1 Sortase-assembled pili promote extracellular electron transfer and iron acquisition in

2 *Enterococcus faecalis* biofilm

- 3 Ling Ning Lam^{1,2,7}, Jun Jie Wong^{1,3}, Artur Matysik¹, Jason J. Paxman⁴, Kelvin Kian Long
- 4 Chong^{1,5}, Pui Man Low¹, Zhi Sheng Chua¹, Begoña Heras⁴, Enrico Marsili^{1,6} and Kimberly
- 5 A. Kline^{1,2,*}
- ⁶ ¹Singapore Centre for Environmental Life Science Engineering, Nanyang Technological
- 7 University, 60 Nanyang Drive, Singapore 637551
- ⁸ ²School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive,
- 9 Singapore 637551
- ³Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798
- ⁴Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La
- 12 Trobe University, Science Drive, Bundoora VIC 3083, Melbourne, Australia
- ⁵Nanyang Technological University Institute for Health Technologies, Interdisciplinary
- 14 Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
- ⁶Department of Chemical and Materials Engineering, Nazarbayev University, 53 Kabanbay
- 16 Batryr Avenue, Nur-Sultan 010000, Kazakhstan
- ¹⁷ ⁷Department of Oral Biology, College of Dentistry, University of Florida, 1395 Center Drive,
- 18 Gainesville, FL 32610, United States
- 19 *Correspondence: <u>kkline@ntu.edu.sg</u>
- 20
- 21 Keywords: Enterococcus faecalis biofilm, iron acquisition, endocarditis and biofilm
- 22 associated pili, extracellular electron transfer, virulence
- 23 Classification: Biological Sciences, Microbiology

24 Abstract

Enterococcus faecalis is an opportunistic human pathogen and the cause of biofilm-25 associated infections of the heart, catheterized urinary tract, wounds, and the dysbiotic gut 26 where it can expand to high numbers upon microbiome perturbations. The E. faecalis sortase-27 assembled endocarditis and biofilm associated pilus (Ebp) is involved in adhesion and 28 biofilm formation in vitro and in vivo. Extracellular electron transfer (EET) also promotes E. 29 30 *faecalis* biofilm formation in iron-rich environments, however neither the mechanism underlying EET nor its role in virulence was previously known. Here we show that iron 31 32 associated with Ebp serve as a terminal electron acceptor for EET, leading to extracellular iron reduction and intracellular iron accumulation. We found that a MIDAS motif within the 33 EbpA tip adhesin is required for interaction with iron, EET, and FeoB-mediated iron uptake. 34 We demonstrate that MenB and Ndh3, essential components of the aerobic respiratory chain 35 and a specialized flavin-mediated electron transport chain, respectively, are required for iron-36 mediated EET. In addition, using a mouse gastrointestinal (GI) colonization model, we show 37 that EET is essential for colonization of the GI tract, and Ebp is essential for augmented E. 38 faecalis GI colonization when dietary iron is in excess. Taken together, our findings show 39 that pilus mediated capture of iron within biofilms enables EET-mediated iron acquisition in 40 E. faecalis, and that these processes plays an important role in E. faecalis expansion in the GI 41 tract. 42

43

44 Significance

Understanding enterococcal biofilm development is the first step towards improved
therapeutics for the often antimicrobial resistant infections caused by these bacteria. Here we
report a role for *Enterococcus faecalis* endocarditis and biofilm associated pili (Ebp) in
mediating iron-dependent biofilm growth and contributing to extracellular electron transfer

49 (EET) which in turn promotes iron acquisition. Furthermore, we characterize the mechanisms
50 underlying electron transfer in the *E. faecalis* biofilm. Our findings support a model in which
51 *E. faecalis* use EET to drive the reduction of pilus-associated ferric iron, leading to iron
52 acquisition in *E. faecalis* biofilm, and contributing to enterococcal virulence in the GI tract.
53

54 Introduction

Enterococcus faecalis is an important human opportunistic pathogen that causes a variety of diseases including endocarditis, urinary tract infections (UTI), bacteremia, wound infection, and medical device-associated infections ¹. Many of these infections are polymicrobial and biofilm-associated, rendering them more tolerant to antimicrobial and immune clearance, and contributing to their persistent nature ¹. Therefore, a detailed understanding of enterococcal biofilm development is a critical step towards advancing new therapeutics for treatment of these often antimicrobial resistant infections ^{1,2}.

62

One important factor contributing to *E. faecalis* biofilm formation and virulence is the 63 sortase-assembled endocarditis and biofilm associated pilus (Ebp)³⁻⁷. The importance of Ebp 64 to E. faecalis is supported by the presence of its coding sequence in the core E. faecalis 65 genome ^{5,8}. The Ebp fiber is primarily composed of the major pilin subunit EbpC, along with 66 two dispensable minor pilin subunits EbpB and EbpA⁵, and these pilin subunits are 67 covalently assembled by Sortase C on the cell membrane, prior to attachment to the cell wall 68 by Sortase A^{6,9}. EbpA is the tip adhesin of the pilus, and its N terminus encompasses a metal 69 ion-dependent adhesion site (MIDAS) motif. In eukaryotes, the MIDAS motif is important 70 for ligand binding ¹⁰ and coordinates divalent cations, most often Mg^{2+ 11,12}, for cell adhesion 71 and interaction with extracellular matrix (ECM) proteins ¹². The MIDAS motif within the N-72 terminal domain of E. faecalis EbpA contributes to in vitro biofilm formation, adherence to 73

74	fibrinogen, and bladder colonization in a mouse catheter-associated urinary tract infection
7 4	normogen, and onadeer coronization in a mouse caneter associated armary fact intection
75	(CAUTI) model ¹³⁻¹⁵ . Sortase-assembled pili are conserved in many Gram-positive bacteria,
76	where they often contribute to adhesion, biofilm formation, modulation of host immune
77	response, and virulence ^{16,17} . The adhesive tips of these pilins (PilA of <i>Streptococcus</i>
78	agalactiae ¹⁸ , RrgA of Streptococcus pneumoniae ¹⁹ , and AP-1 of Streptococcus pyogenes ²⁰)
79	include a conserved von Willebrand factor A (vWFA) domain containing a MIDAS motif,
80	which are essential for adhesion. However, the specificity and affinity for metal binding to

81 the MIDAS motif in bacteria, including *E. faecalis*, has not been characterized.

82

Previously, we demonstrated that *E. faecalis* is electrogenic, and that iron promotes both 83 extracellular electron transfer (EET) and biofilm growth in *E. faecalis*²¹. Several mechanisms 84 for EET have been described in both Gram-positive and Gram-negative bacteria^{22,23}. In some 85 bacteria, microbial nanowires, composed of extracellular filamentous protein fibers and/or of 86 cytochrome-associated fibers, have been proposed to aid EET by directly connecting the 87 bacterial cell surface to extracellular metal oxides, or alternatively, by interacting with 88 extracellular soluble redox mediators ^{23,24}. Biochemical and structural analysis have recently 89 demonstrated that the conductive filaments of Geobacter sulfurreducens consist of 90 polymerized chains of the hexaheme cytochrome OmcS²⁵. Gram positive bacteria have 91 evolved a highly conserved mechanism for EET, described in *L. monocytogenes*, which 92 93 involves a specialized respiratory complex that channels electrons through discrete membrane-localized quinone pools to flavin intermediates, for subsequent delivery to 94 terminal extracellular electron acceptors ²⁶. In *E. faecalis,* electroactivity requires the ability 95 to synthesize L-lactate dehydrogenase (LDH)²¹ and demethylmenaquinone (DMK)²⁷, 96 important for catalyzing redox reactions and electron transfer during respiration, respectively 97 28 98

99

In this study, we sought to understand the mechanism and physiological role of EET in E. 100 faecalis. We show that EET in E. faecalis makes use of both DMK and the conserved flavin 101 EET pathway described in L. monocytogenes for electron delivery to extracellular pilus-102 associated iron deposits. Iron induces the expression of Ebp pili, increasing the interaction 103 sites for iron, which include the MIDAS motif of the EbpA tip adhesin, which is required for 104 105 pilus association with iron as well as for iron-augmented biofilm formation. In addition, we show that EET drives the reduction of iron leading to FeoB-mediated uptake of iron into the 106 107 E. faecalis biofilm cells. Finally, we demonstrate that a high iron diet promotes E. faecalis mouse gastrointestinal (GI) colonization in an ebp-dependent manner, and EET mutants are 108 attenuated in the GI tract. Together, these findings suggest a model in which iron promotes 109 110 pilus-mediated biofilm formation. We propose that the association of iron with sortaseassembled Ebp sequesters iron close to the cell surface within biofilms where it can serve as 111 an extracellular electron acceptor for EET, resulting in the generation of ferrous iron for 112 subsequent uptake into the cell. This new paradigm for iron acquisition in which pili and 113 aggregates of piliated cells serve as iron sinks to promote biofilm formation and intracellular 114 iron accumulation, significantly advances our mechanistic understanding of both biofilm 115 formation and the pathogenesis of *E. faecalis*. 116

117

118 Results

119 Iron-augmented *E. faecalis* biofilm formation requires pilus expression

We previously demonstrated that *E. faecalis* biofilm growth in media supplemented with iron resulted in two-fold more biomass ²¹. To test the hypothesis that Ebp contributes to ironaugmented biofilm, we performed biofilm assays in growth media supplemented with 2 mM ferric chloride (FeCl₃), and quantified total adherent biofilm biomass. In iron-supplemented

media, deletion mutants of the entire Ebp pilus ($\Delta ebpABC$), pilus tip ($\Delta ebpA$) and pilus fiber 124 $(\Delta ebpC)$ displayed more than a 50% reduction in biofilm growth compared to the wild type 125 control (Figure 1a) and mutant biofilm levels in iron-supplemented media were most similar 126 to wild type biofilm in the absence of iron augmentation (Figure S1a). Biofilm formation by 127 the pilus null $\triangle ebpABC$ mutant was restored to wild type levels upon genetic 128 complementation with the full locus (pebpABCsrtC). A $\Delta ebpB$ deletion mutant also displayed 129 significantly reduced biofilm growth as compared to the wild type control in iron-130 supplemented media; however, it was not as strongly attenuated compared to the other pilus 131 132 mutants (Figure 1a). These findings are consistent with previous reports in which deletion of *ebpA* and *ebpABC* resulted in significantly reduced biofilm formation in normal media 133 (Figure S1a, S2b)^{6,29}. These results indicate that the fully assembled Ebp pilus fiber 134 contributes substantially to iron-augmented biofilm formation with a key role for the EbpA 135 pilus tip (Figure 1a, S1b). We next tested the contribution of the MIDAS motif within EbpA 136 to iron-mediated biofilm growth. Using a MIDAS mutant ($ebpA^{AWAGA}$), in which the native 137 motif $(Asp^{275}-Trp-Ser^{277}-Gly-Ser^{279})$ is mutated to $(Ala^{275}-Trp-Ala^{277}-Gly-Ala^{279})^{13}$, we 138 observed that it was as attenuated as the ebpABC null mutant for biofilm formation in iron-139 supplemented media (Figure 1a, S1a). Collectively, these data demonstrate that both the 140 MIDAS motif of the EbpA tip adhesin, as well as an intact EbpC pilus fiber, are essential for 141 iron-mediated biofilm growth. 142

143

144 Iron induces pilus expression and drives aggregation of pilus-expressing cells in *E*. 145 *faecalis* biofilm

Iron-augmented *E. faecalis* biofilms have an altered 3-D structure ²¹. To determine whether
pilus expression contributes to the biofilm ultrastructure, we used immunofluorescence
microscopy to visualize pilus-expressing cells within biofilms. Augmented biofilm biomass
after growth in iron-supplemented media, as previously reported, was not apparent for the

 $\Delta ebpABC$ or the $ebpA^{AWAGA}$ mutants (Figure 1b)²¹. In addition, pilus-expressing cells tended 150 to aggregate in areas of higher cell density in biofilms grown in iron-supplemented media 151 (Figure 1c). The abundance of piliated cell aggregates within the biofilm suggested that 152 pilus expression may be induced in the presence of iron. We therefore quantified the number 153 of biofilm cells expressing pili and observed a significantly larger pilus-expressing 154 population in biofilms grown in ferric iron-supplemented media, but not in the presence of 155 alternative iron sources or with other cationic metals (Figure 1d). By contrast, we observed 156 no significant difference in planktonically grown pilus-expression in response to iron (Figure 157 158 1d). Together these results show that ferric iron induces pilus expression, which in turn increases the biofilm structure and mass. 159

160

Iron colocalizes with pili on the cell surface and is dependent on the EbpA MIDAS motif 161 While monitoring *E. faecalis* populations for piliation in iron-supplemented media, we 162 observed dense deposits at the polar hemispheres of E. faecalis cells which co-localized with 163 sites of EbpC deposition, suggesting that these dense deposits may be iron interacting with 164 pili (Figure 2a, Figure S2a-b). We observed these dense deposits less frequently in the 165 *ebpA*^{AWAGA} mutant, even though this mutant strain expresses a similar proportion of piliated 166 cells as WT (Figure S2c), and the dense deposits were completely absent in $\triangle ebpABC$ 167 deletion mutant (Figure 2a, Figure S2a-b), suggesting that pili may be interacting with ferric 168 169 iron via the MIDAS motif of EbpA.

170

To confirm the interaction between the EbpA MIDAS motif and iron, we extracted Ebp from *E. faecalis* wild type and $ebpA^{AWAGA}$ biofilms grown in normal or iron supplemented media, and in parallel performed control extractions from $\Delta ebpABC$ biofilms. Pili were isolated under native conditions and analyzed for iron content by inductive-coupled plasma mass

175 spectrometry (ICP-MS). Pilus extracts from wild type cells grown in the iron-supplemented 176 media were associated with nearly three times more iron than wild type pilus extracts from 177 biofilms grown in control media. Ebp association with iron was dependent on the EbpA 178 MIDAS motif because pilus preps from $ebpA^{AWAGA}$ were similar to background iron levels in 179 control $\Delta ebpABC$ extracts (Figure 2b).

180

181 To better understand how the EbpA MIDAS motif could interact with ferric iron, we modelled the EbpA structure based upon the crystal structures of its Mg bound homologs, S. 182 agalactiae PilA GBS104 (PDB: 3txa)³⁰ and S. pneumoniae RrgA (PDB: 2ww8)¹⁹. The 183 overall EbpA structural model (N177-P620) showed the expected vWFA structural fold 184 encompassing the MIDAS motif, consistent with other pili tip adhesins (Figure 2c-d). The 185 model supports an interaction of the MIDAS motif and associated metal binding residues 186 with ferric iron (Figure 2e). D275 would make a water mediated contact with the iron, the 187 hydroxyl oxygen atoms of S277 and S279 and the carboxylate oxygen of D378 would make 188 direct ionic bonds with iron and the classic 6-coordination of iron would be completed by 2 189 water molecules. vWFA domains are known to undergo conformational changes from closed 190 to open states, whereby iron bonding would be shifted from D378 to the nearby T350 31 . The 191 metal binding residues were confirmed by an alignment of the EbpA, GBS104 and RrgA 192 sequences, which despite low sequence identity, showed strict conservation of the MIDAS 193 194 motif D275, S277, S279, T350 and D378 residues (Figure S3).

195

Pili and the respiration-associated electron transport chain contribute to extracellular electron transfer (EET)

198 The association of Ebp with iron, coupled with the ability of *E. faecalis* to undergo iron-

199 mediated EET ²¹, suggested that pili themselves may be involved in the EET. To address this,

we measured the instantaneous current output by chronoamperometry and the cumulative 200 charge production in biofilms grown in iron-supplemented media for 20 hours. We observed 201 a reduction in cumulative charge production in both the $\Delta ebpABC$ and $ebpA^{AWAGA}$ MIDAS 202 mutants when grown in 0.5 mM iron-supplemented media (Figure 3a). At higher iron 203 concentrations, we did not observe significant differences in cumulative charge production 204 over 20 hours (Figure S4a). The current output in the first few hours was similar for all 205 206 strains (Figure S4b), but both pilin mutants exhibited an inability to sustain current output as compared to the wild- type control at later time points (Figure S4a-b). We therefore 207 208 conclude that pili contribute to sustained EET, but that other mechanisms also contribute to *E. faecalis* EET in the absence of the pili. 209

210

211 To identify additional pathways, in addition to pili, that contribute to iron-mediated EET, we examined the E. faecalis homolog of the L. monocytogenes EET-specific NADH 212 dehydrogenase (*ndh3*) for flavin-mediated EET 26 , as well as demethylmenaquinone (*menB*) 213 for guinone-mediated EET 28 . We hypothesized that these electron transfer pathways may 214 work together to promote EET. Indeed, we observed attenuated charge production in both 215 *ndh3::Tn* and *menB::Tn* mutants ^{32,33} which was restored upon genetic complementation 216 (Figure 3b), as well as in mutants predicted to work in concert with Ndh3 in the conserved 217 EET pathway (Figure S5). Importantly, charge production was further reduced in the 218 219 *ndh3::Tn* Δ *menB* double mutant compared to either single mutant (Figure 3b), suggesting that DMK and Ndh3 work in non-redundant concert for efficient EET. Together, these 220 findings demonstrate that both respiratory electron transport conduits and pili contribute to 221 iron-mediated EET in E. faecalis biofilm. 222

224 Genes encoding Ebp and the FeoB ferrous iron transporter are upregulated in *E*.

225 *faecalis* biofilm

To further understand how iron promotes E. faecalis biofilm, we performed RNA sequencing 226 and found a total of 90 genes that were differentially regulated upon growth in iron-227 supplemented media (Table S1). As expected, the pilus genes *ebpA* (OG1RF RS04555) and 228 ebpB (OG1RF RS04560) were induced 1.68-fold and 1.55-fold respectively, which we 229 230 validated by qRT-PCR (Figure S6). Surprisingly, the only other iron-associated gene that showed both significant and differential expression was *feoB* (OG1RF RS01950) encoding a 231 232 predicted ferrous iron transporter, which was up-regulated 1.38-fold (Table S1). Importantly, this suggested that E. faecalis biofilm grown in iron-supplemented media may be importing 233 ferrous iron. This finding was consistent with our earlier study that showed E. faecalis 234 intracellular iron concentrations were increased in biofilm cells grown in iron-supplemented 235 media²¹. The simultaneous up-regulation of *ebpABC* and *feoB* as the sole iron-responsive 236 transporter, along with our observations that Ebp co-purify with iron and are required for 237 EET suggested that pilus-associated iron may be reduced during EET and subsequently taken 238 up by the ferrous iron transporter FeoB. 239

240

241 Extracellular ferric iron reduction replenishes ferrous iron pool for uptake by E.

242 *faecalis* biofilm cells

Since ferric iron reduction to ferrous iron requires EET and is facilitated by both Ebp pili and the respiration electron transport chain, we predicted that an inability to perform EET would coincide with attenuation in ferric iron reduction and subsequent diminished extracellular ferrous iron pools available for uptake via FeoB. We therefore performed ICP-MS to determine the intracellular iron content in pilus mutants and EET-associated mutants grown in iron-supplemented media. Since Ldh1 was previously shown to be important for *E*.

249	<i>faecalis</i> EET 21 , we predicted that the absence of <i>ldh1</i> may also lead to reduced intracellular
250	iron accumulation. Consistent with these predictions, we observed significantly reduced
251	intracellular iron for all pilus deletion mutants which was restored upon complementation, as
252	well as reduced intracellular iron in the $ebpA^{AWAGA}$ MIDAS and the <i>ldh1</i> mutants.
253	Furthermore, we observed significantly reduced intracellular iron in the $ndh3::Tn \Delta menB$
254	mutant (Figure 4a). As predicted, the absence of <i>feoB</i> also led to reduced intracellular iron,
255	in a genetically complementable manner (Figure 4b).
256	
257	If intracellular ferrous iron accumulation is a direct consequence of EET catalyzed ferric iron
258	reduction, EET mutants should display reduced ability for ferric iron reduction. We tested
259	this using a ferrozine assay, which reacts with ferrous iron to form a stable colored product.
260	With a functional EET mechanism, we predict the presence of increased ferrous iron pools.
261	As expected, we observed a significant decrease in ferrous iron pools in <i>ldh1</i> , <i>ndh3</i> and <i>menB</i>
262	mutants (Figure 4c). Collectively, these data show that EET mutants are attenuated for ferric
263	iron reduction and therefore intracellular iron accumulation.
264	
265	Pili and respiration-associated electron transfer systems contribute to colonization of
266	mouse GI tract
267	To understand how iron-augmented biofilms and EET impact <i>E. faecalis</i> pathogenesis, we
268	examined the role of dietary iron in an antibiotic-treated mouse gastrointestinal (GI)
269	colonization model. We fed mice a diet containing normal amounts of iron (control; 200
270	mg/kg ferric chloride) or excess iron (high iron; 2000 mg/kg ferric chloride), for 3 weeks
271	prior to antibiotic exposure and subsequent ingestion of <i>E. faecalis</i> in the drinking water
272	(Figure 5a). Twenty-four hours after inoculation, we recovered significantly more <i>E. faecalis</i>
273	from the mouse colon in mice fed the high iron diet as compared to the control group and this

284	Discussion
283	
282	for GI colonization.
281	Figure S7c). Together, these findings demonstrate that both the pili and EET are important
280	MenB are required for GI colonization, independent of dietary manipulation (Figure 5c,
279	provides a colonization advantage for <i>E. faecalis</i> in the GI tract. Indeed, both Ndh3 and
278	<i>E. faecalis</i> Ebp-dependent colonization in the mouse colon. We next asked whether EET also
277	observed in those compartments (Figure S7b). These data suggest that dietary iron promotes
276	intestine (Figure S7a). Accordingly, no iron-dependent colonization differences were
275	increased levels of colon tissue-associated iron, which was not apparent in the cecum or small
274	increase was dependent on Ebp expression (Figure 5b). Mice fed with high iron diet had

We previously showed that *E. faecalis* performs EET in the presence of extracellular iron, 285 which was associated with ATP production, and that iron supplementation augments biofilm 286 growth ²¹. In this study, we sought to understand the mechanism underlying EET and its 287 physiological role in *E. faecalis*. We show that iron induces expression of the genes encoding 288 the sortase-assembled Ebp, which in turn associate with iron via the MIDAS motif of the 289 EbpA tip adhesin, and promote biofilm formation. We also show that EET is dependent on 290 both DMK in the electron transport chain, and a specialized flavin-associated respiratory 291 complex, leading to reduction of extracellular iron and FeoB-mediated uptake of iron (Figure 292 293 6). Furthermore, we demonstrate that pili are important for colonization in the iron-loaded mouse GI tract. 294

295

Many microorganisms have the capacity to generate electrical current via dissimilatory metal reduction 22,34,35 . In *E. faecalis*, it was previously known that EET relies upon DMK, part of its minimal electron transport chain 27 , as well as Ldh1, involved in cellular redox

homeostasis ³⁶. Here we confirm that *menB*, required for DMK synthesis ³⁷, contributes to 299 EET, along with a recently reported flavin-associated alternative membrane-bound electron 300 transport chain ²⁶. Since mutation of either pathway results in decreased charge production 301 and ferric iron reduction, whereas mutation of both pathways completely abrogates both 302 activities, we suggest that electrons flow through both respiratory complexes for maximally 303 efficient EET and ferric iron reduction. While the precise mechanism for electron transfer 304 outside of the E. faecalis cell may vary depending on the environmental niche, like L. 305 *monocytogenes* 26 , *E. faecalis* is a flavin auxotroph 38 , necessitating the presence of this 306 307 soluble electron shuttle in the vicinity of the microbes. Indeed, addition of riboflavin to E. *faecalis* biofilms growing in microbial fuel cells augments current production ³⁹. Our work 308 also demonstrates that *E. faecalis* can use iron as a terminal acceptor for EET, which is likely 309 relevant both in the outside environment where Enterococci can persist for long periods of 310 time 40 , as well as in the GI tract where less than 15% of dietary iron is absorbed at the 311 duodenum, leaving the majority destined for excretion ⁴¹ and potentially available for EET. In 312 addition, there are likely alternative terminal electron acceptors available for EET in the GI 313 tract, such as host associated iron, host-derived nitrate, or microbially-derived molecules such 314 as humic substances ⁴². 315

316

We previously demonstrated that *E. faecalis* biofilms, but not planktonic cells, grow better
upon iron supplementation ²¹. We further showed that iron deposits accumulate in the *E. faecalis* biofilm matrix ²¹, which is composed of extracellular DNA ^{43,44} as well as, most
likely, sortase substrates including Ebp that are continuously shed from wild type cells ^{6,9}.
Here we show that the same pili are required for the formation of biofilm matrix-associated
iron deposits, and are both essential for iron-augmented biofilm formation and necessary for
EET. We speculate that Ebp contribute to EET in *E. faecalis* by sequestering iron as terminal

electron acceptors in close proximity to the cells, either as surface attached pili or within thetightly packed biofilm matrix, for efficient EET.

326

Both pilus associated EET and biofilm formation depend on an intact MIDAS motif within 327 the EbpA pilus tip adhesin of a fully polymerized pilus. Ebp also co-purifies with iron in a 328 MIDAS-dependent manner, demonstrating for the first time that the MIDAS motif 329 330 contributes to the association of a protein with iron. Indeed, our structural model of EbpA aligns well with other pilus adhesin tips such as S. agalactiae GBS104 and S. pneumoniae 331 RrgA, with a vWFA fold and MIDAS motif configured for binding cationic metals ^{76,77}. 332 MIDAS motifs have been shown to bind a range of cationic metals, but in the case of EbpA 333 this can include Fe^{3+} due to the local available concentrations in iron-rich environments. 334 Apart from binding metals, MIDAS motifs also form part of substrate binding sites, whereby 335 iron binding to this site could influence the interaction of EbpA with biofilm factors to 336 promote an increase in biofilm mass ⁷⁸. Collectively, our data confirm that iron binding at the 337 MIDAS motif has a dual role as both a terminal electron acceptor for EET and to promote 338 biofilm formation. Moreover, vWFA domains can undergo conformational changes to open 339 and closed states ⁷⁸, so it is tempting to speculate that such a conformational change may 340 have a role in the interaction with biofilm promoting factors and/or the release of iron after its 341 reduction to Fe^{2+} . 342

343

Consistent with an important role for Ebp pili in an iron-rich environment, we show that the *ebp* operon is transcriptionally induced when iron is supplemented. Ebp are displayed on the surface of a subset of cells in any given *E. faecalis* population 5,6,9,29,45 , and this population can be increased in the presence of serum 5 and bicarbonate 46 . Here we add another environmental signal, iron abundance, that can influence Ebp expression. Several intrinsic

factors can impact *ebp* gene expression including transcriptional regulators, EbpR ⁴⁷, AhrC (also annotated as ArgR3) and ArgR2 ⁴⁸, the FsrB quorum sensing peptide ⁴⁹ and the RNA processing enzyme RNase J2 ^{50,51}. While none of these factors were differentially regulated upon iron supplementation which may suggest uncharacterized regulatory pathways are responsible for iron-regulated *ebp* transcription, we cannot rule out the possibility that excess iron impacts the function of these known regulators of *ebp* expression.

355

In addition to *ebp*, the only iron-regulated *E*. *faecalis* gene annotated as iron-associated was 356 357 *feoB*, involved in ferrous iron uptake. Our discoveries that 1) Ebp expressing cells aggregate within the biofilm, 2) E. faecalis accumulate intracellular iron in an Ebp-, EbpA MIDAS-, 358 and FeoB-dependent manner, and that 3) intracellular iron accumulation is abrogated in the 359 absence of EET and ability for ferric iron reduction, together suggest the presence of spatially 360 segregated areas within the biofilm that may be especially enriched for ferric iron 361 sequestration and reduction, subsequent ferrous iron acquisition, leading to biofilm growth 362 and restructuring. Our observation that *E. faecalis* can combine dissimilatory metal reduction 363 with iron acquisition is similar to early reports for *Shewanella putrefaciens* ⁵². However, the 364 precise mechanism by which iron acquisition contributes to *E. faecalis* biofilm formation is 365 currently under investigation. 366

367

Enterococci are common but minor members of the GI microbiome. However, antibiotic mediated dysbiosis favors overgrowth of Enterococci, harbouring both intrinsic and acquired antibiotic resistance, in the lower GI tract ⁵³⁻⁵⁶. In addition, their inherent tolerance to oxidative stress ⁵⁷ and high concentration of metals ^{21,58,59} can provide a selective advantage for *E. faecalis* to colonize and bloom in niches unfavorable to other microbes. Our

observation that *E. faecalis* can both use EET and take advantage of iron-overload in the GI
tract provides yet another mechanism by which *E. faecalis* can thrive in this niche.

375

Collectively, the findings of this study demonstrate that Ebp and EET facilitate iron reduction 376 for its subsequent uptake, biofilm augmentation, and virulence in the antibiotic treated gut. 377 Given the strong conservation of sortase-assembled pili containing MIDAS motifs in their tip 378 379 adhesins among Gram positive pathogens, along with the conservation of genes encoding EET components in the same organisms, we propose that pilus-mediated metal capture and 380 381 acquisition may be a common mechanism used by microbes to acquire limiting nutrients in a diversity of niches. This work therefore raises the possibility for new therapeutic strategies 382 for *E. faecalis*, and potentially many other pathogens, aimed inhibiting extracellular electron 383 flow, iron reduction and acquisition, and EET-associated ATP production. 384

385

386 Materials and Methods

Bacterial Strains and Growth Conditions. E. faecalis was grown in Brain Heart Infusion 387 broth (BHI; Becton, Dickinson and Company, Franklin Lakes, NJ) and cultured at 37°C 388 under static or shaking (200rpm) conditions, as indicated. Preparation of inocula for biofilm 389 and planktonic growth assays was performed as previously described following growth in 390 Tryptic Soy Broth (TSB) or agar, supplemented with 0.175% glucose (TSBG) (Oxoid Inc., 391 Ontario, Canada)²¹. Bacterial strains used in this study are listed in **Table S2**. Where 392 appropriate, strains harbouring pGCP123 plasmids were grown in 1000 µg/mL kanamycin 393 (Sigma Aldrich, USA) and strains harbouring pMSP3535 plasmids were grown in 100 µg/mL 394 erythromycin unless stated otherwise. Metals were filtered sterilized and supplemented 395 during medium preparation in autoclaved TSBG media. For experiments using ferric chloride 396 only, metal is supplemented in TSBG media and autoclaved together. Ferric citrate hydrate 397

≥98%, magnesium chloride anhydrous ≥98%, copper chloride dihydrate ≥99%, ferrous
sulphate heptahydrate ≥99%, ferric sulphate hydrate ≥97%, ferric chloride anhydrous ≥99%,
heme ≥90%, and the chelator 2,2'dipyridyl ≥99% were all supplied by Sigma Aldrich, St
Louis, MO, USA. Manganese chloride tetrahydrate and zinc chloride were supplied by Merk
Millipore, Singapore.

403

General cloning techniques. Both *menB* and *ndh3* nucleotide sequences are based on the *E*. 404 faecalis OG1RF genome obtained from BioCyc⁶⁰. The Wizard genome DNA purification kit 405 406 (Promega Corp., Madison, WI) was used for isolation of bacterial genomic DNA (gDNA), and Monarch® Plasmid miniprep Kit (New England BioLabs, Ipswitch, MA) was used for 407 purification of plasmid for gene expression and construction of deletion mutant. The 408 Monarch® DNA Gel Extraction Kit (New England BioLabs, Ipswitch, MA) was used to 409 isolate PCR products during extension overlay PCR. In-Fusion HD Cloning Kit (TaKara Bio, 410 USA) was used for fast, directional cloning of DNA fragments into vector for both 411 expression vector and in-frame deletion vector. All plasmids used in the study are listed in 412 413 Table S3. T4 DNA ligase and restriction endonucleases were purchased from New England BioLabs (Ipswitch, MA). Colony PCR was performed using Tag DNA polymerase (Thermo 414 Fisher Scientific, Waltham, MA, USA) and PCR of gene of interest for plasmid construction 415 was performed using Phusion DNA polymerase (Thermo Fisher Scientific, Waltham, MA, 416 USA). Ligations were transformed into *E. coli* Dh5a cells. Plasmids derived in this study 417 were confirmed by sequencing of purified plasmid. 418 419

420 Strain construction. To construct *menB* and *ndh3* complementation plasmids, primers

421 (menB_F' and menB_R' for *menB*, or ndh3_F' and ndh3_R' for *ndh3*; **Table S3**) were

422 designed with BamHI restriction site or SpeI restriction sites flanking the gene of interest, to

423	generate DNA fragments as templates for In-Fusion cloning (Takara Bio USA Inc.) using
424	primers (menB_F'_Infusion and menB_R'_Infusion for menB, or ndh3_F'_Infusion and
425	ndh3_R'_Infusion for <i>ndh3</i>) with at least 15 bp complementary sequence for ligation into the
426	nisin-inducible vector pMSP3535 digested with the same restriction enzymes. Both
427	pMSP3535::menB and pMSP3535::ndh3 plasmids were generated in E. coli Dh5α, verified
428	by sequencing, and transformed into <i>E. faecalis</i> as described previously 13 . Deletion of the
429	menB coding sequence from the OG1RF chromosome was accomplished by allelic
430	replacement using pGCP213 temperature sensitive shuttle vector as described previously ¹³ .
431	The deletion allele was constructed by extension overlap PCR, consisting of the upstream
432	(IFD_menB_Frag2_F' and IFD_menB_Frag2_R'; Table S3) and downstream
433	(IFD_menB_Frag1_F' and IFD_menB_Frag1_R'; Table S3) of the <i>menB</i> coding sequence,
434	and introduced into pGCP213 using in-fusion cloning with IFD_menB_Frag2_F' and
435	IFD_menB_Frag1_R' primers which has at least 15 bp complementary. Deletion of <i>menB</i>
436	was performed in <i>ndh3</i> ::Tn parent strain to generate a double mutant. Transformants were
437	PCR screened for in-frame deletion as previously described ¹³ .
438	
439	Immunofluorescence Imaging and 3D Reconstruction of Biofilm. Bacterial cultures were

normalized to OD₆₀₀ 0.7 and diluted 1000x prior inoculating into each well of µ-Slide 8 well 440 glass bottom slides (ibiTreat coated) (ibidi Inc., USA) containing 40% v/v TSBG for 441 incubation at 37°C under static conditions for 24 hours. After incubation, adherent biofilm 442 was fixed in 4% paraformaldehyde (Sigma Aldrich, USA)-PBS for 30 minutes, blocked with 443 3% bovine serum album (Sigma Aldrich, USA) (BSA)-PBS for 30 minutes, and incubated 444 with primary antibody (Rabbit Anti-Group D antigen, Thermo Scientific Singapore) or 445 Guinea Pig Anti-EbpC⁴⁵ at 1:500 dilution for 30 minutes. The biofilm was then washed with 446 3% BSA-PBS and incubated with secondary antibody (IgG horseradish peroxidase-447

conjugated anti-rabbit or anti guinea-pig, Thermo Scientific Singapore) at 1:500 dilution for 448 30 minutes and washed with 3% BSA-PBS. Biofilms were hydrated with PBS prior to 449 imaging. Biofilm morphology, biomass, and cell distribution were analysed by confocal laser 450 scanning microscopy (CLSM). Images were acquired using LSM780 confocal microscope 451 (Zeiss, Germany) equipped with 63x/1.4 Oil DIC M27 and controlled by ZEN software. 452 Samples were illuminated with 488 nm and 561nm Argon laser line; GFP emitted 453 454 fluorescence was collected in the 493-580 nm range and RFP emitted fluorescence was collected in the 568-712 nm range. Optical sections (134.95x134.95 µm) were collected 455 456 every 0.637 µm through the entire biofilm thickness and signal from each section was averaged 4 times. Fiji software was used for further processing (levels adjustment, stack 457 resliced). To visualize the biofilm spatial organization coordinates representing cocci position 458 were plotted as spheres with cell-size diameter as described previously²¹. For each cell, local 459 density was calculated as number of neighbour cells within 4µm radius, normalized and 460 visualized using colour gradient. 461

462

Biofilm Assay. Bacterial cultures were normalized as previously described ²¹ and inoculated 463 in TSBG in a 96-well flat bottom transparent microtiter plate (Thermo Scientific, Waltman, 464 MA, USA), and incubated at 37°C under static conditions for 5 days unless specified 465 otherwise. Strains harboring pGCP123 complementation plasmids were grown in the 466 467 presence of kanamycin prior to the biofilm assay, but kanamycin was not added to the biofilm assay itself because we found that kanamycin precipitates in the presence of excess iron 468 leading to aberrant biofilm formation (data not shown). Adherent biofilm biomass was 469 470 stained using 0.1% w/v crystal violet (Sigma-Aldrich, St Louis, MO, USA) at 4°C for 30 minutes. The microtiter plate was washed twice with PBS followed by crystal violet 471 solubilization with ethanol: acetone (4:1) for 45 minutes at room temperature. Quantification 472

of adherent biofilm biomass was measured by absorbance at OD_{595nm} using a Tecan Infinite
200 PRO spectrophotometer (Tecan Group Ltd., Männedorf, Switzerland).

475

476**Planktonic Growth Assay.** Bacterial cultures were normalized as previously described 21 477and serially diluted by a dilution factor of 200. Diluted cultures were inoculated into the478media at a ratio of 1:25, which is 8 µL of the inoculum in 200 µL of media, incubated at 37°C479for 18 hours, and absorbance at OD_{600nm} was measured using a Tecan Infinite 200 PRO480spectrophotometer (Tecan Group Ltd., Männedorf, Switzerland) at 15 minute intervals.481

Population Analysis of Pilus Expression. Biofilms were grown in 6 well tissue culture 482 plates at 37°C under static conditions for 24 hours in TSBG or TSBG supplemented with 483 metals where appropriate, and planktonic cultures were grown in 50-ml falcon tube under 484 shaking conditions (200 rpm). Immunoblotting was performed as described previously ⁶¹ with 485 some modification. Spent media was removed, and the adherent biofilm was suspended in 486 PBS. A cell scraper was used to dislodge the biofilm, and the dislodged cells were 487 centrifuged at 14,000 rpm for 2 minutes at room temperature to remove the supernatant. 488 Biofilm cells were suspended in PBS and normalized to OD_{600nm} 1.0. Normalized 489 suspensions were fixed in 4% paraformaldehyde (Sigma Aldrich, USA)-PBS for 20 minutes 490 at 4 °C, centrifuged at 14,000 rpm for 2 minutes. and the supernatant then discarded. The 491 492 pellets were washed with PBS, centrifuged at 14,000 rpm for 2 minutes, and the supernatant discarded again. Immunofluorescence microscopy was performed as described previously⁶¹ 493 with the following modifications: 1:500 dilution of guinea pig anti-EbpC (Thermo Scientific, 494 Singapore) in PBS-3% bovine serum albumin, and 1:500 dilution of goat Anti-guinea pig 495 AlexaFluor-568 (Invitrogen Inc., USA) incubation for 30 minutes. After washing with PBS 496 twice, resuspended cells were applied to poly-L-lysine slides (Polysciences Inc., USA), dried 497

for 5 minutes, mounted with Vectashield®, and sealed with a cover slip. Images were 498 acquired using an inverted Epi-fluorescence microscope (Zeiss Axio observer Z1, Germany) 499 equipped with an EC Plan-Neofluar 100x/1.3 Oil objective and controlled by ZEN software. 500 For each biological sample, 5 images were acquired and the percentage of the cell population 501 expressing pili was quantified. At least 300 bacterial cells per strain per experiment were 502 scored for pilus expression. The metal concentrations used during the pilus expression 503 504 experiments were based on the highest concentration in which E. faecalis cells did not exhibit growth inhibition (data not shown). 505

506

EbpA Structural Modelling. The EbpA amino acid sequence was submitted to the structural 507 homology-modelling server Swiss-Model (https://swissmodel.expasy.org)⁶². Template 508 509 structures for structural modelling were automatically selected based upon sequence identity. The initial template search derived 723 templates that were filtered down to 50 templates, 510 whereby 14 models were constructed and ranked based on sequence similarity and coverage. 511 The top solution was based upon the PDB 3txa (GBS104 from *Streptococcus agalactiae*) that 512 showed 34% sequence similarity and 38% sequence coverage. The final EbpA model 513 included N177-P620. The Fe3⁺ was created with Sketcher ⁶³ and placed into position using 514 the MIDAS bound magnesium of 3txa and 2ww8 as a guide with the program COOT ⁶⁴. The 515 two conserved water molecules from both 3txa and 2ww8 were fitted into EbpA by a similar 516 means. Final alignments, analysis and structural figures were created with PyMOL⁶⁵. 517 518

Quantitative Real time PCR (qRT-PCR) and RNA sequencing. Biofilm cells were
prepared as described above for TEM. After washing, the biofilm cell pellet was incubated
with lysozyme from chicken egg white (10mg/ml) (Sigma Aldrich, USA) for 30 minutes at
37°C to remove the cell wall and centrifuged at 14,000 rpm for 2 minutes at room

temperature to remove supernatant prior to cell lysis. RNA extraction was performed in a 523 Purifier® filtered PCR enclosure using the PureLink[™] RNA mini kit (Invitrogen, USA) 524 according to the manufacturer's instructions. RNA purification and removal of DNA was 525 performed using TURBO DNA-free™ kit (Thermo Fisher, USA) and Agencourt® 526 RNAClean® XP Kit (Beckman Coulter, USA). Measurement of RNA yield and quality was 527 performed using Qubit® RNA HS assay kit (Thermo Fisher, USA) and RNA ScreenTape 528 529 System and 2200 TapeStation (Agilent, USA). Synthesis of cDNA was performed using SuperScript III First-strand (Invitrogen, USA). Quantitative real-time PCR using cDNA was 530 531 performed using KAPA SYBR fast qPCR master mix kit (Sigma Aldrich, USA) and Applied Biosystems StepOne Plus Real-Time PCR system. The expression of *ebpC*, *ebpR*, *srtA*, *srtC*, 532 argR3 and gyrA were analysed using primer pairs listed in Table S2. For each primer set, a 533 standard curve was established using genomic DNA from E. faecalis OG1RF. Normalized 534 concentrations of cDNA were used to determine the relative fold change in gene expression 535 as compared to E. faecalis OG1RF biofilm grown in TSBG. For RNA sequencing, ribosomal 536 RNA depletion was performed after RNA purification using Ribo-Zero[™] rRNA removal kit 537 (Illumina, USA). cDNA library synthesis was performed using NEBNext RNA First-strand 538 and NEBNext Ultra directional RNA Second-strand synthesis module (New England BioLab, 539 US). Transcriptome library preparation was performed using 300bp paired end Illumina 540 sequencing. 541

542

Pilus Extraction and Purification. Cell surface protein extracts from biofilms were prepared
as described previously ⁵ with minor modifications. Biofilms were grown cells dislodged as
described above for TEM. Dislodged biofilm cells were centrifuge at 3300 g for 4 minutes at
15°C, washed with Tris buffer (10 mM Tris-HCl pH 8, 1 mM EDTA, 1 mM DTT) and
suspended in protoplast buffer with PierceTM protease inhibitors (Thermo Scientific, USA).

Mutanolysin from Streptomyces globisporus ATCC 21553 (Sigma Aldrich, USA) and 548 benzonase nuclease (Sigma Aldrich, USA) were added and incubated at 37°C for 6 hours 549 with shaking (200 rpm). Following incubation, biofilm cells were centrifuged at 3300 g for 4 550 551 minutes, 15°C to obtain the supernatant. Supernatants were filtered through a 0.45µm Supor® membrane (Sigma Aldrich, USA) and loaded into Corning Spin-X UF concentrators (MWCO 552 100kDa) (Sigma Aldrich, USA), centrifuged for 20 minutes, 15°C at 6000 g, and dialyzed 553 using Tris buffer using Spectra/Por® Float-A-Lyzer® G2 dialysis device (MWCO 300kDa) 554 (Spectrum Labs, USA). Pilus extracts were collected, quantified using Nanodrop 2000 555 556 Spectrophotometer (Thermofisher, USA), and normalized to 5 µg per sample. Samples were mixed with an equal volume of NuPAGE® Tris-glycine native sample buffer (Novex®) and 557 loaded on to NuPAGE[™] 3-8% Tris-acetate gel (Thermofisher, USA). Gel blots were run at 558 150 V for 3 hours. Western blotting was performed as described previously ⁶ with minor 559 modifications. Membranes were blocked in 0.05% v/v Tween-3% v/v bovine serum albumin-560 PBS (Sigma Aldrich, USA) overnight at 4 °C and washed twice with 0.05% v/v Tween 561 (Sigma Aldrich, USA)-PBS prior to incubation with primary and secondary antibodies, and 562 prior to incubation with detection substrate. Primary antibody (guinea pig Anti-EbpC⁴⁵or 563 rabbit Anti-SecA⁶) diluted 1:1500, and secondary antibody (IgG guinea pig or rabbit 564 conjugated horseradish peroxidase) diluted 1:4000 were used. Protein was detected using 565 SuperSignal® west femto maximum sensitivity substrate kit (Thermo Scientific, USA). 566 567

Inductive-Coupled Plasma Mass Spectrometry (ICP-MS). Pilus extracts, normalized to
5µg per sample, were run under native condition as described above. Using the western blot
prepared gel as a reference, a separate identical NuPAGETM Tris-acetate gel (Thermofisher,
USA) was cut to isolate pilus extract ladder above a molecular weight of 100 kDa. At a ratio
of 2:1, 70% nitric acid (Sigma Aldrich, USA) and 30% hydrogen peroxide (Sigma Aldrich,

573	USA) was added to the excised gel slice containing the pilus protein, and left under room
574	temperature for 3 days to allow complete digestion. The digested samples were diluted with
575	LC-MS grade water and filtered using 0.2 μ m membrane, prior to analysis using ICP-MS.
576	Analysis of trace metals in samples was performed using ICP-MS model Elan-DRCe,
577	Meinhard Nebulizer model TR-30-C3 (Perkin Elmer; Model: N8122006 (Elan Standard
578	Torch)).
579	
580	Electrochemical Assay and Analysis. Screen printed electrodes (SPE) (model DRP-C110;

581 DropSens, Spain) consisting of a 4 mm diameter carbon working electrode, carbon counter electrode, and a Ag pseudo-reference electrode were controlled by a multichannel 582 potentiostat (VSP, Bio-Logic, France) in an electrochemical cell of 9 mL working volume 583 sealed with a Teflon cap. Chronoamperometry was performed as previously described with 584 minor modifications²¹. All electrochemical experiments were conducted at 37°C in TSBG 585 medium supplemented with 1 mM FeCl₃ unless otherwise stated. 586 587 Ferrozine assay of ferric iron reductase activity. E. faecalis cells were normalized to 588 OD_{600nm} 0.7, diluted 1:200 in PBS and resuspended in TSBG supplemented with 2 mM iron 589 (III) chloride as previously described 21 and then supplemented with 0.5 mM ferrozine. 590 Experiments were performed as previously described with minor modification ²⁶. OD592_{nm} 591 592 measurements were made every 2 mins for up to 7 hours on E. faecalis biofilms grown

statically. Corresponding change in optical density measurements correlates with colorchange due to ferrous iron binding to ferrozine after ferric iron is reduced to ferrous iron.

595

Mouse Gastrointestinal Tract (GI) Infection Model. Three week old male C57BL/6NTac
mice were administered ampicillin (VWR, USA) in their drinking water (1 g/L) for 5 days as

previously described ^{53,55}. Mice were then given one day of recovery from antibiotic 598 treatment prior to administration of approximately 1-5 x 10^8 CFU/ml *E. faecalis* (OD_{600nm} 599 (0.5) in the drinking water for 3 days as previously described ⁶⁶. Before and after infection, 600 mice were monitored for signs of disease and weight loss. All animal experiments were 601 approved and performed in compliance with the Nanyang Technological University 602 Institutional Animal Care and Use Committee (IACUC). For dietary manipulation, 603 604 customized synthesized diets (C1038 iron deficient diet with 200 mg/kg ferric chloride as control diet, C1038 iron deficient diet with 2000 mg/kg ferric chloride as high iron diet) 605 606 (Altromin, Germany) were given to mice prior to infection and throughout infection. Mice were kept on customized diets for 3 weeks before administrating ampicillin as previously 607 described with minor modification in the synthesized diet ^{67,68}. At the indicated timepoints, 608 609 the small intestine, colon, and cecum were harvested. Tissue samples were homogenised in PBS, serial diluted in PBS, and spot-plated on BHI agar with 10 mg/L colistin, 10 mg/L 610 nalidixic acid, 100 mg/L rifampicin, 25 mg/L fusidic acid for CFU enumeration. All 611 antibiotics were obtained from Sigma Aldrich, USA. 612 613

614 Authors Contributions

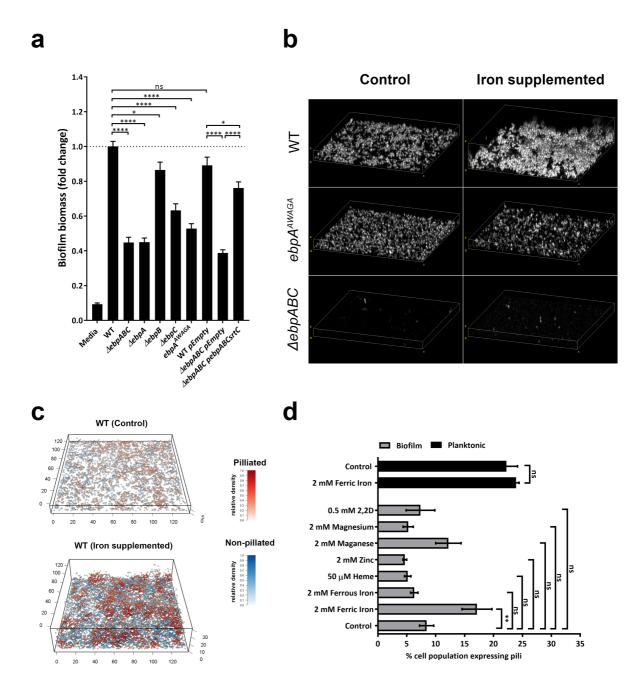
L.N.L and K.A.K. conceptualized the study. L.N.L, E.M and K.A.K designed the 615 experiments, analyzed the data and prepared the manuscript. L.N.L performed biofilm 616 617 experiments, immuno-fluorescence assays, ICP-MS, and analyzed the data. A.M analyzed the confocal data and generated 3D reconstruction models. LN.L, P.M.L., Z.S.C, and E.M 618 performed the electrochemistry experiments and analyzed the data. L.N.L and J.J.W 619 performed mouse GI experiments and analyzed the data. L.N.L prepared the RNA samples 620 for RNA sequencing and K.K.L.C analyzed the data. J.P. and B.H. performed modeling 621 experiments. All authors reviewed the manuscript. 622

623

624 Acknowledgments

- 625 This work was supported by the National Research Foundation and Ministry of Education
- 626 Singapore under its Research Centre of Excellence Programme and by the Ministry of
- 627 Education Singapore under its Tier 2 programme (MOE2014-T2-2-124). Artur Matysik was
- 628 supported by the National Medical Research Council under its Clinical Basic Research Grant
- 629 (NMRC/CBRG/0086/2015). We thank Wandy Betty (Washington University, St Louis,
- 630 USA) for performing TEM, Hailyn V. Nielsen and Scott Hultgren (Washington University,
- 631 St Louis, USA) for providing the pilus mutants, and Gary Dunny (University of Minnesota)
- 632 for providing transposon mutants. Finally, we thank Sam Light and Dan Portnoy (University
- of California, Berkeley) for sharing unpublished data and for critical discussions of the
- 634 manuscript.
- 635

636 **References**


- Ch'ng, J. H., Chong, K. K. L., Lam, L. N., Wong, J. J. & Kline, K. A. Biofilm-associated infection
 by enterococci. *Nature reviews. Microbiology* 17, 82-94, doi:10.1038/s41579-018-0107-z
 (2019).
- 640 2 O'Driscoll, T. & Crank, C. W. Vancomycin-resistant enterococcal infections: epidemiology,
 641 clinical manifestations, and optimal management. *Infection and drug resistance* 8, 217-230,
 642 doi:10.2147/idr.s54125 (2015).
- Nallapareddy, S. R. *et al.* Conservation of Ebp-type pilus genes among Enterococci and
 demonstration of their role in adherence of *Enterococcus faecalis* to human platelets. *Infection and immunity* **79**, 2911-2920, doi:10.1128/iai.00039-11 (2011).
- A Nallapareddy, S. R., Singh, K. V., Sillanpaa, J., Zhao, M. & Murray, B. E. Relative contributions
 of Ebp Pili and the collagen adhesin ace to host extracellular matrix protein adherence and
 experimental urinary tract infection by *Enterococcus faecalis* OG1RF. *Infection and immunity*79, 2901-2910, doi:10.1128/iai.00038-11 (2011).
- Nallapareddy, S. R. *et al.* Endocarditis and biofilm-associated pili of *Enterococcus faecalis*.
 The Journal of clinical investigation **116**, 2799-2807, doi:10.1172/jci29021 (2006).
- 6 Nielsen, H. V. *et al.* Pilin and sortase residues critical for endocarditis- and biofilm-associated
 pilus biogenesis in *Enterococcus faecalis*. *Journal of bacteriology* **195**, 4484-4495,
 doi:10.1128/jb.00451-13 (2013).
- Singh, K. V., Nallapareddy, S. R. & Murray, B. E. Importance of the ebp (endocarditis- and biofilm-associated pilus) locus in the pathogenesis of *Enterococcus faecalis* ascending urinary tract infection. *J Infect Dis* **195**, 1671-1677 (2007).

658	8	Sillanpää, J., Xu, Y., Nallapareddy, S. R., Murray, B. E. & Höök, M. A family of putative
659		MSCRAMMs from Enterococcus faecalis. Microbiology 150, 2069-2078,
660		doi:doi:10.1099/mic.0.27074-0 (2004).
661	9	Kline, K. A. et al. Mechanism for sortase localization and the role of sortase localization in
662		efficient pilus assembly in Enterococcus faecalis. Journal of bacteriology 191, 3237-3247,
663		doi:10.1128/JB.01837-08 (2009).
664	10	Plow, E. F., Haas, T. A., Zhang, L., Loftus, J. & Smith, J. W. Ligand Binding to Integrins. <i>Journal</i>
665		of Biological Chemistry 275 , 21785-21788, doi:10.1074/jbc.R000003200 (2000).
666	11	Bergelson, J. M. & Hemler, M. E. Integrin-ligand binding. Do integrins use a 'MIDAS touch' to
667		grasp an Asp? <i>Current biology : CB</i> 5 , 615-617 (1995).
668	12	Whittaker, C. A. & Hynes, R. O. Distribution and evolution of von Willebrand/integrin A
669		domains: widely dispersed domains with roles in cell adhesion and elsewhere. Molecular
670		<i>biology of the cell</i> 13 , 3369-3387, doi:10.1091/mbc.e02-05-0259 (2002).
671	13	Nielsen, H. V. et al. The Metal Ion-Dependent Adhesion Site Motif of the Enterococcus
672		faecalis EbpA Pilin Mediates Pilus Function in Catheter-Associated Urinary Tract Infection.
673		<i>mBio</i> 3 , e00177-00112, doi:10.1128/mBio.00177-12 (2012).
674	14	Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies
675		block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder
676		infection in mice. Science translational medicine 6, 254ra127-254ra127,
677		doi:10.1126/scitranslmed.3009384 (2014).
678	15	Schembri, M. A., Lo, A. W. & Ulett, G. C. Blocking the 'MIDAS' touch of <i>Enterococcus faecalis</i> .
679		Annals of translational medicine 3 , S3-S3, doi:10.3978/j.issn.2305-5839.2015.03.32 (2015).
680	16	Proft, T. & Baker, E. N. Pili in Gram-negative and Gram-positive bacteria - structure, assembly
681		and their role in disease. <i>Cellular and molecular life sciences : CMLS</i> 66, 613-635,
682		doi:10.1007/s00018-008-8477-4 (2009).
683	17	Danne, C. & Dramsi, S. Pili of Gram-positive bacteria: roles in host colonization. <i>Research in</i>
684	10	<i>Microbiology</i> 163 , 645-658, doi: <u>https://doi.org/10.1016/j.resmic.2012.10.012</u> (2012).
685	18	Konto-Ghiorghi, Y. <i>et al.</i> Dual Role for Pilus in Adherence to Epithelial Cells and Biofilm
686		Formation in <i>Streptococcus agalactiae</i> . <i>PLOS Pathogens</i> 5 , e1000422,
687 688	10	doi:10.1371/journal.ppat.1000422 (2009).
688	19	Izore, T. <i>et al.</i> Structural basis of host cell recognition by the pilus adhesin from
689 690		Streptococcus pneumoniae. Structure (London, England : 1993) 18, 106-115,
690 691	20	doi:10.1016/j.str.2009.10.019 (2010).
692	20	Becherelli, M. <i>et al.</i> The ancillary protein 1 of <i>Streptococcus pyogenes</i> FCT-1 pili mediates cell adhesion and biofilm formation through heterophilic as well as homophilic interactions.
693		<i>Molecular microbiology</i> 83 , 1035-1047, doi:10.1111/j.1365-2958.2012.07987.x (2012).
694	21	Keogh, D. <i>et al.</i> Extracellular Electron Transfer Powers <i>Enterococcus faecalis</i> Biofilm
695	21	Metabolism. <i>mBio</i> 9 , doi:10.1128/mBio.00626-17 (2018).
696	22	Shi, L. <i>et al.</i> Extracellular electron transfer mechanisms between microorganisms and
697	22	minerals. <i>Nature reviews. Microbiology</i> 14 , 651-662, doi:10.1038/nrmicro.2016.93 (2016).
698	23	Weber, K. A., Achenbach, L. A. & Coates, J. D. Microorganisms pumping iron: anaerobic
699	25	microbial iron oxidation and reduction. <i>Nature reviews. Microbiology</i> 4 , 752-764,
700		doi:10.1038/nrmicro1490 (2006).
701	24	Sure, S. K., Ackland, L. M., Torriero, A. A., Adholeya, A. & Kochar, M. Microbial Nanowires: An
702	<u>-</u> 7	Electrifying Tale. <i>Microbiology</i> , doi:10.1099/mic.0.000382 (2016).
702	25	Wang, F. <i>et al.</i> Structure of Microbial Nanowires Reveals Stacked Hemes that Transport
704	20	Electrons over Micrometers. <i>Cell</i> 177 , 361-369.e310, doi:10.1016/j.cell.2019.03.029 (2019).
705	26	Light, S. H. <i>et al.</i> A flavin-based extracellular electron transfer mechanism in diverse Gram-
706		positive bacteria. <i>Nature</i> 562 , 140-144, doi:10.1038/s41586-018-0498-z (2018).

707 Pankratova, G., Leech, D., Gorton, L. & Hederstedt, L. Extracellular Electron Transfer by the 27 708 Gram-Positive Bacterium Enterococcus faecalis. Biochemistry 57, 4597-4603, 709 doi:10.1021/acs.biochem.8b00600 (2018). 710 28 Ramsey, M., Hartke, A. & Huycke, M. in Enterococci: From Commensals to Leading Causes of 711 Drug Resistant Infection (eds M. S. Gilmore, D. B. Clewell, Y. Ike, & N. Shankar) 712 (Massachusetts Eye and Ear Infirmary, 2014). 713 29 Sillanpaa, J. et al. Contribution of individual Ebp Pilus subunits of Enterococcus faecalis OG1RF to pilus biogenesis, biofilm formation and urinary tract infection. PloS one 8, e68813, 714 715 doi:10.1371/journal.pone.0068813 (2013). 716 30 Krishnan, V. et al. Structure of Streptococcus agalactiae tip pilin GBS104: a model for GBS pili 717 assembly and host interactions. Acta crystallographica. Section D, Biological crystallography 69, 1073-1089, doi:10.1107/S0907444913004642 (2013). 718 719 31 Shimaoka, M., Takagi, J. & Springer, T. A. Conformational regulation of integrin structure and 720 function. Annual review of biophysics and biomolecular structure 31, 485-516, doi:10.1146/annurev.biophys.31.101101.140922 (2002). 721 722 32 Kristich, C. J. et al. Development and use of an efficient system for random mariner 723 transposon mutagenesis to identify novel genetic determinants of biofilm formation in the 724 core Enterococcus faecalis genome. Applied and environmental microbiology 74, 3377-3386, 725 doi:10.1128/aem.02665-07 (2008). 726 Dale, J. L. et al. Comprehensive Functional Analysis of the Enterococcus faecalis Core 33 727 Genome Using an Ordered, Sequence-Defined Collection of Insertional Mutations in Strain 728 OG1RF. mSystems 3, doi:10.1128/mSystems.00062-18 (2018). 729 Logan, B. E., Rossi, R., Ragab, A. a. & Saikaly, P. E. Electroactive microorganisms in 34 730 bioelectrochemical systems. Nature Reviews Microbiology, doi:10.1038/s41579-019-0173-x 731 (2019). 732 35 Logan, B. E. Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews 733 *Microbiology* **7**, 375, doi:10.1038/nrmicro2113 (2009). 734 36 Rana, N. F. et al. Redox balance via lactate dehydrogenase is important for multiple stress 735 resistance and virulence in Enterococcus faecalis. Infection and immunity 81, 2662-2668, 736 doi:10.1128/IAI.01299-12 (2013). 737 37 Huycke, M. M. et al. Extracellular superoxide production by Enterococcus faecalis requires 738 demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Molecular 739 microbiology 42, 729-740 (2001). 740 38 Vitreschak, A. G., Rodionov, D. A., Mironov, A. A. & Gelfand, M. S. Regulation of riboflavin 741 biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. 742 Nucleic acids research **30**, 3141-3151 (2002). 743 39 Zhang, E., Cai, Y., Luo, Y. & Piao, Z. Riboflavin-shuttled extracellular electron transfer from 744 Enterococcus faecalis to electrodes in microbial fuel cells. Canadian journal of microbiology 745 **60**, 753-759, doi:10.1139/cjm-2014-0389 (2014). 746 40 Byappanahalli, M. N., Nevers, M. B., Korajkic, A., Staley, Z. R. & Harwood, V. J. Enterococci in 747 the environment. Microbiology and molecular biology reviews : MMBR 76, 685-706, 748 doi:10.1128/MMBR.00023-12 (2012). Benito, P. & Miller, D. Iron absorption and bioavailability: An updated review. Nutrition 749 41 750 *Research* **18**, 581-603, doi:https://doi.org/10.1016/S0271-5317(98)00044-X (1998). 751 42 Saunders, S. H. & Newman, D. K. Extracellular Electron Transfer Transcends Microbe-Mineral 752 Interactions. Cell Host & Microbe 24, 611-613, 753 doi:https://doi.org/10.1016/j.chom.2018.10.018 (2018). 754 43 Guiton, P. S. et al. Contribution of autolysin and Sortase a during Enterococcus faecalis DNA-755 dependent biofilm development. Infection and immunity 77, 3626-3638, 756 doi:10.1128/iai.00219-09 (2009).

757	44	Thomas, V. C., Thurlow, L. R., Boyle, D. & Hancock, L. E. Regulation of autolysis-dependent
758		extracellular DNA release by <i>Enterococcus faecalis</i> extracellular proteases influences biofilm
759	45	development. <i>Journal of bacteriology</i> 190 , 5690-5698, doi:10.1128/jb.00314-08 (2008).
760	45	Afonina, I., Lim, X. N., Tan, R. & Kline, K. A. Planktonic Interference and Biofilm Alliance
761		between Aggregation Substance and Endocarditis- and Biofilm-Associated Pili in
762	46	Enterococcus faecalis. Journal of bacteriology 200 , doi:10.1128/jb.00361-18 (2018).
763	46	Bourgogne, A., Thomson, L. C. & Murray, B. E. Bicarbonate enhances expression of the
764		endocarditis and biofilm associated pilus locus, ebpR-ebpABC, in <i>Enterococcus faecalis</i> . BMC
765	47	<i>Microbiol</i> 10 , 17, doi:10.1186/1471-2180-10-17 (2010).
766	47	Bourgogne, A. <i>et al.</i> EbpR is important for biofilm formation by activating expression of the
767		endocarditis and biofilm-associated pilus operon (ebpABC) of <i>Enterococcus faecalis</i> OG1RF.
768	40	Journal of bacteriology 189 , 6490-6493, doi:10.1128/JB.00594-07 (2007).
769	48	Manias, D. A. & Dunny, G. M. Expression of Adhesive Pili and the Collagen-Binding Adhesin
770		Ace Is Activated by ArgR Family Transcription Factors in <i>Enterococcus faecalis</i> . Journal of
771	40	<i>bacteriology</i> 200 , doi:10.1128/jb.00269-18 (2018).
772	49	Bourgogne, A., Hilsenbeck, S. G., Dunny, G. M. & Murray, B. E. Comparison of OG1RF and an
773		Isogenic fsrB Deletion Mutant by Transcriptional Analysis: the Fsr System of <i>Enterococcus</i>
774		faecalis Is More than the Activator of Gelatinase and Serine Protease. Journal of bacteriology
775	50	188 , 2875-2884, doi:10.1128/JB.188.8.2875-2884.2006 (2006).
776 777	50	Gao, P. et al. Enterococcus faecalis rnjB is required for pilin gene expression and biofilm
777	F 1	formation. <i>Journal of bacteriology</i> 192 , 5489-5498, doi:10.1128/jb.00725-10 (2010).
778 770	51	Gao, P. <i>et al.</i> Functional studies of <i>E. faecalis</i> RNase J2 and its role in virulence and fitness.
779	E 2	PloS one 12 , e0175212, doi:10.1371/journal.pone.0175212 (2017).
780 781	52	Glasauer, S., Langley, S. & Beveridge, T. J. Intracellular iron minerals in a dissimilatory iron- reducing bacterium. <i>Science (New York, N.Y.)</i> 295 , 117-119, doi:10.1126/science.1066577
781		(2002).
783	53	Ubeda, C. <i>et al.</i> Vancomycin-resistant <i>Enterococcus</i> domination of intestinal microbiota is
783 784	22	enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. The
785		Journal of clinical investigation 120 , 4332-4341, doi:10.1172/JCl43918 (2010).
786	54	Caballero, S. <i>et al.</i> Distinct but Spatially Overlapping Intestinal Niches for Vancomycin-
787	34	Resistant Enterococcus faecium and Carbapenem-Resistant Klebsiella pneumoniae. PLOS
788		Pathogens 11 , e1005132, doi:10.1371/journal.ppat.1005132 (2015).
789	55	Caballero, S. <i>et al.</i> Cooperating Commensals Restore Colonization Resistance to Vancomycin-
790	55	Resistant Enterococcus faecium. Cell Host Microbe 21 , 592-602.e594,
791		doi:10.1016/j.chom.2017.04.002 (2017).
792	56	La Rosa, S. L. <i>et al.</i> In vivo assessment of growth and virulence gene expression during
793		commensal and pathogenic lifestyles of luxABCDE-tagged <i>Enterococcus faecalis</i> strains in
794		murine gastrointestinal and intravenous infection models. Applied and environmental
795		microbiology 79 , 3986-3997, doi:10.1128/aem.00831-13 (2013).
796	57	Riboulet, E. <i>et al.</i> Relationships between oxidative stress response and virulence in
797		Enterococcus faecalis. Journal of molecular microbiology and biotechnology 13 , 140-146,
798		doi:10.1159/000103605 (2007).
799	58	Aktan, Y., Tan, S. & Icgen, B. Characterization of lead-resistant river isolate Enterococcus
800		faecalis and assessment of its multiple metal and antibiotic resistance. Vol. 185 (2012).
801	59	Colomer-Winter, C., Gaca, A. O. & Lemos, J. A. Association of Metal Homeostasis and
802		(p)ppGpp Regulation in the Pathophysiology of <i>Enterococcus faecalis</i> . <i>Infection and</i>
803		<i>immunity</i> 85 , doi:10.1128/iai.00260-17 (2017).
804	60	Karp, P. D. <i>et al.</i> The BioCyc collection of microbial genomes and metabolic pathways.
805		Briefings in bioinformatics, doi:10.1093/bib/bbx085 (2017).

806	61	Kline, K. A. et al. Mechanism for Sortase Localization and the Role of Sortase Localization in
807		Efficient Pilus Assembly in Enterococcus faecalis. Journal of bacteriology 191 , 3237-3247,
808		doi:10.1128/jb.01837-08 (2009).
809	62	Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and
810		complexes. <i>Nucleic Acids Res</i> 46 , W296-w303, doi:10.1093/nar/gky427 (2018).
811	63	Winn, M. D. <i>et al.</i> Overview of the CCP4 suite and current developments. <i>Acta Crystallogr D</i>
812		<i>Biol Crystallogr</i> 67 , 235-242, doi:10.1107/s0907444910045749 (2011).
813	64	Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D
814		Biol Crystallogr 60 , 2126-2132, doi:10.1107/s0907444904019158 (2004).
815	65	L DeLano, W. The PyMOL Molecular Graphics System (2002) DeLano Scientific, Palo Alto, CA,
816		USA. http://www.pymol.org. (2002).
817	66	Banla, I. L. et al. Modulators of Enterococcus faecalis Cell Envelope Integrity and
818		Antimicrobial Resistance Influence Stable Colonization of the Mammalian Gastrointestinal
819		Tract. Infection and immunity 86 , e00381-00317, doi:10.1128/IAI.00381-17 (2017).
820	67	Zackular, J. P. et al. Dietary zinc alters the microbiota and decreases resistance to Clostridium
821		<i>difficile infection. Nat Med</i> 22 , 1330-1334, doi:10.1038/nm.4174 (2016).
822	68	Juttukonda, L. J. et al. Dietary Manganese Promotes Staphylococcal Infection of the Heart.
823		<i>Cell Host Microbe</i> 22 , 531-542.e538, doi:10.1016/j.chom.2017.08.009 (2017).
824		
825		
826		
827		
828		
829		
830		
831		
022		
832		

833

Figure 1. Contribution of pilus to iron mediated *E. faecalis* biofilm growth. (a) *E.*

faecalis biofilm biomass quantification grown for 120 hours using crystal violet staining.
N=9 repeated on non-consecutive days. (b) Volume viewer of CSLM images of *E. faecalis*biofilm at 24 hr for control (40% TSBG) and iron-supplemented (40% TSBG, 0.2 mM FeCl₃)
at 63x magnification. *E. faecalis* cells are labeled with antibody against Group D antigen. (c)
Overlap of cell aggregation density map with the piliated cell population density map using
3D reconstruction of CLSM z-stack images of iron-supplemented *E. faecalis* biofilm

841	compared with control. N=3, repeated on non-consecutive days. (d) Quantification of
842	immuno-fluorescent labelled anti-EbpC E. faecalis cells from 6-well microtiter plate 24 hour
843	biofilm or planktonic culture grown at 37 °C in control and metal supplemented media. N>3.
844	Statistical significance was determined by two-way ANOVA. Error bars represent standard
845	error of the mean (SEM).
846	
847	
848	
849	
850	
851	
852	
853	
854	
855	
856	
857	
858	
859	
860	
861	
862	
863	
864	
865	



Figure 2. Evidences for EbpA-iron interaction. (a) Representative immunofluorescent 867 images from 24 hour *E. faecalis* biofilm (wild type, $\Delta ebpABC$ and $ebpA^{AWAGA}$) labeled with 868 EbpC antibody-conjugated fluorescent probe, grown from 6-well microtiter plate biofilm in 869 the presence of iron, N=3. (b) ICP-MS analysis of iron (ppb) from pilus preps isolated under 870 native condition. N=6. Statistical analysis is performed using two-way ANOVA Fisher LSD 871 test. Error bars represent SEM. Black bar indicates 500nm. (c) Superimposition of EbpA 872 873 structural model (N177-P620) (blue) with that of the S. agalactiae GBS104 (grey) and S. pneumoniae RrgA (pink). In agreement with other pilin adhesins, EbpA tip folds into a 874 vWFA domain comprising of a 5 stranded β -sheet surrounded by 7 α -helices. The MIDAS 875 motif is located at the N-terminus of the β -sheet. Only a partial model was obtained for the 2 876 extended arms of this domain. The EbpA tip is then followed by an IgG fold domain. (d) 877 Closeup view of the superimposition of the MIDAS motif from EbpA (blue), GBS104 (grey) 878 and RrgA (pink) showing conservation of D275, S277, S279, T350 and D378 residues (EbpA 879 numbering). Bound Mg²⁺ ions (grey/magenta) in GBS104 and RrgA and modelled 880 Fe^{3+} (orange) in EbpA are shown as spheres. (e) The Fe^{3+} is coordinated by the EbpA MIDAS 881 motif by ~2Å direct interactions with S277, S279, D378 and a water mediated interaction 882 with D275 along with interactions with two additional water molecules (water molecules 883 shown as blue spheres). Upon a closed to open conformational change, bonding could shift 884 from D378 to T350. 885 886 887

- 888
- 889
- 890

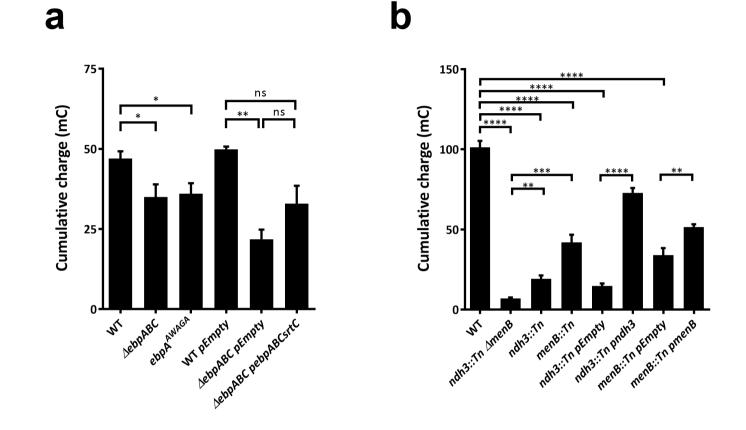
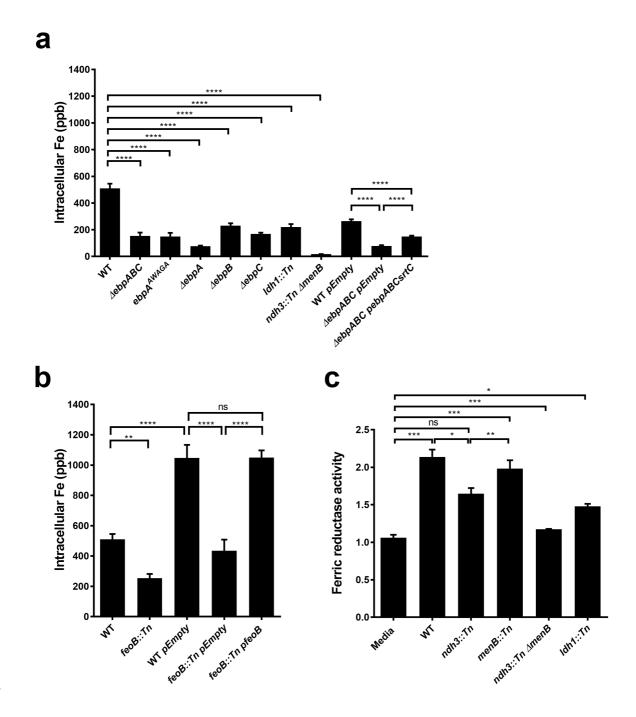
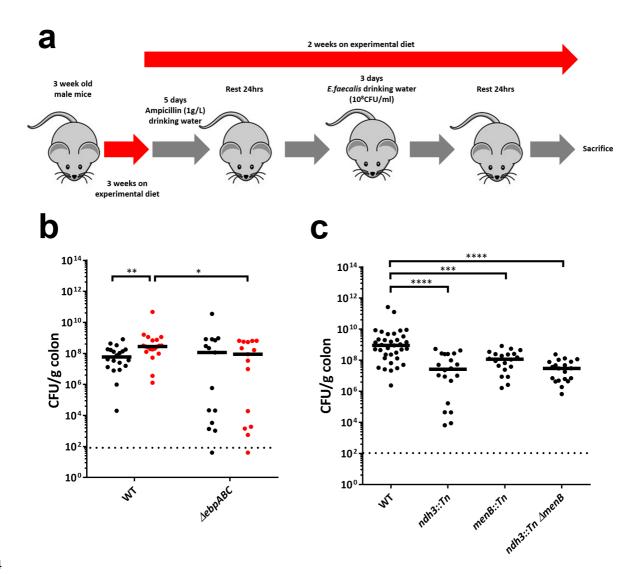
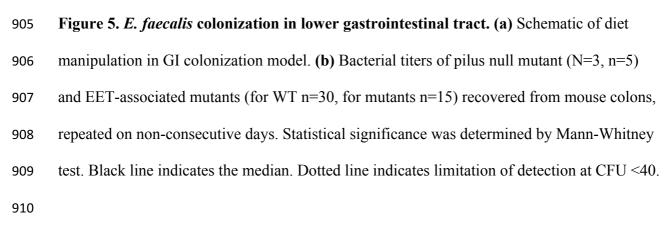
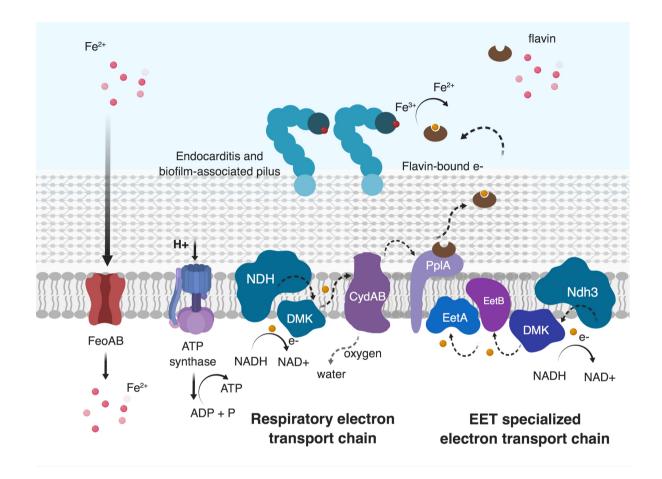



Figure 3. Extracellular electron transfer in *E. faecalis* biofilm. (a) Cumulative charge production (over 20 hours) in *E. faecalis* pilin mutants grown in the presence of 0.5 mM iron and (b) EET-associated mutants grown in the presence of 2 mM iron on a screen-printed carbon minielectrode for 20 hours in a closed static system at 37° C. Experiments were repeated on non-consecutive days, N>3. Statistical analysis is performed using one-way ANOVA with Bonferroni multiple comparison test. Error bar represents standard error margin (SEM).


897


898 Figure 4: Intracellular iron accumulation is dependent on the ability for extracellular


899 **ferric iron reduction. (a-b)** ICP-MS analysis of intracellular iron (ppb) in *E. faecalis* biofilm

- 901 activity by *E. faecalis*. Statistical significance was determined by one-way ANOVA. Error
- 902 bars represent standard error margin (SEM).

⁹⁰⁰ cells grown in iron-supplemented media. N=9. (c) Quantification of ferric iron reduction

915 Figure 6. Model for the role of iron in *E. faecalis* biofilm. Biofilm growth in excess iron induces expression of the genes encoding the sortase-

- assembled Ebp, which in turn associate with iron via the MIDAS motif of the EbpA tip adhesin. EET is dependent on both DMK in the electron
 transport chain, as well as a specialized flavin-associated respiratory chain, leading to reduction of extracellular iron and FeoB-mediated uptake
- 918 of reduced free ferrous iron.

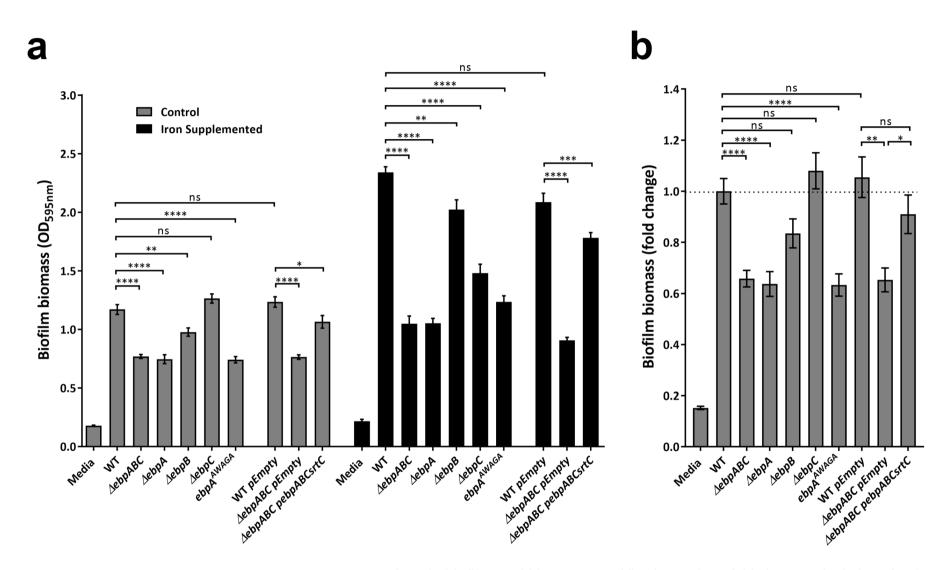
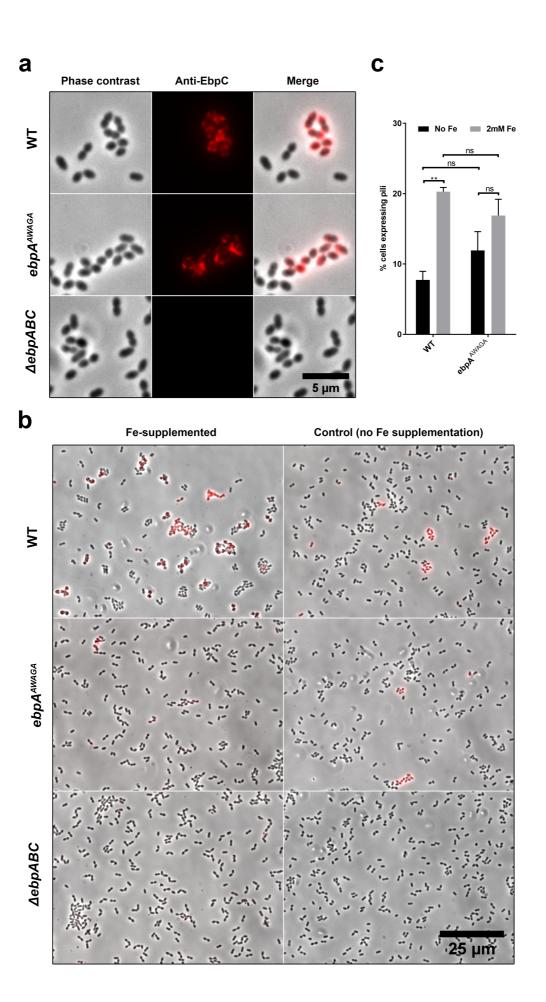
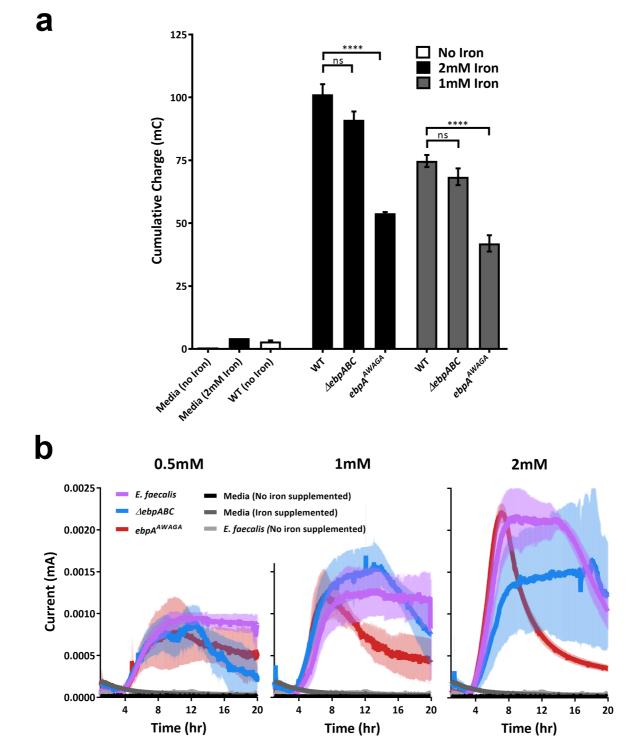
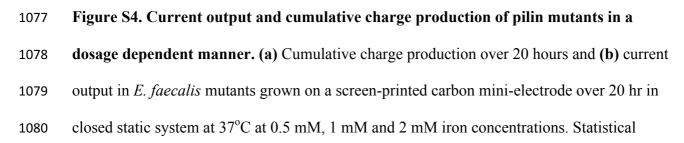



Figure S1. Pili contribution to biofilm formation. (a) *E. faecalis* biofilm total biomass quantification and (b) fold change calculations for the
same data shown in Fig 1A and Fig S1A after growth for 120 hours grown in non-supplemented and iron-supplemented media in 96-well

922	microtiter plate as measured by crystal violet staining. N=9 repeated on non-consecutive days. Statistical significance was determined by two-
923	way ANOVA. Error bars represent the standard error of the mean (SEM).
924	
925	
926	
927	
928	
929	
930	
931	
932	
933	
934	
935	
936	
937	
938	

Figure S2. Antibody specificity against cell surface expressed pili. Representative immunofluorescent images of *E. faecalis* and pilus mutants (a) cropped and (b) at original 63x magnification from biofilm grown in 6-well microtiter plates for 24 hours at 37 degrees in non-supplemented media or both non-supplemented and iron-supplemented media. N=6, with 5 images per biological replicate, capturing approximately 100-300 cells per images, repeated on non-consecutive days. (c) Quantification of immuno-fluorescent labelled anti-EbpC E. faecalis cells from 6-well microtiter plate 24hr biofilm grown at 37 degrees in control and metal supplemented media. Statistical significance was determined by two-way ANOVA with Bonferroni multiple comparison test. Error bars represent the standard error of the mean (SEM).


966			
967	EbpA	MITDENDKTNINIELNLLNQTEQPLQREIQLKNAQFMDTAVIEKDGYSYQVTNGTLYLTL	60
968	GBS104	MKKRQKIWRGLSVTLLILSQIPFGI	25
969	RrgA	TAFSSI	34
970		:*::: *: :	
971			
972	EbpA	DAQVKKPVQLSLAVEQSSLQTAQPPKLLYE-NNEYDVSVTSEKITVEDSAKES	112
973	GBS104	LVQGETQDTNQALGKVIVKKTGDNATPLGKATFVLKNDNDKSETSHE-TVEGSGEATFEN	84
974	RrgA	VALAETPETSPAIGKVVIKETGEGGALLGDAVFELKNNTDGTTVSQR-TEAQTGEAIFSN	93
975			
976			
977	EbpA	TEPEKITVPENTKETNKNDSAPEKTEQPTATEEVTNPFAEARMAPATLRANLALP	167
978	GBS104	IKPGDYTLREETAPIGYKKTDKTWKVKVADNGATIIEGMDADKAEKRKE	133
979	RrgA	IKPGTYTLTEAQPPVGYKPSTKQWTVEVEKNGRTTVQGEQVENREE	139
980		:* *: * : : * : .*	
981			
982	EbpA	LIAPQYTTDNSGTYPTANWQPTGNQNVLNHQGNKDGGAQWDGQTSWNGDPTNRTNSYTEY	227
983	GBS104	VLNAQYPKSAIYEDTKENYPLVNVEGSKVG-EQYKALNPINGKDGRREIAE	183
984	RrgA	ALSDQYPQTGTYPDVQTPYQIIKVDGSEKN-GQHKALNPNPYERVIPE	186
985		: ** ::. * .: ::: :*.: . **	
986			
987	EbpA	GGTGDQADYAIRKYARETTTPGLFDVYLNVRGNVQKEITPLDLVLVVDWSGSMNEN	283
988	GBS104	-GWLSKKITGVNDLDKNKYKIELTVEGKTTVETKELNQPLDVVVLL DN<mark>S</mark>MNNE	237
989	RrgA	-GTLSKRIYQVNNLDDNQYGIELTVSGKTVYEQKDKSVPLDVVILL DN<mark>S</mark>MSNI	240
990		* :: : . : * .* *:. :. ***:*::* * .**.:	
991			
992	EbpA	NRIGEVQKGVNRFVDTLADSGITNNINMGYVGYSSDGYN	322
993	GBS104	RANNSQRALKAGEAVEKLIDKITSNKDNRVALVTYASTIFDGTEATVSKGVADQNGK	294
994	RrgA	RNKNARRAERAGEATRSLIDKITSDSENRVALVTYASTIFDGTEFTVEKGVADKNGK	297
995			
996			
997	EbpA	PIKNITPSSTRGG	350


	GBS104	ALNDSVSWDYHKTTFTATTHNYSYLNLTNDANEVNILKSRIPKEAEHINGDRTLYQFGA	354
999	RrgA	RLNDSLFWNYDQTSFTTNTKDYSYLKLTNDKNDIVELKNKVPTEAEDHDGNRLMYQFGA	357
1000		.:::* *.*	
1001			
1002	EbpA	FTQKALRDAGDMLATPNGHKKVIVLLTDGVPTFSYKVSRVQTEADGRFYGTQFTNRQD	408
1003	GBS104	FTQKALMKANEILETQSSNARKKLIFHVTDGVPTMSYAINFNPY-ISTS-YQNQFN	408
1004	RrgA	FTQKALMKADEILTQQARQNSQKVIFHITDGVPTMSYPINFNHATFAPS-YQNQLN	412
1005		***** * .::* : :*:* :**:* :. * .*:.	
1006			
1007	EbpA	QPGSTSYISGSYNAPDQNNISKRINSTFIATIGEAMALKQRGIEIHGLGIQLQSDPRA	466
1008	GBS104	SFLNKIPDRSGILQEDFIINGDDYQIVKGDGESFKLFSD	447
1009	RrgA	AFFSKSPNKDGILLSDFITQATSGEHTIVRGDGQSYQMFTD	453
1010		···· · · · · · · · · · · · · · · · · ·	
1011			
1012	EbpA	NLSKQQVEDKMREMVSADENGDLYYESADYAPDISDYLAKKAVQISGTVVNGKVVDPIAE	526
1013	GBS104	RKVPVTGGTTQA	459
1014	RrgA	KTVYEKGAPA	463
1015		: * .*	
1016			
1017	EbpA	PFKYEPNTLSMKSVGPVQVQTLPEVSLTGATINSNEIYLGKGQEIQIHYQVRIQT	581
1018	GBS104	AYRVPQNQLSVMSNEGYAINSGYIYLYWRDYN-WVYPFDPKTKKVSA	505
1010			505
1019	RrgA	AFPVKPEKYSEMKAAGYAVIGDPINGGYIWLNWRESI-LAYPFNSNTA	510
1019	RrgA	AFPVKPEKYSEMKAAGYAVIGDPINGGYIWLNWRESI-LAYPFNSNTA	
	RrgA		
1020	RrgA EbpA		
1020 1021	-	: : * . ** *:* : * . :*	510
1020 1021 1022	EbpA	: : * . ** ** * : * . :*	510
1020 1021 1022 1023	EbpA GBS104	: : * . ** ** **. : * . :* ESENFKPDFWYQMNGRTTFQPLATAPEKVDFGVPSGKAPGVKLNVKKIWEEYDQDPT TKQIKTHGEPTTLYFNGN-IRPKGYDIFTVGIGVNGDPGATPLEAEKFMQSIS	510 638 557
1020 1021 1022 1023 1024	EbpA GBS104	: : * . ** ** **. : * . :* ESENFKPDFWYQMNGRTTFQPLATAPEKVDFGVPSGKAPGVKLNVKKIWEEYDQDPT TKQIKTHGEPTTLYFNGN-IRPKGYDIFTVGIGUNGDPGATPLEAEKFMQSIS KITNHGDPTRWYYNGN-IAPDGYDVFTVGIGINGDPGTDEATATSFMQSIS	510 638 557
1020 1021 1022 1023 1024 1025	EbpA GBS104	: : * . ** ** **. : * . :* ESENFKPDFWYQMNGRTTFQPLATAPEKVDFGVPSGKAPGVKLNVKKIWEEYDQDPT TKQIKTHGEPTTLYFNGN-IRPKGYDIFTVGIGUNGDPGATPLEAEKFMQSIS KITNHGDPTRWYYNGN-IAPDGYDVFTVGIGINGDPGTDEATATSFMQSIS	510 638 557
1020 1021 1022 1023 1024 1025 1026	EbpA GBS104 RrgA	: : * . * . ** **. * . : * . :*ESENFKPDFWYQMNGRTTFQPLATAPEKVDFGVPSGKAPGVKLNVKKIWEEYDQDPT TKQIKTHGEPTTLYFNGN-IRPKGYDIFTVGIGVNGDPGATPLEAEKFMQSISKITNHGDPTRWYYNGN-IAPDGYDVFTVGIGINGDPGTDEATATSFMQSIS . : .* *	510 638 557 560

1030		*: :* *. *: :: ::	
1031			
1032	EbpA	LPQYNNQGQAFNYQTTRELAVPGYSQEKIDDTTWKNTKQFKPLDLKVIKNSSSGEKN	755
1033	GBS104	EKHSIVDGNVTDPMGEMIEFQLKNGQSFTHDDYVLVGNDGSQLKN	630
1034	RrgA	EKKSIENGTITDPMGELIDLQLGTDGRFDPADYTLTANDGSRLEN	633
1035		:. * ::: . * * : ** :*	
1036			
1037	EbpA	LVGAVFELSGKNVQTTLVDNKDGSYSLPKDVRLQKGERYTLTEVKAPAGHELGKKTTWQI	815
1038	GBS104	GVALGGPNSDGGILKDVTVTYD	652
1039	RrgA	GQAVGGPQNDGGLLKNAKVLYD	655
1040		:.* : : ::.: *.	
1041			
1042	EbpA	EVNEQGKVSIDGQEVTTTNQVIPLEIENKFSSLPIRIRKYTMQNGKQVNLAEATFALQRK	875
1043	GBS104	KTSQTIKINHLNLGSGQKVVLTYDVRLK	680
1044	RrgA	TTEKRIRVTGLYLGTDEKVTLTYNVRLN	683
1045		:. *:: :::* *: ::::	
1046			
1047	EbpA	NAQGSYQTVATQKTDTAGLSYFKISEPGEYRMVEQSGPLGYDTLAGNYEFTVDKYGE	932
1048	GBS104	DNYISNKFYNTNNRTTLSPKSEKEPNTIRDFPIPKIR-	717
1049	RrgA	DEFVSNKFYDTNGRTTLHPKE-VEQNTVRDFPIPKIR-	719
1050		: : *:* : * . * . :* : *	
1051			
1052	EbpA	IHYAGKNIEENAPEWTLTHQNHLKPFDLTVHKKADNQTPLKGAKFRLTGPDTDIEL	988
1053	GBS104	DVREFPVLTISNQKKMGEVEFIKVNKDKHSESLLGAKFQLQIEK-DFSGY	766
1054	RrgA	DVRKYPEITISKEKKLGDIEFIKVNKNDK-KPLRGAVFSLQKQHPDYPDIYGA	771
1055		.: * *::::: .:: :* .: * ** * * . *	
1056			
1057	EbpA	PKDGKETDTFVFENLKPGKYVLTETFTPEGYQGLKEPIE-LIIREDGSVTID	1039
1058	GBS104	KQFVPEGSDVTTKNDGKIYFKALQDGNYKLYEISSPDGYIEVKTKPVVTFTIQNGEVTNL	826
1059	RrgA	IDQNGTYQNVRTGEDGKLTFKNLSDGKYRLFENSEPAGYKPVQNKPIVAFQIVNGEVRDV	831
1060		:: *: *. *:* * * * * *: :: :*.*	
1061			

1062	EbpA	GEKV-ADV	VLISGEKNNQITLDVTNQAKVPLPETGGIGRLWFYLIAISTFVIAGV	YL 1094
1063	GBS104	KADPNANKNQIG	GYLEGNG-KHLITNTPKRPPGVFPKTGGIGTIVYILVGSTFM-ILTI	CS 884
1064	RrgA	TSIV-PQDIPAG	GYEFTND-KHYITNEPIPPKREYPRTGGIGMLPFYLIGCMMM-GGVL	LY 888
1065		:	: :: : *.*** : : *:. : :	
1066				
1067	EbpA	FIRRPEGSV	1103	
1068	GBS104	FRRKQL	890	
1069	RrgA	TRKHP	893	
1070		::		
1071				
1072	Figure S3. Cl	ustal alignment	of EbpA homologs	
1073	Alignment of	f the EbpA seque	ence with S. agalactiae GBS104 (Q8E0S5) and S. pneumo	niae RrgA
1074	(A0A0H2UN	T6), showing con	servation of the EbpA MIDAS motif and associated meta	l binding

1075 residues.

- 1081 analysis is performed using one-way ANOVA with Bonferroni multiple comparison test,
- 1082 N>3. Error bars represent the standard error of the mean (SEM).

a Flavin-mediated electron transfer gene locus Listeria monocytogenes fmnA dmkA ndh2 ppIA eetA dmkB eetB Enterococcus faecalis OG1RF_RS12785 G1RF_RS12790 OG1RF_RS12795 OG1RF_RS12800 OG1RF_RS12805 **OG1RF RS12810 OG1RF RS12815** Menaquinone biosynthesis genes Enterococcus faecalis menB menE menF menD menC menH **OG1RF RS01805 OG1RF RS01800 OG1RF RS01810** OG1RF RS01815 OG1RF RS01820 OG1RF_RS01825 ment menD menC menF menE chorismate demethylmenaquinone (DMK) 4-dihvdroxy-2-naphthoic acid b С 150 150 *** **** Cumulative Charge (mC) Cumulative Charge (mC) 100 100 50 **50** OGIRT BLIBSIN Gener Ballbrin OGIRF BIZEDO:T OGIRF BS2805:IN OGIRF BS2810:Th OGIRF PS12815:IT OGIRF_BOLBOO:TI OGIRF POURSSIT OGIRF ROUEDO:Th OGIRF BOUEDS: IN

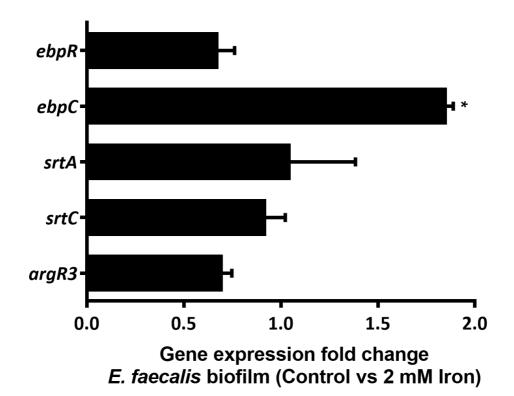

1106

Figure S5. Respiratory electron transport mechanisms in *E. faecalis*. (a) Gene homologs
of EET specialized respiratory electron transport chain and menaquinone biosynthesis genes
required for DMK. (b) Cumulative charge production over 20 hours by *E. faecalis* mutants of
EET specialized gene locus and menaquinone biosynthesis genes grown on a screen-printed
carbon mini-electrode over 20 hr in closed static system at 37°C at 2 mM iron concentration,

- 1112 N=3. Statistical analysis is performed using one-way ANOVA with Bonferroni multiple
- 1113 comparison test. Error bars represent the standard error of the mean (SEM).

- 111/

- ____

1139 Figure S6. Regulation of pilus-associated genes in response to iron. qRT-PCR of RNA

1140 transcript abundance of genes associated with pilus biogenesis. N=6, repeated on non-

1141 consecutive days. N=9. Statistical significance was determined by one-way ANOVA. Error

1142 bars represent the SEM.

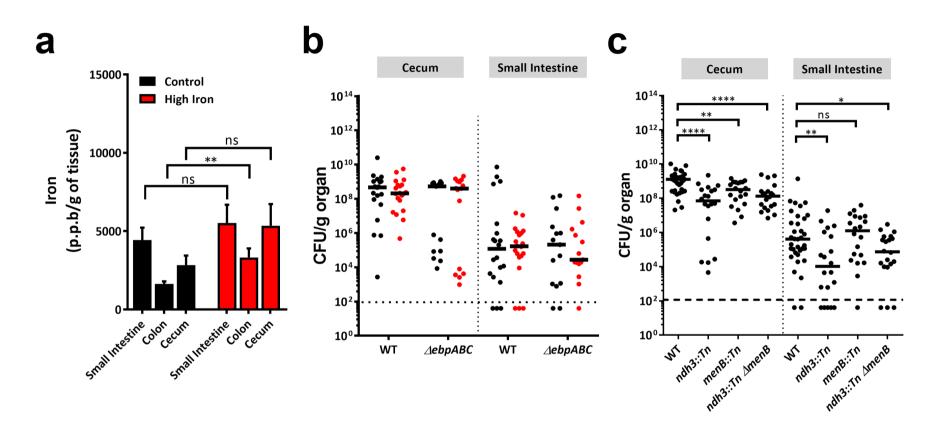


Figure S7. *E. faecalis* pilin mutant colonization in mouse lower gastrointestinal tract. (a) ICP-MS analysis of iron in the mouse tissues after feeding on normal or high iron diets, N=2, n=5. (b) Bacterial titers of pilin mutants recovered from the mouse cecum and small intestine, N=3, n=5. (c) Bacterial titers of EET associated mutants recovered from the mouse cecum and small intestine, N=3, n=5. Statistical significance was determined by Mann-Whitney test. Black line indicates median. Dotted line indicates limitation of detection of CFU <40.

Old Gene Locus	New Gene Locus	RF-Bio1	RF-Bio2	RF-Bio3	RF_Fe-Bio1	RF_Fe-Bio2	RF_Fe-Bio3	logFC	logCPM	P- Value	FDR	Annotation
OG1RF_10072	OG1RF_RS00365	8511.8527	6488.9180	7624.4051	2705.9691	2800.5727	3142.9526	-1.3872	12.3487	0.0003	0.0140	transcriptional regulator (stress response regulator Gls24)
OG1RF_10073	OG1RF_RS00370	3214.8225	2303.0033	4763.1714	1013.7927	1268.0472	1233.1796	-1.5480	11.1690	0.0002	0.0111	membrane protein (transglycosylase associated protein)
OG1RF_10171	OG1RF_RS00860	1352.7718	926.4525	639.5307	3502.8808	2184.6641	2369.1118	1.4632	10.8424	0.0007	0.0268	preprotein translocase subunit SecY
OG1RF_10172	OG1RF_RS00865	411.1365	292.5639	283.1256	1160.0613	713.7294	798.6700	1.4329	9.2682	0.0005	0.0212	adenylate kinase
OG1RF_10269	OG1RF_RS01485	79.5748	82.5180	73.2796	161.3998	173.9036	240.0148	1.2876	7.1469	0.0017	0.0468	esterase
OG1RF_10296	OG1RF_RS01630	10.6100	18.7541	19.9853	65.5687	68.8368	64.1419	2.0227	5.5802	0.0001	0.0046	PTS mannitol transporter subunit IICB
OG1RF_10338	OG1RF_RS01840	1249.3246	465.1016	886.0165	254.7091	396.7176	326.9167	-1.4098	9.2303	0.0019	0.0500	osmotically inducible protein C
OG1RF_10340	OG1RF_RS01850	29.1774	7.5016	13.3236	113.4843	54.3449	78.6255	2.2048	5.8090	0.0000	0.0036	PTS sorbose transporter subunit IIC
OG1RF_10360	OG1RF_RS01950	172.4121	97.5213	109.9193	393.4121	226.4370	380.7132	1.3840	7.8873	0.0014	0.0405	ferrous iron transport protein B
OG1RF_10396	OG1RF_RS02135	1726.7735	1425.3115	1122.5096	522.0276	280.7819	403.4732	-1.8269	9.8397	0.0000	0.0017	hypothetical protein
OG1RF_10541	OG1RF_RS02845	198.9370	225.0492	369.7287	65.5687	94.1978	120.0074	-1.4948	7.5083	0.0007	0.0268	membrane protein (transglycosylase-associated protein)
OG1RF_10544	OG1RF_RS02860	140.5822	56.2623	99.9267	494.2870	278.9704	289.6731	1.8213	7.8679	0.0001	0.0057	glucuronyl hydrolase
OG1RF_10545	OG1RF_RS02865	98.1423	30.0066	39.9707	310.1903	206.5105	192.4257	2.0373	7.2614	0.0000	0.0029	beta-galactosidase
OG1RF_10549	OG1RF_RS02885	15.9150	0.0000	3.3309	83.2218	32.6069	37.2437	2.7733	5.1351	0.0001	0.0052	PTS fructose transporter subunit IID
OG1RF_10551	OG1RF_RS02895	100.7948	138.7803	376.3905	30.2625	83.3288	53.7964	-1.8588	7.0590	0.0009	0.0315	GTP cyclohydrolase
OG1RF_10565	OG1RF_RS02965	233.4195	82.5180	66.6178	1033.9677	364.1107	662.1098	2.4125	8.6951	0.0000	0.0018	PTS cellbiose transporter subunit IIC
OG1RF_10567	OG1RF_RS02975	132.6247	30.0066	26.6471	441.3277	144.9197	277.2585	2.1551	7.5121	0.0004	0.0184	hypothetical protein (outer surface protein)
OG1RF_10585	OG1RF_RS03065	34.4824	22.5049	9.9927	85.7437	52.5334	84.8328	1.6825	5.7758	0.0011	0.0342	hypothetical protein (M protein trans-acting positive regulator)
OG1RF_10627	OG1RF_RS03265	2503.9542	3803.3312	5176.2016	10014.3554	12850.7521	8520.5260	1.4507	12.8041	0.0006	0.0248	bifunctional acetaldehyde-CoA/alcohol dehydrogenase
OG1RF_10838	OG1RF_RS04395	387.2641	457.6000	419.6920	12.6094	19.9265	8.2764	-4.8996	7.7734	0.0000	0.0000	manganese transporter
OG1RF_10839	OG1RF_RS04400	82.2273	86.2689	93.2649	2.5219	0.0000	6.2073	-4.8069	5.5680	0.0000	0.0000	universal stress protein UspA
OG1RF_10849	OG1RF_RS04450	320.9518	150.0328	266.4711	1094.4926	561.5637	678.6626	1.6552	9.0194	0.0002	0.0120	galactokinase
OG1RF_10851	OG1RF_RS04460	400.5266	315.0689	269.8020	1205.4550	570.6212	993.1648	1.4870	9.3048	0.0006	0.0221	galactose-1-phosphate uridylyltransferase
OG1RF_10859	OG1RF_RS04500	289.1218	123.7770	176.5371	991.0959	445.6280	639.3498	1.8061	8.8178	0.0001	0.0077	excinuclease ABC subunit A (Y family DNA-directed DNA polymerase)
OG1RF_10860	OG1RF_RS04505	55.7024	26.2557	53.2942	216.8810	101.4438	167.5966	1.8143	6.7839	0.0001	0.0078	hypothetical protein

OG1RF_10861	OG1RF_RS04510	34.4824	15.0033	36.6398	98.3530	72.4598	111.7310	1.6747	6.0889	0.0004	0.0182	hypothetical protein
OG1RF_10862	OG1RF_RS04515	119.3622	75.0164	99.9267	257.2310	231.8715	285.5349	1.3836	7.5312	0.0006	0.0248	hypothetical protein
OG1RF_10870	OG1RF_RS04555	132.6247	157.5344	136.5665	360.6278	507.2189	502.7897	1.6850	8.2613	0.0000	0.0027	cell wall surface anchor protein (ebpA)
OG1RF_10871	OG1RF_RS04560	161.8021	311.3180	236.4931	491.7651	833.2881	755.2190	1.5567	8.8831	0.0003	0.0149	cell wall surface anchor protein (ebpB)
OG1RF_10874	OG1RF_RS04575	42.4399	71.2656	86.6031	7.5656	19.9265	18.6218	-2.0480	5.4664	0.0001	0.0061	DUF378 domain-containing protein
OG1RF_10910	OG1RF_RS04755	58.3549	176.2885	266.4711	17.6531	47.0989	2.0691	-2.8636	6.5904	0.0001	0.0052	CBS domain-containing protein
OG1RF_10911	OG1RF_RS04760	84.8798	183.7902	229.8313	22.6969	41.6644	24.8291	-2.4465	6.6443	0.0000	0.0002	2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N- acetyltransferase
OG1RF_10912	OG1RF_RS04765	92.8373	93.7705	119.9120	17.6531	39.8529	24.8291	-1.8562	6.0907	0.0001	0.0041	acetyldiaminopimelate deacetylase
OG1RF_10993	OG1RF_RS05165	7.9575	30.0066	46.6324	2.5219	1.8115	2.0691	-3.5309	4.2002	0.0001	0.0075	spermidine/putrescine ABC transporter substrate- binding protein
OG1RF_10995	OG1RF_RS05175	23.8724	22.5049	29.9780	5.0437	3.6230	4.1382	-2.5126	4.2291	0.0002	0.0082	amidohydrolase
OG1RF_11012	OG1RF_RS05265	5.3050	3.7508	3.3309	20.1750	23.5494	24.8291	2.3575	4.2929	0.0018	0.0475	DUF5067 domain-containing protein
OG1RF_11036	OG1RF_RS05385	1562.3189	978.9639	769.4354	363.1496	461.9315	333.1240	-1.5149	9.5479	0.0004	0.0164	ATPase P (E1-E2 family cation-transporting ATPase)
OG1RF_11050	OG1RF_RS05450	87.5323	191.2918	173.2062	42.8718	67.0253	55.8655	-1.4239	6.7270	0.0018	0.0475	DNA replication protein Dnal
OG1RF_11058	OG1RF_RS05490	1501.3115	3158.1902	2081.8057	423.6746	742.7133	643.4880	-1.8948	10.4789	0.0000	0.0019	hypothetical protein
OG1RF_11059	OG1RF_RS05495	273.2069	675.1475	516.2878	95.8312	141.2967	142.7674	-1.9372	8.2731	0.0000	0.0020	tail protein
OG1RF_11060	OG1RF_RS05500	713.5208	1462.8197	959.2961	216.8810	355.0532	347.6077	-1.7653	9.4052	0.0001	0.0041	structural protein
OG1RF_11061	OG1RF_RS05505	1042.4301	2085.4557	1488.9074	421.1527	514.4648	562.7934	-1.6212	9.9964	0.0001	0.0065	hypothetical protein
OG1RF_11062	OG1RF_RS05510	363.3917	510.1115	393.0449	148.7905	126.8047	215.1857	-1.3647	8.2088	0.0009	0.0315	holin
OG1RF_11063	OG1RF_RS05515	572.9387	1211.5148	1009.2594	199.2279	251.7979	252.4294	-1.9852	9.1916	0.0000	0.0006	N-acetylmuramoyl-L-alanine amidase
OG1RF_11167	OG1RF_RS06055	106.0998	82.5180	99.9267	274.8841	201.0760	244.1530	1.3095	7.4482	0.0012	0.0362	alaninetRNA ligase
OG1RF_11246	OG1RF_RS06450	18647.0316	2726.8459	3350.8744	2047.7604	1758.9626	2296.6935	-2.0184	12.3283	0.0014	0.0406	type I glyceraldehyde-3-phosphate dehydrogenase
OG1RF_11269	OG1RF_RS06565	1973.4554	4403.4623	7431.2136	1412.2486	1068.7826	1154.5540	-1.9250	11.5063	0.0001	0.0060	transcriptional regulator (DNA-binding protein HU)
OG1RF_11379	OG1RF_RS07115	1729.4260	1331.5410	1462.2603	615.3369	579.6787	655.9026	-1.2893	10.0579	0.0008	0.0274	oxidoreductase
OG1RF_11400	OG1RF_RS07215	156.4971	101.2721	113.2502	469.0683	210.1335	343.4695	1.4507	7.8997	0.0011	0.0343	adenine phosphoribosyltransferase
OG1RF_11437	OG1RF_RS07400	156.4971	273.8098	406.3685	98.3530	105.0668	88.9710	-1.5094	7.5769	0.0008	0.0279	cold-shock protein
OG1RF_11489	OG1RF_RS07650	2697.5862	1155.2525	1785.3566	52.9593	32.6069	35.1746	-5.5472	9.9098	0.0000	0.0000	phosphoribosylamineglycine ligase
OG1RF_11490	OG1RF_RS07655	1917.7530	933.9541	909.3327	47.9156	23.5494	55.8655	-4.8856	9.3450	0.0000	0.0000	bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/inosine monophosphate cyclohydrolase
OG1RF_11491	OG1RF_RS07660	400.5266	157.5344	173.2062	20.1750	1.8115	10.3455	-4.5388	7.0238	0.0000	0.0000	phosphoribosylglycinamide formyltransferase

OG1RF_11492	OG1RF_RS07665	270.5544	168.7869	179.8680	10.0875	5.4345	4.1382	-4.9605	6.7653	0.0000	0.0000	phosphoribosylformylglycinamidine cyclo-ligase
OG1RF_11493	OG1RF_RS07670	374.0016	206.2951	256.4785	25.2187	10.8690	12.4146	-4.1262	7.2284	0.0000	0.0000	amidophosphoribosyltransferase
OG1RF_11494	OG1RF_RS07675	631.2935	266.3082	266.4711	7.5656	19.9265	22.7600	-4.4845	7.6805	0.0000	0.0000	phosphoribosylformylglycinamidine synthase II
OG1RF_11495	OG1RF_RS07680	196.2845	78.7672	99.9267	12.6094	3.6230	14.4837	-3.6189	6.1465	0.0000	0.0000	phosphoribosylformylglycinamidine synthase subunit PurQ
OG1RF_11496	OG1RF_RS07685	18.5675	22.5049	19.9853	0.0000	0.0000	0.0000	-6.0205	3.7993	0.0000	0.0003	phosphoribosylformylglycinamidine synthase
OG1RF_11497	OG1RF_RS07690	76.9223	18.7541	3.3309	7.5656	0.0000	2.0691	-3.3788	4.4932	0.0015	0.0432	phosphoribosylaminoimidazolesuccinocarboxamide synthase
OG1RF_11498	OG1RF_RS07695	127.3197	37.5082	33.3089	27.7406	5.4345	6.2073	-2.3806	5.4484	0.0015	0.0424	5-(carboxyamino)imidazole ribonucleotide synthase
OG1RF_11506	OG1RF_RS07735	209.5470	311.3180	469.6554	88.2655	157.6001	111.7310	-1.4594	7.8308	0.0012	0.0358	hypothetical protein (putative lipoprotein)
OG1RF_11519	OG1RF_RS07800	34.4824	93.7705	66.6178	10.0875	18.1150	4.1382	-2.5097	5.3395	0.0000	0.0031	universal stress protein A
OG1RF_11564	OG1RF_RS08025	259.9444	367.5803	906.0018	100.8749	110.5013	82.7637	-2.3767	8.2599	0.0000	0.0005	50S ribosomal protein L19
OG1RF_11576	OG1RF_RS08085	37.1349	48.7607	109.9193	22.6969	14.4920	18.6218	-1.8012	5.4978	0.0016	0.0434	membrane protein
OG1RF_11584	OG1RF_RS08125	31.8299	56.2623	66.6178	174.0092	146.7312	167.5966	1.6689	6.8297	0.0002	0.0096	C4-dicarboxylate ABC transporter (C4-dicarboxylate anaerobic carrier)
OG1RF_11677	OG1RF_RS08600	135.2772	150.0328	139.8973	7.5656	12.6805	6.2073	-3.9282	6.2738	0.0000	0.0000	ABC transporter ATP-binding protein
OG1RF_11678	OG1RF_RS08605	108.7522	93.7705	66.6178	7.5656	28.9839	8.2764	-2.5118	5.7973	0.0000	0.0004	membrane protein
OG1RF_11679	OG1RF_RS08610	907.1529	2096.7082	2891.2117	27.7406	27.1724	16.5527	-6.3493	9.9577	0.0000	0.0000	manganese ABC transporter substrate-binding protein
OG1RF_11749	OG1RF_RS08955	973.4652	1204.0131	1825.3272	602.7275	489.1039	546.2406	-1.2886	9.8813	0.0016	0.0442	hypothetical protein
OG1RF_11752	OG1RF_RS08970	42.4399	11.2525	19.9853	131.1374	56.1564	74.4874	1.7552	5.9621	0.0011	0.0342	hypothetical protein
OG1RF_11753	OG1RF_RS08975	458.8814	603.8820	649.5234	1621.5640	1345.9415	1309.7360	1.3213	9.9727	0.0007	0.0268	PTS maltose transporter subunit IIBC
OG1RF_11774	OG1RF_RS09080	63.6599	45.0098	83.2722	292.5372	271.7244	256.5676	2.0848	7.4603	0.0000	0.0002	sugar ABC transporter substrate-binding protein
OG1RF_11775	OG1RF_RS09085	74.2698	41.2590	96.5958	378.2809	239.1175	246.2221	2.0099	7.5416	0.0000	0.0014	glucuronyl hydrolase
OG1RF_11776	OG1RF_RS09090	236.0720	367.5803	546.2658	1518.1672	1068.7826	1222.8341	1.7293	9.7030	0.0001	0.0050	hypothetical protein
OG1RF_11778	OG1RF_RS09100	400.5266	247.5541	326.4271	781.7805	661.1960	989.0266	1.3152	9.1666	0.0012	0.0367	Lacl family transcriptional regulator
OG1RF_11794	OG1RF_RS09180	119.3622	26.2557	43.3016	264.7966	210.1335	184.1493	1.7648	7.2150	0.0005	0.0212	hypothetical protein
OG1RF_11860	OG1RF_RS09520	193.6320	135.0295	229.8313	22.6969	32.6069	28.9673	-2.7058	6.7797	0.0000	0.0000	guanosine monophosphate reductase
OG1RF_11976	OG1RF_RS10110	599.4636	303.8164	373.0596	2080.5448	746.3363	1390.4307	1.7199	9.8493	0.0003	0.0140	PTS beta-glucoside transporter subunit EIIBCA
OG1RF_12046	OG1RF_RS10465	448.2715	933.9541	1515.5545	146.2686	447.4395	258.6367	-1.7602	9.2931	0.0009	0.0315	adapter protein MecA
OG1RF_12070	OG1RF_RS10590	39.7874	82.5180	196.5225	25.2187	38.0414	18.6218	-1.9329	6.1199	0.0012	0.0373	hypothetical protein
OG1RF_12078	OG1RF_RS10630	18.5675	26.2557	29.9780	78.1780	65.2139	72.4183	1.5324	5.7721	0.0011	0.0342	AraC family transcriptional regulator
OG1RF_12143	OG1RF_RS10965	68.9648	157.5344	149.8900	55.4812	27.1724	37.2437	-1.6493	6.4149	0.0007	0.0265	DUF3042 domain-containing protein

OG1RF_12243	OG1RF_RS11490	124.6672	161.2852	129.9047	388.3684	260.8554	492.4442	1.4575	8.0563	0.0005	0.0217	D-ribose pyranase
OG1RF_12244	OG1RF_RS11495	302.3843	397.5869	356.4051	859.9585	722.7869	1051.0994	1.3189	9.2800	0.0009	0.0315	ribokinase
OG1RF_12280	OG1RF_RS11675	10.6100	15.0033	9.9927	100.8749	47.0989	57.9346	2.5045	5.5431	0.0000	0.0020	allantoin permease
OG1RF_12310	OG1RF_RS11830	95.4898	75.0164	99.9267	10.0875	52.5334	16.5527	-1.7225	5.9557	0.0013	0.0397	peptidase
OG1RF_12328	OG1RF_RS11925	50.3974	153.7836	303.1109	20.1750	50.7219	26.8982	-2.3421	6.6853	0.0001	0.0080	hypothetical protein
OG1RF_12393	OG1RF_RS12260	164.4546	183.7902	343.0816	73.1343	67.0253	47.5891	-1.8762	7.2214	0.0000	0.0031	hypothetical protein
OG1RF_12425	OG1RF_RS12410	503.9738	341.3246	346.4125	1684.6108	912.9939	1247.6632	1.6862	9.7253	0.0001	0.0044	glycosyl hydrolase
OG1RF_12461	OG1RF_RS12570	47.7449	45.0098	46.6324	110.9624	481.8579	157.2511	2.4236	7.2917	0.0000	0.0023	murein hydrolase regulator LrgA

1170 Supplementary Table 2. Strains used in this study.

	Strain name	Relevant characteristics	Plasmid Source	Plasmid made	References
<i>E. faecalis</i> laboratory strain	<i>E. faecalis</i> OG1RF wild type	Laboratory strain, Rif ^R , Fus ^R	-	-	1
E. faecalis	OG1RF ΔebpABC	<i>ebpABC</i> triple deletion mutant; Rif ^R , Fus ^R	-	-	2,3
markerless, in-	OG1RF ∆ebpA	<i>ebpA</i> single deletion mutant; Rif ^R , Fus ^R	-	-	2,3
frame	OG1RF Δ <i>ebpB</i>	<i>ebpB</i> single deletion mutant; Rif ^R , Fus ^R	-	-	2,3
chromosomal	OG1RF Δ <i>ebpC</i>	<i>ebpC</i> single deletion mutant; Rif ^R , Fus ^R	-	-	2,3
mutants	OG1RF <i>ndh3::</i> Tn <i>∆menB</i>	<i>menB</i> in-frame deletion with insertional mutation of <i>ndh3</i>	pGCP213	pGCP213::delta_menB	This study
<i>E. faecalis</i> chromosomal pilin mutant	OG1RF ebpA ^{AWAGA} (MIDAS)	ebpA allelic replacement with ebpA ^{AWAGA} (coding for Ala ³¹⁵ -Trp-Ala ³¹⁷ -Gly-Ala ³¹⁹); Rif ^R , Fus ^R	-	-	2,3
<i>E. faecalis</i> transposon	OG1RF <i>menB</i> ::Tn	Rif ^R , Fus ^R , Cm ^R (Insertional position 5' – 3': 343473)	-	-	4,5
mutants	OG1RF ndh3::Tn	Rif ^R , Fus ^R , Cm ^R (Insertion position 5' – 3': 2658965)	-	-	4,5
	OG1RF <i>ldh1</i> ::Tn	Rif ^R , Fus ^R , Cm ^R (Insertion position 5' – 3': 197152)	-	-	4-6
	OG1RF_RS12785-	Rif ^R , Fus ^R , Cm ^R	-	-	4,5
	<i>12815</i> ::Tn	(<i>RS12785</i> Insertion position $5' - 3'$: 2654550) (<i>RS12795</i> Insertion position $5' - 3'$: 2657169) (<i>RS12800</i> Insertion position $5' - 3'$: 2658965) (<i>RS12805</i> Insertion position $5' - 3'$: 2660151) (<i>RS12810</i> Insertion position $5' - 3'$: 2660397) (<i>RS12815</i> Insertion position $5' - 3'$: 2660975)			
	<i>OG1RF_RS01800-</i> <i>01825</i> ::Tn	Rif ^R , Fus ^R , Cm ^R (<i>RS01800</i> Insertion position 5' – 3': 343437) (<i>RS01805</i> Insertion position 5' – 3': 343749) (<i>RS01820</i> Insertion position 5' – 3': 348095) (<i>RS01825</i> Insertion position 5' – 3': 349226)	-	-	4,5
E. faecalis strains	OG1RF ΔebpABC	<i>ebpABC</i> triple deletion mutant; Rif ^R , Fus ^R , Kan ^R	pGCP123	-	2,3
with empty vector	OG1RF wild type	Laboratory strain, Rif ^R , Fus ^R , Kan ^R	pGCP123	-	This study

	OG1RF menB::Tn	Rif ^R , Fus ^R , Erm ^R	pMSP3535	-	This study
	OG1RF ndh3::Tn	Rif ^R , Fus ^R , Erm ^R	pMSP3535	-	This study
	OG1RF <i>ldh1</i> ::Tn	Rif ^R , Fus ^R , Erm ^R	pMSP3535	-	6
E. faecalis mutants	OG1RF ∆ebpABC	Complement mutation; Rif ^R , Fus ^R ,Kan ^R	gcp123::ebpABCs	srtC	2,3
with gene	OG1RF menB::Tn	Complement mutation; Rif ^R , Fus ^R ,Erm ^R	pMSP3535	pMSP3535::menB	This study
complementation	OG1RF ndh3::Tn	Complement mutation; Rif ^R , Fus ^R ,Erm ^R	pMSP3535	pMSP3535:: <i>ndh3</i>	This study
	OG1RF <i>ldh1</i> ::Tn	Complement mutation; Rif ^R , Fus ^R ,Erm ^R	pMSP3535	pMSP3535:: <i>ldh1</i>	6

- 1173 1 Bourgogne, A. *et al.* Large scale variation in *Enterococcus faecalis* illustrated by the genome analysis of strain OG1RF. *Genome biology* **9**, R110, doi:10.1186/gb-2008-9-7-r110 (2008).
- 1175 2 Nielsen, H. V. *et al.* Pilin and sortase residues critical for endocarditis- and biofilm-associated pilus biogenesis in *Enterococcus faecalis*. *Journal of* 1176 *bacteriology* **195**, 4484-4495, doi:10.1128/jb.00451-13 (2013).
- 1177 3 Nielsen, H. V. *et al.* The metal ion-dependent adhesion site motif of the *Enterococcus faecalis* EbpA pilin mediates pilus function in catheter-associated 1178 urinary tract infection. *mBio* **3**, e00177-00112, doi:10.1128/mBio.00177-12 (2012).
- 1179 4 Kristich, C. J. *et al.* Development and use of an efficient system for random mariner transposon mutagenesis to identify novel genetic determinants 1180 of biofilm formation in the core *Enterococcus faecalis* genome. *Appl Environ Microbiol* **74**, 3377-3386, doi:10.1128/aem.02665-07 (2008).
- 11815Dale, J. L. *et al.* Comprehensive Functional Analysis of the *Enterococcus faecalis* Core Genome Using an Ordered, Sequence-Defined Collection of1182Insertional Mutations in Strain OG1RF. *mSystems* **3**, doi:10.1128/mSystems.00062-18 (2018).
- 1183 6 Keogh, D. *et al.* Extracellular Electron Transfer Powers *Enterococcus faecalis* Biofilm Metabolism. *mBio* 9, doi:10.1128/mBio.00626-17 (2018).
- 1184
- 1185
- 1100
- 1186
- 1187
- ----
- 1188
- 1189

Supplementary Table 3. Primers used in this study.

	Primer name	Primer sequence (5' \rightarrow 3')	Restriction sites ^a	References
Primers used to	ndh3_F'	<u>GGATCC</u> AAGGAGCGGATTGTCAA	BamHI	This study
generate	ndh3_R′	ACTAGTGCTCGTAGTTGTCAATCGAT	Spel	This study
complement	ndh3_F'_Infusion	GACTCTGCAT <u>GGATCCGGATCC</u> AAGGAGCGGAT	BamHI	This study
plasmids	ndh3_R'_Infusion	GCAGCCCGGG <u>ACTAGTACTAGT</u> GCTCGTAGTTGTCAA	Spel	This study
	menB_F'	<u>GGATCC</u> TTTCTCTAAAGTGCCGAT	BamHI	This study
	menB_R'	ACTAGTTGTTTATTTAACCAAGTCATTGG	Spel	This study
	menB_F'_Infusion	GACTCTGCAT <u>GGATCCGGATCC</u> TTTCTCTAAAGTGCC	BamHI	This study
	menB_R'_Infusion	GCAGCCCGGG <u>ACTAGTACTAGT</u> TGTTTATTTAACCAAGTCATT	Spel	This study
Primers used to	IFD_menB_Frag1_F'	TCTCTAAAACCAATGACTTGGTTAAATAAAC	-	This study
generate	IFD_menB_Frag1_R'	GGCGGCCGTT <u>ACTAGT</u> CAAATGCGTATTTAAAAATAATAACTCTTTCC	Spel	This study
chromosomal	IFD_menB_Frag2_F'	TACCGAGCTC <u>GGATCC</u> AAGATGCCGTTTAAGCCTC	BamHI	This study
deletion strain	IFD_menB_Frag2_R'	CATTGGTTTTAGAGAAAAAGTCGCTTGAATTTTAAGA	-	This study
Primers used in qRT-	gyrA_F'	TGTTCGTCGGGATGTGAGTG		1,2
PCR	gyrA_R'	GGTACGCCTTTTTCGATGGC		1,2
	ebpR_F'	TAAACAGCGTTGGGGCGAAA		1
	ebpR_R'	TGGGTGGTCGTTGACGTTTT		1
	ebpC_F'	CGGTCATACCGACGACCAAA		1
	ebpC_R'	TGTCACATCGCCATCGACTT		1
	srtA_F'	TCGTACGCCGTTAGCAAGTT		This study
	srtA_R'	TTCATCACCGCTTCTGTGCT		This study
	srtC_F'	ACACATGCGGTCATTTCAGG		This study
	srtC_R'	GCGTCTTCCCATTGACTTCG		This study
	argR3_F'	CCACTATTTACAAGAAAAGGGCGT		This study
	argR3_R'	CGCGAGAAATCGTTGCTTGT		This study

^a Restriction sites are underlined in the primer sequence.

1 Afonina, I., Lim, X. N., Tan, R. & Kline, K. A. Planktonic Interference and Biofilm Alliance between Aggregation Substance and Endocarditis- and Biofilm-1194 Associated Pili in *Enterococcus faecalis. Journal of bacteriology* **200**, doi:10.1128/jb.00361-18 (2018).

- 1195 2 Bourgogne, A. *et al.* EbpR is important for biofilm formation by activating expression of the endocarditis and biofilm-associated pilus operon (ebpABC)
- 1196 of *Enterococcus faecalis* OG1RF. *Journal of bacteriology* **189**, 6490-6493, doi:10.1128/jb.00594-07 (2007).