. 4B). Due to its active role in cell 

maintenance[25], HK genes are expected to maintain constant expression levels in most 

physiological conditions[25]. Consistent to the expectation, 958 HK genes on the ER- normal 

network express as highly as (S. Fig. 4C) and with a significantly less variation across the 

samples than (P=1.72e-54, Fig. 4B) 1,906 non-HK genes. Together with the fact that the HK 

genes contain more miRNA binding sites than other genes in the 3ʹUTR (P=0.05, Fig. 4C), they 

would work as stable sponges for miRNAs[28]. ER- and ER+ normal networks share a very 

significant number of HK genes (P=8.77e-771, Fig. 4D), leading us to hypothesize that HK 

ceRNA partners keep the normal ceRNA networks in similar topology between ER- and ER+. 

To test the hypothesis, we estimated the similarity between the sub-network of ER+ and ER- 

ceRNA networks consisting only of HK gene nodes and compared the similarity with those 

between sub-networks of ER+ and ER- consisting of non-HK ceRNA network nodes (sampled to 

the same number of HK genes). Since the subnetworks of HK genes are significantly more 

similar between the subtypes (P < 0.01), the results suggest a novel important role of HK genes 

to keep the normal ceRNA networks similar to each other.  

3ʹUS disrupts ceRNA crosstalk of housekeeping genes. 

Further analyses suggest that 3ʹUS indirectly disrupts the stable ceRNA crosstalk of HK genes. 

Out of 958 HK genes on the ER- normal network, 727 genes (75.8%) are connected to 3ʹUS 

genes (3ʹUS HK ceRNA partners), which is in the same scale as the other classes of genes that 

are known to be regulated by 3ʹUS genes[2], [29] (61.8% from 317 TA genes and 90.2% from 

271 TF genes). Additionally, such HK genes are connected to as many 3ʹUS genes as the other 

classes of genes are (Fig. 5A). Compared to 231 HK genes on the ER- normal network that are 

not connected to 3ʹUS genes, those that are ceRNA partners of 3ʹUS genes (3ʹUS HK ceRNA 

partners) are more highly connected in the network. The high connectivity of HK genes suggests 

their important roles for ER- normal ceRNA network (Fig. 5B). Previously, we showed that 

3ʹUS represses genes in tumor if they were the ceRNA partners in normal [2]. Hence, repression 

of 3ʹUS HK ceRNA partners in tumor (Fig. 5C) signifies that they are indeed in ceRNA 

relationship with 3ʹUS genes in normal. Simulation studies and cell line experiments have shown 

that ceRNA relationships propagate through the ceRNA network[18], [30]. Furthermore, ceRNA 

relationship changes, either loss or gain, between samples of conditions (e.g. tumor vs. normal) 

also could propagate[31]. Thus, when the ceRNA relationship of HK genes is disrupted in tumor 

due to 3ʹUS, the disrupted ceRNAs should further disrupt the ceRNA relationship with their 

ceRNA partners (S. Fig. 5A). This indirect loss of ceRNA relationship due to 3ʹUS disrupts 
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stable ceRNA crosstalk of HK genes and their role in the normal ceRNA network, as 727 3ʹUS 

HK genes lost higher ratios of ceRNA partners in tumor (Fig. 5D).  

CeRNAs of housekeeping genes in ER- tumor are associated with ER- specific growth. 

With ceRNA networks reduced in tumor due to 3ʹUS[2] and miRNA expression decrease[32], HK 

genes lost the ceRNA relationship in both ER+ and ER- (972 of 1,635 (59.4%) lost in ER- and 

1,330 of 1,688 (78.8%) in ER+, S. Fig. 5B). As a result, HK ceRNA partners highly overlapping 

between ER+ and ER- normal samples (Fig. 5A) become specific to each tumor subtype (Fig. 6B). 

To assess if HK ceRNA partners specific to ER- tumor play important roles, we conducted 

functional enrichment analysis on the 505 and 144 HK ceRNA partners unique to ER- and ER+ 

tumor, respectively. While it is known that cell growth-related pathways and cell cycle-related 

pathways are differently regulated in the subtypes[33]–[35], our analysis shows that ceRNAs of 

HK genes specific to each subtype are enriched for cell growth- and cell cycle-related pathways, 

suggesting their role on subtype-specific molecular processes. First, we found that 505 HK ceRNA 

partners specific to ER- tumor are enriched for pathways associated to growth factor (with keyword 

“GF”) (S. Table 3). Especially, EGF (P-val=10-2.99) activates cell cycle progression in ER- 

tumors[36], and expression of VEGF (P-val=10-2.42) is associated to ER- tumors[37]. Also, both 

EGF and VEGF are suspected to proliferate ER- tumors when estrogen cannot sustain them[37]. 

Second, cell cycle pathways are enriched for ER+ specific HK ceRNA partners, suggesting that 

ER-regulated cell cycle[38], [39] differentiates ER+ and ER- cancer partially at the ceRNA level. 

Especially, since regulation of cell cycle, G1- and S-phase and their transition ratio, is crucial for 

ER+ tumor’s proliferation (reviewed in [40]), it is interesting that cell cycle regulation pathways 

for various phases (G1/S or G2/M) of various mediators (Estrogen or Cyclins) are enriched with 

144 ER+ HK ceRNA partners. Third, considering that the enrichment analysis was for the disjoint 

sets of genes (505 unique to ER- and 144 unique to ER+), it is interesting that unique HK ceRNA 

partners of both subtypes are significantly enriched for some “cancer” pathways e.g. “Molecular 

Mechanisms of Cancer”, because it shows that HK ceRNAs are involved in cancer mechanisms 

equally significantly but in a subtype-specific fashion.  

 

DISCUSSION  

To investigate the role of 3ʹUS-ceRNA effect [2] for estrogen receptor negative (ER-) breast 

tumors vs. ER+, we constructed ceRNA networks for ER+ and ER- subtype comparable to each 

other by addressing the bias owing to the different number of samples (72 for ER+ and 20 for 

ER-). Comparison of the networks suggests that 3ʹUS disrupts the ceRNA network for ER- 

tumors’ aggressive phenotypes. Further, we revealed the role of 3ʹUS-ceRNA effect on 

housekeeping (HK) genes. Although HK genes highly and stably express in diverse biological 

contexts[41], our understanding of their roles is limited, especially with regards to ceRNA. For 

the first time, we found their role in keeping normal ceRNA networks similar between the 

subtypes.  

Further analysis shows that 3ʹUS indirectly disrupts ceRNA crosstalk of HK genes for 

ER- specific growth mechanism. Indirect ceRNA crosstalk propagates ceRNA effects through 

the ceRNA networks, demonstrated in simulation studies[18], cell line experiments[30], and 
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TCGA breast cancer data[31]. In this paper, we identified an indirect ceRNA effect of 3ʹUS-

ceRNA for the first time, where 3ʹUS-ceRNA indirectly disrupts ceRNA crosstalk of HK genes 

in tumor.  

Identifying ER-’s aggressive metastasis and unique growth pathways in ceRNA networks 

also indicates a clinical potential regarding miRNA therapeutics. For example, “Breast Cancer 

Regulation by Stathmin1” (P=10-3.92) pathway, whose expression is associated with ER- 

tumors[21] and with the aggressive phenotypes[22], are disrupted by 3ʹUS-ceRNA effect directly 

(Fig. 3B) and indirectly (Fig. 6C) through HK genes. Since 3ʹUS-ceRNA effect is mediated by 

miRNAs[2], [31], treating ER- tumors with microRNAs involved in the effects is expected to 

mitigate ER-’s aggressive phenotype.  

In network analysis, the network of interest is often compared to the reference network. 

However, if the networks are constructed from different numbers of samples, the comparison 

will be confused due to the sample size difference. Based on a biological assumption that normal 

samples would share a similar size of molecular interactions, we determined the subtype-specific 

cutoff value for normal ceRNA networks and apply the cutoff value to construct tumor ceRNA 

network (two-way pairwise normalization). As the resulting ceRNA networks facilitate novel 

discoveries on the subtype-specific 3ʹUS-ceRNA effect, we expect that the two-way pairwise 

normalization method can further help normalize biological networks constructed with the 

different number of samples if the matched normal samples are available.  
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METHODS 

TCGA breast tumor RNA-seq data and identification of breast cancer subtypes.  

Quantified gene expression files (RNASeqV1) for primary breast tumors (TCGA sample code 

01) and their matching solid normal samples (TCGA sample code 11) were downloaded from the 

TCGA Data Portal[42]. We used 97 breast tumor samples that have matched normal tissues, 

which were further categorized into 77 estrogen receptor positive (ER+) and 20 estrogen receptor 

negative (ER-). For ER+ and ER-, we collected both normal (ER+ normal and ER- normal) and 

tumor (ER+ tumor and ER- tumor) samples. A total of 10,868 expressed RefSeq genes 

(fragments per kilobase of transcript per million mapped reads (FPM) ≥ 1 in > 80% of all 

samples) were selected for downstream analyses. 

 

Selection of miRNA target sites 

Predicted miRNA-target sites were obtained from TargetScanHuman version 6.2[43]. Only those 

with a preferentially conserved targeting score (Pct) more than 0 were used[1]. Experimentally 

validated miRNA- target sites were obtained from TarBase version 5.0[44], miRecords version 

4[45] and miRTarBase version 4.5[46]. The target sites found in indirect studies such as 

microarray experiments and high-throughput proteomics measurements were filtered out [47]. 

Another source is the microRNA target atlas composed of public AGO-CLIP data[48] with 

significant target sites (q-value < 0.05). The predicted and validated target site information was 

then combined to use in this study. 

 

Statistical significance of Pearson correlation coefficient 

The implementation of the Pearson r function is provided by a python package, SciPy, and 

available at https://scipy.org/, which returns the calculated correlation coefficient and a 2-tailed 

p-value for testing non-correlation. The Pearson correlation coefficient measures the linear 

relationship between two variables (e.g. gene X and gene Y) and when the two covariates follow 

binormal distribution, we can assume that their Pearson’s correlation follows student t 

distribution. The p-value is calculated by three steps: 1) calculating the value of the Pearson’s 

correlation t, 2) defining the degree of freedom df (N-2, where N is the sample size), 3) getting 

the probability of having t or more extreme than t from a Student's t-distribution with the degrees 

of freedom df. 

 

Housekeeping, transcription factor and tumor-associated genes 

Housekeeping genes are required for the maintenance of basic cellular functions that are 

essential for the existence of a cell, regardless of its specific role in the tissue or organism. 

Generally, housekeeping (HK) genes are expected to be expressed at relatively constant rates in 

most non-pathological situations[41]. We used 3,804 HK genes defined in RNA-Seq data for 16 
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normal human tissue types: adrenal, adipose, brain, breast, colon, heart, kidney, liver, lung, 

lymph, ovary, prostate, skeletal muscle, testes, thyroid, and white blood cells[25].  

Transcription factors (TFs) play an important role in the gene regulatory network. We 

used 2,020 TF genes defined in TFcheckpoint database[27], in which TF information is collected 

from 9 different resources followed by manual inspections for sequence-specific DNA-binding 

RNA polymerase II TF.  

The tumor-suppressor genes and oncogenes were defined by the TUSON algorithm from 

genome sequencing of > 8,200 tumor/normal pairs[26], in particular residue-specific activating 

mutations for oncogenes and discrete inactivating mutations for tumor-suppressor genes. 

TUSON computationally analyzes patterns of mutation in tumors and predicts the likelihood that 

any individual gene functions as a tumor- suppressor gene or oncogene. We used 466 oncogenes 

and 466 tumor suppressor genes at the top 500 in each prediction (after subtracting 34 genes in 

common).  

 

Building subtype ceRNA networks 

For each of the breast cancer data (ER+ normal, ER+ tumor, ER- normal, and ER- tumor) that 

we defined above, we constructed a ceRNA network based on microRNA (miRNA) target site 

share and expression correlation[2], [18]. The same miRNA target site information was 

determined regardless of the subtypes, resulting into a miRNA target site share network (based 

on FDR  > 0.05 in hypergeometric test with miRNA target site information). And given the same 

miRNA target site share network, the expression correlation information for each subtype will 

select ceRNA network edges for each subtype.  

We first constructed the ER+ normal reference ceRNA network by applying a traditional 

correlation cutoff (>=0.6) on the miRNA target site share network. Then, to identify ER- normal 

ceRNA network comparable to ER+ normal reference ceRNA network, we applied different 

correlation cutoff values (0 to 1 with a step size of 0.01) on the miRNA target site share network 

for ER- normal samples, and select the correlation cutoff values that makes ER- normal ceRNA 

network most similar to ER+ normal reference ceRNA network. To estimate topological 

similarity, we employed normalized Laplacian Matrix Eigenvalue Distribution that discovers 

ensembles of Erdős–Rényi graphs better than other metrics such as Sequential Adjacency or 

Laplacian[19]. After identifying the ER+ normal reference network and the corresponding ER- 

normal network, we used the same cutoffs (0.6 for ER+ subtypes and 0.68 for ER- subtypes) to 

construct the ER+ tumor network and the ER- tumor network, respectively. 

 

Estimating topological similarity 

To identify the structural equivalence between two networks, we employed spectral analysis not 

only to identify the structural similarities, but also to track down the underlying dynamic 

behavior changes between them. Spectral clustering on networks uses the eigenvalues of several 

matrices, such as adjacency matrix, the Laplacian matrix, the normalized Laplacian matrix. In 
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this research, we used the normalized Laplacian matrix since it involves both the degree matrix 

and adjacency matrix, where the degree matrix can identify the node related equivalence of 

networks and the adjacency matrix can capture the structural equivalence of networks. Another 

very important reason of using the normalized Laplacian eigenvalue matrix is that it is more 

sensitive to small changes because it considers more information17. 

For network G, the normalized Laplacian of G is the matrix: 

𝑁 = 𝐷−1 2⁄ − 𝐿𝐷−1 2⁄                                                                       (1) 
where L is the Laplacian matrix of G and D is the degree matrix. The Laplacian matrix L is 

defined as: 𝐿 = 𝐷 − 𝐴, where A is the adjacency matrix of G. 

 

In N, each of its entry elements is given by: 

𝑁𝑖,𝑗 =

{
 
 

 
 1, 𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 degree(𝑣𝑖) ≠ 0

−
1

√degree(𝑣𝑖) degree (𝑣𝑗)
, 𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑣𝑖  𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (2) 

 

where degree (vertex v) is the function that return the degree of the vertex v. 

 

To assess how close two eigenvalue distributions of network G1 and G2 are, we used the 

Kolmogorov–Smirnov test (KS test), which is defined as: 

𝐾𝑛,𝑚 = sup
𝑥
|𝑑𝑖𝑠𝑡1,𝑛(𝑥) − 𝑑𝑖𝑠𝑡2,𝑚(𝑥)|                                         (4) 

where 𝑑𝑖𝑠𝑡1,𝑛𝑎𝑛𝑑 𝑑𝑖𝑠𝑡2,𝑚 are the empirical distribution functions of the first and the second 

eigenvalue distribution respectively, and sup
𝑥

 is the supremum of the set of distances. 

By using the normalized Laplacian Matrix and KS test, ER+ normal reference network 𝐺𝑟𝑒𝑓
𝐸𝑅+ is 

compared with a ER- normal subnetwork with a particular correlation cutoff i 𝐺𝑖
𝐸𝑅− in the 

following three steps: 

1) Compute the normalized Laplacian metrics 𝑁𝑟𝑒𝑓
𝐸𝑅+  and 𝑁𝑖

𝐸𝑅−  from 𝐺𝑟𝑒𝑓
𝐸𝑅+  and 

𝐺𝑖
𝐸𝑅− respectively. 

2) Compute the eigenvalues 𝐸𝑟𝑒𝑓
𝐸𝑅+  and 𝐸𝑖

𝐸𝑅−  from 𝑁𝑟𝑒𝑓
𝐸𝑅+  and 𝑁𝑖

𝐸𝑅−  respectively. 

3) Compute the KS statistic between 𝐸𝑟𝑒𝑓
𝐸𝑅+  and 𝐸𝑖

𝐸𝑅− . 

 

The third step test the null hypothesis that eigenvalues  𝐸𝑟𝑒𝑓
𝐸𝑅+  and 𝐸𝑖

𝐸𝑅−  are drawn from the same 

continuous distribution. If the two-tailed p-value returned by the KS test is high, then we cannot 

reject the hypothesis that 𝐺𝑟𝑒𝑓
𝐸𝑅+  and 𝐺𝑖

𝐸𝑅−  are the same network. In another word, the higher the 

p-value is, the more similar 𝐺𝑟𝑒𝑓
𝐸𝑅+  and 𝐺𝑖

𝐸𝑅− . 
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Figure 1. Global APA events distinct for ER+ and ER-. (A). Heatmaps showing genes with 3ʹUS (first 

row) or 3ʹUL (second row) in ER+ samples (left column) or ER- samples (right column). The number of 

APA genes (3ʹUS in line and 3ʹUL in red bar) in ER+ (B) and ER- (C). Samples are aligned in the same 

order in Fig. A. Overlap of recurring (>20% in tumor samples) 3ʹUS and 3ʹUL genes in ER+ (D) and ER- 

(E). 
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Figure 2. Two-way Pairwise Normalization of ER+ and ER- ceRNA network. (A) Number of edges in 

the ceRNA networks by the correlation coefficient cutoff (black and red line for ER+ and ER- networks, 

respectively). (B) The number of edges shared among 100 ER+ subnetworks from normal samples, where 

each of them was built by using 20 randomly chosen samples. (C) Statistical significance (p-value) 

achievable by using different correlation coefficient cutoff values for ER+ (black) and ER- (red) samples. 

Statistical significance for a correlation coefficient cutoff value is described in Methods. To achieve the 

same statistical significance of the traditional cutoff value (0.6) from ER+ to ER-, the cutoff value would 

inflate to 0.89, resulting in drastically a deflated number of edges. (D). Topological similarity (y-axis) 

between ER+ and ER- normal ceRNA networks by the cutoff value for ER- (x-axis). The bigger the p-

value is, the more similar the two networks are (see Methods)[19]. The ER- normal network with the 

cutoff of 0.68 looks most similar to the ER+ normal reference network. 
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Figure 3. 3ʹUTR shortening is associated to ER-’s aggressive phenotypes in ceRNA. (A) Intersection of 

3ʹUS ceRNA partners between ER- and ER+ normal ceRNA networks. (B) IPA canonical pathways 

significantly (P < 0.01) enriched for the ER- 3ʹUS ceRNAs. Pathways are colorcoded by keyword, 

“Cancer” in blue, “Signaling” in red and those associated with aggressive phenotypes[23] in green. (C) 

Intersection of 3ʹUS ceRNA partners between ER- and ER+ tumor ceRNA networks. 
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Figure 4. Housekeeping genes make consistent ceRNA networks between ER- and ER+ normal samples. 

(A) The number (and the percentage to the total number of nodes in the networks) of housekeeping (HK), 

tumor-associated (TA), or transcription factor (TF) genes in ER+ and ER- normal ceRNA networks. (B) 

Standard deviation of gene expressions of 958 HK genes and 1,906 non-HK genes across ER- normal 

samples. (C) Number of miRNA binding sites on the 3ʹUTR of 886 HK and 1,748 non-HK genes (those 

that have miRNA binding site information). (D) Number of HK genes shared by ER- and ER+ normal 

ceRNA networks (with those in common). (E) Distribution of the similarity p-values between 

subnetworks sampled with 922 HK genes from ER+ and ER- normal networks (horizontal dotted line) 

and 200 subnetworks sampled with 1,990 non-HK genes to the same number of HK genes (bar). The 

higher the p-value is, the more similar the networks are[19].  
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Figure 5. 3ʹUS disrupts ceRNA relationship of HK genes. (A) The number of 3ʹUTR shortening genes 

connected to housekeeping (HK), transcription factor (TF), and tumor-associated (TA) genes. Degree (# 

neighbors in ERN normal ceRNA network) (B), log2 fold chance (tumor vs. normal) (C), degree ratio 

(tumor vs. normal) (D) of 727 and 231 HK genes that are ceRNA partners of 3ʹUS genes or not, 

respectively. Since degree ratio in (D) represents the ratio of the number of neighbors retained in tumor, 

low degree values of 727 3ʹUS HK ceRNA partners represents their higher loss of ceRNA neighbors in 

tumor.  
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Figure 6. 3ʹUS disrupts ceRNA relationship of HK genes for ER- specific growth. (A) Number of HK 

ceRNA partners unique and common to ER- and ER+ normal (left) and tumor (right) ceRNA networks. 

The numbers in parentheses are normalized to the number of genes shared between tumor and normal. (B) 

Degree in ER- tumor ceRNA network of 727 and 231 HK genes that are ceRNA partners of 3ʹUS genes 

or not, respectively (C) IPA canonical pathways significantly (P < 0.01) enriched for ER+ and ER- 

specific HK ceRNA partners. Pathways are color-coded by keyword, “Cancer” in red, “GF” in brown, 

“Estrogen” in green, and “Cell Cycle” in blue.  
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S. Figure 1. Boxplot showing the number of 3ʹUS and 3ʹUL genes in each sample of ER+ (A) and ER- 

(B). T-test is t-test statistic value. Number of APA genes (y-axis blue in log10 for 3ʹUS and red for 3ʹUL) 

common to ER+(C) and ER- (D) samples (x-axis) for ER+. The vertical dotted blue line marks the 20% 

threshold for recurrent events (E). IPA pathways enriched for 3ʹUL and 3ʹUS genes in ER- and ER+. 

Colors represent enrichment of each pathway (column) for each class of genes (The higher the enrichment 

is, the higher the associated term is enriched). The red lines cut the pathways into 5 clusters, where each 

cluster is enriched in a set of genes. 
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S. Figure 2. (A) Number of edges of networks from a subset of ER+ normal samples sampled in different 

size. Blue dotted line represents the number of edges of ER- normal network whose sample size is 20 

(160,687) (B) Comparison of the miRNA target site share network to ER- normal networks with different 

correlation cutoff values (see Methods). As illustrated, ER- normal network topology changes drastically 

by different cutoff values in reference to the miRNA target site share network. (C) Comparison of ER- 

normal networks with previous correlation cutoff values in the stepwise increase (see Methods). (D) 

Comparing ER- normal ceRNA networks of different correlation cutoff values with the ER+ normal 

reference network in the average clustering coefficient. The average clustering coefficient for the ER+ 

normal reference network is 0.40 (indicated by the horizontal black line), which is quite close to the 

average clustering coefficient for the ER- normal network with a cutoff of 0.68 (indicated by the vertical 

dashed line). 
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S. Figure 3. Number of 3ʹUS ceRNA partners in normal and tumor ceRNA networks found in (A) ER- 

and (B) ER+. The numbers in parentheses are normalized to the number of genes shared between tumor 

and normal. 
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S. Figure 4. (A) Number (and percentage to the total number of nodes in tumor networks) of HK genes 

and other important classes of genes in ER+ and ER- normal ceRNA networks. (B) The number (and the 

percentage to the total number of edges) of housekeeping (HK), transcription factor (TF), and 245 tumor-

associated genes (TF) edges in ER- and ER+ for normal and tumor. (C) Average gene expression values 

of 1,003 HK genes and 1,990 non-HK genes in ER+ and ER- normal networks. 
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S. Figure 5. (A) Without 3'US (illustrated on top), R1 and R2 would compete for miR1 (red), forming 

ceRNA crosstalk and R2 and R3 would compete for miR2 (orange), forming ceRNA crosstalk. With 3'US 

on R1 (illustrated below), R1 would lose its ceRNA crosstalk with R2. Through indirect ceRNA effect 

that propagate the relationship loss, R2 would lose its ceRNA crosstalk with R3. (B) Numbers of HK 

ceRNA partners in ER- normal and in ER- tumor with overlap in common (The numbers in parentheses 

are normalized to the number of genes shared between tumor and normal). Numbers of HK ceRNA 

partners in ER+ normal and in ER- tumor (The numbers in parentheses are normalized to the number of 

genes shared between tumor and normal). 
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