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Abstract

Colour is commonly regarded as an absolute measure of object properties, but most work on visual
communication signals is concerned with colour differences, typically scaled by just noticeable differ-
ences (JNDs). Object colour solids represent the colour gamut of reflective materials for an eye. The
geometry of colour solids reveals general relationships between colours and object properties which
can explain why certain colours are significant to animals and evolve as signals. We define a measure
of colour vividness, such that points on the surface are maximally vivid and the ‘grey’ centre is mini-
mally vivid. We show that a vivid colour for one animal is likely to vivid for others, and highly vivid
colours are less easily mimicked than less vivid colours. Further, vivid colours such as black, white,
red, blue and light, unsaturated shades are produced pure or orderly materials. This kind of material
needs to created and maintained against entropic processes that would otherwise degrade or destroy
them. Vivid coloration is therefore indicative of ecological affordance or biological function, so that
it is valuable to have attentional biases towards these colours regardless of any specific significance.

1 Introduction

Animal and plant communication signals carry
varied messages: some are attractive while others
are defensive; courtship displays appeal to näıve
viewers, whereas flowers and aposematic signals
need to be memorable. Despite their various func-
tions, and the diversity of colour vision in their
natural receivers, signals generally include a lim-
ited palette colours including, black, white, satu-
rated hues and light but unsaturated colours such
as pink, whereas greys and browns are infrequent.

Any signal must attract attention and engender
a response – it will be ineffective if it is overlooked
or ignored. Why then should certain colours at-
tract the attention of an eye with any given set
of spectral photoreceptors, and why are the same
types of spectra appropriate for animals with dif-
ferent types of colour vison? We show here how
answers to these questions might be found if a
colour is regarded not simply as a measure of the
spectral composition of a light, but rather as a
property of physical objects. This requires quan-
tifying colour in new ways and dropping two of
the most widespread procedures: the splitting of
colour into independent chomatic and achromatic
components, and, the scaling of colour distances
using discriminability.

Most work biological signaling treats animal
colour vision as means to discriminate between
spectra, and is primarily concerned with the mag-
nitudes of colour differences as measured by ‘just
noticeable differences’ (JNDs) [Kelber et al., 2003,
Kemp et al., 2015, Olsson et al., 2017]. Ac-
cordingly, one might predict that a colour sig-
nal will attract a receiver’s attention when it
differs strongly from the background [Gittleman
and Harvey, 1980], or the pattern itself has a
high contrast [Rowe and Guilford, 1996, Arons-
son and Gamberale-Stille, 2008]. In its everyday
use ‘colour’ is not a relative or relational term like
‘contrast’, but is absolute, and part and parcel of
object recognition. We do not say “the tennis ball
is more yellow than the court,” but “the tennis ball
is yellow”. Light reflected from a surface depends
upon its chemical composition and (nanoscale)
physical structure. Colour vision yields informa-
tion about these properties. We speak of red faces,
blue tea-mugs and so forth, and other animals may
be similar. It follows that animals could find par-
ticular colours significant because they are char-
acteristic of particular kinds of object.

The significance of a colour might be related
to the specific coloration mechanism – for exam-
ple if a pigment is costly to produce [Olson and
Owens, 1998] – or to associations with particular
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beneficial or harmful objects [Endler and McLel-
lan, 1988, Endler and Basolo, 1998, Palmer and
Schloss, 2010]. In contrast with, and comple-
mentary to these approaches, we look here more
broadly at the relationship between the compo-
sition of materials, their reflectances, and their
colours. Perhaps surprisingly, we find that there
are aspects of object colour that are consistent be-
tween different observers, which can be linked to
underlying physical properties that are relevent to
the psychology of an organism.

In particular, we analyse a property of colour
we term ‘vividness’. Highly vivid colours for
one organism are highly vivid for any other with
the same or more number of photoreceptor types
(rules 1 and 2). We then show that highly vivid
colours are more informative, in that they corre-
spond to fewer materials, and that those materi-
als will be purer and more ordered than less vivid
materials. From this we argue that psychological
salience of these colours would be evolutionarily
adaptive.

1.1 Object Colour Solids and Vividness

Objects are seen by reflected light, and the gamut
of all possible reflection spectra can be repre-
sented by their locations within in a Cartesian
space known as an object colour solid whose axes
correspond to photoreceptor excitations relative
to the illumination spectrum (Figs 1, 2 Vorobyev
[2003], Koenderink [2010]). Colour solids include
the three main aspects of colour namely hue, sat-
uration and brightness, whereas the more famil-
iar chromaticity diagrams, such as Maxwell’s tri-
angle discount brightness. An additional differ-
ence lies in the nature of the gamut boundaries.
In a chromaticity diagram the boundary is de-
fined by monochromatic spectra and (for trichro-
mats) the purple line. As a monochromatic re-
flection contains negligible light highly saturated
(or pure) colours are dark. By comparison object
colour solid boundaries include both black (zero
reflection) at the origin, and white corresponding
to maximal reflection at all visible wavelengths,
with intermediate the boundary surface being well
approximated by spectral step-functions (Fig 2).
Such spectra can be bright, and are more nearly
physically realizable by natural pigmentation.

Following the logic that colour refers primarily
to the physical properties of reflective materials
(or objects) we propose a measure of colour within
the object colour solid which we call vividness.
Vividness resembles colorimetric parameters such

as purity or saturation, but achromatic colours –
black and white – and light unsaturated colours
can be highly vivid. We show mathematically
and empirically that the vividness of reflectance
spectra is well correlated between different types
of colour vision. Consideration of the relation-
ship between vividness and the physical processes
that generate object-colour demonstrates that or-
derly nanostructures or pure pigments are typi-
cally more vivid than their less orderly or pure ma-
terials. As order emerges against entropic tenden-
cies, vivid or ‘bright’[Hamilton and Zuk, 1982] col-
oration is indicative of a functional role, and there-
fore more “meaningful”, and hence such colours
worthy of greater attention.

2 Modelling

We start with an account of why the achromatic
colours black and white are maximally vivid, lead-
ing to a general model which includes chromatic
colours.

2.1 Black and White

Models of colour vision and colour appearance
usually treat chromaticity, which combines hue
and saturation, as qualitatively distinct from
brightness or luminance. This distinction is
grounded in physiology and psychophysics [Liv-
ingstone and Hubel, 1988, Osorio and Vorobyev,
2005], yet black and white are ‘colours’ in ordinary
English usage, and they are common in biologi-
cal signals. In physiological terms an animal sees
black when its spectral photoreceptors all have a
low excitation, and white when they all have a
high excitation. Hence, spectra that look black
have low intensity at all visible wavelengths and
spectra that look white have high intensity. As
there is only one perfectly black spectrum, and a
perfectly white surface must reflect maximally at
all wavelengths it follows that spectra responsible
for black and white are the same for all observers
that share the same range of visible wavelengths,
with minimal or maximal excitation across that
range. These spectra can be designated as ‘ex-
treme’, because they are at the limits of receptor
excitation achievable by a surface.

Unlike black and white, intermediate reflectance
spectra can produce different excitations accord-
ing to the particular set of photoreceptors in a
given eye. For the simplest case of two eyes
each with a single type of photoreceptor, but
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tuned to different wavelengths, a stimulus of in-
termediate intensity can give different receptor
responses in the two monochromatic observers.
Consequently the appearance of greys for dif-
ferent types of monochromat is less predictable
than are black and white. Similarly, for any
given monochromatic eye only one spectrum can
give black or white, but many different spec-
tra can produce indistinguishable intermediate re-
sponses, a phenomenon which is known as colour
metamerism[Logvinenko, 2009].

Black and white, produced by extreme spectra,
are maximally vivid colours, while have greys have
lower vividness.

The best known geometric representations of
colour are chromaticity diagrams in which desat-
urated colours lie near the centre and the most
saturated colours at the extremities, with the an-
gle around the centre specifying hue.

One such diagram is Maxwell’s triangle
[Maxwell, 1860]. Using a method based on
colour mixing, Maxwell specified the colours of
monochromatic lights as mixtures of red, green
and blue primaries. When the brightness is ig-
nored these results can be drawn in a triangle,
with pure primaries at each corner, and mix-
tures within. The line of all the monochromatic
lights, the “monochromatic locus” or “spectral
line” forms a rounded Λ shape along two of the
edges, the ends joined by a “purple line”. The
fractional distance from the centre to the edge is
then a measure of spectral purity, which is related
to the colour’s perceived saturation [Wyszecki and
Stiles, 2000].

For colour vision of non-human species simi-
lar diagrams are typically based on photoreceptor
spectral sensitivities[Renoult et al., 2017]. For an
eye with n spectral types of photoreceptor (con-
tributing independently to colour vision) the chro-
maticity diagram is n−1 dimensional. Chromatic
spaces are good for describing the colours of lights,
but less suitable for reflectance spectra, because a
reflectance can only approach the boundary by re-
ducing the amount of reflected light, making the
colour darker – maximal spectral purity is black!
Hence chromaticity diagrams typically exaggerate
differences between dark colours.

Object colour solids are so-named because they
appropriate for representing ‘object’ or reflectance
spectra. They are useful in colour reproduction
and the formulation of dyes and pigments, be-
cause the available gamut can be compared to
the colour range visible to the human eye. The

axes of colour solids [Wyszecki and Stiles, 2000,
Schrödinger, 1920, Vorobyev, 2003, Koenderink,
2010] correspond to photoreceptor excitations (or
a similar set of primaries) normalised to the illumi-
nation intensity. As photoreceptor spectral sensi-
tivities overlap, colour solids do not fill the space
defined by the axes, but are roughly ellipsoidal
with two pointed corners (Fig 1). Monochro-
matic spectra lie an infinitesimal distance from
the origin which is black, and maximal reflectance
(white) is at the opposite vertex. Humans have
three types of cone photoreceptor, and hence a
3-dimensional object colour space, but the same
geometrical principles apply to any type of colour
vision: for most mammals, which are dichromats,
the space is 2-dimensional, whereas the spaces of
birds are probably 4-dimensional [Kelber et al.,
2003, Vorobyev, 2003]. As there are both empiri-
cal and mathematical relationships between these
spaces we refer to all of them as colour solids.

2.2 Colour Solids and Vividness

We now more formally define the colour solid and
vividness. For a given set of photoreceptor spec-
tral sensitivities (si(λ), i ∈ 1 . . . n) and an illu-
minant (l(λ)), reflectance spectra can be organ-
ised into an geometric object known as the ob-
ject colour solid [Schrödinger, 1920, Wyszecki and
Stiles, 2000], shown in figure 1. This object is
formed from the colours (a vector of photorecep-
tor quantum yields, (q1 . . . qn)) associated with all
theoretically possible reflectance spectra: that is
all distributions of reflectance values between zero
and one, taken over visible wavelengths (Λ):

qi =

∫
Λ
si(λ)l(λ)r(λ)dλ (1)

To obtain the colour object solid, photoreceptor
responses (qi) are normalised to the quantum yield
of a perfectly reflecting surface1 (qmax

1 . . . qmax
n ).

xi = qi/q
max
i where qmax

i =

∫
Λ
si(λ)l(λ)dλ (2)

This means that black has x coordinates of
(0, 0, . . .) and white has coordinates (1, 1, . . .).
Throughout we express the x coordinates in terms
of a relative quantum yield function fi(λ) =
si(λ)l(λ)/qmax

i :

xi =

∫
Λ
fi(λ)r(λ)dλ (3)

1The maximal reflectance could instead be set according
to a standard such as BaSO4 pellet – this does not affect the
arguments we make here (see appendix SI 1.3) and should,
in fact, result in a more practical measure of vividness.
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Figure 1: The Object Colour Solid Top, left to right: Colour solids for a monochromat, a dicromat
and trichromat. Bottom left: Relative quantum yield curves (spectral sensitivity multiplied by the
illuminant and normalised). The monochromat has just the short wavelength sensitive photoreceptor
class, the dichromat contains the short, and the long wavelength sensitive photoreceptor classes, the
trichromat contains all of them. Each ‘expands’ the solid outwards into the new dimension. Note
how the positions of colours (a-e) in the pre-existing dimensions do not change as more photoreceptor
classes are added. Bottom right: The natural reflectance spectra responsible for colours (a-e).

The object colour solid is convex, and lies within
a unit n-cube (Fig 1). It is pointed at the diag-
onally opposite black and white corners, but the
other corners and edges are smoothed due to the
spectral overlap of the photoreceptors. Except for
the boundaries, every point in the solid maps to
more than one reflectance spectrum, correspond-
ing to colour metamerism[Logvinenko, 2009]. The
boundaries represent reflectances with the high-
est spectral purity for a given luminance. Unlike
chromaticity diagrams, the colour solid therefore
accounts for the trade-off of saturation against lu-
minance, so light colours can lie on the boundary.
This accords with the intuition that we do not see
light colours as necessarily less pure than dark.

The exact calculation of the colour solid is
rather involved. Numerical solutions can be ob-
tained by dynamic programming [Wyszecki and
Stiles, 2000] or our own method (see SI 2 for
details of both), but for the current purpose it
is better to start with Schrödinger’s approxima-
tion [Schrödinger, 1920, Vorobyev, 2003], which

uses spectra formed by step changes in inten-
sity between zero and one. Figure 2 illus-
trates Schrödinger’s spectra. The number of step
changes depends on the number of spectral classes
of photoreceptor: for an eye with n spectral classes
the maximum number of step changes needed to
approximate the colour solid boundary is n − 1.
For dichromats, they are single steps, the two se-
ries (step up and step down) ranging from black
through red, orange, then yellow to white, and
from black through blue then cyan to white. For
trichromats there are two steps in the visual range,
while for a tetrachromat the Schrödinger spectra
include those that have a reflectance of 0 up to
some wavelength λ1 then 1 until another, λ2 ,
then 0 until λ3 then 1, and in addition their in-
versions, i.e. those that have values of 1 then 0
then 1 then 0. Whilst the Schrödinger spectra are
only approximations to the extreme spectra that
lie on the boundary of the solid, the extreme spec-
tra, like Schrödinger spectra, will only ever have
either maximal (1) and minimal (0) intensity at
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every wavelength2

Schrödinger’s approximation of boundaries of
the object colour solid holds best when photore-
ceptor spectral sensitivities have a single peak.
Some receptor spectral sensitivities are bimodal
(e.g. Fig 3), in which case Schrödinger’s spectra
typically lie slightly inside the boundaries of the
corresponding colour solids. Such deviations are
in practice small, because photoreceptor spectral
sensitivities are typically smooth with a dominant
peak. As long as this approximation holds a con-
clusion analogous to that for black and white ap-
plies; namely that for eyes with the same number
of photoreceptor classes, the Schrödinger spectra
corresponding to boundary colours are the same.
Differences between receptor sensitivities mean
that the shape of the object colour solid varies
between species, and the locations of individual
spectra within the boundary are not directly com-
parable (Fig 3), but they will be on the boundary
nonetheless. It follows that Schrödinger spectra
for one eye are Schrödinger spectra for an eye with
a larger number of photoreceptor classes: the set
of Schrödinger spectra for an n-chromat contains
the Schrödinger spectra for an m-chromat, when
m ≤ n.

The tendency for the same spectra to lie at the
boundary of the colour solid extends to colours
not on the boundary, although, as was the case
for black, white and grey, the variablility in the
position is greater for more central colours (Fig
3). Whilst the theoretical limitations on the po-
sition, illustrated in Fig 3, are broad, the spec-
tra that achieve these limits are difficult to realise
practically. This is evident in Fig. 4.

In practice, spectra of natural objects are
a small subset of physically possible spectra
[Maloney, 1986, Osorio and Bossomaier, 1992,
Vorobyev et al., 1997], and natural spectra tend to
be smoother than Schrödinger spectra [Maloney,
1986] (compare Fig 1 and Fig 2). Also, spectra
with multiple transitions within the visible range
are unusual, so that higher order Schrödinger
spectra are seldom approached in nature; excep-
tions include some structural colours, such as that
found on the nape of the feral pigeon, which can
appear greyish to trichromats, but is likely to be
vivid for birds [Osorio and Ham, 2002].

2When discretised approximations like those in the ap-
pendix are used to calculate boundary spectra, a step tran-
sition between two discretisation points will appear at an
intermediate intensity. This is a discretisation artifact.

Monochromat

TetrachromatTrichromat

Dichromat
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n
g

Short

Figure 2: The Schrödinger approximation. Top:
Loci of Schrödinger spectra for the trichromat in
figure 1. The coloured surface shows the trichro-
matic Schrödinger spectra. Note that for this ob-
server the surface formed by Schrödinger spectra
is concave in some places (see main text), this
is most easily observed in the blue region. The
black ribbon running around the edge of the solid
shows the dichromat Schrödinger spectra. The
spheres at the tips correspond to the monochro-
mat Schrödinger spectra (i.e. back and white).
Bottom left: Examples of Schrödinger spectra for
monochromats, dicromats and trichromats. The
relationship between the colour solid and chro-
maticity (colour triangle) has been explored by
others [Wyszecki and Stiles, 2000, Luther, 1927,
Nyberg, 1928]. Bottom right: A dicromatic solid
(same as in figure 1) showing the locus of the dicro-
mat Schrödinger spectra (innermost shape). The
non-convexity is much easier to see in this rep-
resentation. The convex hull of the Schrödinger
spectra’s colours is shown as a dotted line, this
does not reach the boundary in its entirety either.
For this observer the dicromatic Schrödinger spec-
tra have a mean vividness of ≈ 0.943 (all in the
range ≈ 0.843 to 1). The colours used to render
these solids are only indicative of their true ap-
pearance.

2.3 Definition of Vividness

We define vividness as a number ranging from
zero at the centre of the colour solid to one at
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Figure 3: The relationship between the colours
in two dichromat object colour solids. Because
of metamerism, points on the left correspond to
multiple points (areas) on the right. The exact lo-
cation depends on the particular underlying spec-
trum. Similarly (though not shown) points on the
right correspond to areas on the left. At the edge
of the solid the correspondence is one-to-one, and
the size of the region in one corresponding to a
point in the other increases towards the centre.
These mapped areas, like the solids themselves,
are based on the assumption that spectra may
instantaneously transition between zero and one.
Such transitions cannot be realized physically, and
the spaces and areas are theoretical bounds. The
filled areas on the right are bounded by spec-
tra with a greater number of transitions than the
solid. These filled areas are conservatively large
estimates of the degree of metamerisim that is
physically realisable.
The relative quantum yields were produced from
an A1 pigment template which has a pronounced
β peak [Govardovskii et al., 2000], but the cor-
relation in vividness remains even though the
Schrödinger spectrum approximation does not
hold exactly for these double-peaked relative
quantum yield functions.

the boundary, which is linear with respect to
the colour solid coordinates (xi). For an ob-
server/illumination combination that is described
by n relative quantum yield functions (f1 . . . fn)
the vividness of a reflectance r is:

V (r; f1 . . . fn) =
‖x− 1/2‖
‖b(x)− 1/2‖

(4)

where b(x) is the position of the boundary in di-
rection of the vector x− 1/2 from the centre (1/2).

The numerator is the Euclidean distance from
the centre of the solid. The division by ‖b(x) −
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Relative Quantum Yield Functions
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Figure 4: Demonstration of the correlation of
vividness between three disparate species. The
top row shows example relative quantum yield
functions with D65 illumination Wyszecki and
Stiles [2000] for trichromatic humans Stockman
and Sharpe [2000] and sting rays,Hart et al. [2004]
and dichromatic horses Carroll et al. [2001]. The
scatter plots compare the vividness of the Mun-
sell chips [Munsell et al., 1950, Parkkinen et al.,
1989] – a collection of coloured stimuli designed to
cover the human colour gamut uniformly – for the
three species. The middle plot demonstrates rule
1 – the approximate equality between vividness
for the two species with the same number of cone
classes (humans and sting rays). The bottom plot
shows, in addition, the effects of rule 2 – whist the
approximate equality holds for many cases, some
chips which we see as blue or pink can be less vivid
for a horse.

1/2‖ maintains an invariance between species. It
has the effect of adjusting the numerator to reflect
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more physical, rather than perceptual, properties.
The latter being more difficult to assess for non-
human species (and even for humans).

2.4 Properties of Vividness

The properties of colour solids we have discussed
so far can be formally expressed with two rules,
the first is motivated by our argument above and it
is true insofar as it is approximate, and contingent
on having “well behaved” relative quantum yield
functions, the second is a geometric fact:

Rule 1: Approximate Equality

V (r; f1 . . . fn) ≈ V (r; g1 . . . gn)

For two observers with equal numbers of
spectral receptor classes (n), the vividness of
a stimulus is approximately the same for
both observers. This rule is motivated by
the foregoing discussions, and is
corroborated by figures 3 and 4. For more
vivid colours the range of discrepancy
decreases, and the approximation is better –
a consequence of there being “fewer”
metamers. This phenomenon can be seen in
figure 3.

As this rule concerns the relative quantum yield
functions f , which are obtained from both spec-
tral sensitivities and the illuminant, rule 1 is both
a statement about changes in photoreceptor sen-
sitivities and in illumination.

Rule 2: Monotonicity with
Dimensionality

V (r; f1 . . . fn) ≤ V (r; f1 . . . fn, fn+1)

For a given illumination, an increase in the
number of receptor types will result in an
increase in vividness, so that colours are
more vivid for species that have a large
number of photoreceptor classes (e.g. birds)
than for those with fewer (e.g. mammals).
This effect can be observed in figure 4, and
a proof is given in SI 1.

These rules3 allow one to describe the relationship
between any two observers.

3For a fully formal approach we require another rule
stating that V is not dependent on the order in which the
relative quantum yield functions are specified.

As vividness increases the constraints on the
variety of spectra that can realize the colour be-
come increasingly restrictive, until, at the bound-
ary of the solid there is a unique spectrum. As
there are “more”4 spectra that correspond to each
of them, less vivid colours are more prone to
metamerism. This rule can be compared to the
metamer mismatching transformation that occurs
under variable illumination [Tokunaga and Logvi-
nenko, 2010].

Colour purity [Wyszecki and Stiles, 2000] re-
sembles vividness for the chromatic plane, and
has fairly similar properties. This is because the
chromaticity space is a scaled cross section of the
colour solid at fixed luminance as it goes to zero
(i.e. a slice of the solid very near black). Vividness
also resembles other measures, such as chroma
[Endler, 1990]. In addition to the difficulties we
have already highlighted with chromaticity, pu-
rity is not defined for monochromats, is not math-
ematically well behaved for dichromats, and can
be quite complex for tetrachromats and above (see
supplementary material SI 3).

2.5 Mixing

Vividness has a fundamental relationship to phys-
ical order, as exemplified by the case of conserva-
tive mixing. That is to say, where two colours,
xa and xb, are mixed in a ratio of za : zb and the
resulting colour is:

xmixed =
zaxa + zbxb
za + zb

= kxa + (1− k)xb

where k = za/(za + zb) and the various values
of k correspond to various positions on the line
segment between xa and xb. This holds regardless
of the spectra that produce xa and xb.

The distance of points on this line segment are
closer to (or the same distance from) the centre of
the solid than the more distant of xa and xb. If
the solid were a perfect sphere (i.e. if the distance
to the boundary were fixed) we could conclude di-
rectly that vividness of the mixture was smaller

4Usually there is only one spectrum corresponding to
a point on the boundary of the solid, but there might be
more in cases where the surface is perfectly flat. Inside the
boundary, or at points on the boundary without non-zero
bounded curvature, there is an infinite number. Measuring
the absolute sizes of the sets of spectra corresponding to
a single colour is non-trivial because there is no ‘infinite-
dimensional’ analogue to the Lebesgue measure. In this
work we avoid this problem by always comparing between
two different finite dimensional colour solids (⊆ [0, 1]n),
rather than looking for a way of measuring spectrum-space
([0, 1]∞).
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than that of the colours being mixed. As the solid
is not a sphere, we must make a further obser-
vation: where the surface is (strictly) convex, a
line segment connecting two points on the surface
of the solid passes entirely within its volume (for
a proof see supplementary material SI 1). The
colour solid’s boundary colours have the distin-
guishing feature that they cannot be made by a
mixing other object colours.

The rule applies to all observers, in spite of the
fact that numerical values of V for a particular
object colour may well be different.

Rule 3: Convexity of Mixing

V (kr1 + (1− k)r2; f1 . . . fn) ≤
max{V (r1; f1 . . . fn),V (r2, f1 . . . fn)}

for all k ∈ [0, 1]. Mixing two colours results
in a colour that is less vivid than the most
vivid of the two (and perhaps less than
both). Rule 3 can be written in a more
general form, for a mixture of multiple
colours, as:

V

(∑
i

kiri;x1 . . . xn

)
≤ max{V (ri;x1 . . . xn)}

with ki ∈ [0, 1] and
∑

i ki = 1.

This expression describes a phenomenon familiar
to anyone who has mixed paints, once a duller
colour is mixed into a more vivid one there is no
way to recover the original vividness except by
adding an even more vivid paint.

This is not a property unique to vividness, but
we must bear in mind the significance of this rule
for our argument: Without this rule we would only
have mathematical results about the geometry of
colour solids, but with this rule, we can talk about
the physical properties of vividly coloured materi-
als, and thereby talk about their ecological func-
tion and how they are perceived (in a Gibsonian
sense [?], at least).

3 Discussion

Object colour solids are useful representations
of the colours of reflective surfaces, as opposed
to lights. The mathematical properties of these
spaces along with empirical evidence (Fig 4) leads
to three main findings relevant to the evolution of
colour in communication signals.

Firstly, we define a measure of colour, vividness,
which corresponds to the distance of a colour from
the (grey) centre of the soild, and show mathemat-
ically that a spectrum which is highly vivid (i.e.
near the boundary of the colour solid) for one type
of colour vision will be highly vivid for any type
that has the same number or more spectral types
of photoreceptor. We find empirically that the
vividness of natural reflectance spectra is corre-
lated for eyes with different sets of photoreceptors
(Figs 4 and 3).

Secondly, colours on the boundary of the solid
are attributable to a single reflectance spectrum,
and the number of spectra that map to a given
point in the colour solid increases towards the
centre, so that many spectra can look ‘mid-grey’.
Highly vivid colours are therefore more likely to be
associated with a specific physical cause (i.e. ma-
terial), and they will be less easily reproduced by
alternative means than less vivid colours. Thirdly,
mixing colours inevitably reduces the vividness
of the more vivid colour, so that pure materials
tend to be more vivid than mixtures. This is why
vacuum-cleaner dust is greyer than home furnish-
ings. For structural colours increasing regularity
of nano-structure increases vividness, and mixing
of pigments can only render them less vivid.

Due to entropy order does not arise by chance
in nature, so vivid colours are indicative of some
functional role. This need not be as a signal;
the vivid colours of leaves and blood are due to
high concentrations of light harvesting and oxygen
transport pigments. This is not to say that and
a dull coloured tissue cannot have a specific func-
tion, the implication only works one way – vivid-
ness requires some kind of order, but order does
not necessarily result in vivid colour. Nonethe-
less, if an object has a functional role it is a priori
worthy of attention, which is a requirement for
any signal.

Historically, vivid coloration has been associ-
ated with the phenonemon of life, and this in turn
has been related to thermodynamics. In Trop-
ical Nature [Wallace, 1878] Wallace argues that
colourfulness is a consequence of “vital energy”,
and hence a natural attribute of living organisms.
While Schrödinger proposed in his book What
is Life? [Schrödinger, 1944], that life is charac-
terised by order away from chemical equilibrium,
that is by being non-entropic. Here we have seen
why vivid colours are indeed likely to be associ-
ated with a system – such as life – that counters
the effects of entropy.
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3.0.1 Aposematism and Mimicry

The strong contrasts and vibrant colours of apose-
matic displays illustrate some of our findings.
Vivid colours are salient, so they have the poten-
tial to promote both innate and learnt responses,
and they and will be seen consistently by a broad
range viewers, so they need not be predator-
specific. For instance in tropical forests preda-
tors of insects include monochromatic strepsir-
rhine primates, dichromatic mammals and snakes,
trichromatic primates and amphibians, and tetra-
chromatic birds and lizards [Kelber et al., 2003].
A consequence of rule 2 is that the achromatic
extreme colours – black and white – will be
effective for all receivers, those approximating
the dichromatic Schrödinger spectra (which we
would see as two series black, red, yellow, white
and black, blue, cyan, white) would be effective
for dichromats and above, the trichromatic se-
ries which adds purples and greens for trichro-
mats and above, and so on. Similar princi-
ples apply in marine environments where preda-
tor colour vision ranges from monochromacy in
cephalopods through di, tri and tetrachromacy in
various fish to the multispectral system of stom-
atopods[Marshall et al., 2015].

A further benefit of vivid defensive signals arises
because as vividness increases copying a colour en-
tails more exact matching of the spectrum. A de-
fended aposematic model may in principle outma-
noeuvre a Batesian mimic by adopting more vivid
colours outside the mimic’s physiological ‘gamut’
[Franks et al., 2009, Briscoe et al., 2010, By-
bee et al., 2011] and conversely there might be
a pressure for Müllerian mimics to share less vivid
colours.

3.1 Modelling of Colour in Biological
Signals

Investigation of colour signaling by animals and
plants often starts by modelling photoreceptor re-
sponses to reflectance spectra. Receptor responses
do not directly specify colour differences or colour
appearance, which normally requires recourse to
psychophysical models [Kelber et al., 2003, Kemp
et al., 2015]. Models based on chromaticity as-
sume that lightness (or luminance) is discounted,
and although some add achromatic contrast as
a separate parameter[Siddiqi et al., 2004, Olsson
et al., 2017], all such models can lead to difficul-
ties. For example they predict that dark colours
are unrealistically distinct, and there may be an

implicit assumption that the strong achromatic
contrasts, which are present in many signals are
either irrelevant or have a qualitatively different
function from chromatic components.

Object colour solids represent the full gamut of
colours visible to an eye, and importantly offer a
natural means of representing colour as a prop-
erty of reflective materials rather than spectral
lights. It is straightforward to define the locations
of reflectance spectra in the object colour solid,
and hence to explore broader questions about the
gamuts of colour signals directs at various types of
receivers (cf [Osorio and Vorobyev, 2008]. Vivid-
ness is a simple and well defined measure of colour,
within a colour solid which can be related to the
physical properties coloured materials, and gives
insight into how and why animals with diverse vi-
sual systems might evaluate colour. Of course it
remains an empirical question whether vividness
is a useful measure of colourfulness. One could
test whether vividness should predict attention or
salience better than colour saturation or purity,
or to a scale based on colour distances measured
in terms of just noticeable differences within the
colour solid.

4 Conclusion

In The Origin of Species Darwin writes. “...the
belief that organic beings have been created beau-
tiful for the delight of man, ... has been pro-
nounced as subversive of my whole theory, ...”
[Darwin, 1859]. Contemporary literature rarely
addresses this question directly, but offers a range
of accounts of why certain colours or patterns
should be attractive to animals [Zahavi, 1975,
Grafen, 1990, Guilford and Dawkins, 1991, An-
derson, 1994, Johnstone, 1995, Endler and Basolo,
1998]. Some refer to the nature of the sensa-
tion, and postulate general aesthetic principles,
whereas others highlight the specific value of a
stimulus. For example it is debated whether ani-
mals use particular colours in courtship displays
because they resemble objects of value such as
food items [Allen, 1879, Endler and Basolo, 1998]
or because the colours are indicative of the quality
of a potential mate[Hill, 1991]. Here we find that
these distinctions may be blurred, because con-
sideration of the physical causes of the coloration
suggests that certain colours should a priori be
significant regardless of specific associations with
objects of relevance to the animal, or indeed its
particular type of colour vision. There is no need
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to invoke evaluative judgements [Prum, 2012] or
co-evolutionary processes [Fisher, 1930] such as
those associated with sexual selection. In addi-
tion the laws of thermodynamics mean that there
is an immediate cost to producing pure materials
and hence vividly coloured tissues, but this is not
part of the main thrust of our argument, which is
instead about a general psychological bias towards
vivid colours.

Models of visual salience to humans typically
include components that are akin to vividness
[Niebur and Koch, 1996], and this kind of low
level prediction can be compared and contrasted
by higher level (evaluative) theories based on
asking subjects about the aesthetic value of a
colour. Palmer and Schloss’s [Palmer and Schloss,
2010] valence theory proposes that humans prefer
colours associated with desirable objects, to those
associated with decay, excrement and so forth.
Given that decomposition and biological waste
tend to be chemical mixtures, with low vividness,
whereas pure materials tend to be more vivid it
would be interesting to test whether vividness pre-
dicts colour preference as well as the valence. At a
more practical level, we can offer some assurance
to field biologists that it is reasonable to gener-
alise from our own colour perception to that of
other animals, despite their physiological differ-
ences [Bennett et al., 1994].

Data Availability

The code used to generate figures here have
been made available, along with documentation
and usage examples, as an open source project
currently hosted at https://github.com/lucas-
wilkins/lemonsauce. The numerical methods are
also detailed in the supplementary information.

The Munsell chip data are avail-
able from the Spectral Color Research
Group, University of Eastern Finland at
http://www.uef.fi/web/spectral/-spectral-
database [Parkkinen et al., 1989].
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Supplementary Information

SI 1 Proofs

SI 1.1 Convexity and Symmetry

The convexity and symmetry of the colour solid is
well established, but it is useful to quickly visit it,
as many of the appendices use this fact.

The (weak) convexity of the colour solid means
that if colours x and y belong to it, then so do
all the colours lying the line between them, i.e.
kx + (1 − k)y for all k ∈ [0, 1]. Because x and y
are assumed to be colours within the solid, there
are corresponding reflectances rx and ry bounded
between 0 and 1 at all wavelengths.

x =

∫
Λ
rx(λ)f(λ)dλ, y =

∫
Λ
ry(λ)f(λ)dλ,

The reflectance krx(λ)+(1−k)ry(λ) will result in
the colour kx + (1 − k)y, and as this is a convex
combination of the reflectance rx and ry this will
always have values between rx and ry, and there-
fore between 0 and 1. Thus this colour will always
belong to the colour solid.

A similar argument applies to the central sym-
metry of the colour solid. If x is a point within
the solid, we can find at least one reflectance rx(λ)
that will generate it (by definition). For every re-
flectance rx bounded between 0 and 1 there is a
corresponding reflectance 1 − rx(λ) which is also
bounded between 0 and 1. So, there will be a cor-
responding colour, 1−x, within the solid. We can
also see from this that the centre of the solid 1/2
will be mapped to itself through this operation,
and thereby corresponds to the solid’s center of
inversion.

SI 1.2 Rules 2 and 3

The proofs of rules 2 and 3 can be demonstrated
by planar geometry using only the facts that vivid-
ness is, by definition, the fractional distance from
the centre of the solid to the boundary, and that
the colour solid is convex.

The first of these is a matter of definition, and
the second follows from the space of reflectances
being convex (essentially an infinite dimensional
cube) and the integral

∫
Λ r(λ)fi(λ)dλ acting as a

linear projection of r.

SI 1.2.1 Monotonicity with Dimensional-
ity

The proposition to be shown is:

V (r; f1 . . . fn) ≤ V (r; f1 . . . fn, fn+1)

This states that the vividness in a colour solid ei-
ther increases or stays the same when an extra
dimension (spectral photoreceptor class) is added.
This may be interpreted using the following dia-
gram

Left to right is the component of the original solid
parallel to the vector from the centre of the solid,
O, to the colour A. The corresponding boundary
colour is labeled B. The upwards direction shows
the added dimension. The value in this dimension
does not affect the value in the original dimension,
so the position in this new space C is on a vertical
line passing through A.

The vividness in the original solid is OA/OB
and becomes OC/OD.

We can then use a long established geometric
fact (it is proposition 2 in Book VI of Euclid’s
Elements) that dividing two edges of a triangle by
the same ratio gives points that lie on a line paral-
lel with the third edge (and vice-versa). The line
through B and parallel to the one passing though
C and A is vertical by virtue of this proposition.
This line contains point E, which is the position
that D would need to be in for equal vividness.
If D is closer to O than E then the vividness is
greater.

As B is a boundary point, the convexity of the
colour solid means that there are no points to be
found further to the right on this diagram, demon-
strating the proposition. In summary

V (r; s1 . . . sn, sn+1) = OC/OD

≥ OC/OE

= OA/OB
= V (r; s1 . . . sn)

�
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SI 1.2.2 Convexity of Mixing

The proposition to be demonstrated is that

V (kr1 + (1− k)r2; f1 . . . fn) ≤
max{V (r1; f1 . . . fn), V (r2, f1 . . . fn)}

This can be be interpreted in terms of the follow-
ing diagram of a plane (usually the plane) contain-
ing the colours of r1 and r2 and the centre of the
solid:

O is the centre of the solid. A and B correspond to
the reflectance spectra r1 and r2 with the diagram
drawn where B is the more vivid of the two. C is
some convex combination of A and B, i.e. a point
on the line between them. From the same rule
used in the previous section (Elements VI, 2) we
know that OB/OX = OB′/OX ′ = OB′′/OX ′′.
The ratio OA/OX ′ is smaller than OB′/OX ′ as
we have chosen B to be the more vivid of the two.

The diagram shows that as OA is (weakly)
shorter than OB′, then OC is (weakly) shorter
than OB′′ Furthermore, from the convexity
of the colour solid it follows that OX ′′ is
weakly shorter than OY . So, we can say that
OB′′/OX ′′ ≥ OC/OX ′′ ≥ OC/OY . Which is the
proposition to be demonstrated as OB′′/OX ′′

is max{V (r1;x1 . . . xn), V (r2, x1 . . . xn)} and
OC/OY is V (kr1 + (1− k)r2;x1 . . . xn).

�

SI 1.3 Adjustment of Mimimal and
Maximal Reflectance

Throughout this paper we have assumed that the
minimal and maximal bounds on reflectance are 0
and 1. We can however work with any minimal or
maximal bounds and still have a colour solid.

The colour solid is defined as the set of all
colours formed by applying equation 3 to all re-
flectances r that lie between 0 and 1, we will show
that if we replace the condition

0 ≤ r(λ) ≤ 1

with generalised bounds

l(λ) ≤ r(λ) ≤ u(λ)

then we can construct another solid, described by

xi =

∫
Λ
r′(λ)f ′i(λ)dλ

where each xi is scaled between 0 and 1 and where
the function r′ lies between 0 and 1.

Let l(λ) be the lower bound of reflectance at
each wavelength, and u(λ) be the upper bound.
Also, let r′(λ) be a linearly scaled reflectance rela-
tive to those bounds, i.e when r′(λ) is 0, the actual
reflectance is the lowest possible r(λ) = l(λ) and
when r′(λ) is 1 the actual reflectance is maximal,
r(λ) = u(λ). So that

r(λ) = l(λ) + [u(λ)− l(λ)]r′(λ)

and the corresponding quantum yield is∫
Λ
l(λ)fi(λ)dλ+

∫
Λ

[u(λ)− l(λ)]r′(λ)fi(λ)dλ

The first term is a constant offset, so may be ig-
nored, and the second term can be seen as a rescal-
ing of the relative yields, mathematically the same
as a change in the illuminant. We can move the
bounds into the relative yields and renormalise
giving the relative yield functions for a new colour
solid

f ′i(λ) =
[u(λ)− l(λ)]fi(λ)∫

Λ[u(λ)− l(λ)]fi(λ)dλ

or equally, working with the illumant l(λ) and
spectral sensitivities si(λ),

f ′i(λ) =
[u(λ)− l(λ)]l(λ)si(λ)∫

Λ[u(λ)− l(λ)]l(λ)si(λ)dλ

SI 2 Numerical Solutions

SI 2.1 Vividness

The most difficult part of calculating vividness is
finding the distance from the centre of the solid to
the boundary in the direction of the chosen colour.
There are two ways that this might be easily com-
puted: One way is to calculate the geometry of the
solid’s boundary, and then search the geometry
for the point where a line extending from the cen-
tre through the colour crosses the boundary. This
process can be optimised somewhat, but involves
a lot of precalculation. Or, instead, one could use
a linear programming method. This does not re-
quire precalculation, and is the method we recom-
mend.
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SI 2.1.1 Calculating Vividness Using Lin-
ear Programming

Finding the spectrum that lies on the boundary
in a given direction from the centre can be under-
stood as a linear programming problem. Linear
programming is the name given to the optimisa-
tion of problems that have a linear objective func-
tion and linear constraints. The canonical form
used for finding numerical solutions5 of such prob-
lems is:

Minimise: c · x
such that: Ax ≤ b

Dx = e

Where x is the vector to be determined, b and c
are vector, and A matrix, parameters. Our task
is to put the problem of finding the distance to
the boundary into a form that can be understood
by standard linear programming routines, such as
the simplex method.

In this problem, we find the boundary colour
by first finding the spectrum which lies on the
boundary of solid. We must work with spectra,
not colours, as the colour solid is determined by a
constraint on the form of the spectrum.

Inequality Constraints (form of Ax ≤ b)

If x is a vector representing a reflection spec-
trum, then we have constraints of the form

0 ≤ xi ≤ 1

which we can write in block matrix form as:(
I
−I

)
x ≤

(
1
0

)

Equality Constraints (form of Dx = e)

There are also equality constraints. The colour
of the boundary spectrum must lie on a line pass-
ing through the reference colour and the centre.
The colours (s) lying on this line are given by:

s = k(sref − 1/2) + 1/2

where sref is the reference colour and k is a variable
giving the position along the line. 1/2 is used here
to represent the vector (1/2, 1/2 . . .).

5The equality constraints (Dx = e) are usually explicit
in numerical procedures, but in mathematical treatments
they are usually understood as a pair of inequality con-
straints: Dx ≤ e and −Dx ≤ −e.

This has the form s = kp+q, where p = sref−1/2
and q = (1/2, 1/2 . . .) are vectors. To get this in the
form of Dx = e that is needed to specify the lin-
ear programming problem, we need to do a little
algebraic manipulation. If can we write the con-
straint of the colour to a line in the standard form:
Mc = v, then it is simple to see that when F is
a matrix containing the discretised relative quan-
tum yield functions (see equation eqn:discrete),
the colour s is given by Fx and we have MFx = v,
meaning that D = MF and e = v.

There are multiple choices of M and v which
constrain the colour in exactly the same way. One
way of obtaining an M and v is by picking one
dimension for which p is non-zero (the ’pivot’),
using this to solve for k and substituting the so-
lution back. The result of this procedure is an
n-by-n − 1 matrix and an n − 1 vector. The ma-
trix has can be understood as having ones on the
leading diagonal and −pi/ppivot in the pivot col-
umn, with the pivot row removed. For example,
for a tetrachromat pivoting with i = 2 we have,
the 4-by-3 matrix:

M =


1 0 −p0/ppivot 0
0 1 −p1/ppivot 0

0 0 −p3/ppivot 1

 ← row removed

The corresponding vector has values of the form
qi−(qpivot/ppivot)pi and, like M , has the pivot row
removed.

v =


q0 − (qpivot/ppivot)p0

q1 − (qpivot/ppivot)p1

q3 − (qpivot/ppivot)p3

 ← row removed

Objective Function (form of c · x)

Lastly, we need the objective function which is
to be maximised. This measures how far we are
from the centre of the solid. A dot product using
colour is the choice because it is signed (unlike the
Euclidean distance), and is linear. The function

(s− 1/2) · (sref − 1/2)

is the distance from the centre, projected in the
direction of cref . To get this in the form c · x we
rewrite it as:

s · (sref − 1/2)− 1/2 · (sref − 1/2)

The second term is a constant. This means that
its value does not effect the minimisation and we
can ignore it, giving:

s · (sref − 1/2)
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After substituting Fx for s, and rearranging using
the commutativity of the dot product we find that

−c = (sref − 1/2)F

The minus sign is present because the problem is
specified as a minimisation, not a maximisation.

SI 2.2 Colour Solid Geometry

The geometry of the colour solids have been cal-
culated here using a convex pruning method.

Through convexity it is possible to demonstrate
that the boundary of the colour solid is formed by
reflectances that contain only zeros and ones. Ev-
ery spectrum can be formed though a convex com-
bination of zero-one spectra, thus any colour must
be a convex combination of the colours formed by
zero-one spectra.

To calculate the solid numerically, we use discre-
tised relative quantum yield functions, gi(j), for a
set of wavelengths λ0, λ1, . . . λj . . . λn.

gi(j) =

∫ λj+1

λj

fi(λ)dλ (5)

where i indexes the photoreceptor class, and j in-
dexes the wavelength band. The algorithm works
by incrementally enumerating all the reflectance
spectra that may lie on the surface of the solid,
ignoring all those for which this is clearly impos-
sible.

Denote the set of colours defined by non-zero
discretised reflectance only in the region [λ0, λk]
by Sk. This will be uniquely defined by a finite
set of points lying on the convex hull of that set,
Hk. The sets Sk and Sk−1 are related to each other
by:

Sk = Sk ∪ {s+ (g1(k), g2(k) . . .)|s ∈ Sk−1}

The first and second terms of the right hand sum
correspond to the addition of reflectances in re-
gion [λk−1, λk] with values 0 and 1 respectively.
Thus Sn contains all colours corresponding to dis-
cretised reflectances with zero or one everywhere,
and has 2n elements. For resolutions as low as
n = 10 the full enumeration of this can be prob-
lematic. Even more so when it comes to obtaining
the convex hull, the algorithms for which which
are super-linear in both the number of points and
the dimension. To avoid having such large sets we
prune away fruitless candidates as we go along.

For calculating the bounding points of the Sk,
only the values Hk−1 matter. This is because the

addition of a vector, v, to any point in Sk will
result in a point that is a convex combination of
points in {s + v|s ∈ Hk}. If we let C denote the
operation which obtains the points defining the
convex hull, then it follows that:

Hk = C (Hk ∪ {s+ (g1(k), g2(k) . . .)|s ∈ Hk−1})

Which, when applied iteratively, results in a com-
putationally feasible number of points. The speed
of this procedure may be increased by including
the results of a low resolution version of the cal-
culation (even just the white point). Call these
known points K, and then instead iterate using:

H′k = C
(
K ∪H′k ∪ {s+ (g1(k), g2(k) . . .)|s ∈ H′k−1}

)
\K

with:
Hn = C(H′n ∪ K)

The last application of C may be omitted if we
know that K ⊆ Hn – a condition which is desirable
for the efficiency of the pruning.

The computational complexity of this algorithm
depends on the number of photoreceptor classes,
and becomes difficult for observers with more that
5 photoreceptors.

SI 2.3 Using Linear Programming

A linear programming method like the one de-
scribed in the vividness calculation can be used
to obtain a collection of points describing the ge-
ometry of the colour solid. To do this, one sam-
ples directions around the centre, and calculates
the corresponding boundary spectra using linear
programming. This method is has a disadvantage
in comparison with the method below in that it
can only resolve fine detail such as points or sharp
edges by using a very high density of points.

SI 2.4 Metameric Colours

This algorithm can then be used to calculate
the colours for one observer that correspond to
the colours for another. Call the discretised rel-
ative quantum yield functions for the two ob-
servers ai(j) and bi(j) respectively, and let ci(j) =
(a0 . . . ama , b0 . . . bmb

) where ma and mb is the
number of photoreceptor classes for a and b. An
ma+mb dimensional colour solid can then be con-
structed for ci. The set of observer b colours cor-
responding to an observer a colour can then be
calculated as the mb dimensional cross-section of
the ma + mb dimensional solid for which the ob-
server a coordinates are constant.
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As this involves calculating a ma + mb dimen-
sional colour solid, it is only ‘fast’ for ma+mb < 6.
For other cases, a dynamic programming approach
is prudent.

SI 3 Purity in Multiple Dimen-
sions

If colour purity – the saturation relative to the
maximally saturated colour of a given hue – is
generalised to arbitrary dimension one obtains a
quantitiy very similar to vividness. Much as with
the extreme spectra of the object colour solid,
the border of an arbitrary chromaticity diagram
is given by the linear combinations of a few spec-
tra, and as in the colour solid, when the dimension
increases, the new boundary will include spectra
from the lower dimensional boundary. These spec-
tra are monochromatic, and play the same role as
the extreme spectra. But the kind of results that
purity yields cannot so easily be employed in de-
veloping the kinds of arguments that we developed
in the main text, even in approximation.

One difficulty lies in the spectra of the purest
colours being monochromatic (or combinations
of a few monochromatic spectra). Monochro-
matic lights are particularly unnatural; an approx-
imately monochromatic reflectance has the prop-
erty of reflecting less and less light as it becomes
more pure – reflecting none at the point of perfect
monochromaticity.

Another difficulty is that observers with differ-
ent numbers of photoreceptor classes (different di-
mensionality) have boundary sets that differ sig-
nificantly in quality.

For monochromats there is no useful definition
of saturation, and therefore no saturation based
vividness-like measure exists.

In all other cases, the neatest formulation of the
boundary is as the convex hull of all the monochro-
matic lights. If the monochromatic lights form a
convex figure, the convex parts will not be part
of the boundary. This means that for dichromats
the chromaticity space is bounded by monochro-
matic two lights, one positioned at the wavelength
with the highest ratio in sensitivities and one at
the lowest λlow and λhigh:

{δ(λ− λlow), δ(λ− λhigh)}

Unlike the dichromat Schrödinger spectra, these
are completely dependent on the spectral sensi-
tivities of the photoreceptors.

For trichromats the boundary often contains
a good portion of the monochromatic locus and
there is often only one linear connecting sections
spanning from a short wavelength to a long one:
the ‘purple line’:

Smono ∪ Spurple

The dimensionality of the set of monochromatic
lights, and of the purple line is the same.

With tetrachromacy and above, the chromatic
boundary becomes dominated by non-spectral (i.e.
not monochromatic) spectra, most of the bound-
ary is formed by a n − 2 dimensional surface fill-
ing in between the the 1 dimensional locus of
monochromatic spectra. The surface is formed by
linear combinations of n − 2-tuples of monochro-
matic lights, and typically there will be a small
number of dominant monochromatic light that are
part of the combinations covering large portions
of the surface – in other words, often, a bit of the
monochromatic locus “sticks out”. Determining
which bits stick out is not particularly simple, and
whilst there are rules of thumb that help, it makes
framing the arguments we have made here much
more complicated. This is aside from the fact that
the object colour solid is simply the most appro-
priate model for reflectance.

17

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601625doi: bioRxiv preprint 

https://doi.org/10.1101/601625
http://creativecommons.org/licenses/by/4.0/

