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Abstract 

In the clinical setting, exome sequencing has become standard-of-care in diagnosing rare 

genetic disorders, however many patients remain unsolved. Trio sequencing has been 

demonstrated to produce a higher diagnostic yield than singleton (proband-only) sequencing. 

Parental sequencing is especially useful when a disease is suspected to be caused by a de 

novo variant in the proband, because parental data provide a strong filter for the majority of 

variants that are shared by the proband and their parents. However the additional cost of 

sequencing the parents makes the trio strategy uneconomical for many clinical situations. 

With two thirds of the sequencing budget being spent on parents, these are funds that could 

be used to sequence more probands. For this reason many clinics are reluctant to sequence 

parents. 

Here we propose a pooled-parent strategy for exome sequencing of individuals with likely de 

novo disease. In this strategy, DNA from all the parents of a cohort of unrelated probands is 

pooled together into a single exome capture and sequencing run. Variants called in the 

proband can then be filtered if they are also found in the parent pool, resulting in a shorter list 

of prioritised variants. To evaluate the pooled-parent strategy we performed a series of 

simulations by combining reads from individual exomes to imitate sample pooling. We 

assessed the recall and false positive rate and investigated the trade-off between pool size and 

recall rate. We compared the performance of GATK HaplotypeCaller individual and joint 

calling, and FreeBayes to genotype pooled samples. Finally, we applied a pooled-parent 

strategy to a set of real unsolved cases and showed that the parent pool is a powerful filter 

that is complementary to other commonly used variant filters such as population variant 

frequencies. 
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Background 

De novo Mendelian diseases are single-gene disorders where the causal variant is found in the 

proband, but not in the somatic tissues of either of their parents. Such conditions are usually 

dominant, as the probability of two mutations affecting the same gene is low. De novo 

variants have been identified as the cause of monogenic disorders such as congenital heart 

disease [1,2], deafness, metabolic disease and a range of syndromic disorders (reviewed in 

[3]). De novo variants are rare, occuring at a rate of ~1.1×10-8 per position, or approximately 

70 new mutations in each diploid human genome [4]. Yet, in a meta-analysis of diagnostic 

next-generation sequencing in children, de novo variants accounted for the majority of 

genetic diagnoses in non-consanguineous families [5]. It has also been shown that de novo 

variants are a major cause of neurodevelopmental disorders in non-consanguineous 

populations [6–9]. In addition, de novo mutations are also recognised as contributing to a 

number of complex conditions such as intellectual disability, autism-spectrum disorders and 

schizophrenia [10]. Finding the causal genetic variant of a disease can provide diagnosis, 

prognosis and guide treatment or management [11], yet conditions caused by de novo variants 

can be difficult to diagnose because there is no family history of that condition. 

Exome next-generation sequencing (NGS) has become a key tool to discover disease-causing 

variants. There are two common strategies to finding a genetic diagnosis with exome 

sequencing: singleton and trio sequencing. In the singleton strategy only the proband is 

sequenced, while for trio analysis both the proband and their parents are sequenced. The trio 

approach is particularly powerful in the context of de novo mutations (e.g. [6]) where variants 

observed in the parents can be used as a filter to prioritise those variants in the proband that 

are likely to be de novo. While the trio approach significantly outperforms the singleton 

approach in terms of diagnostic rate [12], the trio approach is substantially more costly, as it 

requires library preparation and sequencing of three individuals rather than one. The 

advantage of the singleton strategy is that while diagnostic rates may be lower, three times as 

many affected individuals can be sequenced for the same cost, allowing for increased 

capacity and so more cases overall to be solved. For example, if we sequence 100 exomes 

and assume a 22% diagnostic rate for singletons and 33% for trios [12] we would expect to 

solve 22 of 100 cases vs 11 of 33 trios. 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601740doi: bioRxiv preprint 

https://doi.org/10.1101/601740
http://creativecommons.org/licenses/by/4.0/


In addition to the cost of exome capture and sequencing, we must consider the cost of variant 

curation. Rather than a specific fee for service, variant curation is usually a limited resource; 

that is the analyst may only have time to consider a limited number of variants per patient 

before they must declare that case unsolved and move on to the next patient. Therefore when 

diagnosing patients from exome sequencing, a key consideration is the number of variants 

that need to be assessed in each individual. An average individual exome has 10,000-12,000 

non-synonymous variants [13], 120 protein truncating variants, and ~54 variants previously 

reported as pathogenic (although not necessarily relevant to the given phenotype) [14]. This 

is clearly too many variants for curators or clinicians to assess, so some prioritisation and 

filtering strategies are necessary. A common strategy is to filter or prioritise variants by their 

population frequency based on the assumption that highly penetrant pathogenic variants will 

be rare or absent in unaffected individuals. Frequencies in datasets such as Exome Variant 

Server [15], 1000 Genomes [16] and the Genome Aggregation Database (gnomAD, 

previously known as Exome Aggregation Consortium or ExAC) [14,17] are commonly used. 

For example a frequency of 0.01 might be considered rare, and a frequency of 0.0005 to be 

very rare [18]. More detailed variant assessment would then consider known pathogenic 

variants (e.g. from Clinvar), variant consequence prediction (e.g. VEP [19] Condel [20]), 

evolutionary conservation and clinically-informed gene lists [21]. Even with all of these 

filtering and prioritisation tools, typically hundreds of variants still remain to be curated and 

the role of inheritance information is vital in reducing this list. One reason that the diagnostic 

rate for trios is often higher is that inheritance information can be used to filter out large 

numbers of variants. Studies that perform trio or other family sequencing can use an 

inheritance model to select variants that fit with the expected pattern (e.g. de novo, dominant, 

recessive, sex-linked). Yet as we have described, trio sequencing carries a high cost for a 

modest increase in diagnostic rate. 

Here we propose and evaluate a compromise between the singleton and trio strategies: 

pooled-parent exome sequencing. In this strategy, probands are still sequenced individually. 

For a given batch of unrelated probands, we pool all their parental DNA, then perform exome 

capture and sequencing on the pool. Variants called from this pool can then be used as a 

powerful filter for prioritising de novo variants in the probands. Because the exome capture is 

a substantial portion of the cost (currently ~60%), this strategy provides a dramatic cost 

saving over a standard trio, while still allowing the the majority of parent alleles to be filtered 

out when analysing the probands. 
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Pooled sequencing strategies have been used successfully for assessing population allele 

frequencies for genome-wide association studies and other applications, reviewed in [22]. 

More recently pooling has been used in for rare variants in Mendelian disease. For example a 

recent study used pools of 12 probands to identify de novo causes of neurodevelopmental 

disorders and so were able to detect relevant likely-pathogenic variants in 28% of cases at a 

greatly reduced cost [23]. 

In this study we assess the novel strategy of pooled-parent exome sequencing as a method to 

filter variants from proband exome sequencing. We assume that we are looking for rare de 

novo variants in the probands and therefore the causative variants will not be found in any of 

the parents. Thus we can take the list of variants called in the probands and filter out any 

variants observed in any of the parents. We first performed a series of simulations to assess 

the feasibility of using pooled parents, and to explore the effect of factors such as the number 

of parents in the pool and sequencing depth. In addition, we compare the performance of two 

common variant callers on pooled data: GATK HaplotypeCaller [24] and FreeBayes [25]. 

Finally, we present exome sequencing analysis of four probands with suspected de novo 

causal variants, and a pool of their eight parents. We assess the utility of using the pooled 

parents as a filter to prioritise de novo variants, and compare this strategy to commonly used 

variant filters, in particular population allele frequency. We show that the pooled-parent filter 

is a powerful and complementary filter to other strategies. 

Results 

Simulation set up 

In order to test the utility of pooled parents for prioritising de novo variants we performed a 

series of simulations. We selected a set of 111 parents from Simons Simplex Collection that 

had undergone individual exome sequencing [26]. This particular subset of samples was 

chosen to be matched for DNA sequencer, read length and exome capture kit sequencing 

depth (see Methods). Only samples with at least 64X median depth over the capture region 

were retained in order to both remove low quality samples and to limit the range of depths 

such that if the two samples with the most extreme depths were combined then their reads 

would appear in a 40:60 ratio. Any other pair of samples combined would have depth ratios 

between 40:60 and 50:50. This places the simulation within the range of sample ratios likely 

to be seen with errors in DNA concentration and volume quantification when pooling. The 
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final set consisted of 111 samples, 52 females and 59 males, with median depths ranging 

from 64X to 97X (median 78X). 

We randomly sampled reads from these individuals in various combinations to simulate 

pooling, then calculated recall rates by comparing variants called on the original exomes to 

those called on the simulated pools. Full details of our simulation strategies can be found in 

Methods. Briefly: we simulated pools of two, four, six, eight and ten individuals, generated 

by extracting reads from a random subset of the 111 exomes. We simulated two different 

strategies for sequencing depth; constant depth and additive depth. In the constant depth 

simulations the overall amount of sequencing per pool was kept constant at twice the average 

depth of the source bams. For example to generate a pool of four 75X samples, half the reads 

would be drawn from each individual to produce a pool of 150X depth. Since the total depth 

remains constant, the number of reads sampled from each individual decreases as the number 

of individuals in the pool increases. For additive depth the total sequencing depth was 

proportional to the number of samples, so each sample was sequenced to the same depth no 

matter the pool size, with the total sequencing depth increasing for larger pools. For example, 

if a pool contained four individuals each with 75X depth, all the reads from all four 

individuals would be added together to create a 300X pooled sample. 

Choice of variant caller and sequencing depth 

When selecting a variant caller for pooled sequencing data, previous comparisons have 

primarily considered sensitivity and false positive rate [27,28]. For the purposes of a pooled-

parent study design we contend that the most important feature of a variant caller is the recall, 

that is, the number of variants called in the individual that are also detected in the pool. In this 

application, recall is the most important metric because it affects the number of variants that 

are able to be filtered from the probands. In contrast to pooling for the detection of 

pathogenic variants in the pooled samples, here false positive calls are less important. 

However, we also assess false positives: those variants called in the pool that are not called in 

any of the individuals. False positives are only problematic in the very unlikely event that 

they happen to coincide with the causal variant in the proband. So, while previous papers 

choose their variant caller based on sensitivity, specificity and false positives, we aim to 

optimise the recall (sensitivity). 
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A key issue with calling variants in pooled samples is that most variant callers assume the 

reads come from a single diploid individual. They expect to observe approximately 0%, 50% 

or 100% of reads supporting a given allele. In our pooled samples we expect many variants to 

differ dramatically from these ratios. In addition more than two variants can be present at a 

single locus. Therefore using a variant caller that supports setting ploidy can be advantageous 

in pooled samples. Both FreeBayes [25] and GATK UnifiedGenotyper [29,30]  have been 

proposed as good variant callers for pooled sequencing data [23,27,28]. Both provide the 

ability to set ploidy when calling variants, allowing more than two alleles to be called at each 

locus, and explicitly modelling the lower read counts expected to support rare alleles in 

pooled data. However UnifiedGenotyper has since been deprecated in favour of GATK 

HaplotypeCaller [31]. More recently GATK HaplotypeCaller has introduced the option to set 

ploidy, with values up to 21 possible before reaching performance limitations [32]. Since this 

change is relatively recent, we are not aware of any published assessment of HaplotypeCaller 

on pooled data. In addition, HaplotypeCaller is currently the preferred genotyper for 

unpooled genomes/exomes and variation references such as gnomAD [14,17]. One advantage 

of using HaplotypeCaller for calling variants in the pool is that it is already the standard 

analysis tool for individual exomes, and by using the same variant caller for both the proband 

and the parent pool we reduce the chance of technical artefacts. 

The GATK Best Practices now recommends individual calling of samples using 

HaplotypeCaller followed by joint calling with GenotypeGVCFs [33]. Although it is possible 

to set ploidy in conjunction with joint variant calling, this is well beyond the intended use for 

this tool. As such we experienced errors when using joint calling in conjunction with ploidy 

of 16 and 20 (i.e. our simulated pools of eight and ten). We therefore performed two different 

analyses with HaplotypeCaller: 1) diploid joint calling on each pool and the individuals that 

made up that pool and 2) individual variant calling with ploidy set as appropriate for the pool 

size, with the individuals genotyped separately in diploid mode (see Methods). In addition we 

compared the performance of these calling modes with FreeBayes. 

We compared variants called from the pool to all variants called on the original exomes and 

calculated recall and false positive rates. For all analysis scenarios the recall across all 

variants for a pool of two was greater than 94% (Supplementary Table 1) . Looking across all 

variants, the overall trend was for recall to diminish as the pool size increased (Figure 1A). 

HapolotypeCaller had greater recall than FreeBayes for all simulated pool sizes. This 

difference was small for pools of two individuals, becoming dramatic in the larger pools. 
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Overall individual calling with HaplotypeCaller performed slightly better than joint calling, 

especially for larger pools. 

 

 
Figure 1: Simulated pools of two, four, six, eight and ten individuals. Each point is a simulation (three 

replicates) with a different randomly selected set of individuals from a possible 111 individuals. Recall % is the 

percentage of variants called in all individuals that make up the pool that are also called in the pool. False 

positive % is the percentage of variants called in the pool that are not called in any of the individuals that make 

up that pool. A) Recall for all variants B) Recall for variants with an allele present in one copy in one of the 

individuals C) Total variants called in the pool (for constant depth simulation). HaplotypeCaller individual and 

joint calling produced similar numbers of variants so are difficult to distinguish at this scale. D) False positive 

rate for all variants. Mean values for plots A, B, C and D can be found in supplementary tables 1, 2, 3 and 4 

respectively. 
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When using parents to filter for potential de novo variants, the most important and difficult 

class of variants to recall in the pool are those that are rare and only one allele is likely to be 

present in the pool. We therefore considered the recall rate for these so called singleton 

variants. All calling methods had lower recall for singleton variants (Figure 1B). This is 

expected as these variants will generally have fewer reads supporting them and lower allelic 

depth. Surprisingly, for HaplotypeCaller, individual calling performed dramatically better 

than joint calling on these variants. Joint calling showed a pronounced loss of recall with 

increasing pools size, especially for six or more individuals in a pool. Joint calling draws 

evidence across samples, thus increasing support for variants found in multiple samples and 

decreasing support for those variants only found in one sample. This may explain why joint 

calling performs poorly for singleton variants. It should be noted that FreeBayes reported 

approximately five to nine times as many variants as HaplotypeCaller, which may contribute 

to the lower recall rate (Figure 1C, Supplementary Table 3). 

For individual calling, HaplotypeCaller saw a steady increase in false positives with pool size 

(Figure 1D). For joint calling the overall false positive rate is less than 1% and, although it 

increases slightly with pool size, this increase is insignificant (Supplementary Table 4). So 

while individual calling with HaplotypeCaller provides superior recall, joint calling better 

controls the false positive rate. FreeBayes showed a decrease in false positive rate with 

increasing pool size which is likely why it was previously recommended for variant calling in 

pooled samples in previous studies. 

We further performed an additive depth simulation where all reads from each individual are 

combined in the pool. In general, increasing the depth increased recall rate and decreased 

false positive rate. The only exception to this is for singleton joint HaplotypeCaller variants 

in pools eight and ten. The increase in recall with additive depth was most dramatic for 

HaplotypeCaller individual calling of singleton variants, where in the largest pool the recall 

rate increase from 63.9% to 80.5% (Figure 1B, Supplementary Table 2). This indicates that 

increasing the sequencing depth may be useful in pooled samples. Many of the additive depth 

pools could not be called using FreeBayes due to massive memory requirements on such 

large depth samples, so FreeBayes is not included for this simulation. 

In summary, HaplotypeCaller individual calling was found to have superior performance in 

terms of recall rate, especially of singleton variants. In addition, it is more commonly used in 

clinical variant calling, making this approach more compatible with existing clinical pipelines 
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and reducing the risk of technical bias by using multiple variant callers. Based on our 

simulations, we expect a pooled parent strategy to provide a useful, cheaper alternative to trio 

sequencing for de novo cases. For example by simply pooling the two parents we get 98% of 

variants recalled with a low false discovery rate, even with ten in pool we calculated an 

average recall of 94% (Supplementary Table 1). We found that increasing the sequencing 

depth can also increase the recall rate. 

Calling variants from real pools 

We performed a real pooled-parent sequencing experiment. We had previously exome 

sequenced four individual probands likely to have de novo disease that were still unsolved 

after the initial variant analysis. We then performed exome sequencing of a pool of all eight 

of their parents. For the probands, exome capture was performed with the Nextera v1.2 Rapid 

Exome Capture Kit, and all the libraries were sequenced to ~100x depth over the target 

region. The parent pool was captured using the Agilent SureSelect QXT Clinical Research 

Exome kit and sequenced to a median on-target depth of 119x (or ~15x per parent). While the 

probands and parents were sequenced using different exome captures, the SureSelect Clinical 

exome is much larger than Nextera, and it mostly covers the same regions so should be able 

to recover most positions called in the probands. Based on the results of our simulation study 

we performed variant calling using GATK HaplotypeCaller on each of the samples 

individually. The probands were genotyped with default (diploid) ploidy and the pool with 

ploidy set to 16. We then used the parent pool variant calls to filter out variants in the 

probands. We additionally performed variant annotation with VEP and added gnomAD 

frequencies (see Methods). 

We calculated recall on this real data set as the percentage of variants found in all probands 

that were also called in the pool. Our calculated recall rate for all variants was 81.3%. This is 

a little lower than what we expected based on our simulations (Supplementary Figure 1). The 

recall rate for variants with one allele found in one proband was was 72.6%. This is 

consistent with the singleton rate observed in simulations (69.4%), however it should be 

noted that for the real pooled experiment we would expect each proband to have half the 

genetic material from each parent. Therefore a variant found once in the probands could 

occur more than once in the parent pool if the variant also appeared in the untransmitted 

allele. Hence if a variant is found once across all the probands, it could plausibly have an 
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allele frequency of anywhere from 1/16 to 9/16 in the the parent pool and so is not directly 

comparable with the simulations.  

We next used gnomAD to prioritise rare variants by filtering out variants with allele 

frequency over 0.0005. Of the remaining variants the recall in the pooled sample was 50.8%. 

This shows while both strategies filter many of the same variants, the parent pool provides 

substantial filtering beyond gnomAD. 

We further assessed the power of using variants called in the parent pool as a strategy for 

filtering variants in the probands. Here the goal is the minimise the number of variants that 

need to be curated for each individual by removing those that are unlikely to cause de novo 

disease. We compare using the parent pool as a filter to some of the standard approaches, 

namely filtering low quality variants and common variants. Figure 2 summarises our variant 

filtering approach and shows the number of variants remaining after each filter is applied. We 

defined low quality variant calls as those with QD (QUAL/DP) < 2 [34]. Since our probands 

have different phenotypes, we expect each to be caused by a different de novo variant. So we 

filtered out variants observed more than twice across the probands, as unlikely to be causal. 

We also filtered out common variants to retain only very rare variants i.e those observed at a 

frequency of greater than 0.0005 in gnomAD. We compared this to filtering out variants 

called in the parent pool. We found that filtering with the parent pool alone resulted in fewer 

variants than using the gnomAD frequencies alone. Importantly however, we found that the 

pooled parent filter was a complementary filter to other strategies and reduced the number of 

variants to less than 45% of the gnomAD only filter (Figure 3A). In particular we note that 

while gnomAD is useful to filter out variants observed frequently in the general population 

(specifically those populations included in gnomAD), the pool was able to filter out variants 

observed in the “private population” made up by these families. This may be particularly 

important when considering patients from populations that are not well represented in 

gnomAD. Most of our probands identified as European (Supplementary Table 6), populations 

which are generally well represented in gnomAD. The gnomAD filter was slightly less 

effective for the Pacific Islander proband (Proband 3). 95.3% of all raw variants could be 

filtered using gnomAD for this individual, compared with 96.1-96.4% for the three European 

probands. 
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Figure 2: A) Schematic of variant filtering in each proband. Proband IDs are indicated above each inverted 

triangle. The first figure is the raw number of variants called in each proband. We then filter out low quality 

variants (QD >= 2) and variants observed 2 or more times across the set of probands, in each case showing the 

remaining number of variants. At this point variants are filtered with either gnomAD allele frequency or the 

pooled parent variants, and then the intersection of these two filters is shown as a venn diagram. B) VEP worst 

consequence annotations for the variants remaining after filtering by quality, frequency in the probands and 

gnomAD allele frequency. Variants that can be further filtered using the parent pool are indicated as “in_pool”. 

C) Magnification of lower frequency consequence categories indicated by the dotted rectangles in B. 

We also performed annotation with Variant Effect Predictor (VEP) to aid interpretation of 

potential disease variants. Figures 2B and 2C show the worst consequences annotated by 

VEP for each variant for only those variants that passed the quality and gnomAD frequency  

filters. The pooled parent filter dramatically reduces the number of potentially deleterious 

variants that variant curators might need to consider. For example in all of the probands the 
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parent pool was able to filter out more than half of the missense variants, while in several 

probands it removed all start lost and splice site donor or acceptor variants. 

The pooled parent strategy enabled us to filter out the majority of variants from the probands. 

Importantly it was complementary, removing a different set of variants to those filtered based 

on population allele frequency. It removed a number of potentially pathogenic variants, 

reducing the variant curation load. 

Discussion 

The pooled-parent exome sequencing strategy we propose here is a powerful and cost-

effective way to prioritise de novo variants in the search for causal disease variants. Pooling 

DNA from parents is dramatically cheaper than full trio exome sequencing. While our 

simulations indicate that increasing pool size does reduce recall rates, the pooling strategy 

still allowed filtering of 94-98% of variants (for pool sizes of ten and two respectively). The 

reduced cost of this strategy allows funds to be reallocated to sequencing of more probands. 

We assessed variant calling strategies for pooled sequencing, and found that while the GATK 

HaplotypeCaller joint calling strategy provided the best recall rate overall, HaplotypeCaller 

individual calling had higher recall for the critical singleton variants. We also found that 

increasing the sequencing depth for pools was able to increase the recall rate, particularly for 

singleton variants. Generally increasing the sequencing depth is cheaper than performing 

additional exome captures. In a real analysis of four probands with undiagnosed likely de 

novo disease we were able to use a pooled-parent strategy to filter over 81% of variants. This 

strategy was complementary to population allele frequency filtering using gnomAD and 

resulted in reducing the final list of variants to less than 54% compared to just using 

gnomAD. Unfortunately, the variants responsible for causing disease in these probands 

remain unknown.  

One reason that the pooled-parent filtering strategy may perform particularly well when 

compared to population filtering, is that the parent pool is in essence an exquisitely matched 

population to the probands. The parents are the precise populations from which these 

probands arose and therefore is an excellent strategy for underrepresented populations. In 

contrast, gnomAD populations are weighted towards specific populations, particularly 

individuals of European ancestry [35]. If gnomAD is not a good representation of the 
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population from which the proband arose, then the pooled-parent strategy may perform 

particularly well in comparison to population filtering. 

We have seen the cost of DNA sequencing decrease over time, while the cost of exome 

capture has remained relatively high, both in reagents and because it is a labour-intensive 

task. So for exome sequencing the pooled-parent strategy is actually becoming increasingly 

cost-effective over time. However as the cost of sequencing drops still further, clinicians may 

increasingly move to whole genome sequencing instead. For whole genome sequencing, the 

per-sample preparation is a relatively small proportion of the overall cost, so the economics 

of pooled-parent sequencing are not as compelling. Therefore we expect the pooled-parent 

strategy to be most useful for exome and other targeted sequencing strategies such as smaller 

gene panels.  

One limitation of this study is the simulations are performed on randomly selected 

individuals rather than trios. This does not truly reflect the pooling of parents, but rather a 

comparison of individual samples with those same samples pooled together. However, having 

the individuals and the pools contain the same samples is a key advantage because the true 

allele frequencies of variants are known and this design allows false positives to be called. 

This was particularly useful when assessing the impact of increasing ploidy on the quality of 

variant calls and in evaluating different variant calling strategies. 

Conclusions 

Pooled-parent sequencing is a powerful strategy to filter out inherited variants to allow the 

analysis to focus on possible de novo variants. It is dramatically cheaper than full trio 

sequencing, allowing additional budget to sequence more probands. Importantly, our analysis 

shows the pooled parent variant filter is complementary to other standard approaches, in 

particular, filtering out different variants to using gnomAD population frequencies. 

Methods 

All code used for the simulations and analysis of these data sets can be found at 

https://github.com/Oshlack/pooled-parents-paper. 
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Simulating pools 

To simulate pooled exome sequencing experiments of various sizes, we combined reads from 

a set of separately sequenced individuals. We selected parents from the Simons Simplex 

Collection [26]. These samples were chosen as the largest subset of this collection that were 

relatively technically homogeneous individuals within the publicly available sequencing data 

from this project. Specifically this set is matched for DNA sequencer (Illumina GAIIx), read 

configuration (74 bp paired end reads) and exome capture kit (Nimblegen EZ Exome V2.0). 

We also removed samples with less than 64x median depth over the capture region in order to 

both remove low quality samples and to limit the range of sample depths such that 

min.depth/(min.depth+max.depth) = 0.4. I.e. if any two samples were combined then their 

reads would appear in a ratio between 40:60 and 50:50. The final set used for simulation 

consisted of 111 samples, 52 females and 59 males, with median depths ranging from 64 to 

97 (median 78). SRA run IDs are listed in the Supplementary Table 2.  

Pipelines were written in Bpipe [36]. Raw fastq reads were downloaded for each of these 

samples, then aligned to gatk.ucsc.hg19.fasta with BWA MEM version 0.7.17 [37] and 

indexed with Samtools version 1.8 [38] (script: genotype_individuals.groovy). 

In the constant depth simulation strategy, pools of two, four, six, eight and ten were simulated 

by selecting individuals at random from the 111 above, then randomly sampling a proportion 

of reads from the raw (not deduped) BAM files using samtools view -s (scripts: 

pooled_sim_bpipe.groovy and pooled_sim_joint.groovy). The proportions of reads were 

chosen such that the resulting pool would have twice the average depth of the source bams. 

The sampled bam files are merged with MergeSamFiles (Picard Tools version 2.18.11 [39]) , 

then the read group and sample information from the original samples are removed using 

Picard AddOrReplaceReadGroups so that – for downstream processes - the BAM will appear 

to have originated from a single sample. These BAM files were deduplicated using Picard 

MarkDuplicates. 

In the additive depth simulation strategy, pools were simulated so that the total sequencing 

depth for the pool is proportional to the number of samples. This was achieved by simply 

combining all reads for the samples in each pool. The simulation steps (scripts: 

pooled_depth_sim_bpipe.groovy and pooled_depth_joint.groovy) were the same as for the 
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first simulation with the exception that instead of sampling reads from the individual BAMs, 

all randomly selected BAMs where merged together. 

For both the constant and additive simulations we performed three replicates of each pool 

size using different random seeds and therefore different input samples, resulting in a total of 

30 bam files. The code for generating all these simulations can be found at 

https://github.com/Oshlack/pooled-parents-paper. 

Variant calling and analysis 

All variant calling was performed against hg19 and after deduplication with Picard Tools as 

above. For individual variant calling with GATK HaplotypeCaller version 4.0.10.1 [24], all 

individual samples were genotyped with default diploid ploidy, while for the pools, ploidy 

was set to two times the number of samples in the pool. Version 138 of dbSNP was used for 

all HaplotypeCaller commands. For joint calling, variants were called with GATK 

HaplotypeCaller -ERC GVCF to generate GVCFs, with default ploidy. Each pool GVCF was 

combined with the GVCFs of all the individual samples used to create that pool using GATK 

CombineGVCFs. Joint calling on the pool and its constituent samples was performed with 

GATK GenotypeGVCFs, to produce a final multi-sample VCF with genotype calls for loci 

that were called as variant in the pool or any of its individuals. FreeBayes version 1.2.0 [25] 

variant calling was performed on the individuals and pools from the constant simulation 

strategy only, as the high depth samples from the additive simulation caused excessive 

memory consumption. Individual calling was performed with default settings (script: 

freebayes.groovy), while for pooled variant calling (script: freebayes_pool.groovy) we set the 

relevant ploidy and ran in pooled-discrete mode with use-best-n-alleles = 4. FreeBayes 

reports all potential variants, including many of questionable quality, so in both the 

individuals and the pool we implemented the recommended QUAL > 20 filter [40] using the 

vcffilter script included with FreeBayes. 

To assess recall and false positive rates we compared variants called in each pool to the all 

variants called on the individuals that made up that pool. For HaplotypeCaller individual 

calling and FreeBayes we matched up specific variants across VCF files by creating a unique 

string representing the position and reference/alternate alleles. To do this we created a variant 

identifier: CHROM_POS_REF_ALT (or ALT1/ALT2 etc if multi-allelic and use this to 

uniquely match variants across VCF files (filter_individualVCF.py). For the joint calling the 
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pool and individuals were already represented at the same locus in a single VCF file, so we 

compared a variant across samples in the same vcf (filter_multiVCF.py). The recall rate is 

then calculated per pool as the number of alleles recalled in the pool divided by the total 

number of non-reference variants called in all individuals that made up that pool. If an allele 

was called in the pool but not in any of the individuals we consider it to be a false positive. 

False positives rate is then the number of false positives called in the pool divided by the total 

number of non-reference alleles called in that pool. VCF parsing was accomplished using 

Python 3.6.8 and PyVCF version 0.6.8 [41] and further analysis and plots were generated 

using dplyr and ggplot2 in R version 3.5.0. Manipulation of exome capture target bed files 

was performed with Bedtools v2.27.1 [42]. 

Samples and sequencing 

Four unsolved probands were selected from the Melbourne Genomics Health Alliance 

Childhood Syndromes project [43] as being good candidates for dominant de novo disease 

based on clinical assessment. This project was approved under Human Research Ethics 

Committee approval 13/MH/326. Parents provided written informed consent after genetic 

counseling regarding the testing. As part of the demonstration project these patients received 

exome sequencing alongside standard of care. DNA was extracted from peripheral blood, and 

exome sequenced used Nextera v1.2 Rapid Exome Capture Kit on a HiSeq 2500 at the 

Australian Genome Research Facility to 100X to a median on-target depth of 100x. We 

additionally sequenced a pool of all eight of these probands’ parents using the Agilent 

SureSelect QXT Clinical Research Exome capture kit, and 151 bp paired end reads on an 

Illumina HiSeq4000 to a total median on-target depth of 119x, or on average ~15x per parent.  

Analysis of real pools 

The probands and pool were analysed using a similar strategy to the simulations above 

(scripts: genotype_individuals.groovy and pooled_joint_analysis.groovy). Reads were 

aligned to gatk.ucsc.hg19.fasta with BWA MEM, indexed and deduplicated. Variant calling 

was performed with GATK HaplotypeCaller. Each sample was genotyped individually: the 

probands with default ploidy, and the pool with ploidy = 16. Proband variants were annotated 

with allele frequencies from gnomAD version r2.0.2 [14,17] using vcfanno version 0.2.9 

[44]. VEP was also used to annotate the most severe consequence for each variant. 
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As for the simulations, we calculated recall as the number of alleles called in any proband 

that were also called in the pool over all genomic regions (script: filter_individualVCF.py). 

Multiallelic variants were split to allow individual annotation with gnomAD allele 

frequencies and VEP consequences. We performed a series of filtering steps. We performed 

light filtering for variant quality, by filtering out variants with QD < 2 (QD = QUAL/DP), as 

recommended by the GATK documentation [34]. We also removed variants observed in 

more than one proband, as they have different diseases so these shared variants are unlikely 

to be causal. We removed variants with an allele frequency of more than 0.0005 in gnomAD. 

Finally, we filtered out any variants called in the parent pool. Before examining any 

individual variants in detail we excluded a set of genes known to cause high penetrance early 

onset disease to avoid secondary findings in line with Melbourne Genomics ethics 

requirements (Supplementary Table 8). 
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