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Abstract

Single and collective cell dynamics, cell shape changes, and cell migration can be
conveniently represented by the Cellular Potts Model, a computational platform based
on minimization of a Hamiltonian while permitting stochastic fluctuations. Using the
fact that a force field is easily derived from a scalar energy (F = −∇H), we develop a
simple algorithm to associate effective forces with cell shapes in the CPM. We display
the predicted forces for single cells of various shapes and sizes (relative to cell rest-area
and cell rest-perimeter). While CPM forces are specified directly from the Hamiltonian
on the cell perimeter, we infer internal forces using interpolation, and refine the results
with smoothing. Predicted forces compare favorably with experimentally measured
cellular traction forces. We show that a CPM model with internal signaling (such as
Rho-GTPase-related contractility) can be associated with retraction-protrusion forces
that accompany cell shape changes and migration. We adapt the computations to
multicellular systems, showing, for example, the forces that a pair of swirling cells exert
on one another, demonstrating that our algorithm works equally well for interacting
cells. Finally, we show forces associated with the dynamics of classic cell-sorting
experiments in larger clusters of model cells.

Author summary

Cells exert forces on their surroundings and on one another. In simulations of cell shape
using the Cellular Potts Model (CPM), the dynamics of deforming cell shapes is
traditionally represented by an energy-minimization method. We use this CPM energy,
the Hamiltonian, to derive and visualize the corresponding forces exerted by the cells.
We use the fact that force is the negative gradient of energy to assign forces to the CPM
cell edges, and then extend the results to interior forces by interpolation. We show that
this method works for single as well as multiple interacting model cells, both static and
motile. Finally, we show favorable comparison between predicted forces and real forces
measured experimentally.

Introduction 1

From embryogenesis and throughout life, cells exert forces on one another and on their 2

surroundings. Cell and tissue forces drive cell shape changes and cell migration by 3

regulating cell signaling and inducing remodeling of the cytoskeleton. Along with 4

progress in experimental quantification of cellular forces, there has been much activity 5

in modeling and developing computational platforms to explore cellular mechanobiology. 6

In some platforms, among them vertex-based and cell-center based simulations, the 7

shape of a cell is depicted by convex polygons, ellipsoids or spheres. 8
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The Cellular Potts Model (CPM) is a convenient computational platform that allows 9

for a variety of irregular and highly fluctuating cell shapes. Unlike vertex-based 10

computations, the CPM easily accommodates cell detachment or reattachment from an 11

aggregate, and a range of cell-cell adhesion. It also captures stochastic aspects of cell 12

movement. At the same time, since CPM computations are based on a 13

phenomenological “energy”, the Hamiltonian, it has often been criticized as 14

non-physical, or, at least, as devoid of Newtonian forces. In their review of models for 15

cell migration, Sun and Zaman [1] point to the need to coordinate results between 16

force-based and energy-based models, indicating that this is a “challenging but 17

significant” problem. Here we devise a map between the CPM Hamiltonian and an 18

explicit vector-field of forces associated with the dynamics of cell shape. We illustrate 19

the computation of this force field for single cells, for pairs of cells, and for larger 20

clusters of cells interacting through adhesion and through internal signaling. 21

In the Cellular Potts model, each “cell” configuration σ, consists of N lattice site,
assigned a unique index (“spin number”). Parts of the domain containing no cells are
indexed 0 by convention. For a single CPM cell surrounded by medium, the typical
Hamiltonian is given by

H(σ) = HA +HP +HJ , (0.1)

where σ is the cell configuration and

HA = λa(A− a)2, HP = λp(P − p)2, HJ = J(0, 1)P. (0.2)

Here HA is an energetic cost for expansion or contraction of the area, A, away from a 22

constant “rest area”, a, of the cell. HP is energetic cost for deviation of the cell 23

perimeter P from its “rest perimeter” p. HJ is energy associated with the cell-medium 24

interface (generalized later to include cell-cell or cell-medium adhesive energies.) The 25

factors λa, λp, J(0, 1) set the relative energetic costs of area changes, perimeter changes, 26

and changes in the contact with the medium. In a typical CPM simulation, cell shapes 27

are highly deformable. At each simulation step (Monte Carlo Step, MCS) every 28

boundary pixel of each cell may “protrude” or “retract”. Formally, these changes are 29

denoted “spin-flips”, and are accepted or rejected with some probability that depends 30

on the change in H and on a user-defined “temperature” T , as described in Materials 31

and Methods. 32

There are many realizations of the Potts Model with additional terms, or variations 33

of such terms. In the Discussion, we summarize the numerous ways that CPM cell 34

shape computations were linked to force calculations external to the CPM formalism 35

itself (and including, among others, finite element methods). 36

Since the Hamiltonian associates an “energy” with each cellular configuration, 37

theoretically we can relate forces to the negative gradient of the Hamiltonian, i.e. 38

~F = (Fx, Fy) = −∇H = −
(
∂H

∂x
,
∂H

∂y

)
. (0.3)

In practice, the computations are all carried out on a finite grid, so partial derivatives in 39

(0.3) are approximated by finite differences. We do this by calculating the small change 40

in the Hamiltonian when the cell boundary is extended in the x or y directions by a 41

small step ∆x or ∆y, as illustrated in Fig. 1. This is repeated at each point along the 42

edge of the cell. 43

A feature of CPM is that it only associates energetic costs with small fluctuations of 44

the edge of a model cell. Hence, such computation results in forces along the cell 45

perimeter that must then be interpolated elsewhere. The workflow then entails 1) 46

calculating the force along the cell perimeter, 2) reducing the grid effect in the force 47

field, 3) interpolating the force-field to the interior of the cell. This generic computation 48
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Figure 1. Schematic diagram showing how forces are derived from a
Cellular Potts Model Hamiltonian. The Hamiltonian represents an energy, so
~F = −∇H. We compute a discrete approximation to the components of the force
(Fx, Fy) at each point ~x on the cell boundary. Centered finite differences are used to
approximate the derivatives −(∂H/∂x, ∂H/∂y) of the Hamiltonian as in Eq. (0.5).
Here we illustrate the idea for the x component of the force, Fx. From a given initial
CPM cell configuration σ (top row), we numerically compute the difference in the
Hamiltonian at a point ~x on the right cell boundary when the cell retracts (left most
column) or extends (next column). We show the same idea for the left cell boundary
(next two columns). The force field computed along the boundary is then smoothed and
interpolated to the cell interior, as described in Materials and Methods.
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can be extended to forces of multiple interacting cells (in a cell sheet or aggregate). The 49

implementation of this idea is described in the Materials and Methods Section, with 50

further details in the Supplementary Information. 51

Results 52

Forces associated with static cell shapes 53

We computed the force-fields associated with the CPM Hamiltonians of single static 54

cells with circular (A), elliptical (B), and irregular shapes (C,D). Results of the complete 55

algorithm (including smoothing and interior forces) are shown in Figure 2 (A-D). 56

Intermediate calculations (forces on the cell boundary without and with smoothing, and 57

without interior smoothing) can be found in the Supplementary Figures 14-16. 58

Whether forces point inwards or outwards depends on the values of the area A and 59

perimeter P relative to their target values a, p and the relative weights of the energetic 60

cost or area and perimeter changes. For parameters given in Fig. 2, forces point inwards 61

all along the boundary of the circular and elliptical cell shapes. We find forces directed 62

approximately normal to the boundary, with magnitudes that decay towards the 63

centroid, as a consequence of our interpolation. 64

In more irregular shapes (Figure 2C,D), forces can point either inwards or outwards 65

at different points along the boundary. For the irregular cell with given configuration 66

and Hamiltonian parameters, we found that at convex sites, the forces point inwards, 67

while at concave sites, the forces point outwards. This is also in line with expectations 68

based on local (positive or negative) curvature of the boundary. Even for the most 69

irregular cell shape, the forces are fairly smooth and continuous. 70

Dynamic cell shapes and evolving forces 71

We next tracked the evolution of forces that accompany dynamic changes in shape of a 72

CPM “cell”. To do so, we initiated a CPM computation with a circular cell with 73

perimeter smaller than the rest-length p and area greater than the rest area, a. We also 74

assumed λp > λa, so that the energetic cost of the perimeter term dominated the 75

energetic cost of the area term in the Hamiltonian. 76

A time sequence of cell shapes and accompanying forces is shown in Fig. 3. At MCS 77

step 1, the cell is far from its preferred configuration, and large forces are seen all along 78

its edge. (Note that these forces are mostly directed outwards, with notable exceptions 79

in non-convex regions of the boundary.) As the cell quickly obtains its target perimeter, 80

the forces point inwards and the cell starts to shrink to obtain its target area. The 81

irregular force directions and large magnitudes rapidly decline, so that by MCS 3, the 82

force-field is more regular, and directed “inwards”. The cell becomes highly ramified, 83

with thin protrusions so as to satisfy both area and perimeter constraints. After a few 84

MCS, the cell shape has equilibrated, and forces decrease to very low levels. 85

Active forces from internal signaling 86

Several models have proposed signaling kinetics inside cells that result in forces of 87

protrusion or retraction (powered by actin assembly or actomyosin contractility). 88

Among these is the simple “wave-pinning” model for GTPase spatio-temporal 89

distribution [6]. We sought to visualize the evolution of the internal GTPase activity 90

field in parallel with the forces that it creates. Consequently, we assumed that a single 91

signaling protein in two states (analogous to active and inactive RhoA) participates in 92

reaction-diffusion kinetics inside the deforming “cell” and leads to edge contraction. 93

PLOS 4/47

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601781doi: bioRxiv preprint 

https://doi.org/10.1101/601781


Figure 2. Forces predicted for several cell shapes. Force fields predicted by our
complete method (smoothing and internal interpolation) for four simulated cell shapes
in the CPM. (A) Circular cell (area A = 401, perimeter P = 74, diameter=23). (B)
Elliptical cell (area A = 629, perimeter P = 101, axes lengths 21 and 41). (C) Irregular
cell shape (area A = 301, perimeter P = 118). (D) Highly irregular cell shape (area
A = 400, perimeter P = 146). Parameter values were a = 300, λa = 10, p = 100,
λp = 10, J(0, 1) = 3000, ξ(r) = 18, and r = 3 for all neighborhood calculations. We
used a grid of 50 by 50 lattice sites with ∆x=1. See also Supplementary Figures 14-16
for intermediate steps in the calculation of forces.
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Figure 3. Dynamics of cell shape and the evolution of forces. Time series
from 1 to 10 MCS. The cell achieves force balance by decreasing its area and increasing
its perimeter. Parameters were a = 200, λ = 8, p = 100, λp = 2000, J(0, 1) = 3000,
T = 10. The cell areas A at each of the 10 Monte Carlo steps displayed are: A = 397,
364, 332, 299, 280, 250, 232, 219, 213, 208, and the perimeter is P=74, 94.8, 98.2, 100.1,
99, 99.2, 99.1, 98.9, 99, 99.4.

Figure 4. Active contractile forces from internal signaling. Shown is a time
sequence (left to right, at 50, 100 and 150 MCS) of a moving cell whose shape changes
in response to a polarizing internal signal (e.g. Rho GTPase). (A) The internal GTPase
field (bright green at high values) based on the Wave-Pinning model. High levels of
activity are assumed to create large local inwards contraction. (B) Total forces given by
∇H + dHG along the perimeter of the deforming cell. (C) Forces due to the active
contraction term (dHG). Forces are shown without smoothing or interpolation.
Parameter values for CPM were: λa = 10, a = 1000, λp = 0, J(0, 1) = 5000, T = 50;
parameter values for internal signaling: β = 40 (for dHp), the numerical redistribution
radius was r = 3 (active rho), r = 75 (inactive rho). Parameters for internal
reaction-diffusion system, and details for the numerical method are provided in the
Supplementary Information.
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Regions of high Rho activity contiguous to the cell edge are shaded light green in 94

Fig. 4A. The internal chemistry leads to a force of protrusion, modeled by an additional 95

term, ∆Hp, superimposed on the Hamiltonian change.We assume ∆Hp = ±βu, where 96

β > 0 is a constant, and u the local signaling activity level. We assume that the signal 97

promotes contraction, so that ∆Hp is negative for retractions and positive for 98

protrusion. 99

Results are shown in Fig. 4A-C as a time sequence of cell deformations from left to 100

right. In Fig. 4A, we see that chemical polarization is maintained, as described in 101

previous studies [7, 10–12]. Contraction of the cell rear leads to the expansion of other 102

cell edges based on the CPM area constraint. In Figure 4B and C, the total force field 103

and the protrusive forces respectively are shown. Due to high signaling levels at the left 104

edge of the cell, a contractile force pointing towards the right develops (Figure 4C). At 105

the right side of the cell, forces due to the area and perimeter constraints point 106

outwards. All in all, these forces result in migration of the cell to the right. 107

Comparison with experimental force fields 108

Single cells can apply significant forces that remodel the extracellular matrix. In 109

traction force microscopy, beads are embedded into a substrate on which cells adhere. 110

By tracking bead displacements, cell traction forces can be inferred. Such inverse 111

methods quantify and reveal very detailed force fields. Traction forces roughly point 112

towards the cell’s centroid, are highest in protruding regions and decline towards the 113

cell’s centroid [8, 13–16]. Via cell-cell adhesions, cells also apply forces on neighbouring 114

cells and these forces can propagate through tissues [17]. 115

We asked how the predictions of the CPM-based force fields compare with data for 116

actual traction forces observed in real cell experiments. Consequently, we utilized data 117

kindly provided by the authors of [8] for two cancer cell lines. Several steps were needed 118

to arrive at a shared grid, to select CPM parameters, and to compare magnitudes on a 119

similar range, and adjust smoothing. Details are described in Methods and in the 120

Supplementary Information. Two examples are shown in Figs. 5- 6. Similar results (not 121

shown) were obtained with other data from the same paper. 122

Figs. 5A and 6A show observed (blue) and CPM predicted (magenta) force fields 123

superimposed on the same grid. Overall, we find surprisingly good qualitative 124

agreement, given the simplicity of the method. Experimental and predicted forces point 125

roughly in the same direction, for much of the cell shape. The concordance is 126

particularly good for the round cell, where our approximation for centroid-pointing 127

internal forces appears to be quite good. For the polarized cell in Fig. 6, this agreement 128

is less accurate, as two distinct “foci” appear to organize the force field in the 129

experimental data. Figs. 5B and 6B show the difference, Fdata − FCPM . As expected, 130

there are regions in each cell where localized internal forces (not captured by CPM) 131

result in significant deviation between data and predictions. 132

We compared directions of predicted and experimental forces at corresponding 133

points. Results are shown in Figure 5C and Figure 6C, with dark blue for points where 134

observed and predicted forces are aligned, and yellow-orange for points at which the 135

predicted direction deviates strongly from its observed value. Within a reasonable range 136

of the cell edge, the model captures the direction of the forces very well. This 137

correspondence is quantified in Supplementary Figure 22A. In the interior of the cell, 138

force magnitudes are so small that directions carry large errors, and we cannot judge 139

accuracy of the predictions. 140

We also compared relative force magnitudes, by plotting |FCPM |/|Fdata| in Figures 141

5D and 6D. We find some regions of deviation, notably at the top right corner of the 142

spindle-shaped cell. Supplementary Figure 22B shows the overall comparison of force 143

magnitude deviation. 144
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We tested a variety of CPM parameter values, including those that provide optimal 145

L2 norm fits of predictions to data (See Tables 1 and 2). A comparison of results for 146

distinct CPM parameters is shown in Supplementary Figures 19 and 20. The ’optimal’ 147

CPM parameter values vary over a much larger range for the round cell than for the 148

polarized cell data. There are many parameters λ, λp, A, P and J(0, 1) that determine 149

the overall magnitude of the force, so it is not surprising that a good fit is obtainable 150

with different values. 151

Finally, we also display a time series of cell movements in Figure 21 comparing the 152

CPM force field with the data for the polarized cell. During active cell motion, large 153

traction forces are built up for translocation (long blue arrows in the protrusive front of 154

the cell in Figure 21 C, D. The basic CPM cannot account for these forces, which are 155

due to active contractile or protrusive elements in the cell. However, as shown in a 156

previous section, it would be possible to decompose a Hamiltonian into components 157

corresponding to active forces and shape-based forces. In a similar vein, the difference 158

of the forces Fdata −FCPM could provide an estimate for the spatially distributed forces 159

of active protrusion/contraction in a motile cell. 160

Interacting cells and adhesion forces 161

Forces between interacting cells are not easy to measure directly. However, they have 162

been inferred from high-resolution traction-force measurements, for example by [18] 163

using a force-balance principle and thin-plate FEM analysis. 164

Here, we asked whether our algorithm would predict intercellular forces in two or 165

more cell that interact by adhesion. To investigate this question, we considered two 166

scenarios, including simple adhesion and signaling-regulated motility in a pair of cells. 167

Results are given below. Note that in the CPM, a high adhesive energy cost J , 168

corresponds to low cell-cell adhesion. 169

Varying adhesion strength 170

For the adhesion experiment, we set λp=0, to omit the perimeter constraint, and used 171

only the target area and adhesive energy in the Hamiltonian. We explored several 172

values of the adhesive energy J(1, 2) between cells, keeping both cells equally adherent 173

to the ‘medium’, J(0, 1) = J(0, 2) = constant. Results are shown in Figure 7. We find 174

that for highly ‘sticky’ cells (J(1, 2) < 2J(0, 1)), the cells remain attached with a wide 175

contact region, as shown in Fig. 7A. In the neutral cell-cell adhesion case, 176

J(1, 2) = 2J(0, 1), in Figure 7B, the cells remain attached on a smaller contact interface. 177

In this case, the round green cell initially (at 1 MCS), applies the same force 178

magnitudes at every interface (note circled regions). Finally, in 7C, with 179

J(1, 2) > 2J(0, 1), the energetically favored configuration is detached cells. 180

Comparing forces at cell-cell interfaces for the three adhesive energies (centered 181

black circles at 1MCS), we find that the force at a cell-cell interface is lowest in A, and 182

highest in C. This is consistent with Eq. (0.8). 183

Two motile cells with internal signaling 184

We next asked how internal signaling in each of two interacting CPM cells would affect 185

their mutual adhesive forces. To explore this question, we assumed the wave-pinning 186

signaling in each of the cells, starting from initially cells with uniform signaling 187

activities except for elevated activity along their left edges. Results are shown in 188

Figure 8. The reaction-diffusion (WP) equations lead to rapid polarization of signal 189

activity inside the cells, as before. High signal strength was associated with local 190

contraction of the cell edge, and area constraint then led to net motion. The two 191
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Figure 5. Comparing predicted forces to experimental data for a round cell.
(A) Predicted CPM force fields (magenta arrows) and experimental data (blue arrows)
(B) Difference of CPM force field and data force field (C) directional deviation (angle
between predicted and experimentally observed force vectors), dark blue means forces
align well. (D) relative magnitudes of the force fields, green means similar magnitude.
Parameter values are given in Table 1.
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Figure 6. Comparing predicted forces to experimental data for a polarized
cell. Panels as in Fig 5 but for a polarized cell Parameter values are given in Table 2.
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Figure 7. Forces due to cell-cell adhesion. Two CPM interacting cells in a time
sequence from left to right. (A) cells adhere strongly J(1, 2) < 2J(0, 1), (B) neutral
adhesion of cells to medium and to one another J(1, 2) = 2J(0, 1), (C) cells de-adhere,
J(1, 2) > 2J(0, 1); CPM parameters used were λp = 0, λa = 8, a = 300, J(1, 0) = 1800,
T = 300. We used J(1, 2) = 1800 (for the adhesive), 3600 (for the neutral) or 7200 ( for
the repulsive) cases.
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Figure 8. Edge forces in two adhering cells with internal signaling. (top)
The level u of signaling activity, (middle row) total force exerted by each cell, (bottom
row) mutual forces due to signaling contraction alone. The cells polarize and circulate
about one another. Parameters for the CPM are λa = 10, a = 1000, λp = 0,
J(1, 0) = 4000 = J(1, 2), T = 100, β = 20 (for dHp). Parameters for the
reaction-diffusion system are provided in the Supplementary Information. High
signaling activity (red) leads to local edge contraction. The configurations are shown at
MCS 224, 375, 450, 525 and 600.

moving cells maintained contact due to their assumed high adhesion (low energy of 192

cell-cell interfaces). While initially, cells moved in roughly the same direction, at some 193

later point, they started to rotate. This trend continued during the simulation. We 194

show the internal signal distribution in 8A, the total force computed from the CPM 195

Hamiltonian in 8B, and the active force due to the Rho-like signal in 8C. It is apparent 196

from the latter that forces cause a torque, leading to the observed rotation. 197

Dynamic force fields in large multicellular aggregates 198

Finally, we sought to test our methods on simulations of larger cell aggregates. We asked 199

whether the known dynamics of cell sorting, e.g. [19–22], would correlate well with force 200

fields that can now be directly visualized. For this purpose, we adopted the cell-sorting 201

benchmark test cases, where dynamics are well-established. That is, we considered three 202

typical cases, with two cell types and three distinct relative heterotypic and homotypic 203

adhesions, leading to the classic checkerboard, separation, and engulfment scenarios. 204

Figure 9 shows a time sequence of the model cell aggregate for the “separation” case. 205

Initially, cells are randomly mixed. Here, J(AA) = J(BB) = 900, J(AB) = 9000 (where 206

A are green and B are grey cells), so that a relatively high energetic cost results from 207

interfaces of unlike cell types (heterotypic interfaces). This means that the adhesive 208

forces between green and grey cells are high and repulsive. Evident from Figure 9 are 209

high forces that build up at heterotypic interfaces. (See zoomed regions.) By 210

Monte-Carlo step 400, we find regions where cells have separated. Cell boundaries 211

continue to adjust for some time, accounting for fluctuations between outwards and 212
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Figure 9. Separation cell sorting simulation with force visualization.
Parameter values were a = 300, λa = 1000, p = 67, λp = 20, J(0, grey) = 1800,
J(0, green) = 1800, J(grey, grey) = 900, J(green, green) = 900, J(grey, green) = 9000,
ξ(r) = 18, and r = 3 for all neighborhood calculations. The cellular temperature T was
set to 600.

inwards-pointing forces in a given cell during these transients. By 1000 MCS, many of 213

the separated boundaries have equilibrated to a large extent, and localized forces on 214

those boundaries have relaxed. A few remaining cells are still compressed or stretched 215

away from their preferred rest area and perimeter, and are seen to experience significant 216

forces. Later, (5000 MCS, Supplementary Figure 24) separated clusters round up. 217

Interestingly, these static images, in combination with the force-map allow for easy 218

visualization of parts of the aggregate that are still actively deforming. 219

We show two related scenarios in the Supplementary Information. A checkerboard 220

cell-sorting case is illustrated in SI Figures 25 and 26. The engulfment case is shown in 221

Figures 27 and 28. 222

PLOS 13/47

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601781doi: bioRxiv preprint 

https://doi.org/10.1101/601781


Discussion 223

Computational cell models promise to be a useful tool in testing hypotheses in single and 224

collective cell behavior. A range of platforms is used, including force-based simulations 225

of cells as self-propelled particles, points, spheres, or ellipsoids obeying Newtonian 226

physics. A number of geometric cell models, including vertex-based (polygonal) cell 227

simulations [23, 24] are based on energy minimization [25,26] or on explicit springs and 228

damping forces. One advantage of the Cellular Potts formalism, is that cell shape can 229

be modeled in detail, is highly dynamic, and captures fluctuations seen in real cells. 230

Like any model, the CPM has its limitations, as described by [27]. Among these is 231

the absence of an actual time scale in the “Monte Carlo Step”, mandating a definition 232

of time scales by other methods (see, e.g., [2, 28]). Here we have addressed a second 233

common criticism of the CPM, namely that it bears no relationship to cell forces and 234

mechanics. We have shown a direct link between Hamiltonian and corresponding forces. 235

Previous authors have combined classic CPM with external methods of tracking 236

forces. Lemmon and Romer [16] assumed that a cell acts as a contractile unit resulting 237

in a ‘first moment of area’ representation for the force distribution. Rens and Merks [3] 238

adopted this same method. Such a model produces reasonably realistic force fields, but 239

are not necessarily consistent with the CPM Hamiltonian, as these forces are assigned 240

independently of the assumed form of H. Albert and Schwarz [5] adapted the CPM 241

Hamiltonian to a form that had analytical expression for force on the cell edge. This 242

was based on the curvature of the cell. They used a marching square algorithm to 243

determine the curvature of the pixelated cell to calculate the cell edge force vectors and 244

applied a smoother to distribute those forces in a region around the cell edge. 245

Magno et al. [2] used the link between forces and gradients of potential energy

(~F = −∇H) to write down the tension (γ), the pressure (Π), and the total force ~F for
the basic CPM Hamiltonian,

γ =
∂H

∂p
Π = −∂H

∂a
~F = −∇H = ~FΠ + ~Fγ = Π∇a− γ∇p.

The authors used these relationships to derive a dynamical system for the size of a 246

spherical cell, and to map cell size dynamics onto a 2-parameter plane with composite 247

parameters. Our paper has taken motivation from their ideas to devise an algorithm for 248

numerically computing forces directly from the CPM Hamiltonian, for an arbitrary cell 249

shape, and for multiple cells. 250

Our numerical framework derives forces directly from small changes in CPM 251

Hamiltonian when the cell configuration changes by a small “spin flip”. While the CPM 252

Hamiltonian predicts forces at cell edges, simple interpolation and smoothing to 253

decrease grid effects were adopted. We showed that this approximation for the forces 254

gives reasonable results for a range of cell shapes. Importantly, the most basic CPM 255

Hamiltonian reproduces forces that are qualitatively consistent with experimental data. 256

Our algorithm applies not only to single cells but also to multicellular simulations. The 257

computed force-fields provide insights to cell deformations accompanying three typical 258

cell sorting experiments, where most but not all cells equilibrate with their neighbors. 259

In such simulations, force fields within the clusters help track and understand the global 260

and local dynamics of the cell collective. From the force-fields we can appreciate 261

simulated cell motions and a more tangible connection between the Hamiltonian and 262

cell behavior. 263

The approach is an approximation and has limitations that we summarize here. 264

First, the classic Hamiltonian approximates a cell as an elastic element tending to 265

retract/expand towards a specified rest area and rest-length circumference, which is a 266

grossly simplified view of a cell. Moreover, in matching CPM predictions to data, we 267

find multiple sets of CPM parameters that give rise to very similar qualitative 268
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agreement. Improved calibration of Hamiltonian to cells of given type would require 269

more specific data and are beyond the scope of this paper. 270

A second issue is that the CPM Hamiltonian only changes for cell edge 271

displacements, and so, only prescribes a force-field that is restricted to the cell edge 272

pixels. We have assumed simple interpolation, with zero force at the cell centroid, but 273

this is, to some extent, arbitrary. As seen in the data in Fig. 6, a polarized cell can have 274

multiple points at which the force vanishes. Hence, the internal force field should not be 275

over-interpreted. A second limitation is the attribution of forces to cell shape alone, 276

neglecting active and heterogeneous structures (stress fibers, focal adhesions, 277

cytoskeleton anisotropy, etc.) that make each cell a “living machine”. There are 278

generalizations to our idea that could improve on this simplification. In previous work, 279

Mareé et al [7] assembled a more detailed internal signaling CPM model for a single 280

motile cell that included actin filament orientation and pushing barbed ends (regulated 281

by active Cdc42, and Rac), as well as edge contraction (due to GTPase Rho, as in our 282

simple examples in Figs. 4 and 8). Such details can be added for greater consistency 283

with motile cells. Alternately, inclusion of other Hamiltonian terms such as directional 284

polarity (Mareé and Grieneisen, unpublished), or heterogenous, space-dependent, 285

Hamiltonian terms could be used to generalize these ideas. Finally, in principle, internal 286

cell structures (nucleus, focal adhesions) could be added, each having distinct properties 287

(i.e. values of parameters λa, λp, J etc.) This would necessitate a refinement of the 288

CPM accordingly. 289

An issue with CPM computations is that Monte Carlo steps are not scaled to actual 290

time. This issue is generally resolved by scaling the motion or cell cycle of CPM cells to 291

real cell speeds or cycle times. Based on typical cell size, typical forces cells produce, 292

and typical values of viscosity, one could also use the relationship v ≈ F/ξ to devise a 293

time scale. See also [28] for a proposed definition of the time-scale. 294

We have carried out partial validation of the method against single-cell data. 295

Traction force microscopy has also been used to quantify patterns of stress in 296

multicellular aggregates [18]. Stress is usually localized at the periphery of a cluster of 297

cells, while at cell-cell interfaces the stress is lower [29], suggesting that the cluster acts 298

as a single contractile unit. Inside the cluster, forces are highly dynamic and localized 299

forces can occur due to cell proliferation or rotating motion [30]. Great progress has 300

been made in visualizing force fields, and it is likely that modeling and computation will 301

contribute to an understanding of how traction force are precisely regulated and what 302

are consequences of the force dynamics on single and collective cell behavior. 303

Materials and Methods 304

Cellular Potts Model 305

In a Cellular Potts model (CPM), each “cell” consists of N lattice site, assigned a 306

unique index (“spin number”). Parts of the domain containing no cells are indexed 0 by 307

convention. A spin flip copies the spin value of a source lattice site (~xs) to a target site 308

(~xt), typically in a Moore neighborhood (one of eight nearest-neighbor pixels). The 309

configuration change (σ(~xs)→ σ(~xt)) results in a change ∆H, in the Hamiltonian. 310

Our Hamiltonian is given by Eq. (0.2) Many “spin flips” are attempted, but a each
is accepted with probability

P (∆H) =

{
1 if ∆H +H0 < 0

e(−∆H+H0)/T if ∆H +H0 ≥ 0.
(0.4)

where the “temperature” T ≥ 0 governs the magnitude of random fluctuations and H0, 311
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is a yield energy to be overcome. (Typically H0 = 0.) The CPM favors changes that 312

decrease the energy of the configuration, while allowing fluctuations. 313

Approximating forces at points along cell boundaries 314

We discretize the gradient of the Hamiltonian, from Eq. (0.3) as follows. Let
h = ∆x = ∆y be the given grid size in 2D. For each point ~x on the border of a cell of
configuration σ, consider a small local change, protrusion or retraction (Fig. 1) . The
local “spin flip” at ~x produce a small change in the Hamiltonian. We can compute the
force components Fx(~x) and Fy(~x) at ~x using a centered difference approximation to
the first partial derivative (accurate to 2nd order):

− Fx(~x) ≈ ∂H

∂σ(~x)
· ∂σ(~x)

∂x
≈ 1

2h
(H(σ + dxσ(~x))−H(σ − dxσ(~x))) (0.5)

and similarly for the component −Fy(~x). 315

This recipe defines forces at each point along the boundary of each isolated CPM 316

cell. In the Supplementary Information we discuss other simplification and special cases. 317

We implement steps to (1) improve accuracy, and reduce grid effects (2) interpolate 318

boundary forces to the cell interior (in 2D) (3) Generalize the idea to multiple cells and 319

(4) Compare to measured force fields for real cells. 320

Reducing the grid effects in perimeter calculations 321

Because cell boundaries are pixelated, a grid-effect is introduced in the above 322

calculations (Supplementary Figure 14). We reduce this artifact using enhanced CPM 323

neighborhood calculations inspired by [2]. Briefly, at each boundary site we define a 324

weighted average of forces with weights given by “local cell perimeter” as computed 325

using neighborhood summation. (We use a neighborhood radius r = 3.) We find that 326

this correction results in forces that are roughly orthogonal to the (refined) cell 327

boundary. In the Supplementary Information, we provide details and discuss how 328

accuracy is affected by neighborhood radius. 329

Phenomenological force fields in the interior 330

The methods described so far only provide a representation of the force field associated 331

with the cell perimeter. We use simple interpolation from boundary sites to a point in 332

the cell interior, typically the centroid of the region. This phenomenological choice, 333

following [3–5], leads to a 2D force field. 334

Intracellular reaction-diffusion system and protrusive forces 335

To model intracellular signaling that affects cell shape, we implement the wave-pinning 336

reaction-diffusion (RD) model of [6] in the 2D cell interior, and compute the evolution 337

of the RD system with no-flux boundary conditions at the evolving cell boundary. 338

Methods for our numerical computation, analogous to those of [7] are described in the 339

Supplementary Information. To link the internal chemical profile to forces on the cell 340

boundary, we assume a Rho-like edge contractility: the “Rho activity”, u, close to the 341

cell edge, is assumed to augment the local Hamiltonian changes by additional terms dH 342

of the form ±βu for protrusions/retractions. In this way, the distribution of u can 343

locally affect the probability of movement of the cell edge. After the cell edge moves, u 344

is redistributed locally to avoid numerical mass loss, as described in the Supplementary 345

Information. 346
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Comparison with experimental data 347

We obtained traction force microscopy (TFM) data from Jocelyn Etienne and Claude 348

Verdier for two cancer cell lines (T24 and RT112) as described by [8]. The authors 349

plated cells on polyacrylamide gels containing fluorescent beads, and computed traction 350

forces from bead displacements and known gel rheology [9]. We interpolated from their 351

triangular to our rectangular grid (Supplementary Figure 17), and optimized the CPM 352

parameters with respect to data at one time point using a Latin Hypercube sampling 353

method (see Supplementary Information and Tables 1 and 2). The CPM and data 354

force fields are then displayed on the same grid, and their difference, directional 355

deviation, and relative magnitudes are computed and displayed for comparative 356

purposes. 357

Generalization to multiple cells 358

For a system of multiple cells, we decompose the total Hamiltonian into contributions
Hi made by each cell,

H(σ(Λ)) =

n∑
i=1

Hi
A +Hi

P +Hi
J ≡

n∑
i=1

Hi, (0.6)

where Hi
A and Hi

P are as in Eq. (0.2) for cell i and where HJ is generalized to
accommodate cell-cell adhesion energies,

Hi
J = J(0, τ(i))P0i +

1

2

n∑
j=1

J(τ(i), τ(j))Pij , (0.7)

where n is the number of cells, τ(σ) the cell type of cell σ, P0i is the boundary length of 359

cell i in contact with the medium and Pij is the length of the cell i- cell j interface. 360

(The factor 1
2 corrects for double-counting of each interface.) The finite difference 361

computation of forces along interfaces then follows from the single cell case. (See also 362

the Supplementary Information). 363

It has been shown in other papers (see, e.g. [5]) that force exerted by each cell can
be reduced to the form

~Fi(~x) = 2λ(A− a(i))~n+ 2λp(P − p(i))κ~n+ κJ~n, (0.8)

where κ is the curvature, ~n is the unit normal vector, and J is either J(0, 1) or J(i, j)/2. 364

References

1. Sun M, Zaman MH. Modeling, signaling and cytoskeleton dynamics: integrated
modeling-experimental frameworks in cell migration. Wiley Interdisciplinary
Reviews: Systems Biology and Medicine. 2017;9(1):e1365.

2. Magno R, Grieneisen VA, Marée AF. The biophysical nature of cells: potential
cell behaviours revealed by analytical and computational studies of cell surface
mechanics. BMC biophysics. 2015;8(1):8.

3. Rens EG, Merks RM. Cell contractility facilitates alignment of cells and tissues
to static uniaxial stretch. Biophysical journal. 2017;112(4):755–766.

4. Rens EG, et al. Multiscale mathematical biology of cell-extracellular matrix
interactions during morphogenesis. Leiden University. Leiden, The Netherlands;
2018.

PLOS 17/47

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601781doi: bioRxiv preprint 

https://doi.org/10.1101/601781


5. Albert PJ, Schwarz US. Dynamics of cell shape and forces on micropatterned
substrates predicted by a cellular Potts model. Biophysical journal.
2014;106(11):2340–2352.

6. Mori Y, Jilkine A, Edelstein-Keshet L. Wave-pinning and cell polarity from a
bistable reaction-diffusion system. Biophysical journal. 2008;94(9):3684–3697.

7. Marée AF, Jilkine A, Dawes A, Grieneisen VA, Edelstein-Keshet L. Polarization
and movement of keratocytes: a multiscale modelling approach. Bulletin of
mathematical biology. 2006;68(5):1169–1211.

8. Roux C, Duperray A, Laurent VM, Michel R, Peschetola V, Verdier C, et al.
Prediction of traction forces of motile cells. Interface focus. 2016;6(5):20160042.

9. Peschetola V, Laurent VM, Duperray A, Michel R, Ambrosi D, Preziosi L, et al.
Time-dependent traction force microscopy for cancer cells as a measure of
invasiveness. Cytoskeleton. 2013;70(4):201–214.

10. Marée AF, Grieneisen VA, Hogeweg P. The Cellular Potts Model and biophysical
properties of cells, tissues and morphogenesis. In: Anderson A R A RKA
Chaplain M A J, editor. Single-cell-based models in biology and medicine. Basel:
Birkhauser; 2007. p. 107–136.

11. Edelstein-Keshet L, Holmes WR, Zajac M, Dutot M. From simple to detailed
models for cell polarization. Philosophical Transactions of the Royal Society B:
Biological Sciences. 2013;368(1629):20130003.

12. Camley BA, Zhang Y, Zhao Y, Li B, Ben-Jacob E, Levine H, et al. Polarity
mechanisms such as contact inhibition of locomotion regulate persistent
rotational motion of mammalian cells on micropatterns. Proceedings of the
National Academy of Sciences. 2014;111(41):14770–14775.

13. Reinhart-King CA, Dembo M, Hammer DA. Endothelial cell traction forces on
RGD-derivatized polyacrylamide substrata. Langmuir. 2003;19(5):1573–1579.

14. Reinhart-King CA, Dembo M, Hammer DA. The dynamics and mechanics of
endothelial cell spreading. Biophysical journal. 2005;89(1):676–689.

15. Reinhart-King CA, Dembo M, Hammer DA. Cell-cell mechanical communication
through compliant substrates. Biophysical journal. 2008;95(12):6044–6051.

16. Lemmon CA, Romer LH. A predictive model of cell traction forces based on cell
geometry. Biophysical journal. 2010;99(9):L78–L80.

17. Collins C, Nelson WJ. Running with neighbors: coordinating cell migration and
cell–cell adhesion. Current opinion in cell biology. 2015;36:62–70.

18. Ng MR, Besser A, Brugge JS, Danuser G. Correction: Mapping the dynamics of
force transduction at cell–cell junctions of epithelial clusters. eLife. 2015;4:e06656.

19. Glazier JA, Graner F. Simulation of the differential adhesion driven
rearrangement of biological cells. Physical Review E. 1993;47(3):2128.

20. Graner F, Glazier JA. Simulation of biological cell sorting using a
two-dimensional extended Potts model. Physical review letters. 1992;69(13):2013.

21. Foty RA, Steinberg MS. The differential adhesion hypothesis: a direct evaluation.
Developmental biology. 2005;278(1):255–263.

PLOS 18/47

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601781doi: bioRxiv preprint 

https://doi.org/10.1101/601781


22. Nakajima A, Ishihara S. Kinetics of the cellular Potts model revisited. New
Journal of Physics. 2011;13(3):033035.

23. Fletcher AG, Osborne JM, Maini PK, Gavaghan DJ. Implementing vertex
dynamics models of cell populations in biology within a consistent computational
framework. Progress in biophysics and molecular biology. 2013;113(2):299–326.

24. Fletcher AG, Osterfield M, Baker RE, Shvartsman SY. Vertex models of
epithelial morphogenesis. Biophysical journal. 2014;106(11):2291–2304.

25. Nagai T, Honda H. A dynamic cell model for the formation of epithelial tissues.
Philosophical Magazine B. 2001;81(7):699–719.

26. Farhadifar R, Röper JC, Aigouy B, Eaton S, Jülicher F. The influence of cell
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Figure captions 365

1. Fig. 1 Schematic diagram showing how forces are derived from a 366

Cellular Potts Model Hamiltonian. The Hamiltonian represents an energy, 367

so ~F = −∇H. We compute a discrete approximation to the components of the 368

force (Fx, Fy) at each point ~x on the cell boundary. Centered finite differences are 369

used to approximate the derivatives −(∂H/∂x, ∂H/∂y) of the Hamiltonian as in 370

Eq. (0.5). Here we illustrate the idea for the x component of the force, Fx. From 371

a given initial CPM cell configuration σ (top row), we numerically compute the 372

difference in the Hamiltonian at a point ~x on the right cell boundary when the cell 373

retracts (left most column) or extends (next column). We show the same idea for 374

the left cell boundary (next two columns). The force field computed along the 375

boundary is then smoothed and interpolated to the cell interior, as described in 376

Materials and Methods. 377

2. Fig. 2 Forces predicted for several cell shapes. Force fields predicted by 378

our complete method (smoothing and internal interpolation) for four simulated 379

cell shapes in the CPM. (A) Circular cell (area A = 401, perimeter P = 74, 380

diameter=23). (B) Elliptical cell (area A = 629, perimeter P = 101, axes lengths 381

21 and 41). (C) Irregular cell shape (area A = 301, perimeter P = 118). (D) 382

Highly irregular cell shape (area A = 400, perimeter P = 146). Parameter values 383

were a = 300, λa = 10, p = 100, λp = 10, J(0, 1) = 3000, ξ(r) = 18, and r = 3 for 384

all neighborhood calculations. We used a grid of 50 by 50 lattice sites with ∆x=1. 385

See also Supplementary Figures 14-16 for intermediate steps in the calculation of 386

forces. 387

3. Fig. 3 Dynamics of cell shape and the evolution of forces. Time series 388

from 1 to 10 MCS. The cell achieves force balance by decreasing its area and 389

increasing its perimeter. Parameters were a = 200, λ = 8, p = 100, λp = 2000, 390

J(0, 1) = 3000, T = 10. The cell areas A at each of the 10 Monte Carlo steps 391

displayed are: A = 397, 364, 332, 299, 280, 250, 232, 219, 213, 208, and the 392

perimeter is P=74, 94.8, 98.2, 100.1, 99, 99.2, 99.1, 98.9, 99, 99.4. 393

4. Fig. 4 Active contractile forces from internal signaling. Shown is a time 394

sequence (left to right, at 50, 100 and 150 MCS) of a moving cell whose shape 395

changes in response to a polarizing internal signal (e.g. Rho GTPase). (A) The 396

internal GTPase field (bright green at high values) based on the Wave-Pinning 397

model. High levels of activity are assumed to create large local inwards 398

contraction. (B) Total forces given by ∇H + dHG along the perimeter of the 399

deforming cell. (C) Forces due to the active contraction term (dHG). Forces are 400

shown without smoothing or interpolation. Parameter values for CPM were: 401

λa = 10, a = 1000, λp = 0, J(0, 1) = 5000, T = 50; parameter values for internal 402

signaling: β = 40 (for dHp), the numerical redistribution radius was r = 3 (active 403

rho), r = 75 (inactive rho). Parameters for internal reaction-diffusion system, and 404

details for the numerical method are provided in the Supplementary Information. 405

5. Fig. 5 Comparing predicted forces to experimental data for a round 406

cell. (A) Predicted CPM force fields (magenta arrows) and experimental data 407

(blue arrows) (B) Difference of CPM force field and data force field (C) directional 408

deviation (angle between predicted and experimentally observed force vectors), 409

dark blue means forces align well. (D) relative magnitudes of the force fields, 410

green means similar magnitude. Parameter values are given in Table 1. 411

6. Fig. 6Comparing predicted forces to experimental data for a polarized 412

cell. Panels as in Fig 5 but for a polarized cell Parameter values are given in 413
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Table 2. 414

7. Fig. 7 Forces due to cell-cell adhesion. Two CPM interacting cells in a time 415

sequence from left to right. (A) cells adhere strongly J(1, 2) < 2J(0, 1), (B) 416

neutral adhesion of cells to medium and to one another J(1, 2) = 2J(0, 1), (C) 417

cells de-adhere, J(1, 2) > 2J(0, 1); CPM parameters used were λp = 0, λa = 8, 418

a = 300, J(1, 0) = 1800, T = 300. We used J(1, 2) = 1800 (for the adhesive), 3600 419

(for the neutral) or 7200 ( for the repulsive) cases. 420

8. Fig. 8 Edge forces in two adhering cells with internal signaling. (top) 421

The level u of signaling activity, (middle row) total force exerted by each cell, 422

(bottom row) mutual forces due to signaling contraction alone. The cells polarize 423

and circulate about one another. Parameters for the CPM are λa = 10, a = 1000, 424

λp = 0, J(1, 0) = 4000 = J(1, 2), T = 100, β = 20 (for dHp). Parameters for the 425

reaction-diffusion system are provided in the Supplementary Information. High 426

signaling activity (red) leads to local edge contraction. The configurations are 427

shown at MCS 224, 375, 450, 525 and 600. 428

9. Fig. 9 Separation cell sorting simulation with force visualization. 429

Parameter values were a = 300, λa = 1000, p = 67, λp = 20, J(0, grey) = 1800, 430

J(0, green) = 1800, J(grey, grey) = 900, J(green, green) = 900, 431

J(grey, green) = 9000, ξ(r) = 18, and r = 3 for all neighborhood calculations. The 432

cellular temperature T was set to 600. 433
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Supplementary figure captions 434

• Supplementary Fig. 10 Neighborhoods N(~x, r) of various orders with radii 435

r = 3, 5, 10 around a lattice site ~x (shown in red). 436

• Supplementary Fig. 11 Examples of four possible spin flips used to compute 437

Fx based on Eq. (0.5). 438

• Supplementary Fig. 12 The effect of the neighborhood radius used for 439

smoothing the cell boundary forces for ellipsoidal cells. (A) Sum of square errors 440

(SSE) between normalized CPM force vectors and true unit normal vector 441

(−b cos(θ),−a sin(θ)) to an ellipse with axes 10 and 20. The error is minimized at 442

r = 14. (B) True normal vectors (green) to an ellipse with axis 10 and 20, 443

compared to CPM forces smoothed with radius r = 3 (blue). (C) Neighborhood 444

radii r corresponding to minimal SSE for ellipses with various axes lengths 445

between 5 and 50. (D) Same as (B) but with smoothing radius r = 14. 446

• Supplementary Fig. 13 Interpolation used to compute force at a site ~x inside a 447

CPM cell based on the centroid ~xC and the force predicted by the CPM at a 448

boundary site ~xM along the ray connecting the centroid and the given site. The 449

ray was determined by minimizing α in Eq. 0.22. 450

• Supplementary Fig. 14 Cell edge forces for various simulated cell shapes in the 451

CPM using only the finite difference approach, with no smoothing. (A) A circular 452

cell with an area of 401, perimeter of 74, and a diameter of 23. (B) An elliptical 453

cell with an area of 629, perimeter 101, and short and long axis 21 and 41. (C) An 454

irregular shape with area 301 and perimeter 118. (D) A highly irregular cell shape 455

with area 400 and perimeter 146. Parameter values were a = 300, λa = 10, 456

p = 100, λp = 10, J(0, 1) = 3000, ξ(r) = 18, and r = 3 for all neighborhood 457

calculations. We used a grid of 50 by 50 lattice sites with ∆x=1. 458

• Supplementary Fig. 15 As in Supplementary Fig. 14, but with smoothing 459

applied to the boundary forces. We used r = 3 for all neighborhood calculations. 460

• Supplementary Fig. 16 Interior forces computed with no smoothing for the cell 461

shapes shown in Supplementary Fig 14. 462

• Supplementary Fig. 17 Triangular mesh on which cell traction data from [8] 463

was supplied, and the corresponding CPM cell (spin value = 1). 464

• Supplementary Fig. 18 Force fields from data (blue) and CPM (magenta) 465

using initial arbitrary CPM parameters for the round cell (A-B) and polarized cell 466

(C-D). Radius of smoothing used was (A,B) r = 3, (C, D) r = 10. Regions of large 467

deviation are circled. 468

• Supplementary Fig. 19 Fitting CPM parameters: Data (blue) and CPM 469

(magenta) force fields for the round cell using the second (A), third (B), fourth (C) 470

and fifth (D) best CPM parameter values. Parameter values are given in Table 1. 471

• Supplementary Fig. 20 As in Fig. 19 but for the polarized cell using the second 472

(A), third (B), fourth (C) and fifth (D) best CPM parameter values in Table 2 473

• Supplementary Fig. 21 A time-lapse of cell motion and force fields from [8] 474

showing data (blue) and CPM (magenta) force fields. The CPM parameters were 475

as in Fig. 6 and row 1 of Table 2. 476
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• Supplementary Fig. 22 Correspondence between data and CPM predicted 477

forces. Boxplots showing distributions of (A) the directional deviation (angle 478

between experimental and model forces), (B) relative magnitudes of forces (C) 479

deviation of x components and (D) y components of the forces. 480

• Supplementary Fig. 23 Multiple cells: Spin-flips used to approximate the force 481

exerted by the grey cell at cell-cell interfaces (A) CPM spin-flip modeling 482

extension of the grey cell, shifting the cell-cell interface to the right (B) CPM 483

spin-flip modeling a retraction of the grey cell, shifting the cell-cell interface to the 484

left. 485

• Supplementary Fig. 24 A separation cell-sorting simulation at 5000 MCS. 486

Parameter values were a = 300, λa = 1000, p = 67, λp = 20, J(0, grey) = 1800, 487

J(0, green) = 1800, J(grey, grey) = J(green, green) = 900, J(grey, green) = 9000, 488

ξ(r) = 18, and r = 3 for all neighborhood calculations. The cellular temperature 489

T was set to 600. Some cells are still experiencing large forces. 490

• Supplementary Fig. 25 Checkerboard simulation with force visualization. 491

Parameter values were as in Supplementary Fig. 24 but with J(grey, grey) = 7200, 492

J(green, green) = 7200, J(grey, green) = 1800. 493

• Supplementary Fig. 26 Checkerboard cell-sorting simulation at 5000 MCS. 494

Parameter values were a = 300, λa = 1000, p = 67, λp = 20, J(0, grey) = 1800, 495

J(0, green) = 1800, J(grey, grey) = 7200, J(green, green) = 7200, 496

J(grey, green) = 1800, ξ(r) = 18, and r = 3 for all neighborhood calculations. The 497

cellular temperature T was set to 600. 498

• Supplementary Fig. 27 Engulfment cell-sorting simulation with force 499

visualization. Parameter values were a = 300, λa = 1000, p = 67, λp = 20, 500

J(0, grey) = 1800, J(0, green) = 9000, J(grey, grey) = 1800, 501

J(green, green) = 1800, J(grey, green) = 3600, ξ(r) = 18, and r = 3 for all 502

neighborhood calculations. The cellular temperature T was set to 600. 503

• Supplementary Fig. 28 Engulfment cell-sorting simulation at 5000 MCS. 504

Parameter values as in Supplementary Fig. 27. 505
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Supplementary Information 512

Cellular Potts Model (CPM) 513

In the CPM, cell shape is described on a discrete lattice and evolves through 514

minimization of a Hamiltonian, analogous to an energy. Dynamic changes in cell shapes, 515

interfaces, and positions result in changes in the Hamiltonian. The dynamics of the 516

system are governed by the general principle of energy minimization, allowing for 517

fluctuations that are akin to “thermal noise”. The latter helps to avoid getting trapped 518

in local energy minima. The Hamiltonian is minimized by a Metropolis type algorithm, 519

where cell edge movements are iteratively attempted and actually carried out if the 520

movement decreases the Hamiltonian. For surveys of CPM and its applications, 521

see [2, 10]. 522

In the CPM, both shapes and positions of each “cell” (configuration denoted by σ) 523

evolve in time. Changes that minimize the Hamiltonian are favored. At each simulation 524

step (Monte Carlo Step, MCS) every boundary pixel of each cell may “protrude” or 525

“retract”. (Formally, these changes are denoted “spin-flips”, each corresponding to 526

copying the spin value of a source lattice site (~xs: source site) onto a neighboring target 527

lattice site (~xt: target site; σ(~xs)→ σ(~xt)). The target sites are typically the eight 528

nearest-neighbor pixels of the source site (Moore neighborhood). While many such 529

small spin-flips are tested, those that are actuated depend on the resulting changes in 530

the Hamiltonian (∆H) The probability of the move is assigned by Eq. (0.4), 531

A common issue raised in the literature is that CPM simulations are not in 532

correspondence with Newtonian forces, and hence non-physical. However, as argued 533

eloquently in [2], the energy-based CPM formalism suggests direct correspondence with 534

a force representation, and we utilize such ideas below. 535

Relating forces to the Hamiltonian 536

The force is related to the Hamiltonian (energy) by

~F = −∇H = −
(
∂H

∂x
,
∂H

∂y

)
, ∇ =

(
∂

∂x
,
∂

∂y

)
.

For the Hamiltonian given in the main text by (??), it has been noted by e.g., [5] that
the same force can also be expressed in the form

~F (~x) = 2λ(A− a)~n+ 2λp(P − p)κ~n+ J(0, 1)κ~n, (0.9)

where, ~n is the inward unit normal vector at the cell boundary and κ is the local 537

curvature. 538

Approximating forces at points along cell boundaries 539

For h = ∆x = ∆y the grid size and ~x a point of a cell boundary, let σ be the cell 540

configuration. Then a single “spin flip” at ~x produces a small change in the Hamiltonian. 541

This idea allows us to approximate Fx = −∂H/∂x ≈ −∆xH/∆x, and similarly for Fy. 542

CPM spin-flips are variations of the cell configuration, σ. We define dxσ, dyσ as 543

spin-flips in the x and y directions that displace the cell boundary to the left or right 544

relative to the given lattice site. 545

The centered difference approximation to the first partial derivative results in

− Fx(~x) ≈ ∂H

∂σ(~x)
· ∂σ(~x)

∂x
≈ 1

2h
(H(σ + dxσ(~x))−H(σ − dxσ(~x))) , (0.10)

PLOS 24/47

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601781doi: bioRxiv preprint 

https://doi.org/10.1101/601781


and similarly for the component −Fy. Spin flips along any flat edge do not change to 546

the configuration. Hence the direction of the force at such points would always be 547

normal to the flat edge. 548

Using the fact that H(σ + dσ) = H(σ) + dH(σ → σ + dσ), we can rewrite the above
as

− Fx(~x) ≈ 1

2h
(∆H(σ → σ + dxσ(~x))−∆H(σ → σ − dxσ(~x))) . (0.11)

There are some special cases. If a site ~x is positioned directly between two boundary
points, as shown in Figure 11, then there are four possible spin-flips that affect the
configuration at ~x: shifting the left-most cell edge out/in, or shifting the right-most
edge out/in. These lead, respectively to the two approximations

− Fx(~x) ≈ −Fx(~x)left =
1

2h

(
H(σ + dleft

x σ(~x))−H(σ − dleft
x σ(~x))

)
, (0.12)

or

− Fx(~x) ≈ −Fx(~x)right =
1

2h

(
H(σ + dright

x σ(~x))−H(σ − dright
x σ(~x))

)
. (0.13)

To avoid a bias in a particular direction, we resolve this by taking the average of Eqs.
0.12 and 0.13, so that

− Fx(~x) ≈ −1

2

(
Fx(~x)left + Fx(~x)right

)
(0.14)

This approach is illustrated in Figure 11. Similar computations apply to Fy, as before. 549

Reducing the grid effects in perimeter calculations 550

Pixellation introduces artifacts in the perimeter of a cell. Approximating the cell
perimeter as the sum of lattice edges (or number of lattice sites along the edge) is quite
poor [2], introducing a large grid effect. We adopt the correction by [2] with the
following neighborhood calculation:

P ≈ 1

ξ(r)

∑
~x:σ(~x)=1

∑
~x′∈N(~x,r)

1− δ(σ(~x), σ(~x′)). (0.15)

Here N(~x, r) is the collection of neighboring sites of ~x within a range r and ξ(r) is a 551

scaling factor. (See Supplementary Figure 10.) This summation counts the number of 552

neighboring sites of ~x that are outside of the cell, i.e., how much ~x contributes to the 553

perimeter. (Note that σ : Λ→ N is the cell index or “spin value”, so that the delta 554

function is nonzero only if ~x, ~x are both sites inside the same cell.) 555

A Moore neighborhood is often chosen (Figure 10) to compute the perimeter term
(or adhesive energy term) in the Hamiltonian. For a neighborhoods with radius r,

N(~x, r) = {~x′ : ||~x− ~x′|| ≤ r}. (0.16)

The larger the radius, the better the approximation of the perimeter (provided that the 556

radius is not too large relative to cell size) [2]. Finally, the summation is normalized by 557

the scaled factor ξ that corrects for the neighborhood radius [2]. We typically use a 558

radius of 3 pixels for the neighborhood. 559
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Smoothing the forces 560

We refine the direction of the forces on the cell edge as follows. First we define ~N to be 561

a weighted average of forces within a neighborhood as 562

~N(~x) =
∑

~x′∈N(~x,r)

δ(σ(~x), σ(~x′))w(~x′)~F (~x′), (0.17)

where
w(~x′) =

∑
~y∈N(~x′,r)

1− δ(σ(~y), σ(~x′)). (0.18)

These weights count the number of neighborhood sites of ~x′ outside of the cell, i.e. the
contribution of ~x′ to the perimeter. We scale the vector ~N to obtain a unit vector ~n,
and then define the refined force as

~F ′(~x) = |~F (~x)|~n(~x), where ~n ≈
~N

| ~N |
. (0.19)

Here |~F | is the magnitude of the force given by our finite difference approximation. In 563

Eq. 0.18, we use a neighborhood radius of r = 3, as recommended by [2]. 564

Optimal neighborhood size for smoothing 565

We numerically investigated the relationship between the smoothing neighborhood 566

radius r, used in Eq. 0.17, and the accuracy of the smoothed force vector. 567

To do so, we took an elliptical shape, as in Supplementary Figure 12, for which the
boundary normal vector is known.

x2

a2
+
y2

b2
≤, ~nellipse = (−b cos(θ),−a sin(θ)). (0.20)

We first created a pixelated ellipse and displayed the approximated normal vectors for
r = 3 in blue compared to the actual normal vectors of (0.20) (green). We next
compared results of the smoothing algorithm of (0.17) with various values of the radius
r. In each case, we compute the L2 norm (sum of squared errors, SSE),

SSE =
∑

membrane sites

||fcpm − fellipse||2,

between the approximate (smoothed) normal direction and ~nellipse. Supplementary 568

Figure 12A shows the SSE for an ellipse with axes a = 10 and b = 20 as a function of 569

the radius r. We find that the optimal radius is r = 14. Panel D shows the smoothed 570

normal vectors for r = 14 (blue) compared to actual normal vectors (green), showing 571

that, indeed, there is improvement over a smoothing radius of r = 3. 572

We asked how the ellipse aspect ratios affect this conclusion. To test this, we varied 573

the axes a and b of the ellipse, each from 7.5 to 47.5 in steps of 2.5. For each of these 574

ellipses we computed the optimal r as before. Results are shown in Supplementary 575

Figure 12C, where the elliptical axis a is on the x-axis and various values of b are shown 576

with different colors. The optimal smoothing radius r increases roughly linearly with 577

the length of either elliptical axis. Importantly, the SSE increases dramatically as r 578

becomes too large relative to the cell size (Panel D), implying that larger r values are to 579

be avoided. If cell shape is irregular, with small structures to be resolved, then large r 580

values are inappropriate. We adopted r = 3 as a compromise. 581

PLOS 26/47

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601781doi: bioRxiv preprint 

https://doi.org/10.1101/601781


Phenomenological force fields in the interior 582

The centroid of the cell shape is

~xc = (< x >,< y >), (0.21)

where < ·, · > denotes an average over all sites inside the cell. The goal is to define a 583

force vector at every interior point ~x inside the cell. We do this by interpolating force 584

vectors from the cell boundary to the centroid along straight line rays, assuming that 585

net force at the centroid vanishes. 586

At each internal site ~x we identify the boundary site ~xm on such a ray to the
centroid,

~xm = argmin
~xm∈B∧|~xm−~xc|>|~x−~xc|

α(~x− ~xc, ~xm − ~xc), (0.22)

where B is the set of membrane sites and α denotes the angle between the given vectors. 587

(See Supplementary Figure 13.) The force at ~x is assigned to be 588

~F (~x) = ~F (~xm)− |~x− ~xm|
|~xc − ~xm|

~F (~xm). (0.23)

We used simple linear decay of force magnitude from boundary to centroid but other 589

assumptions such as quadratic, or exponential decrease are as easy to implement. 590

To smooth the vector field, we take an average over all boundary pixels that are 591

neighbours to ~xm: 592

~F (~x) =

〈
~F (~x′)− |~x− ~x′|

|~xc − ~x′|
~F (~x′)

〉
~x′∈N(~xm,r)∧~x′∈Bi

. (0.24)

Intracellular reaction-diffusion system and protrusive forces 593

For the internal signaling simulations, we used the wave-pinning reaction-diffusion 594

model of [6]. Here u(x, t), v(x, t) are active and inactive forms of a signaling protein, e.g. 595

Rho GTPase, satisfying the reaction-diffusion equations, 596

∂u

∂t
= Du∇2u+ f(u, v), (0.25a)

∂v

∂t
= Dv∇2v − f(u, v), (0.25b)

f(u, v) =

(
k + γ

u2

u2
0 + u2

)
v − ηu. (0.25c)

Parameters chosen were as follows for Figures 4 and 8: Du = 0.04, Dv = 1, η = 5.2, 597

k = 1, γ = 30. Initial conditions were u = 0.04488, v = 0.4, with an elevated activity 598

region with u = 4 along the left edge of the cell. 599

The reaction-diffusion equations are simulated in the irregular domain of the CPM 600

cell, with 1000 iterations of the RD system per MCS. The spatial and time 601

discretizations were dx = 0.03, dt = 0.00001. 602

We then assign a Hamiltonian difference dH to sites along the cell edge following the
rule

dH =

{
−β u(target site) for cell retractions,
+β u(source site) for cell extensions.

During each MCS, we update the chemical signaling field in the cell interior 1000
times. After an edge extension, we locally adjust the chemical distribution to avoid
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artifacts of numerical mass loss as follows: find all sites x within a range r of the source
site s, let T (u) = Σru and T (v) = Σrv be the total amounts of u and v, respectively,
within that range; define a scaling factor

f = 1 +
T (u)

T (u) + u(s)
,

and similarly for v. Set the level of chemical activity in the new site (target site t) to 603

u(t) = u(s) · f ; at every one of the surrounding sites x, rescale u(x) · f . This ensures 604

that the chemical level of the source site is copied into the target site, but the total level 605

of signaling activity does not change. 606

After an edge retraction, we carry out a similar redistribution and scaling, but using
the scaling factor

f = 1 +
u(x)

T
.

The level of active chemical u is then locally scaled by this factor. 607

We used different neighborhood balls for redistributing active versus inactive 608

signaling levels, as the ranges of diffusion of these differ. Since Dv = 25Du, the range r 609

is selected as rv = 25ru. Hence, the radii for redistribution were 3 for u, and 75 for v. 610

Comparison to experimental data 611

The data for cell shape and traction force from [8] was provided to us on a triangular 612

mesh. We first converted to the CPM square grid. Using the MatLab function 613

“imresize”, the data was reduced to an 80× 60 grid. Cell shapes were extracted by 614

thresholding (Grey-scale values > 0.5 set to 1, < 0.5 set to 0, see Supplementary Fig. 17. 615

Coordinates were scaled to −1 ≤ x, y,≤ 1 in both data and CPM, and then images were 616

superimpose. We identify the CPM coordinate closest to each data point and compared 617

forces (CPM vs data) at these corresponding points. 618

The appropriate CPM parameters (λ, λp, J(0, 1), A, P ) are not known a priori for 619

the given cell types and conditions. These parameters are assigned as follows. First, we 620

determined area and perimeter of the (scaled) data cells; these were found to be 621

a = 1873, p = 1616.83 (round cell) and a = 949, p = 1271.94 (polarized cell). We then 622

choose smaller target CPM area and perimeter for the given cell. Next, we select initial 623

values for λ, λp, J(0, 1) such that all three corresponding terms in the Hamiltonian have 624

a roughly similar contributions (λ=0.5, λp=1, J(0, 1)=1000, A=500, P=1000.) 625

We first tested a smoothing radius of 3, as for our original method. Results are 626

shown in Supplementary Figure 18. Because the direction of forces at protruding 627

regions (circled) deviated strongly, we adopted a smoothing radius of 10. We rescaled 628

the CPM parameters λ, λp, J(0, 1) by a constant scale factor α by minimizing the L2
629

norm between scaled CPM forces and data forces. This brings the force magnitudes to a 630

common scale. We found that α ≈ 0.05, resulting in the parameters λ = 0.5 · α = 0.025, 631

λp = 1 · α = 0.05, J(0, 1) = 1000 · α = 50. 632

The above values of CPM parameters resulted in favorable comparisons between 633

CPM forces and experimental data forces. However, we investigated whether a different 634

CPM parameter set would lead to a better fit. To do so, we defined a range of 635

parameter values: 0 < λa, λp < 0.25, 0 < J(0, 1) < 50, 0 < A,P < 2000, 0 < r < 50 (for 636

membrane force smoothing). These ranges were binned into 10000 bins. We used a 637

Latin Hypercube sampling, and sampled 100000 times. For each sample, we calculate 638

the L2 norm between CPM and data forces. Overall, we found that different parameter 639

sets gave very similar results. We used the first set in the Tables 1 and 2 for figures in 640

the main text. In Supplementary Figure 22A we present box-plots of the angle between 641

the model and experimental forces. Our method is slightly better at predicting the 642

direction of traction forces for the circular cell, where traction force are more uniform. 643
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rank λ λp J(0, 1) A P r
1 0.0455 0.2122 45.15 1294.6 1802.4 31
2 0.0571 0.0827 12.755 1415.8 1908.2 31.3
3 0.0177 0.0925 37.98 404.6 1978.6 33.4
4 0.1123 0.1301 48.68 1637.8 1995 31.2
5 0.0213 0.1311 41.85 627 1979.6 31.6

Table 1. Top 5 parameters sets from the Latin hypercube sampling for the round cell,
all giving very similar fits. The first set is used in the main text and the force fields for
2-5 are given in Supplementary Figure 19.

rank λ λp J(0, 1) A P r
1 0.1716 0.0496 5.51 864.2 1423.8 12.2
2 0.0919 0.0608 24.43 797.8 1338 11.3
3 0.0355 0.1350 17.15 544.2 1329.2 12
4 0.0336 0.0529 15.89 527.8 1382.4 12.8
5 0.0573 0.1172 26.6 709.8 1397.4 12.7

Table 2. As in Table 1, but for the polarized cell. Multiple parameter sets give very
similar fits with SSE around 1.3e6. First set is used in the main text and the force fields
for 2-5 are given in Supplementary Figure 20.

In general, CPM parameters would, ideally, be optimized for a given cell type and 644

conditions, and then used for predicting and validating other data not used in such 645

optimization. Our data was limited, and so this optimization was beyond the scope of 646

this initial series of tests. 647

Multiple cells and forces on cell-cell interfaces 648

For multicellular aggregate, we decompose the total Hamiltonian into contributions Hi
649

made by each cell. 650

H(σ(Λ)) =
n∑
i=1

λa(A(i)− a)2 + λp(P (i)− p)2 + J(0, τ(i))P0i +
1

2

n∑
j=1

J(τ(i), τ(j))Pij


=

n∑
i=1

Hi
A +Hi

P +Hi
J =

n∑
i=1

Hi, (0.26)

where P0i is the length of the membrane of cell i that is in contact with the medium:

P0i =
1

ξ(r)

∑
~x:σ(~x)=i

∑
~x′∈N(~x,r)∧σ(~x′)=0

1, (0.27)

and Pij is the length of the interface between cell i and cell j:

Pij =
1

ξ(r)

∑
~x:σ(~x)=i

∑
~x′∈N(~x,r)∧σ(~x′)=j

1. (0.28)

We use CPM spin-flips to calculate the force due to shifting the cell-cell interface 651

(see Supplementary Fig. 23). 652

For a multicellular cluster at equilibrium, the force-balance principle states that 653

traction forces must integrate to zero over the cell (or cell-cluster) footprint in 654

2D [18,29]. This can serve as an additional check on the predictions. 655
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Other Simulations of Multicellular aggregates 656

We start with a checkerboard type simulation as shown in Supplementary Figure 25. 657

Here, the heterotypic adhesive forces are higher than the homotypic adhesive forces, so 658

that cells of different type repel each other resulting in a checkerboard pattern. We 659

provide zoom-ins of group of grey cells within the clusters. The forces between grey cells 660

are high and repulsive. As time proceeds, this allows those cells to move away from each 661

other and the green cells to push in between them. In the whole cluster, we observe a 662

decrease in forces, indicating that the aggregate is going towards a force balance. The 663

pattern stabilizes (see configuration at 5000 MCS in Supplementary Figure 26) but due 664

to random fluctuations and pressure on the cells in the interior of the cluster, high 665

forces appear and disappear at different spots in the clusters. 666

If the adhesive forces between green cells and the medium is very high, the grey cells 667

will engulf the green cells. An example engulfment simulation is given in Supplementary 668

Figure 27. Here the zoomed views track a region around the boundary of the cluster. 669

Since green cells have high forces with the medium, they move into the clusters to avoid 670

contact with the surrounding medium. The engulfment is not completed within the 671

time frame shown here, but after 5000 MCS (Supplementary Figure 28) the engulfment 672

is more or less complete. 673
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Supplementary Figures 674

Figure 10. Neighborhoods N(~x, r) of various orders with radii r = 3, 5, 10 around a
lattice site ~x (shown in red).

Figure 11. Examples of four possible spin flips used to compute Fx based on Eq. (0.5).
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Figure 12. The effect of the neighborhood radius used for smoothing the cell boundary
forces for ellipsoidal cells. (A) Sum of square errors (SSE) between normalized CPM
force vectors and true unit normal vector (−b cos(θ),−a sin(θ)) to an ellipse with axes
10 and 20. The error is minimized at r = 14. (B) True normal vectors (green) to an
ellipse with axis 10 and 20, compared to CPM forces smoothed with radius r = 3 (blue).
(C) Neighborhood radii r corresponding to minimal SSE for ellipses with various axes
lengths between 5 and 50. (D) Same as (B) but with smoothing radius r = 14.
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Figure 13. Interpolation used to compute force at a site ~x inside a CPM cell based on
the centroid ~xC and the force predicted by the CPM at a boundary site ~xM along the
ray connecting the centroid and the given site. The ray was determined by minimizing
α in Eq. 0.22.
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Figure 14. Cell edge forces for various simulated cell shapes in the CPM using only
the finite difference approach, with no smoothing. (A) A circular cell with an area of
401, perimeter of 74, and a diameter of 23. (B) An elliptical cell with an area of 629,
perimeter 101, and short and long axis 21 and 41. (C) An irregular shape with area 301
and perimeter 118. (D) A highly irregular cell shape with area 400 and perimeter 146.
Parameter values were a = 300, λa = 10, p = 100, λp = 10, J(0, 1) = 3000, ξ(r) = 18,
and r = 3 for all neighborhood calculations. We used a grid of 50 by 50 lattice sites
with ∆x=1.
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Figure 15. As in Supplementary Fig. 14, but with smoothing applied to the boundary
forces. We used r = 3 for all neighborhood calculations.
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Figure 16. Interior forces computed with no smoothing for the cell shapes shown in
Supplementary Fig 14.
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Figure 17. Triangular mesh on which cell traction data from [8] was supplied, and the
corresponding CPM cell (spin value = 1).
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Figure 18. Force fields from data (blue) and CPM (magenta) using initial arbitrary
CPM parameters for the round cell (A-B) and polarized cell (C-D). Radius of
smoothing used was (A,B) r = 3, (C, D) r = 10. Regions of large deviation are circled.
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Figure 19. Fitting CPM parameters: Data (blue) and CPM (magenta) force fields for
the round cell using the second (A), third (B), fourth (C) and fifth (D) best CPM
parameter values. Parameter values are given in Table 1.
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Figure 20. As in Fig. 19 but for the polarized cell using the second (A), third (B),
fourth (C) and fifth (D) best CPM parameter values in Table 2.

Figure 21. A time-lapse of cell motion and force fields from [8] showing data (blue)
and CPM (magenta) force fields. The CPM parameters were as in Fig. 6 and row 1 of
Table 2.
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Figure 22. Correspondence between data and CPM predicted forces. Boxplots
showing distributions of (A) the directional deviation (angle between experimental and
model forces), (B) relative magnitudes of forces (C) deviation of x components and (D)
y components of the forces.
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Figure 23. Multiple cells: Spin-flips used to approximate the force exerted by the grey
cell at cell-cell interfaces (A) CPM spin-flip modeling extension of the grey cell, shifting
the cell-cell interface to the right (B) CPM spin-flip modeling a retraction of the grey
cell, shifting the cell-cell interface to the left.
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Figure 24. A separation cell-sorting simulation at 5000 MCS. Parameter values were
a = 300, λa = 1000, p = 67, λp = 20, J(0, grey) = 1800, J(0, green) = 1800,
J(grey, grey) = J(green, green) = 900, J(grey, green) = 9000, ξ(r) = 18, and r = 3 for
all neighborhood calculations. The cellular temperature T was set to 600. Some cells
are still experiencing large forces.
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Figure 25. Checkerboard simulation with force visualization. Parameter values were
as in Supplementary Fig. 24 but with J(grey, grey) = 7200, J(green, green) = 7200,
J(grey, green) = 1800.
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Figure 26. Checkerboard cell-sorting simulation at 5000 MCS. Parameter values were
as in Fig 25.
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Figure 27. Engulfment cell-sorting simulation with force visualization. Parameter
values were a = 300, λa = 1000, p = 67, λp = 20, J(0, grey) = 1800, J(0, green) = 9000,
J(grey, grey) = 1800, J(green, green) = 1800, J(grey, green) = 3600, ξ(r) = 18, and
r = 3 for all neighborhood calculations. The cellular temperature T was set to 600.
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Figure 28. Engulfment cell-sorting simulation at 5000 MCS. Parameter values as in
Fig. 27.
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