bioRxiv preprint doi: https://doi.org/10.1101/601849; this version posted April 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

| 1  | Chromatin-lamin B1 interaction promotes genomic                                                                                                                       |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | compartmentalization and constrains chromatin dynamics                                                                                                                |
| 3  | Lei Chang <sup>1§</sup> , Mengfan Li <sup>2,3§</sup> , Shipeng Shao <sup>1§</sup> , Boxin Xue <sup>1</sup> , Yingping Hou <sup>2,3</sup> , Yiwen Zhang <sup>1</sup> , |
| 4  | Ruifeng Li <sup>2,3</sup> , Cheng Li <sup>3,4*</sup> , Yujie Sun <sup>1*</sup>                                                                                        |
| 5  | <sup>1</sup> State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical                                                                        |
| 6  | Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China, 100871                                                                                      |
| 7  | <sup>2</sup> Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary                                                                         |
| 8  | Studies, Peking University, Beijing, 100871                                                                                                                           |
| 9  | <sup>3</sup> Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871                                                                   |
| 10 | <sup>4</sup> Center for Statistical Science, Peking University, Beijing, 100871                                                                                       |
| 11 | <sup>§</sup> These authors contributed equally to this work.                                                                                                          |
| 12 | * Corresponding author. Email: sun_yujie@pku.edu.cn (Y.S.); cheng_li@pku.edu.cn (C.L.)                                                                                |
| 13 | Abstract                                                                                                                                                              |
| 14 | The eukaryotic genome is folded into higher-order conformation accompanied with                                                                                       |
| 15 | constrained dynamics for coordinated genome functions. However, the molecular                                                                                         |
| 16 | machinery underlying these hierarchically organized chromatin architecture and dynamics                                                                               |
| 17 | remains poorly understood. Here by combining imaging and Hi-C sequencing, we studied                                                                                  |
| 18 | the role of lamin B1 in chromatin architecture and dynamics. We found that lamin B1                                                                                   |
| 19 | depletion leads to chromatin redistribution and decompaction. Consequently, the inter-                                                                                |
| 20 | chromosomal interactions and overlap between chromosome territories are increased.                                                                                    |

Moreover, Hi-C data revealed that lamin B1 is required for the integrity and segregation of chromatin compartments but not for the topologically associating domains (TADs). We further proved that depletion of lamin B1 leads to increased chromatin dynamics, owing to chromatin decompaction and redistribution toward nuclear interior. Taken together, our data suggest that chromatin-lamin B1 interactions promote chromosomal territory segregation and genomic compartmentalization, and confine chromatin dynamics, supporting its crucial role in chromatin higher-order structure and dynamics.

## 28 Introduction

29 Chromatin in the interphase nucleus of eukaryotic cells are highly compartmentalized and structured. Owing to technological breakthroughs in imaging (1-3) and sequencing (4-9), 30 31 chromatin higher-order structure has been increasingly studied over the last decade. Hierarchical chromatin architecture is composed of loops, TADs, active and inactive A/B 32 compartments, and chromosome territories, in increasing scales. A number of architectural 33 34 proteins and molecular machineries governing chromatin organization and dynamics have been identified. For instance, CTCF(10) and cohesin(11-14) are partly responsible for the 35 formation and maintenance of chromatin loops and TADs. Nevertheless, CTCF does not 36 impact higher-order genomic compartmentalization and cohesin even limits segregation of 37 A/B compartments (15). Until now, the mechanisms that underlie the insulation and 38 distribution of A/B compartments and chromosome territories remain elusive. 39

40 Microscopy and chromosome conformation capture techniques provide 41 complementary insights into chromatin higher-order structure and sub-nuclear chromatin 42 spatial distribution. Genomic regions that belong to A-compartments identified by Hi-C 43 are gene rich, enriched with euchromatin histone markers and transcriptionally active(7, 44 16). Microscopy reveals that transcriptionally active euchromatic loci prefer to localize in nuclear interior (17). On the contrary, B-compartments identified by Hi-C are gene poor, 45 enriched with heterochromatin markers, and frequently associated with the nuclear 46 lamina(7, 16). These findings are concordant with imaging results that transcriptionally 47 inactive heterochromatin is mainly found near nuclear periphery and nucleoli(17). In 48 49 addition, chromosome territories also show nuclear location preference, in which gene-rich chromosomes are generally situated towards the interior and gene-poor chromosomes 50 towards the periphery of the nucleus (18). Such spatial correlations make nuclear lamina a 51 52 plausible candidate that contributes to the segregation and sub-nuclear distribution of A/B compartments and chromosome territories (19-21). Despite these insights, whether lamina 53 proteins are responsible for the segregation and localization of higher-order chromatin 54 55 structure remains unknown.

56 Besides the hierarchical structure, motion is another basic physical property of chromatin. Live cell fluorescence imaging in the nucleus can provide abundant information 57 on the dynamics of whole chromosomes, chromosomal loci, transcription factors etc.(22). 58 59 For instance, analyzing the motion of chromosomal loci embedded within viscoelastic 60 nucleoplasm is a valuable technique for extracting micro-environmental properties and obtaining information of genomic organization and functions. Actually, the diffusion 61 dynamics of genomic loci are not mere Brownian motion driven by thermal fluctuation but 62 63 are often convoluted with active processes such as transcription and DNA repair(23-27). So far, most studies on genomic loci dynamics have been carried out in bacteria(28, 29) 64 and yeast (30-33). In yeast, chromatin dynamics appear to be determined by nuclear 65 66 constraints. In particular, the telomeres and centromeres are known to be tethered to nuclear envelope, which is suggested to contribute to chromosome territory segregation(*34*). For
mammalian cells, previous studies have shown that chromatin motion is a constrained
diffusion process that is associated with nuclear localization(*35*), and loss of lamin A
increases chromatin dynamics in the nuclear interior as well as nuclear periphery(*36*).
However, it is unclear how this sub-diffusion is related to chromatin higher-order structure,
and it is not known whether tethering between the nuclear envelop and chromatin functions
similarly as in yeast.

Nuclear lamina consists of many protein complexes, and lamins are the main 74 75 components of nuclear lamina in most mammalian cells and can be classified into A- and B-type lamins. Lamin A and C are the most common A-type lamins and are splice variants 76 of the same gene, while B-type lamins, B1 and B2, are the products of two different 77 genes(37). Lamin B1 mainly localizes at the nuclear periphery, while A-type lamins are 78 also found in the nucleoplasm(38). DamID of lamin B1 has revealed many nuclear lamina-79 associated genomic regions named lamina-associated domains (LADs). Typically, a 80 mammalian genome contains 1100-1400 LADs and 71 % of the genome has conserved 81 82 relationship with lamina across different species, including 33% of constitutive LAD 83 (cLAD) and 38 % of constitutive inter-LAD (ciLAD)(39). Interestingly, lamin B1 has structural domains that directly bind to DNA or histone and indirectly interact with 84 chromatin through LEM [LAP2 (lamina-associated polypeptide 2)/emerin/MAN1] 85 86 domain-containing proteins. Thus, lamin B1 can potentially provide anchors for chromatin to regulate its position, higher-order structure and dynamics. Furthermore, lamina-87 88 chromatin junction mediates the transduction of mechanical signals from cytoskeleton to chromatin, possibly providing means for chromatin structures to respond to mechanical
forces(40, 41).

91 In this study, we hypothesized that chromatin-lamina interactions in mammalian 92 cells function in chromatin higher-order structure and dynamics. We applied a combination 93 of imaging and sequencing techniques to characterize the role of lamin B1 in chromatin 94 architecture and dynamics in human breast tumor cells. We found that lamin B1 is required 95 for segregation of chromosome territories and A/B compartments, but does not affect TAD formation. Furthermore, depletion of lamin B1 or disruption of interaction between DNA 96 97 and lamin B1 can increase genomic loci dynamics, owing to chromosome decompaction and redistribution toward nucleoplasm. Taken together, our data suggested that interactions 98 99 between lamin B1 and chromatin greatly contribute to chromatin compartmentalization, 100 compactness, spatial distribution and dynamics.

101 **Results** 

### 102 Lamin B1 depletion leads to chromatin redistribution and decompaction

To explore the potential role of lamin B1 in nuclear chromatin organization, we first 103 104 investigated the subnuclear distribution of lamin B1 using super-resolution (STORM) 105 imaging. Lamin B1 was found to be almost exclusively located at the nuclear periphery 106 (fig. S1A), in contrast to A-type lamins which were located at both nuclear periphery and 107 nucleoplasm (36, 38). It was previously reported that lamin B1 interacts with chromatin directly or via adaptor proteins(42). We then created a LMNB1 (lamin B1 encoding gene)-108 knockout MDA-MB-231 breast cancer cell line using the CRISPR-Cas9 genome editing 109 tool. Proper knockout of lamin B1 was confirmed by western blot and immunofluorescence 110

111 (fig. S1, A and B). Importantly, no apparent change of cell cycle was detected in lamin B1-

112 KO cells (fig. S1D), eliminating the possibility that alterations of nuclear organization are113 due to biased cell cycle.

114 We reasoned that if the anchorage of chromatin to nuclear periphery is mediated by the interaction with lamin B1, the loss of lamin B1 can lead to changes in distribution and 115 116 compaction of chromatin in the nucleus. To investigate the effect of lamin B1 on chromatin 117 spatial localization and compaction at the single chromosome level, we performed 118 chromosome painting for chromosomes 2 and 18 using FISH probes. Chromosomes 2 and 119 18 were chosen to represent chromosomes that are localized relatively near the nuclear 120 periphery and the nuclear interior, respectively. Previous studies described that gene-poor 121 chromosome 18 located toward the nuclear periphery and gene-dense chromosome 19 in the nuclear interior (43, 44). However, Cremer et al. reported that in seven of eight cancer 122 cell lines, chromosome 18 located more internally than chromosome 19(45). Considering 123 the breast cancer cell line we used, we chose chromosome 18 to represent nuclear interior 124 localized chromosome rather than chromosome 19. In lamin B1-KO cells, chromosome 2 125 became significantly more centrally located while the position of chromosome 18 remained 126 127 at the nuclear interior (Fig. 1, A and B). In addition, compared with wild type cells, the volume of both chromosomes were significantly increased in lamin B1-KO cells (Fig. 1, 128 A and C). This expansion of chromosome territories upon lamin B1 depletion is not due to 129 130 nuclear volume expansion (fig. S1E). These findings indicate that the nuclear location and volume of individual chromosomes are affected in lamin B1-KO cells, and suggest that 131 loss of lamin B1 leads to redistribution and decompaction of the chromatin. 132

6

## Lamin B1 depletion reduces the segregation of chromosome territories and A/B compartments

135 Changes in location and volume of chromosomes may affect the territories between 136 chromosomes. Indeed, along with the redistribution and decompaction of chromatin, more than 50% of lamin B1-KO cells showed overlap between the territories of chromosomes 2 137 138 and 18, compared with 15.1% in wild type cells (Fig. 1, A and D). This large-scale reorganization of chromosome territories promoted us to investigate the role of lamin B1 139 in genome architecture using in situ Hi-C assay(46), which provides information about 140 141 multiscale chromatin interaction maps including chromosome compartments and TADs 142 (fig. S2, A and B, table S1). We first focused on inter-chromosomal interactions. In agreement with the FISH results (Fig. 1, A and D), Hi-C data showed higher inter-143 144 chromosomal interaction frequency between chromosomes 2 and 18 in lamin B1- KO cells 145 (Fig. 1E and fig. S2C), although the interaction frequency between different chromosomes is much less than that within the same chromosome (table S1) as reported in previous 146 studies(7, 47). The inter-chromosomal interaction ratio of all chromosomes also showed a 147 significant increase in lamin B1-KO cells (Fig. 2, A and B). These results indicate that 148 149 lamin B1 contributes to the segregation of chromosome territories.

We next explored whether lamin B1-KO affects the organization of A and B compartments, which are defined using the first principal component (PC1) of Hi-C correlation matrices and correspond to different gene densities and transcriptional activities(7) (Fig. 2C). Using super-resolution imaging, Zhuang and colleagues have shown that adjacent A and B compartments are spatially separated from each other(2). Here, although the Hi-C contact maps of the wild type and lamin B1-KO cells displayed similar 156 checkerboard patterns, the differential heatmap showed loss of intra-compartment 157 interactions (interactions between the A-A or B-B compartment pairs) and gain of intercompartment interactions (interactions between A-B compartment pairs) in lamin B1-KO 158 cells (Fig. 2C). We asked whether this change influences the interactions between specific 159 compartment types by computing the ratio of average interaction frequency between 160 161 different classes of compartments (AB) versus that between the same classes of compartments (AA and BB) for each chromosome(48). These ratios showed significant 162 increase in lamin B1-KO cells (Fig. 2D), suggesting a crucial role of lamin B1 in 163 164 segregation of different compartment types. Moreover, 2.9% of genomic regions switched from A compartment in wild type cells to B compartment in lamin B1-KO cells, while 3.9% 165 of genomic regions exhibited the opposite switching (Fig. 2, E and F). These percentages 166 of compartment switching upon lamin B1 depletion were higher than those between 167 replicates (fig. S2, D and E). These results indicate that lamin B1 contributes to the 168 formation and segregation of different chromosomal compartment types. 169

## 170 Lamin B1 is not required for TAD insulation

Within A/B compartments, chromatin is further packaged in the form of TADs, which are 171 172 considered as the basic structural units of chromatin and are largely conserved between cell 173 types and across species (49-51). We calculated insulation scores (51) for each 40 kb bin of the Hi-C normalized matrix, and the local minima of insulation scores indicated TAD 174 boundaries. The contact maps and insulation scores of an example region on chromosome 175 10 showed similar TAD patterns in WT and lamin B1-KO cells (Fig. 3A). For the whole 176 177 genome, insulation scores were highly correlated between WT replicates (Pearson correlation coefficient, r=0.984) or between lamin B1-KO replicates (r=0.987). Correlation 178

between WT and lamin B1-KO samples (r=0.969) was only slightly lower than that
between replicates (fig. S3A). Heatmaps showed that the distribution of insulation scores
around TAD boundaries was similar between WT and lamin B1-KO cells (Fig. 3, B and
C).

To investigate whether the TAD locations were changed upon lamin B1 depletion, 183 184 each TAD boundary in WT cells was paired with the most adjacent TAD boundary in lamin 185 B1-KO cells. We calculated the genomic distance between these paired TAD boundaries 186 and observed that 87% of the TAD boundaries located within the same or adjoining 40 kb 187 bins, and 92.3% of the TAD boundaries shifted by less than two 40 kb bins (Fig. 3D), comparable to these percentages (95% and 95.8%) between WT or lamin B1-KO replicates. 188 189 The small number of TAD boundary pairs that are neither overlapping nor adjacent were 190 due to random variation upon the calculation of insulation scores (fig. S3, B and C). As a result, WT and lamin B1-KO cells have almost overlapping TAD length distribution with 191 median length of 840 kb (Fig. 3E). Furthermore, we calculated the TAD score, which is 192 the ratio of intra-TAD interactions to overall cis-interactions, for each TAD, and found no 193 194 difference between WT and lamin B1-KO cells (fig. S3, D and E), indicating similar TAD 195 compactness for the two samples. Taken together, lamin B1 loss does not affect the 196 organization of TAD structures.

## 197 Lamin B1 depletion changes the location preference of genomic loci

To achieve high signal-to-noise ratio for precise localization and long-term imaging of genomic loci, we developed CRISPR-SunTag, a site-specific chromatin labeling and tracking system, in wild type and lamin B1-KO MDA-MB-231 cells (Fig. 4A and fig. S4, A and B). To quantitatively categorize the position of genomic loci, we divided the nuclear 202 space into two regions of different transcription activities, i.e. nuclear periphery and 203 nucleoplasm (Fig. 4B and see Materials and Methods for details). Genomic loci imaging showed that the same genomic loci could localize in different subnuclear regions (Fig. 4C) 204 205 but did demonstrate location preferences (Fig. 4D). For instance, the 1 Mb genomic locus on chromosome 2 showed high percentage of nuclear peripheral localization (Fig. 4, C and 206 207 D), consistent with the overall peripheral location preference of chromosome 2 (Fig. 1, A and B), while the 236 Mb locus on chromosome 2 showed low percentage of nuclear 208 peripheral localization (Fig. 4, C and D). In contrast, genomic loci on chromosome 18 209 210 tended to distribute in the nucleoplasm (Fig. 4, C and D). In order to avoid measurement artifacts caused by projection from 3D to 2D, we compared the measured distances 211 between loci and nuclear envelope or nucleoli in 2D images and 3D image stacks and 212 obtained similar results (fig. S4, C and D). Thus, the overall location of genomic loci in the 213 nucleus coincides with their corresponding chromosome localization, but different loci on 214 the same chromosome have variable preferential subnuclear localization. 215

Lamin B1 depletion showed minimal effect on the preferential subnuclear 216 217 distribution of genomic loci on chromosome 18 but dramatically altered that on chromosome 2, especially the loci near the nuclear periphery (Fig. 4, C and D). For 218 example, the percentage of the 1 Mb locus of chromosome 2 localized near the nuclear 219 periphery was greatly decreased in lamin B1 depleted cells (Fig. 4, C to E and fig. S4, E 220 221 and F). Lamin B1 may regulate the genomic loci distribution via direct/indirect binding interaction or spatial confinement of accumulative nuclear lamina proteins in nuclear 222 periphery. To distinguish between these two possibilities, we constructed a plasmid 223 224 expressing a lamin B1 truncation protein missing the Ig-like domain. The Ig-like domain is a conservative structure in lamin A/C and lamin B1(52), known as the motif that mediates
the direct/indirect interaction between lamins and DNA(42, 53) (fig. S4G). In contrast to
the exogenous full-length lamin B1 which could rescue the distribution preference of the 1
Mb locus on chromosome 2 in lamin B1-KO cells, the Ig-like domain-truncated lamin B1
failed to do so (Fig. 4E) even though it could still form the nuclear lamina (fig. S4H). These
results suggest that the tethering between lamin B1 and chromatin is important for the
subnuclear position of chromosomes and chromosomal loci.

## 232 Loss of chromatin-lamin B1 interaction increases chromatin mobility

233 Chromatin structures and transcriptional activities are intrinsically associated with its dynamic motion(24, 27, 54). To further explore the influences of chromatin-lamin B1 234 interaction on the chromatin, we measured the chromatin dynamics in wild type and lamin 235 B1-KO cells. Three genomic loci consisting of telomeres, a locus localized at 1 Mb of 236 chromosome 2 and a locus at 14 Mb of chromosome 18, were labeled and successively 237 238 tracked in a short range of time scales (from 0.05 to 120 s) to minimize the artifacts caused by cell deformation, migration or nucleus rotation (Movie). A customized tracking package 239 U-track(55) was used to extract the trajectories and mean square displacement (MSD) of 240 241 the loci. The data revealed that depletion of lamin B1 significantly increased the chromatin dynamics compared with the slow anomalous diffusion in wild type cells of all three loci 242 (Fig. 5, A and B). Moreover, expressing exogenous lamin B1 in the knockout cell line 243 restored the loci dynamics to the level comparable to wild type cells (Fig. 5, C and D), 244 indicating that lamin B1 restricts chromatin dynamics. However, Ig-like domain-truncated 245 246 lamin B1 was not able to restore the loci dynamics in lamin B1-KO cells to the wild type level as the full length lamin B1 did (Fig. 5, C and D), coinciding with the changes of locilocalization (Fig. 4E).

We next investigated how chromatin-lamin B1 interaction constrains chromatin dynamics. We speculated that the redistribution of genomic loci in lamin B1-depleted cells contributes to increased chromatin mobility. The above results promoted us to examine whether the same locus in different subnuclear regions demonstrate different dynamic mobility. Indeed, all three loci on chromosome 2 were much less mobile when located in the nuclear periphery than in the nucleoplasm (Fig. 5, B and E), suggesting that the dynamics of each locus is primarily influenced by their nuclear spatial environment.

Furthermore, we found that the motion of the 1 Mb locus on chromosome 2 in both 256 nuclear periphery and nucleoplasm became more active upon the depletion of lamin B1 257 (fig. S5A). Besides, the 14 Mb locus on chromosome 18, which only had nucleoplasm 258 distribution, also showed increased mobility in nucleoplasm in lamin B1-KO cells (Fig. 259 260 5A). These results indicate that lamin B1 restrains the mobility of genomic loci in both nuclear periphery and nucleoplasm, not in line with the nuclear lamina distribution of lamin 261 B1. Thus, our data indicate that lamin B1 also constrains chromatin dynamics through other 262 ways, especially in the nucleoplasm. 263

# 264 Chromatin decompaction mediates the effect of lamin B1 depletion on chromatin265 dynamics

Given the finding that lamin B1 depletion leads to chromatin decompaction (Fig. 1, A and C), we next examined whether the increased chromatin dynamics upon loss of lamin B1 was due to chromatin decompaction. We treated wild type cells with Trichostatin A (TSA) 269 which can inhibit histone deacetylase enzyme and lead to genome-wide decondensation of 270 chromatin in both nuclear interior and periphery (56). To confirm the effect of chromatin decompaction on chromosome spatial organization, we applied chromosome painting in 271 272 TSA-treated cells. We found that the relative volume of chromosomes increased significantly compared with that in control cells (Fig. 6, A and B), but different from lamin 273 274 B1 depletion which also altered the position of chromosomes (Fig. 1, A and B), TSA treatment did not change the radial distribution of chromosome territories (Fig. 6, A and 275 C). The overlap between chromosome 2 and 18 was also consequently increased in TSA-276 277 treated cells compared with control cells (Fig. 6, A and D). We then measured the dynamic mobility of chromosomal loci and found that TSA treatment indeed promoted the dynamic 278 mobility of chromosomal loci both near the nuclear periphery and within the nucleoplasm 279 280 (Fig. 6E and fig. S5B). Importantly, different from lamin B1 depletion, the sub-nuclear distribution of the loci did not change in TSA-treated cells compared with DMSO-treated 281 control cells (Fig. 6F). These results suggest that chromatin compaction is key for 282 283 chromatin dynamics.

284 To further explore the relationship between chromatin dynamics and chromatin 285 compaction state, we chose 10 genomic loci on chromosome 2, 18 and 19 with 5 in A compartments and 5 in B compartments (Fig. 6G). Tracking of the loci showed that the 5 286 loci belonging to A compartments (red) were more mobile than the 5 loci in B 287 288 compartments (blue) (Fig. 6, H and I), in line with the fact that A compartments are generally less compact than B compartments. We also found that four genomic loci 289 290 belonging to A compartments in chromosome 18 and 19 had similar dynamic properties 291 and all of them localized in nucleoplasm (Fig. 6, H and I).

## 292 Discussion

293 Along with chromatin decompaction and relocation, the motion of genomic loci became 294 more active in lamin B1-depleted cells. In control cells, mobility of the same chromosomal 295 locus was found to be correlated with its subnuclear location in that genomic sites close to 296 lamina were generally less mobile than those localized in nuclear interior. These two lines 297 of evidence suggest that chromatin dynamics are dependent on both chromatin compaction 298 and loci location. However, when treating cells with TSA, which decompacts chromatin 299 but does not change its sub-nuclear distribution, we also found global increase of chromatin 300 mobility. Furthermore, in control cells, we consistently observed that chromosomal loci in 301 less compact compartment A were of higher mobility than that in more compact 302 compartment B, suggesting that chromatin compaction is more fundamental than 303 subnuclear location in regulating chromatin dynamics. This observation is consistent with 304 a recent theoretical work in which a model named MiChroM was proposed for the formation of chromosomal spatial compartments(54). MiChroM defines dynamically 305 associated domains (DADs) in which the motions of genomic loci are correlated. DADs 306 307 are often found to be aligned with the A/B chromatin-type annotation and another study 308 proposed that the globally increased mobility of genomic loci may drive re-segregation at 309 the chromatin compartment level via modifying MiChroM(57). This theoretical work is 310 highly complementary with our experimental data, supporting the important role of 311 chromatin dynamics in higher-order chromatin organization.

The roles of lamins played on chromatin organization are less understood. Recently, Leonid Mirny et al developed a polymer model of chromosomes to reconstruct chromatin sub-nuclear localization in inverted and conventional nuclei(*58*). They found that 315 heterochromatin interactions with the lamina are essential for building conventional 316 nuclear architecture. In our study, we found that interaction between lamin B1 and chromatin could drive the regulation of global chromatin structure (fig. S6). However, 317 318 regarding the nature of lamin B1-chromatin interaction, it is unclear whether the direct binding or the confinement by the lamina meshwork mainly contributes to the regulation 319 320 of chromatin structure and dynamics. Here our work has provided several lines of evidence to support the direct binding model. First, over-expressing Ig-like domain-truncated lamin 321 B1, which can still form meshwork, was not able to rescue the phenotype of chromatin 322 323 structure and dynamics caused by loss of lamin B1. Second, overexpressing lamin B1 did not alter the chromatin dynamics. Therefore, it is intriguing to speculate that the tethering 324 and release of chromatin from lamina during each cell cycle might be an important process 325 to organize genome architecture. 326

327 Previous studies have shown that other protein components in lamina besides lamin B1 also mediate its interactions with chromatin, including lamin A/C and LBR(59). Y. 328 329 Garini et al reported that depletion of lamin A can increase chromatin dynamics (36). They emphasized that chromosomal inter-chain interactions formed by lamin A throughout the 330 331 nucleus is critical for the maintenance of genome organization but did not focus on the tethering of chromatin with lamin A in the nuclear envelop. Interestingly, triple knockout 332 of lamins did not show effects on overall TAD structure but altered TAD-TAD interactions 333 334 in mESC(19), which is consistent with our results. However, lamins-KO mESCs had no significant differences in the volumes and surface areas of chromosome 1 and 13, which is 335 different from previous studies and our results, indicating that lamins may play a stronger 336 337 role in maintaining chromatin structure in differentiated cells than in ESCs(19, 60). Thus, the meshwork caging model they proposed may partially but not totally apply to
differentiated cell types. Further studies are needed to identify more functional proteins in
the lamina and their functional roles in chromatin structure and dynamics.

341 The nuclear matrix, which is hypothesized to provide a scaffold for chromatin attachment and organize global chromatin structure in the nucleus, is composed of inner 342 343 and peripheral nuclear matrix. Recently, Hui Fan et al reported that the inner nuclear matrix 344 protein HNRNPU/SAF-A is involved in 3D genome organization(61). We compared our lamin B1 data with their HNRNPU/SAF-A data and interestingly found that they contribute 345 346 to chromatin organization in an opposite manner, implicating some fundamental 347 coordinations between inner and peripheral nuclear matrix in regulation of chromatin 348 structures. For instance, in contrast to our findings that depletion of lamin B1 promotes 349 chromatin decompaction and relocalization from nuclear periphery to nucleoplasm, loss of 350 HNRNPU promotes global condensation of chromatin and increases lamina-associated genomic regions. Moreover, genes enriched in cell adhesion are up-regulated in HNRNPU 351 352 depleted cells but down-regulated in lamin B1 knockout cells (fig. S7). At the A/B 353 compartment level, depletion of HNRNPU and lamin B1 both result in ~10% transition 354 between A/B compartments. Therefore, these two studies demonstrate that the inner and peripheral nuclear matrix, through anchoring of chromatin in the nucleoplasm and the 355 nuclear envelop respectively, may offer a complementary, tug-of-war regulation of higher-356 357 order chromatin organization.

In this work, we combined imaging and Hi-C sequencing to study the role of lamin B1 in chromatin architecture and dynamics. We found that lamin B1 contributes to segregation of chromosome territories and A/B compartments, and loss of lamin B1 leads 361 to chromatin decompaction and relocalization from nuclear periphery to nuclear interior. 362 Besides, loss of lamin B1 changes the location preference of genomic loci and increases chromatin dynamics. Disruption of interactions between lamin B1 and DNA using 363 364 truncated lamin B1 leads to similar effects on chromatin dynamics caused by loss of lamin 365 B1. Dynamics of the same genomic locus is found to be correlated with its nuclear spatial 366 environment in that genomic sites close to the lamina are generally less mobile than those 367 localized in the nuclear interior. Our study demonstrates that it is chromatin decompaction that mediates the effect of lamin B1 depletion on chromatin dynamics. Furthermore, our 368 369 study reveals that genomic loci in less compact compartment A are of higher mobility than 370 those in more compact compartment B. Taken together, our work supports lamin B1 plays 371 a crucial role in chromatin higher-order structure and chromatin dynamics.

372 Materials and Methods

### 373 Construction of sgRNA expression plasmids and SunTag PiggyBac plasmids

The mining process for repeats was similar as described recently(62). Briefly, the human

375 genome sequence was downloaded from the UCSC genome browser

376 (http://genome.ucsc.edu) with undetermined regions "Ns" replaced by randomly

377 generated nucleotides "A", "T", "G", or "C". Then the sequence was input to the Tandem

378 Repeat Finder bioinformatics tool (http://tandem.bu.edu/trf/trf.html) to identify the

tandem repeats. Highly conserved repeats with little mutation, proper repeat unit length

- and repeat number were selected as candidates for live cell fluorescent labeling and
- imaging. sgRNA oligoes targeting each repeat were designed upstream of proto-spacer
- adjacent motif (PAM) sequence "NGG". The oligoes of each sgRNA that target the
- 383 repeat regions on human chromosomes were synthesized by Beijing Ruibo biotech

| 384 | (Beijing, China) with a 4 bp overhang flanking the sense and antisense strands. The                                  |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 385 | sgRNAs targeting lamin B1 gene were designed by the online tool Optimized CRISPR                                     |
| 386 | Design (http://crispr.mit.edu) and candidates with the highest score were selected. The                              |
| 387 | sgRNA expression vector for imaging was based on the psgRNA2.0 transient expression                                  |
| 388 | plasmid with an A-U flip and stem-loop extension (a gift from Prof. Wensheng Wei,                                    |
| 389 | Peking University), containing the ccdB screening gene between two BsmBI sites for                                   |
| 390 | inserting guide sequences into the sgRNAs. The sgRNA expression vector for editing                                   |
| 391 | was based on plasmid pX330-U6-Chimeric_BB-CBh-hSpCas9 (Addgene Plasmid #                                             |
| 392 | 42230), containing two BpiI restriction sites for inserting guide sequences into the                                 |
| 393 | sgRNAs. The targeting sgRNA expression plasmids were made by replacing the lethal                                    |
| 394 | gene ccdB with annealed oligo using Golden Gate cloning with enzyme BsmBI and T4                                     |
| 395 | ligase (NEB). For the sequence of each sgRNA construct.                                                              |
| 396 | In order to construct a stable cell line, the NLS <sub>SV40</sub> -dCas9-3X NLS <sub>SV40</sub> -24X GCN4- $_{V4}$ - |
| 397 | NLS <sub>SV40</sub> -P2A-BFP fragment was amplified by PCR from plasmid pHRdSV40-NLS-                                |
| 398 | dCas9-24xGCN4_v4-NLS-P2A-BFP-dWPRE (Addgene Plasmid #60910) and then                                                 |
| 399 | ligated into PiggyBac plasmid pB-TRE3G-BsmBI-EF1a-PuroR-P2A-rtTA by Golden                                           |
| 400 | Gate Assembly with enzyme BsmBI and T4 ligase (NEB). The ScFV-sfGFP-GB1-                                             |
| 401 | NLS <sub>SV40</sub> fragment was amplified by PCR from plasmid pHR-scFv-GCN4-sfGFP-GB1-                              |
| 402 | NLS-dWPRE (Addgene Plasmid # 60906) and then ligated into PiggyBac plasmid pB-                                       |
| 403 | TRE3G-BsmBI-EF1 $\alpha$ -HygroR-P2A-rtTA by Golden Gate Assembly with enzyme                                        |
| 404 | BsmBI and T4 ligase (NEB).                                                                                           |
| 405 | Cell culture, transfection and TSA treatment                                                                         |

18

| 406 | Human cell line MDA-MB-231 cells were maintained in Dulbecco's modified Eagle                     |
|-----|---------------------------------------------------------------------------------------------------|
| 407 | medium with high glucose (Lifetech). The medium contained 10% Fetal bovine serum                  |
| 408 | (FBS) (Lifetech), and 1% of penicillin and streptomycin antibiotics (Lifetech). Cells were        |
| 409 | maintained at 37 $^{\circ}$ C and 5% CO <sub>2</sub> in a humidified incubator. All plasmids were |
| 410 | transfected with Chemifect (Beijing Fengrui Biotech, Beijing, China) in accordance with           |
| 411 | the manufacturer's protocol. TSA (TricostatinA, Sigma-Aldrich) was eluted to 3 mM in              |
| 412 | DMSO. Cells were treated with 300 nM of TSA solution in complete growth medium for                |
| 413 | 24 hr before imaging experiments and the negative control sample was treated with                 |
| 414 | DMSO.                                                                                             |

#### 415 CRISPR-mediated lamin B1 gene knockout

416 In order to knockout lamin B1 genes, the cells were co-transfected with corresponding

417 sgRNA and Cas9 chimeric plasmid and an empty mCherry expressing plasmid. At 48 h

418 post transfection, cells were subjected to FACS to isolate mCherry positive single cell

419 clone in 96-well plates. After incubation for about a month, genome of each grown clone

420 was extracted and PCR-amplified with lamin B1-specific primer and sent for Sanger

421 sequencing. Clones with indel were verified by Western Blot and immunofluorescence.

## 422 Construction of the SunTag stable cell line

423 To construct the stable cell line, MDA-MB-231 cells were spread onto a 6-well plate one

424 day before transfection. On the next day, the cells were transfected with 500 ng pB-

425 TRE3G- NLS<sub>SV40</sub>-dCas9-3X NLS<sub>SV40</sub>-24X GCN4-v4-NLS<sub>SV40</sub>-P2A-BFP-PuroR-P2A-

rtTA, 500 ng pB-TRE3G-ScFV-sfGFP-GB1-NLS<sub>SV40</sub>-HygroR-P2A-rtTA, and 200 ng

427 pCAG-hyPBase using Chemifect. After 48 hr, cells were subjected to hygromycin (200

 $\mu$ g/ml) and puromycin (5  $\mu$ g/ml) selection. After incubation for two weeks, cells with appropriate expression level of BFP and GFP were selected using FACS. Single cell clones were harvested for imaging a month later.

#### 431 Immunofluorescence

432 Cells were grown on 35mm glass bottom dish. After the coverage of cells reached 60-

433 70%, cells were fixed with 4% PFA for 15 min, permeabilized with 0.5% Triton in PBS

for 5 min and then blocked in blocking buffer containing 5% BSA and 0.1% Triton for 30

435 min. The cells were then incubated with primary antibodies in blocking buffer for 1 hr at

436 room temperature, washed with PBS three times, and then stained with organic dyes-

437 labeled secondary antibodies in blocking buffer for 1 hr at room temperature. The labeled

438 cells were washed again with PBS, then post-fixed with 4% PFA for 10 min and finally

- 439 stained with DAPI (Invitrogen).
- 440 Primary antibodies used in this study were lamin A/C (ab40467, Abcam, dilution 1:200),

lamin B1 (sc6216, Santa Cruz, dilution 1:200). Secondary antibodies were donkey anti-

rabbit Alexa Fluor 555 (A-31572, Thermo Fisher Scientific), donkey anti-goat Cy5 (705-

443 005-147, Jackson Immuno Research Laboratories, dilution 1:50), donkey anti-mouse

444 Cy3b (715-005-151, Jackson Immuno Research Laboratories, dilution 1:50).

## 445 **Optical setup and image acquisition**

Briefly, all tracking experiments in living cells were performed on an Olympus IX83

inverted microscope equipped with a 100×UPlanSApo, N.A. 1.40, oil-immersion phase

448 objective and EMCCD (DU-897U-CS0-#BV). The microscope stage incubation chamber

449 was maintained at 37 °C and 5% CO<sub>2</sub>. A 488-nm laser (2RU-VFL-P-300-488-B1R;

| 450 | MPB) was used to excite the sfGFP fluorophore. The laser power was modulated by           |
|-----|-------------------------------------------------------------------------------------------|
| 451 | anacousto-optic-tunable-filtre (AOTF) and the beam width was expanded fivefold and        |
| 452 | focused at the back focal plane of the objective. The power density at the sample, with   |
| 453 | epifluorescence illumination, was 10 $\mu$ W at 488nm. The microscope was controlled by   |
| 454 | home-written scripts. Movies of chromatin dynamics in living cells were acquired at 10    |
| 455 | Hz. The motions of loci were studied by recording their trajectories in 2D rather than in |
| 456 | 3D to increase time resolution and reduce phototoxicity. According to previous study,     |
| 457 | there is no significant difference in the movement volumes and diffusion coefficient of   |
| 458 | telomeres between different cell cycle stages in interphase, thus we collected images in  |
| 459 | interphase without further distinguishing between sub-stages of interphase.               |
| 460 | For fixed cell conventional imaging experiments, an UltraVIEW VoX spinning disc           |
| 461 | microscope (PerkinElmer) was used. STORM imaging of lamin B1 was done on N-               |
| 462 | STORM (Nikon, Japan)                                                                      |
|     |                                                                                           |

## 463 Image analysis

All image stacks were analyzed using MATLAB tracking package 'U-track'. Fluorescent

465 puncta were identified in each frame with 2D Gaussian fitting after Fourier low-pass

466 filtering. The coordinates of the fluorescent puncta were determined. Trajectories were

467 created by linking identified puncta to their nearest neighbor within a maximum distance

468 range of 5 camera pixels (800 nm) in the previous frame. Particles with trajectory gap

larger than 10 consecutive frames were treated as two particles.

470 For each trajectory, the mean square displacement (MSD) as a function of time delay was

471 calculated by the following equation :

21

bioRxiv preprint doi: https://doi.org/10.1101/601849; this version posted April 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

472 
$$MSD(n\delta t) = \frac{1}{N-1-n} \sum_{j=1}^{N-1-n} \{ [x(j\delta t + n\delta t) - x(j\delta t)]^2 \}$$

473 
$$+ [y(j\delta t + n\delta t) - y(j\delta t)]^2\}$$

where δt is the time interval between two successive frames, x(t) and y(t) are the
coordinates at time t, N is the total number of frames, and n is the number of time
intervals. To maximize precision in long-range MSD, intervals smaller than N/10 were
used for the calculation.

478 The analysis of MSD curves was carried out using custom MATLAB scripts. Each

individual MSD curve was fitted by least-squares regression to the following model:

$$480 MSD = Dt^{\alpha}$$

where D is the diffusion coefficient and  $\alpha$  is the scaling factor. For each repeat, many trajectories were fitted and grouped. Additionally, every collected cell was inspected carefully, and any cell with slight motion was discarded to eliminate the contamination of such drift in the analysis of loci trajectories.

The three-dimensional image analysis was carried out in Imaris (Bitplane) by ImarisCell,

a module designed specifically to identify, segment, track, measure and analyze cell,

487 nucleus and vesicles in 3D images. Using "Cell Boundary from Cytoplasm" function, the

488 nucleus was segmented by DAPI channel as the nuclear boundary and the genomic loci

489 were fitted with 3D ellipsoid function as a spot. Then the shortest distance between the

- 490 spot and the surface was calculated. For chromosome painting image analysis, "Surface"
- 491 function was used to segment nuclear boundary by DAPI channel and territory boundary
- 492 of chromosome 2 and chromosome 18 by 488 nm and 561 nm channel intensity. The

| 493 | volume and o | center of ma | ss of nucleus | s and chromosom | e territories were | output directly. |
|-----|--------------|--------------|---------------|-----------------|--------------------|------------------|
|-----|--------------|--------------|---------------|-----------------|--------------------|------------------|

- 494 The volume of each nucleus was measured to normalize the volume of chromosome
- territories. Distance between nuclear center of mass and chromosome territories was
- 496 normalized by the cubic root of nuclear volume.
- 497 The threshold for subnuclear position assignment of loci was as follows: 4 pixels'
- distance between the locus and nuclear envelope (640 nm), referring to previous
- 499 publication about LMNB1 LAD FISH analysis (defined there as < 700nm, or 8 pixels,

500 from the nucleus edge)(63).

- 501 STORM original data was processed by Insight3, ImageJ, and finally reconstructed to an
- 502 image by home-written MATLAB scripts(64).

## 503 Western blot

- 504 The cell lysates were blotted against the following primary antibodies: lamin B1 (sc6216,
- So Santa Cruz, dilution 1:500) and  $\beta$ -actin (sc47778, Santa Cruz, dilution 1:500). The blots
- 506 were visualized with peroxidase-coupled secondary antibodies.

#### 507 **PI staining**

- 508 Cells grown on 60 mm dish were digested by trypsin and collected to 1.5 ml tube. After
- being washed with PBS twice, cells were fixed in pre-chilled 75% ethanol at -20 °C
- 510 overnight. The fixed cells were washed to remove ethanol, and then incubated in solution
- of 100 µg/ml RNase A and 0.2% Triton X-100 for 30 min at 37 °C. Subsequent
- 512 centrifugation of the samples was followed by a wash in PBS and staining with PI

| 513 | solution (50 µg/ml PI, 0.2% Triton X-100) at room temperature for 30 min. Cells stained               |
|-----|-------------------------------------------------------------------------------------------------------|
| 514 | with PI were analyzed in Flow cytometer (BD LSRFortessa <sup>TM</sup> ) directly(65).                 |
| 515 | Chromosome painting                                                                                   |
| 516 | Cells were grown on 22 x 22 $\text{mm}^2$ coverslips. After the coverage of cells reached 70-         |
| 517 | 80%, cells were fixed at $-20$ °C for 20 min in a pre-chilled solution of methanol and                |
| 518 | acetic acid at 3:1 ratio and then treated with 10 $\mu$ l of probe mix with 5 $\mu$ l of each probe.  |
| 519 | The probe mix immersed cells were covered with a glass slide (25 x 75 mm) and sealed                  |
| 520 | with rubber cement. The sample and probe were denatured simultaneously by heating                     |
| 521 | slide on a hotplate at 75 °C for 2 min and incubated in a humidified chamber at 37 °C                 |
| 522 | overnight. The coverslip was removed carefully from slide, washed in 0.4 x SSC at 72 $^\circ\text{C}$ |
| 523 | for 2 min, and then in 2 x SSC, 0.05% Tween-20 at room temperature for 30 seconds.                    |
| 524 | The labeled cells were rinsed briefly in PBS and finally mounted with ProLong®                        |
| 525 | Diamond Antifade Mountant with DAPI (P36962, Thermo Fisher Scientific).                               |
| 526 | Chromosome 2 painting probe mix was XCP 2 green (D-0302-100-FI XCP 2,                                 |
| 527 | Metasystems) and Chromosome 18 painting probe mix was XCP 18 orange (D-0318-                          |
| 528 | 100-OR XCP 18, Metasystems).                                                                          |
|     |                                                                                                       |

## 529 Hi-C experiment

530 Hi-C experiment was performed following the in situ Hi-C protocol(46). Briefly, cells

were grown to about 70-80 % confluence, washed with PBS, crosslinked with 1%, v/v

formaldehyde solution, and the reaction was quenched by 0.2M glycine solution. Cells

533 were lysed and DNA was then cut with MboI and the overhangs were filled with a

| 534 | biotinvlated base | . Free ends were t | then ligated to | gether in situ. | Crosslinks were rev | versed. |
|-----|-------------------|--------------------|-----------------|-----------------|---------------------|---------|
|     |                   |                    |                 |                 |                     |         |

- the DNA was sheared to 300-500bp and then biotinylated ligation junctions were
- 536 recovered with streptavidin beads.
- 537 Sequencing libraries were generated using standard Illumina library construction
- protocol. Briefly, ends of sheared DNA were repaired and the blunt ends were added an
- 539 "A" base to ligate with Illumina's adapters that have a single 'T' base overhang. Then
- 540 DNA was PCR amplified for 8-12 cycles. At last, products were purified using AMPure
- 541 XP system and sequenced through XTen (Illumina).

## 542 Hi-C data analysis

543 Hi-C data analysis was performed with HiC-Pro(66). Briefly, reads were first aligned on

the hg19 reference genome. Uniquely mapped reads were assigned to restriction

545 fragments. Then the invalid ligation products were filtered out, and eligible read pairs

- 546 were counted to build Hi-C contact maps. At last, ICE normalization(67) was used to
- 547 normalize the raw counts data.

548 Compartment A/B analysis. ICE-normalized 500-kb resolution matrices were used to

549 detect chromatin compartments by R package HiTC(68). The whole genome was divided

into two compartments based on the positive or negative values of the first principal

- component. The part with higher gene density was assigned as compartment A and the
- other part as compartment B.

553 TAD analysis. ICE-normalized 40-kb resolution matrices were used to detect TAD by

554 Perl script matrix2insulation.pl (http://github.com/blajoie/crane-nature-2015). Insulation

scores were calculated for each 40-kb bin, and the valleys of insulation score curves were

25

- defined as TAD boundaries. TADs smaller than 200 kb were filtered out as in previous
- 557 method(51).

## 558 Supplementary Materials

- 559 Supplementary material for this article is available at
- 560 Fig. S1. Preparation of lamin B1 knock-out (KO) cell lines.
- 561 Fig. S2. Reproducibility analysis of Hi-C data.
- 562 Fig. S3. TAD analysis
- Fig. S4. Construction of SunTag stable cell line, comparison between 2D and 3D images
- and description of lamin B1 truncation.
- Fig. S5. MSD curves of 1Mb loci on chromosome 2.
- 566 Fig. S6. Model.
- 567 Fig. S7. GO (Biological Process) analysis of down-regulated genes upon lamin B1 KO.
- Table S1. Quality control statistics for Hi-C data processing.
- 569 Movie. A representative movie and tracking trajectory of labeled genomic locus in a
- 570 living cell.

## 571 **References and Notes**

- A. N. Boettiger, B. Bintu, J. R. Moffitt, S. Wang, B. J. Beliveau, G. Fudenberg, M. Imakaev,
   L. A. Mirny, C. T. Wu, X. Zhuang, Super-resolution imaging reveals distinct chromatin
   folding for different epigenetic states. *Nature* 529, 418-422 (2016).
- 575 2. S. Wang, J. H. Su, B. J. Beliveau, B. Bintu, J. R. Moffitt, C. T. Wu, X. Zhuang, Spatial
- 576organization of chromatin domains and compartments in single chromosomes. Science577**353**, 598-602 (2016).

| 578<br>579 | 3.  | B. Bintu, L. J. Mateo, JH. Su, N. A. Sinnott-Armstrong, M. Parker, S. Kinrot, K. Yamaya, A. N. Boettiger, X. Zhuang, Super-resolution chromatin tracing reveals domains and        |
|------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 580        |     | cooperative interactions in single cells. <i>Science</i> <b>362</b> , eaau1783 (2018).                                                                                             |
| 581        | 4.  | J. Dekker, K. Rippe, M. Dekker, N. Kleckner, Capturing chromosome conformation.                                                                                                    |
| 582        | 5.  | Science <b>295</b> , 1306-1311 (2002).                                                                                                                                             |
| 583<br>584 | 5.  | M. Simonis, P. Klous, E. Splinter, Y. Moshkin, R. Willemsen, E. de Wit, B. van Steensel, W. de Laat, Nuclear organization of active and inactive chromatin domains uncovered by    |
| 585        |     | chromosome conformation capture-on-chip (4C). <i>Nat. Genet.</i> <b>38</b> , 1348-1354 (2006).                                                                                     |
| 586        | 6.  | J. Dostie, T. A. Richmond, R. A. Arnaout, R. R. Selzer, W. L. Lee, T. A. Honan, E. D. Rubio,                                                                                       |
| 587        | 0.  | A. Krumm, J. Lamb, C. Nusbaum, R. D. Green, J. Dekker, Chromosome Conformation                                                                                                     |
| 588        |     | Capture Carbon Copy (5C): a massively parallel solution for mapping interactions                                                                                                   |
| 589        |     | between genomic elements. <i>Genome Res.</i> <b>16</b> , 1299-1309 (2006).                                                                                                         |
| 590        | 7.  | E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A. Telling, I.                                                                                          |
| 591        |     | Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B. Bernstein, M. A. Bender,                                                                                         |
| 592        |     | M. Groudine, A. Gnirke, J. Stamatoyannopoulos, L. A. Mirny, E. S. Lander, J. Dekker,                                                                                               |
| 593        |     | Comprehensive mapping of long-range interactions reveals folding principles of the                                                                                                 |
| 594        |     | human genome. <i>Science</i> <b>326</b> , 289-293 (2009).                                                                                                                          |
| 595        | 8.  | M. J. Fullwood, M. H. Liu, Y. F. Pan, J. Liu, H. Xu, Y. B. Mohamed, Y. L. Orlov, S. Velkov, A.                                                                                     |
| 596        |     | Ho, P. H. Mei, E. G. Y. Chew, P. Y. H. Huang, WJ. Welboren, Y. Han, H. S. Ooi, P. N.                                                                                               |
| 597        |     | Ariyaratne, V. B. Vega, Y. Luo, P. Y. Tan, P. Y. Choy, K. D. S. A. Wansa, B. Zhao, K. S. Lim,                                                                                      |
| 598        |     | S. C. Leow, J. S. Yow, R. Joseph, H. Li, K. V. Desai, J. S. Thomsen, Y. K. Lee, R. K. M.                                                                                           |
| 599        |     | Karuturi, T. Herve, G. Bourque, H. G. Stunnenberg, X. Ruan, V. Cacheux-Rataboul, WK.                                                                                               |
| 600        |     | Sung, E. T. Liu, CL. Wei, E. Cheung, Y. Ruan, An oestrogen-receptor- $\alpha$ -bound human                                                                                         |
| 601        | _   | chromatin interactome. <i>Nature</i> <b>462</b> , 58-64 (2009).                                                                                                                    |
| 602        | 9.  | T. Nagano, Y. Lubling, T. J. Stevens, S. Schoenfelder, E. Yaffe, W. Dean, E. D. Laue, A.                                                                                           |
| 603        |     | Tanay, P. Fraser, Single-cell Hi-C reveals cell-to-cell variability in chromosome structure.                                                                                       |
| 604        | 10  | Nature <b>502</b> , 59-64 (2013).                                                                                                                                                  |
| 605        | 10. | E. P. Nora, A. Goloborodko, A. L. Valton, J. H. Gibcus, A. Uebersohn, N. Abdennur, J.                                                                                              |
| 606<br>607 |     | Dekker, L. A. Mirny, B. G. Bruneau, Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization. <i>Cell</i> <b>169</b> , 930- |
| 608        |     | 944 e922 (2017).                                                                                                                                                                   |
| 609        | 11. | G. Wutz, C. Várnai, K. Nagasaka, D. A. Cisneros, R. R. Stocsits, W. Tang, S. Schoenfelder,                                                                                         |
| 610        | 11. | G. Jessberger, M. Muhar, M. J. Hossain, N. Walther, B. Koch, M. Kueblbeck, J. Ellenberg,                                                                                           |
| 611        |     | J. Zuber, P. Fraser, J. M. Peters, Topologically associating domains and chromatin loops                                                                                           |
| 612        |     | depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. <i>The EMBO</i>                                                                                              |
| 613        |     | Journal <b>36</b> , 3573-3599 (2017).                                                                                                                                              |
| 614        | 12. | S. S. P. Rao, S. C. Huang, B. Glenn St Hilaire, J. M. Engreitz, E. M. Perez, K. R. Kieffer-                                                                                        |
| 615        |     | Kwon, A. L. Sanborn, S. E. Johnstone, G. D. Bascom, I. D. Bochkov, X. Huang, M. S.                                                                                                 |
| 616        |     | Shamim, J. Shin, D. Turner, Z. Ye, A. D. Omer, J. T. Robinson, T. Schlick, B. E. Bernstein, R.                                                                                     |
| 617        |     | Casellas, E. S. Lander, E. L. Aiden, Cohesin Loss Eliminates All Loop Domains. Cell 171,                                                                                           |
| 618        |     | 305-320 e324 (2017).                                                                                                                                                               |
| 619        | 13. | W. Schwarzer, N. Abdennur, A. Goloborodko, A. Pekowska, G. Fudenberg, Y. Loe-Mie, N.                                                                                               |
| 620        |     | A. Fonseca, W. Huber, H. H. C, L. Mirny, F. Spitz, Two independent modes of chromatin                                                                                              |
| 621        |     | organization revealed by cohesin removal. Nature 551, 51-56 (2017).                                                                                                                |
| 622        | 14. | J. H. I. Haarhuis, R. H. van der Weide, V. A. Blomen, J. O. Yanez-Cuna, M. Amendola, M.                                                                                            |
| 623        |     | S. van Ruiten, P. H. L. Krijger, H. Teunissen, R. H. Medema, B. van Steensel, T. R.                                                                                                |
| 624        |     | Brummelkamp, E. de Wit, B. D. Rowland, The Cohesin Release Factor WAPL Restricts                                                                                                   |
| 625        |     | Chromatin Loop Extension. Cell 169, 693-707 e614 (2017).                                                                                                                           |

| 626        | 15. | J. Nuebler, G. Fudenberg, M. Imakaev, N. Abdennur, L. A. Mirny, Chromatin organization                                |
|------------|-----|-----------------------------------------------------------------------------------------------------------------------|
| 627<br>628 |     | by an interplay of loop extrusion and compartmental segregation. <i>Proc. Natl. Acad. Sci.</i>                        |
| 628<br>629 | 16. | U. S. A. 115, E6697-E6706 (2018).<br>B. van Steensel, A. S. Belmont, Lamina-Associated Domains: Links with Chromosome |
| 630        | 10. | Architecture, Heterochromatin, and Gene Repression. <i>Cell</i> <b>169</b> , 780-791 (2017).                          |
| 631        | 17. | I. Solovei, K. Thanisch, Y. Feodorova, How to rule the nucleus: divide et impera. <i>Curr</i> .                       |
| 632        | 17. | Opin. Cell Biol. <b>40</b> , 47-59 (2016).                                                                            |
| 633        | 18. | H. B. Sun, J. Shen, H. Yokota, Size-Dependent Positioning of Human Chromosomes in                                     |
| 634        | 10. | Interphase Nuclei. <i>Biophys. J.</i> <b>79</b> , 184-190 (2000).                                                     |
| 635        | 19. | X. Zheng, J. Hu, S. Yue, L. Kristiani, M. Kim, M. Sauria, J. Taylor, Y. Kim, Y. Zheng, Lamins                         |
| 636        | 15. | Organize the Global Three-Dimensional Genome from the Nuclear Periphery. <i>Mol. Cell</i>                             |
| 637        |     | <b>71</b> , 802-815 e807 (2018).                                                                                      |
| 638        | 20. | N. Briand, P. Collas, Laminopathy-causing lamin A mutations reconfigure lamina-                                       |
| 639        | 20. | associated domains and local spatial chromatin conformation. <i>Nucleus</i> <b>9</b> , 216-226                        |
| 640        |     | (2018).                                                                                                               |
| 641        | 21. | T. R. Luperchio, M. E. Sauria, X. Wong, MC. Gaillard, P. Tsang, K. Pekrun, R. A. Ach, N. A.                           |
| 642        |     | Yamada, J. Taylor, K. Reddy, Chromosome Conformation Paints Reveal The Role Of                                        |
| 643        |     | Lamina Association In Genome Organization And Regulation. <i>bioRxiv</i> , 122226 (2017).                             |
| 644        | 22. | S. Shao, B. Xue, Y. Sun, Intranucleus Single-Molecule Imaging in Living Cells. <i>Biophys J</i>                       |
| 645        |     | <b>115</b> , 181-189 (2018).                                                                                          |
| 646        | 23. | C. H. Chuang, A. E. Carpenter, B. Fuchsova, T. Johnson, P. de Lanerolle, A. S. Belmont,                               |
| 647        |     | Long-range directional movement of an interphase chromosome site. <i>Curr. Biol.</i> <b>16</b> , 825-                 |
| 648        |     | 831 (2006).                                                                                                           |
| 649        | 24. | H. Ochiai, T. Sugawara, T. Yamamoto, Simultaneous live imaging of the transcription and                               |
| 650        |     | nuclear position of specific genes. Nucleic Acids Res. 43, e127 (2015).                                               |
| 651        | 25. | N. Dimitrova, YC. M. Chen, D. L. Spector, T. de Lange, 53BP1 promotes non-                                            |
| 652        |     | homologous end joining of telomeres by increasing chromatin mobility. Nature 456,                                     |
| 653        |     | 524-528 (2008).                                                                                                       |
| 654        | 26. | N. W. Cho, R. L. Dilley, M. A. Lampson, R. A. Greenberg, Interchromosomal homology                                    |
| 655        |     | searches drive directional ALT telomere movement and synapsis. Cell 159, 108-121                                      |
| 656        |     | (2014).                                                                                                               |
| 657        | 27. | B. Gu, T. Swigut, A. Spencley, M. R. Bauer, M. Chung, T. Meyer, J. Wysocka,                                           |
| 658        |     | Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory                                         |
| 659        |     | elements. Science 359, 1050-1055 (2018).                                                                              |
| 660        | 28. | P. H. Viollier, M. Thanbichler, P. T. McGrath, L. West, M. Meewan, H. H. McAdams, L.                                  |
| 661        |     | Shapiro, Rapid and sequential movement of individual chromosomal loci to specific                                     |
| 662        |     | subcellular locations during bacterial DNA replication. Proc. Natl. Acad. Sci. U. S. A. 101,                          |
| 663        |     | 9257-9262 (2004).                                                                                                     |
| 664        | 29. | A. Javer, Z. Long, E. Nugent, M. Grisi, K. Siriwatwetchakul, K. D. Dorfman, P. Cicuta, M.                             |
| 665        |     | Cosentino Lagomarsino, Short-time movement of E. coli chromosomal loci depends on                                     |
| 666        |     | coordinate and subcellular localization. Nat. Commun. 4, 3003 (2013).                                                 |
| 667        | 30. | H. Hajjoul, J. Mathon, H. Ranchon, I. Goiffon, J. Mozziconacci, B. Albert, P. Carrivain, J.                           |
| 668        |     | M. Victor, O. Gadal, K. Bystricky, A. Bancaud, High-throughput chromatin motion                                       |
| 669        |     | tracking in living yeast reveals the flexibility of the fiber throughout the genome.                                  |
| 670        | 24  | Genome Res. <b>23</b> , 1829-1838 (2013).                                                                             |
| 671        | 31. | K. D. Kim, H. Tanizawa, O. Iwasaki, C. J. Corcoran, J. R. Capizzi, J. E. Hayden, K. Noma,                             |
| 672        |     | Centromeric motion facilitates the mobility of interphase genomic regions in fission                                  |
| 673        |     | yeast. J. Cell Sci. 126, 5271-5283 (2013).                                                                            |

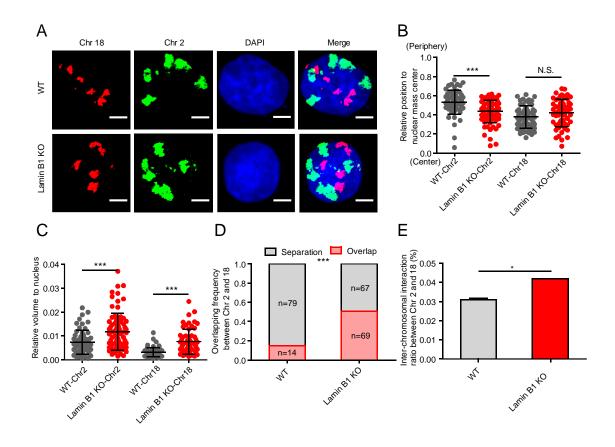
| 674 | 32. | B. Albert, J. Mathon, A. Shukla, H. Saad, C. Normand, I. Leger-Silvestre, D. Villa, A.            |
|-----|-----|---------------------------------------------------------------------------------------------------|
| 675 |     | Kamgoue, J. Mozziconacci, H. Wong, C. Zimmer, P. Bhargava, A. Bancaud, O. Gadal,                  |
| 676 |     | Systematic characterization of the conformation and dynamics of budding yeast                     |
|     |     |                                                                                                   |
| 677 |     | chromosome XII. <i>J. Cell Biol.</i> <b>202</b> , 201-210 (2013).                                 |
| 678 | 33. | J. S. Verdaasdonk, P. A. Vasquez, R. M. Barry, T. Barry, S. Goodwin, M. G. Forest, K.             |
| 679 |     | Bloom, Centromere tethering confines chromosome domains. Mol. Cell 52, 819-831                    |
| 680 |     | (2013).                                                                                           |
|     | 24  |                                                                                                   |
| 681 | 34. | M. R. Hubner, D. L. Spector, Chromatin dynamics. Annu. Rev. Biophys. <b>39</b> , 471-489          |
| 682 |     | (2010).                                                                                           |
| 683 | 35. | J. R. Chubb, S. Boyle, P. Perry, W. A. Bickmore, Chromatin motion is constrained by               |
| 684 |     | association with nuclear compartments in human cells. Curr. Biol. 12, 439-445 (2002).             |
| 685 | 36. | I. Bronshtein, E. Kepten, I. Kanter, S. Berezin, M. Lindner, A. B. Redwood, S. Mai, S.            |
|     | 50. |                                                                                                   |
| 686 |     | Gonzalo, R. Foisner, Y. Shav-Tal, Y. Garini, Loss of lamin A function increases chromatin         |
| 687 |     | dynamics in the nuclear interior. Nat. Commun. 6, 8044 (2015).                                    |
| 688 | 37. | T. Shimi, K. Pfleghaar, S. Kojima, C. G. Pack, I. Solovei, A. E. Goldman, S. A. Adam, D. K.       |
| 689 |     | Shumaker, M. Kinjo, T. Cremer, R. D. Goldman, The A- and B-type nuclear lamin                     |
| 690 |     | networks: microdomains involved in chromatin organization and transcription. <i>Genes</i>         |
|     |     |                                                                                                   |
| 691 |     | <i>Dev.</i> <b>22</b> , 3409-3421 (2008).                                                         |
| 692 | 38. | K. Gesson, P. Rescheneder, M. P. Skoruppa, A. von Haeseler, T. Dechat, R. Foisner, A-             |
| 693 |     | type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-              |
| 694 |     | associated polypeptide 2 alpha. <i>Genome Res.</i> 26, 462-473 (2016).                            |
|     | 20  |                                                                                                   |
| 695 | 39. | W. Meuleman, D. Peric-Hupkes, J. Kind, JB. Beaudry, L. Pagie, M. Kellis, M. Reinders, L.          |
| 696 |     | Wessels, B. van Steensel, Constitutive nuclear lamina-genome interactions are highly              |
| 697 |     | conserved and associated with A/T-rich sequence. <i>Genome Res.</i> 23, 270-280 (2013).           |
| 698 | 40. | Y. Gruenbaum, R. Foisner, Lamins: nuclear intermediate filament proteins with                     |
| 699 |     | fundamental functions in nuclear mechanics and genome regulation. Annu. Rev.                      |
|     |     | ••••                                                                                              |
| 700 |     | <i>Biochem.</i> <b>84</b> , 131-164 (2015).                                                       |
| 701 | 41. | C. Uhler, G. V. Shivashankar, Regulation of genome organization and gene expression by            |
| 702 |     | nuclear mechanotransduction. Nat. Rev. Mol. Cell Biol. 18, 717-727 (2017).                        |
| 703 | 42. | C. Y. Ho, J. Lammerding, Lamins at a glance. <i>J. Cell Sci.</i> <b>125</b> , 2087-2093 (2012).   |
| 704 | 43. | J. A. Croft, J. M. Bridger, S. Boyle, P. Perry, P. Teague, W. A. Bickmore, Differences in the     |
|     | чэ. |                                                                                                   |
| 705 |     | Localization and Morphology of Chromosomes in the Human Nucleus. The Journal of Cell              |
| 706 |     | Biology <b>145</b> , 1119-1131 (1999).                                                            |
| 707 | 44. | J. Kind, L. Pagie, S. S. de Vries, L. Nahidiazar, S. S. Dey, M. Bienko, Y. Zhan, B. Lajoie, C. A. |
| 708 |     | de Graaf, M. Amendola, G. Fudenberg, M. Imakaev, L. A. Mirny, K. Jalink, J. Dekker, A.            |
| 709 |     | van Oudenaarden, B. van Steensel, Genome-wide maps of nuclear lamina interactions in              |
|     |     |                                                                                                   |
| 710 |     | single human cells. <i>Cell</i> <b>163</b> , 134-147 (2015).                                      |
| 711 | 45. | M. Cremer, K. Küpper, B. Wagler, L. Wizelman, J. von Hase, Y. Weiland, L. Kreja, J.               |
| 712 |     | Diebold, M. R. Speicher, T. Cremer, Inheritance of gene density-related higher order              |
| 713 |     | chromatin arrangements in normal and tumor cell nuclei. The Journal of cell biology 162,          |
| 714 |     | 809-820 (2003).                                                                                   |
|     | 16  |                                                                                                   |
| 715 | 46. | S. S. Rao, M. H. Huntley, N. C. Durand, E. K. Stamenova, I. D. Bochkov, J. T. Robinson, A.        |
| 716 |     | L. Sanborn, I. Machol, A. D. Omer, E. S. Lander, E. L. Aiden, A 3D map of the human               |
| 717 |     | genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-            |
| 718 |     | 1680 (2014).                                                                                      |
| 719 | 47. | P. G. Maass, A. R. Barutcu, C. L. Weiner, J. L. Rinn, Inter-chromosomal Contact Properties        |
|     | 47. | · · ·                                                                                             |
| 720 |     | in Live-Cell Imaging and in Hi-C. <i>Mol. Cell</i> 69, 1039-1045 e1033 (2018).                    |
|     |     |                                                                                                   |

| 721<br>722 | 48.       | Z. Du, H. Zheng, B. Huang, R. Ma, J. Wu, X. Zhang, J. He, Y. Xiang, Q. Wang, Y. Li, J. Ma, X.<br>Zhang, K. Zhang, Y. Wang, M. Q. Zhang, J. Gao, J. R. Dixon, X. Wang, J. Zeng, W. Xie, |
|------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 723        |           | Allelic reprogramming of 3D chromatin architecture during early mammalian                                                                                                              |
| 724        |           | development. <i>Nature <b>547</b>,</i> 232-235 (2017).                                                                                                                                 |
| 725        | 49.       | E. P. Nora, B. R. Lajoie, E. G. Schulz, L. Giorgetti, I. Okamoto, N. Servant, T. Piolot, N. L.                                                                                         |
| 726        |           | van Berkum, J. Meisig, J. Sedat, J. Gribnau, E. Barillot, N. Bluthgen, J. Dekker, E. Heard,                                                                                            |
| 727        |           | Spatial partitioning of the regulatory landscape of the X-inactivation centre. <i>Nature</i> <b>485</b> ,                                                                              |
| 728        |           | 381-385 (2012).                                                                                                                                                                        |
| 729        | 50.       | J. R. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, M. Hu, J. S. Liu, B. Ren, Topological                                                                                        |
| 730        |           | domains in mammalian genomes identified by analysis of chromatin interactions.                                                                                                         |
| 731<br>732 | 51.       | Nature 485, 376-380 (2012).<br>E. Crana, O. Pian, P. P. McCard, P. P. Laisia, P. S. Wheeler, E. J. Palston, S. Uzawa, J.                                                               |
| 733        | 51.       | E. Crane, Q. Bian, R. P. McCord, B. R. Lajoie, B. S. Wheeler, E. J. Ralston, S. Uzawa, J. Dekker, B. J. Meyer, Condensin-driven remodelling of X chromosome topology during            |
| 734        |           | dosage compensation. <i>Nature</i> <b>523</b> , 240-244 (2015).                                                                                                                        |
| 735        | 52.       | J. Ruan, C. Xu, C. Bian, R. Lam, J. P. Wang, J. Kania, J. Min, J. Zang, Crystal structures of                                                                                          |
| 736        | 52.       | the coil 2B fragment and the globular tail domain of human lamin B1. FEBS Lett. <b>586</b> ,                                                                                           |
| 737        |           | 314-318 (2012).                                                                                                                                                                        |
| 738        | 53.       | Y. B. Luo, F. L. Mastaglia, S. D. Wilton, Normal and aberrant splicing of LMNA. J. Med.                                                                                                |
| 739        |           | Genet. <b>51</b> , 215-223 (2014).                                                                                                                                                     |
| 740        | 54.       | M. Di Pierro, D. A. Potoyan, P. G. Wolynes, J. N. Onuchic, Anomalous diffusion, spatial                                                                                                |
| 741        |           | coherence, and viscoelasticity from the energy landscape of human chromosomes. Proc.                                                                                                   |
| 742        |           | Natl. Acad. Sci. U. S. A. <b>115</b> , 7753-7758 (2018).                                                                                                                               |
| 743        | 55.       | K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, G. Danuser,                                                                                                  |
| 744        |           | Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695-                                                                                                |
| 745        |           | 702 (2008).                                                                                                                                                                            |
| 746        | 56.       | M. A. Ricci, C. Manzo, M. F. Garcia-Parajo, M. Lakadamyali, M. P. Cosma, Chromatin                                                                                                     |
| 747        |           | fibers are formed by heterogeneous groups of nucleosomes in vivo. <i>Cell</i> <b>160</b> , 1145-1158                                                                                   |
| 748        | <b>F7</b> | (2015).                                                                                                                                                                                |
| 749<br>750 | 57.       | L. Liu, G. Shi, D. Thirumalai, C. Hyeon, Chain organization of human interphase chromosome determines the spatiotemporal dynamics of chromatin loci. <i>PLoS Comp.</i>                 |
| 750<br>751 |           | Biol. 14, e1006617 (2018).                                                                                                                                                             |
| 752        | 58.       | M. Falk, Y. Feodorova, N. Naumova, M. Imakaev, B. R. Lajoie, H. Leonhardt, B. Joffe, J.                                                                                                |
| 753        | 50.       | Dekker, G. Fudenberg, I. Solovei, L. Mirny, Heterochromatin drives organization of                                                                                                     |
| 754        |           | conventional and inverted nuclei. <i>bioRxiv</i> , 244038 (2018).                                                                                                                      |
| 755        | 59.       | I. Solovei, A. S. Wang, K. Thanisch, C. S. Schmidt, S. Krebs, M. Zwerger, T. V. Cohen, D.                                                                                              |
| 756        |           | Devys, R. Foisner, L. Peichl, H. Herrmann, H. Blum, D. Engelkamp, C. L. Stewart, H.                                                                                                    |
| 757        |           | Leonhardt, B. Joffe, LBR and lamin A/C sequentially tether peripheral heterochromatin                                                                                                  |
| 758        |           | and inversely regulate differentiation. Cell 152, 584-598 (2013).                                                                                                                      |
| 759        | 60.       | J. Camps, D. Wangsa, M. Falke, M. Brown, C. M. Case, M. R. Erdos, T. Ried, Loss of lamin                                                                                               |
| 760        |           | B1 results in prolongation of S phase and decondensation of chromosome territories.                                                                                                    |
| 761        |           | FASEB J. <b>28</b> , 3423-3434 (2014).                                                                                                                                                 |
| 762        | 61.       | H. Fan, P. Lv, X. Huo, J. Wu, Q. Wang, L. Cheng, Y. Liu, Q. Q. Tang, L. Zhang, F. Zhang, X.                                                                                            |
| 763        |           | Zheng, H. Wu, B. Wen, The nuclear matrix protein HNRNPU maintains 3D genome                                                                                                            |
| 764        |           | architecture globally in mouse hepatocytes. <i>Genome Res.</i> 28, 192-202 (2018).                                                                                                     |
| 765        | 62.       | H. Ma, A. Naseri, P. Reyes-Gutierrez, S. A. Wolfe, S. Zhang, T. Pederson, Multicolor                                                                                                   |
| 766<br>767 |           | CRISPR labeling of chromosomal loci in human cells. <i>Proc. Natl. Acad. Sci. U.S.A.</i> <b>112</b> , 2002 2007 (2015)                                                                 |
| 767        |           | 3002-3007 (2015).                                                                                                                                                                      |

J. Kind, L. Pagie, H. Ortabozkoyun, S. Boyle, Sandra S. de Vries, H. Janssen, M. Amendola,
Leisha D. Nolen, Wendy A. Bickmore, B. van Steensel, Single-Cell Dynamics of GenomeNuclear Lamina Interactions. *Cell* **153**, 178-192 (2013).

- M. J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical
  reconstruction microscopy (STORM). *Nat. Methods* 3, 793-795 (2006).
- A. Krishan, Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium
  iodide staining. *The Journal of Cell Biology* 66, 188-193 (1975).
- N. Servant, N. Varoquaux, B. R. Lajoie, E. Viara, C.-J. Chen, J.-P. Vert, E. Heard, J. Dekker,
  E. Barillot, HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. *Genome Biol.* 16, 259 (2015).
- M. Imakaev, G. Fudenberg, R. P. McCord, N. Naumova, A. Goloborodko, B. R. Lajoie, J.
  Dekker, L. A. Mirny, Iterative correction of Hi-C data reveals hallmarks of chromosome organization. *Nat. Methods* **9**, 999-1003 (2012).
- 781 68. N. Servant, B. R. Lajoie, E. P. Nora, L. Giorgetti, C. J. Chen, E. Heard, J. Dekker, E. Barillot,
  782 HiTC: exploration of high-throughput 'C' experiments. *Bioinformatics* 28, 2843-2844
  783 (2012).
- 784 Acknowledgments

| 785 | General: We thank Dr. Ronald D. Vale (University of California, San Francisco) for            |
|-----|-----------------------------------------------------------------------------------------------|
| 786 | providing SunTag plasmids, Dr. Wensheng Wei (School of life sciences, Peking                  |
| 787 | University) for providing sgRNA expression plasmid, Dr. Feng Zhang (Broad Institute)          |
| 788 | for providing plasmids px330 (Addgene Plasmid # 42230) and Dr. Wei Guo (Department            |
| 789 | of Biology, University of Pennsylvania) for providing the MDA-MB-231 cell line. We            |
| 790 | also thank Dr Hongxia Lv at the core imaging facility of the School of Life Sciences,         |
| 791 | Peking University for imaging support. Funding: This work is supported by grants from         |
| 792 | National Key R&D Program of China, No. 2017YFA0505302, the National Natural                   |
| 793 | Science Foundation of China 21573013, 21825401 for Y.S., and Chinese National Key             |
| 794 | Projects of Research and Development, No. 2016YFA0100103, Peking-Tsinghua Center              |
| 795 | for Life Sciences, and National Natural Science Foundation of China Key Research Grant        |
| 796 | 71532001 for C.L Author contributions: Y.S., C.L., L.C., and S.S. conceived and designed      |
| 797 | the experiments. L.C. performed all the cloning, immunofluorescence, western blot, chromosome |
| 798 | painting, live cell tracking experiments and image data analysis. M.L. performed Hi-C         |


bioRxiv preprint doi: https://doi.org/10.1101/601849; this version posted April 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- repriments and conducted data analysis of Hi-C and RNA-seq. S.S. wrote the MATLAB script
- 800 for images analysis and carried out the stable cell line construction and knockout experiments.
- 801 Y.H. gave help in FISH experiments. B.X. involved in the critical discussion. L.C., M.L., S.S.,
- 802 C.L., and Y.S. wrote the manuscript. **Competing interests:** The authors declare that they have no
- 803 competing interests.

bioRxiv preprint doi: https://doi.org/10.1101/601849; this version posted April 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

## 804 Figures

805

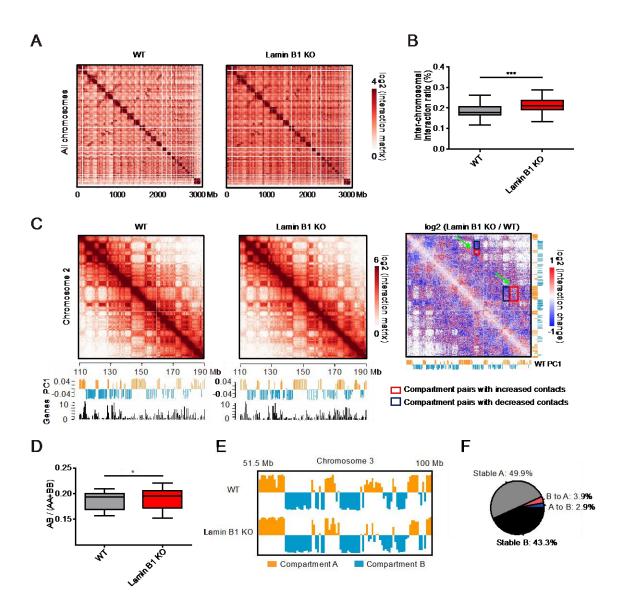


#### Fig. 1 Lamin B1 regulates chromatin sub-nuclear localization and global compaction

(A) Two representative three dimensional (3D)-projection chromosome painting images of
chromosome 2 and 18. Green: FISH signal of chromosome 2. Red: FISH signal of
chromosome 18. Blue: DAPI staining. The maximum intensity projections of nuclear Z
stacks are displayed. Scale bars, 5 µm.

811 (**B**) Quantification of the nuclear localization of chromosomes based on their relative 812 distances from the chromosome mass center to the nuclear mass center. This distance is 813 normalized by the cubic root of the nuclear volume. Mean  $\pm$  standard deviation (SD). \*\*\* 814 p < 0.001, Mann–Whitney test. 3 independent experiments.

| 815 | (C) Quantification | n of the volumes occup | by chromosome 2 and | 18 relative to the nuclear |
|-----|--------------------|------------------------|---------------------|----------------------------|
|-----|--------------------|------------------------|---------------------|----------------------------|


volume. Chromosomes in lamin B1-KO cells show significantly larger relative volumes.

817 Mean  $\pm$  SD. \*\*\* p < 0.001, Mann–Whitney test. 3 independent experiments.

- 818 (**D**) Quantification of the overlap frequency between chromosome 2 and chromosome 18
- territories. The ratio of cells presenting territory interaction between chromosome 2 and
- chromosome 18 in wild type (WT) cells is significantly smaller than that in lamin B1-KO

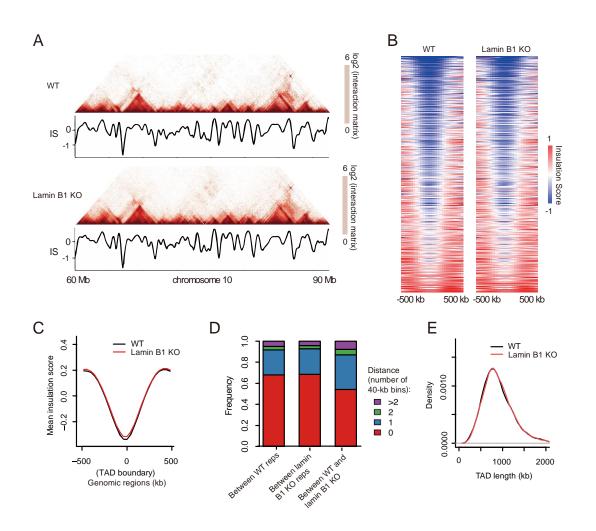
cells. \*\*\* p < 0.001, Fisher's exact test. 3 independent experiments.

- (E) Trans-interaction ratios of chromosome 2 and 18 in two WT replicates and lamin B1-
- KO replicates. Interaction numbers of chromosome 2 and 18 are normalized by the total
- interactions of the whole genome in each sample. Mean  $\pm$  standard error (SE). \* p<0.05, t-
- 825 test.



826

827 Fig. 2 Lamin B1 depletion reduces the isolation of chromosome territories and A/B


```
828 compartments
```

(A) Normalized Hi-C trans-interaction matrices for the whole chromosomes in WT and

830 lamin B1-KO samples.

(B) Trans-interaction ratios of each chromosome in WT and lamin B1-KO cells. For each
chromosome, trans-interaction ratio is the percentage of trans-interaction in total
interaction of this chromosome. \*\*\* p<0.001, paired t-test. 2 biological repeats.</li>

- 834 (C) Normalized Hi-C interaction matrices for chromosome 2 (110-190 Mb) in WT and
- lamin B1-KO cells, and differential matrices of genomic regions between WT and lamin
- B1-KO cells (resolution: 200 kb). Below the heatmaps are PC1 values and gene density
- plots. Orange represents compartment A, and blue represents compartment B. High gene
- 838 density regions correlate with compartment A.
- (**D**) Ratios of inter-compartment interactions (AB) and intra-compartment interactions
- 840 (AA+BB) for each chromosome (X chromosome excluded) in WT and lamin B1-KO
- cells. \*p<0.05, paired t-test. 2 biological repeats.
- 842 (E) Example of genomic region transition from A compartment in WT cells to B
- compartment in lamin B1-KO cells. Compartment A (orange, positive PC1 signal) and
- compartment B (blue, negative PC1 signal) distribution on chromosome 3 (51.5-100 Mb)
- in WT and lamin B1-KO cells.
- 846 (F) Genome-wide summary of genomic regions switching between A/B compartments in
- 847 WT and lamin B1-KO cells. 2 biological repeats.



848

849 Fig. 3 Lamin B1 is not required for TAD insulation.

(A) Example of TAD pattern and insulation score distribution for chromosome 10 (60-90

Mb) in WT and lamin B1-KO cells.

(B) Heatmaps of insulation score around TAD boundaries in WT and lamin B1-KO cells.

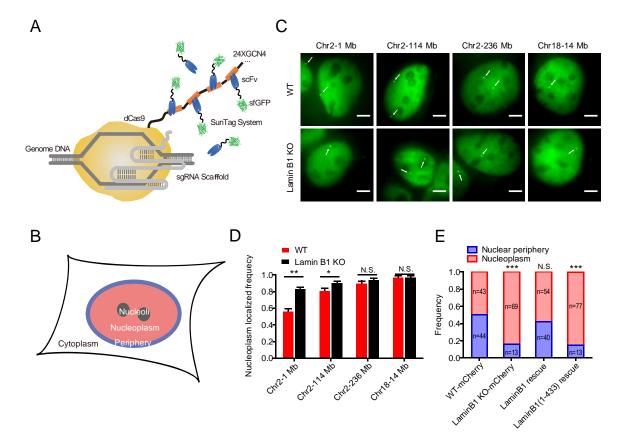
Heatmaps are organized according to the sum of insulation score around each boundary
(±500 kb).

- 855 (C) Average insulation score distribution around TAD boundaries ( $\pm$ 500 kb) in WT and
- 856 lamin B1-KO cells. 2 biological repeats.

- (**D**) Histogram of distance frequency of the most adjacent TAD boundary pairs between
- 858 WT and lamin B1-KO cells, as well as between replicates of WT and lamin B1-KO-cells

859 (40 kb bin).

(E) Distribution of TAD length in WT and lamin B1-KO cells. 2 biological repeats.



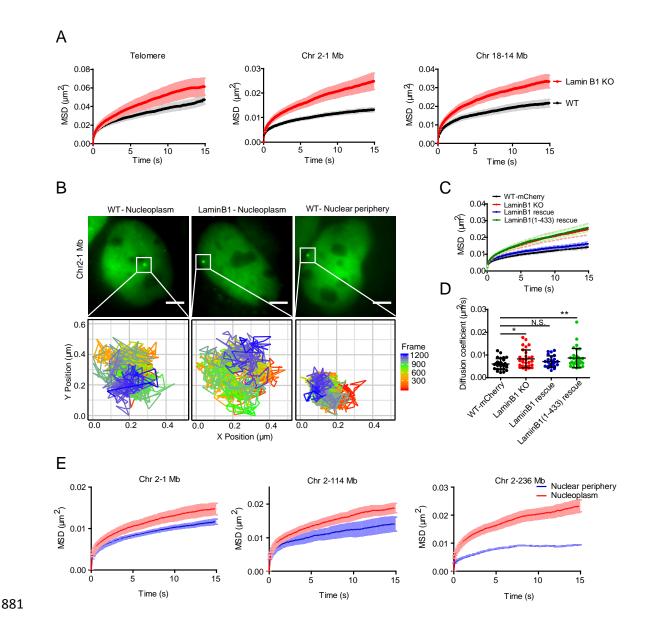
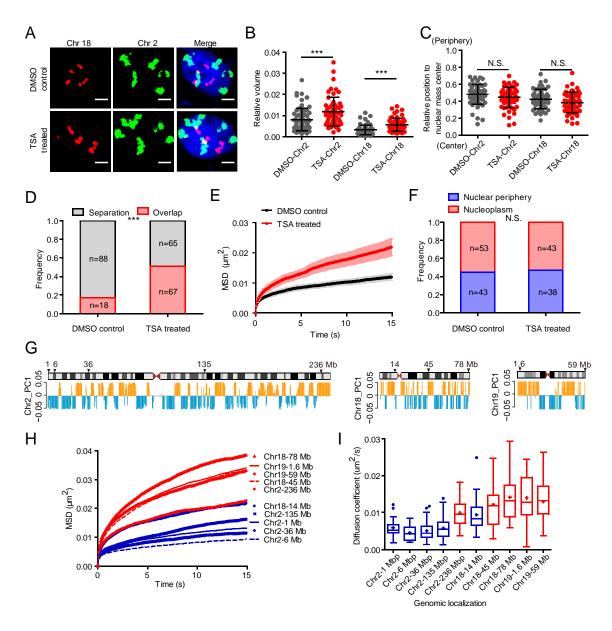




Fig. 4 Lamin B1 depletion changes the location preference of genomic loci.

(A) Schematic representation of CRISPR-SunTag, a labeling and signal amplification
system including dCas9 fused with 24 tandem repeats of GCN4 peptide and a sfGFPtagged single chain antibody (scFv) for GCN4 peptides. Using dCas9-(GCN4)<sub>24x</sub>
coexpressing with scFv-GCN4-sfGFP at minimal level, a single sgRNA can recruit as
many as 24 fluorescent proteins to the target site.

868 (B) Each nucleus is divided into two compartments, nuclear periphery (blue) and869 nucleoplasm (pink, including nucleoli).

- (C) CRISPR-SunTag labeling of chr2-1 Mb, chr2-114 Mb, chr2-238 Mb and chr18-14 Mb
- in WT and lamin B1-KO cells. The white arrows show signals of each loci. Scale bars, 5
- 872 μm.
- (D) The nucleoplasm-localizing frequency of chr2-1 Mb (n=84), chr2-114 Mb (n=117),
- chr2-238 Mb (n=97) and chr18-14 Mb (n=80) in WT cells, as well as those of chr2-1 Mb
- 875 (n=88), chr2-114 Mb (n=97), chr2-238 Mb (n=108) and chr18-14 Mb (n=85) in lamin B1-
- KO cells. \*\* p < 0.01, \* p < 0.05, unpaired t test. 3 independent experiments.
- 877 (E) The subnuclear localization changes of 1Mb loci in chromosome 2 in mCherry
- 878 expressing-WT cells (n=87), mCherry expressing-lamin B1-depleted cells (n=82), lamin
- B1-rescue cells (n=94) and lamin B1(1-433)-rescue cells (n=90). \*\*\* p < 0.001, Fisher's
- exact test. 3 independent experiments.




882 Fig. 5 Loss of chromatin-lamin B1 interaction increases chromatin mobility.

(A) MSD curve of telomeres in WT (n=100) and lamin B1-KO (n=86) cells. MSD curves
of 1Mb loci on chromosome 2 in WT (n=27) and lamin B1-KO (n=29) cells. MSD curves
of 14 Mb loci on chromosome 18 in WT (n=28) and lamin B1-KO (n=33) cells. Mean ±
SE. 3 independent experiments.

| 887 (] | <b>B</b> ) The trackin | g trajectories | of labeled | 1Mb loci | on chromosome | 2 in nucleo | plasm of V | ŴΤ |
|--------|------------------------|----------------|------------|----------|---------------|-------------|------------|----|
|--------|------------------------|----------------|------------|----------|---------------|-------------|------------|----|

- cells, nucleoplasm of lamin B1-KO cells and nuclear periphery of WT cells. Different
- colors of trajectories represent time lapse. Scale bars, 5 μm.
- (C) MSD curve of 1Mb loci in WT (expressing mCherry, n=29), lamin B1-KO (n=29),
- lamin B1-rescue (n=25) and lamin B1(1-433)-rescue (n=30) cells. Mean  $\pm$  SE. 3
- independent experiments.
- **(D)** The diffusion coefficient of 1Mb loci in WT (expressing mCherry, n=29), lamin B1-
- KO (n=29), lamin B1-rescue (n=25) and lamin B1(1-433)-rescue (n=30) cells. Mean  $\pm$ SD.
- \* p < 0.05, \*\* p < 0.01, unpaired t test. 3 independent experiments.
- (E) 3 genomic loci on chromosome 2 are tracked and assigned to nuclear periphery or
- nucleoplasm compartment, including 1 Mb loci (n=27), 114 Mb loci (n=30) and 236 Mb
- loci (n=18). Averaged MSD curves of these loci in the two compartments are calculated
- and displayed as mean  $\pm$  SE. 3 independent experiments.



900

901 Fig. 6 Global decompaction of chromatin contributes to chromatin dynamics

## 902 increase and chromosome territories intermingling.

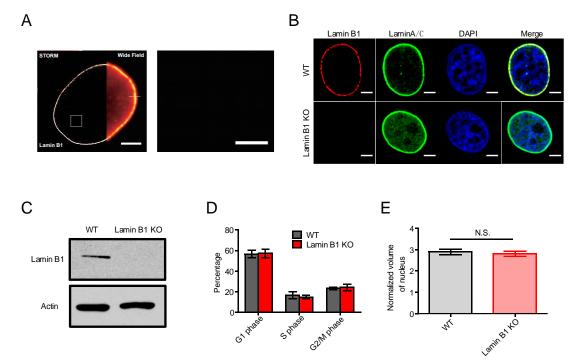
903 (A) Representative 3D-projection chromosome painting images of chromosome 2 and 18
904 in DMSO-treated control cells and TSA-treated cells. Green: FISH signal of chromosome
905 2. Red: FISH signal of chromosome 18. Blue: DAPI staining. The maximum intensity
906 projections of nuclear Z stacks are displayed. Scale bars, 5 µm.

907 (**B**) Quantification of the volumes occupied by chromosome 2 and 18 relative to the nuclear 908 volume. Mean  $\pm$  SD. \*\*\* p < 0.001, Mann–Whitney test. 3 independent experiments.

909 (C) Quantification of the nuclear localization of chromosomes based on their relative
910 distances from the chromosome mass center to the nuclear mass center. This distance is
911 normalized by the cubic root of the nuclear volume. Mann–Whitney test. 3 independent
912 experiments.

913 (**D**) Quantification of the overlap frequency between chromosome 2 and chromosome 18 914 territories. The ratio of cells presenting territory interaction between chromosome 2 and 915 chromosome 18 in control cells (n=106) is significantly smaller than TSA-treated cells 916 (n=132). \*\*\* p < 0.001, Fisher's exact test. 3 independent experiments.

- 917 (E) MSD curves of 1Mb loci on chromosome 2 in DMSO-treated control cells (n=25) and
  918 TSA-treated cells (n=26). Mean ± SE. 3 independent experiments.
- 919 (F) The spatial localization of 1 Mb loci on chromosome 2 in DMSO-treated control cells


920 (n=96) and TSA-treated cells (n=81). Fisher's exact test. 3 independent experiments.

921 (G) Schematic representation and PC1 values plots of chromosome 2, chromosome 18 and

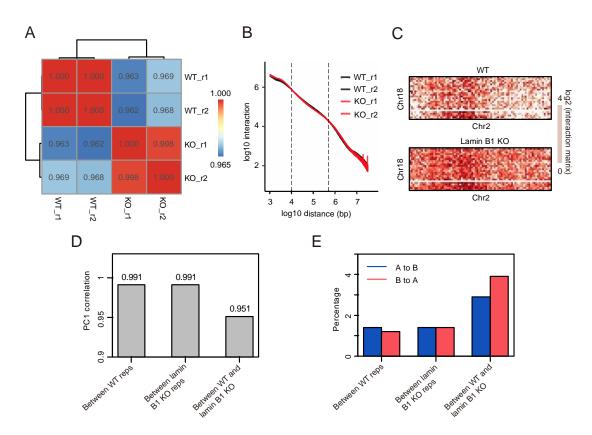
922 chromosome 19. Orange represents compartment A, and blue represents compartment B.

- 923 Arrows indicate the genomic distribution of chosen loci.
- 924 (H) The averaged MSD curves and (I) The diffusion coefficient distribution of 10 genomic
- loci on chromosome 2, chromosome 18 and chromosome 19. Red indicates loci belonging
- to A compartment and blue indicates loci belonging to B compartment. 3 independent
- 927 experiments.

# 928 Supplementary Figures



929

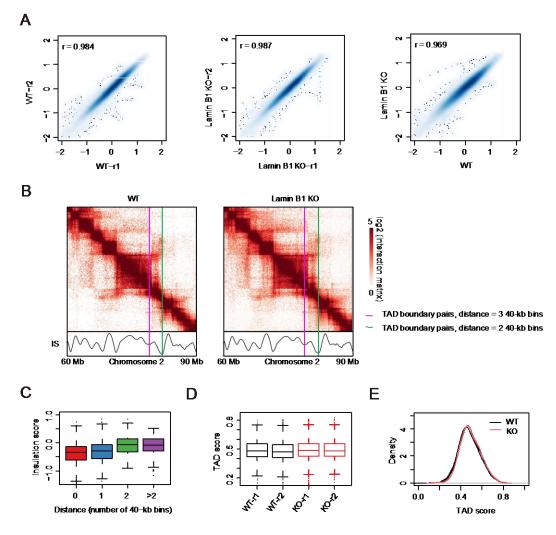

# 930 Fig. S1 Preparation of lamin B1 knock-out (KO) cell lines.

(A) STORM image and wide-field image of lamin B1 in MDA-MB-231 cells. Scale bar:
 5 μm. Magnified image of the boxed area shows that lamin B1 almost has no presence in
 nucleonlasm. Scale bar: 1 μm

933 nucleoplasm. Scale bar: 1  $\mu$ m.

(**B**) Immunofluorescence of chosen lamin B1-KO clone with lamin B1 and lamin A/C

- antibody. WT MDA-MB-231 cell line is used as positive control. The result indicates that
  lamin B1 is totally knocked out in the chosen KO clone, while lamin A/C is unaffected.
  The images are shown under the same intensity threshold between WT and lamin B1-KO
- 938 cells.
- (C) Western blot of chosen lamin B1 KO clone with lamin B1 antibody. Actin is used as
  loading control. WT MDA-MB-231 cell line functions as positive control.
- 941 (**D**) Percentage of cells in G1, S, and G2/M phase in 3 independent experiments.
- 942 (E) Quantification of nuclear volume based on DAPI staining in WT (n=18) and lamin
- B1-KO (n=16) cells. Mean  $\pm$  SE. Nuclear volumes of the two samples do not have
- 944 significant difference.




945

### 946 Fig. S2 Reproducibility analysis of Hi-C data.

947 (A) Pearson correlation coefficients of the whole genome interaction matrices (resolution:

- 948 500 kb) of WT and lamin B1-KO replicates.
- 949 (B) Hi-C interaction frequency as a function of genomic linear distance for WT and lamin950 B1-KO replicates.
- 951 (C) Normalized Hi-C trans-interaction matrices for chromosome 2 and 18 in WT and952 lamin B1-KO samples.
- 953 (**D**) Pearson correlation coefficients of the whole genome PC1 values between WT
- replicates (r=0.991), lamin B1-KO replicates (r=0.991), WT and lamin B1-KO samples
  (r=0.951).
- 956 (E) Percentage of the whole genome A/B compartment transition between WT replicates,
- lamin B1-KO replicates, WT and lamin B1-KO samples.

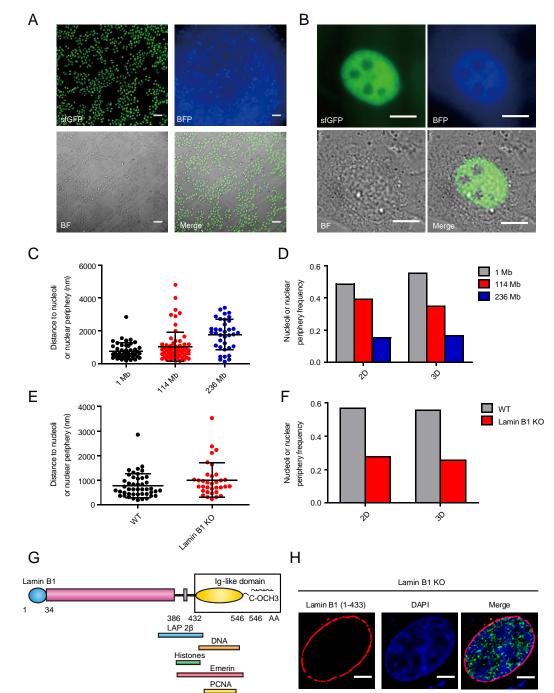


958

#### 959 Fig. S3 TAD analysis.

960 (A) Scatter plots of the whole genome insulation scores of WT replicates (left, Pearson

961 correlation coefficient r=0.984), lamin B1-KO replicates (middle, Pearson correlation


coefficient r=0.987), WT and lamin B1-KO samples (right, Pearson correlation

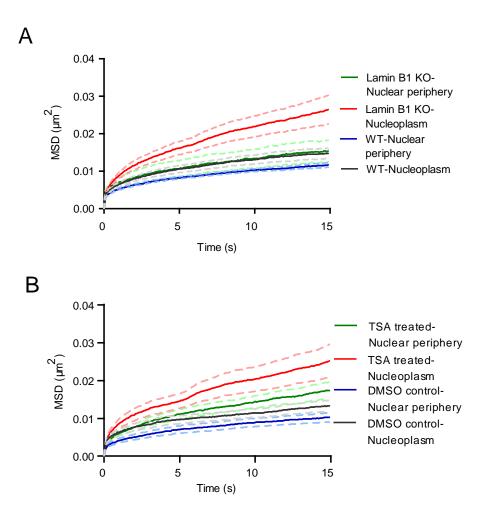
963 coefficient r=0.969).

| 964 | (B) Example of two most adjacent TAD boundary pairs in WT and lamin B1 KO-cells, |
|-----|----------------------------------------------------------------------------------|
| 965 | with the distance of 3 (purple) and 2 (green) 40-kb bins.                        |

966 (C) Boxplot of mean insulation scores of most adjacent TAD boundary pairs in WT and

- lamin B1-KO cells at a distance of indicated numbers. Together with Fig. S3B, the
- 968 insulation score valleys at identical boundary pairs are lower and sharper than the
- changed ones, indicating that shifted TAD boundaries are due to variance upon
- 970 calculation.
- 971 (D) Boxplot of TAD scores of WT and lamin B1-KO replicates. TAD score=intra-TAD
   972 interactions / (intra- + inter-TAD interactions).
  - 46




973 (E) TAD score distribution of WT and lamin B1-KO samples.



# Fig. S4 Construction of SunTag stable cell line, comparison between 2D and 3D images and description of lamin B1 truncation.

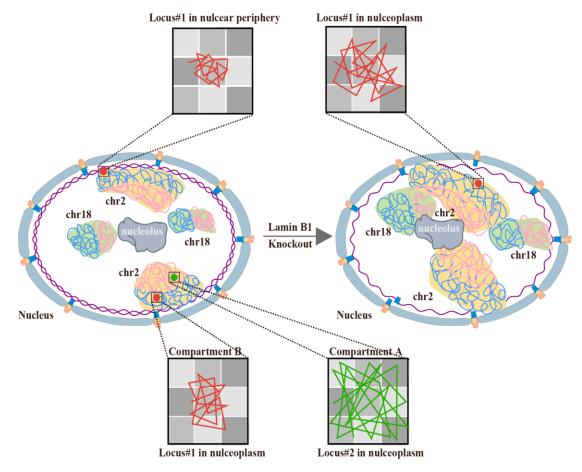
- 977 (A) Fluorescent images of the SunTag cell line under 10X magnification with Dox
- induction. BFP and bright field (BF) are also shown. All cells display similar expression
- level of both dCas9-(GCN4) X24 and scFv-GCN4-sfGFP. Scale bars: 100  $\mu$ m.

- 980 (**B**) Fluorescent images of the SunTag cell line under 100X magnification with Dox
- 981 induction. BFP and bright field (BF) are also shown. The absence of fluorescent signal of
- both blue and green channel in nucleoli indicates that this method is superior to the
- conventional dCas9-GFP labeling method which shows severe nucleoli aggregation.
- 984 Scale bars: 10 μm.
- 985 (C) Quantification of distance from three genomic loci on chromosome 2 to nucleolus or
   986 nuclear periphery in reconstructed 3D images. 2 independent experiments.
- 987 (**D**) Nucleoli and nuclear periphery localization frequency of 3 genomic loci on
- chromosome 2 from 2D and 3D images. Each locus is assigned to this localization
- according to the rule that the minimum distance to nucleoli or nuclear envelope is lessthan 4 pixels (~ 640 nm).
- (E) Quantification of distance from 1 Mb locus on chromosome 2 to nucleolus or nuclear
   periphery in WT and lamin B1-KO cells in reconstructed 3D images. 2 biological repeats.
- 993 (F) Nucleoli and nuclear periphery localization frequency of 1 Mb locus on chromosome
- 2 from 2D and 3D images. Each locus is assigned to this localization according to the
  rule that the minimum distance to nucleoli or nuclear envelope is less than 4 pixels (~ 640
  nm).
- (G) Diagram of lamin B1 and binding sites of interaction partners. The Ig-like domain of
  lamin B1 mediates direct and indirect interaction between lamin B1 and chromatin
  through DNA and other proteins.
- (H) Lamin B1 (1-433) truncation without Ig-like domain localizes in nuclear periphery
   when expressed in lamin B1-KO cells.



1002

# 1003 Fig. S5 MSD curves of 1Mb loci on chromosome 2.


(A) MSD curves of 1Mb loci on chromosome 2 localized in nuclear periphery and
 nucleoplasm of WT and lamin B1-KO cells, separately. Mean ±SEM. Depletion of lamin
 B1 increases 1Mb loci dynamics in both periphery and nucleoplasm. 3 independent
 experiments.

1008 (B) MSD curves of 1Mb loci on chromosome 2 localized in nuclear periphery and

1009 nucleoplasm of DMSO-treated control and TSA-treated cells, separately. Mean  $\pm$  SEM.

1010 TSA treatment increases 1Mb loci dynamics in both nuclear periphery and nucleoplasm.

1011 3 independent experiments.



# **Fig. S6 Model.**

| 1014 | A model describing lamin B1 regulating chromatin higher-order structure and dynamics    |
|------|-----------------------------------------------------------------------------------------|
| 1015 | through tethering to chromatin. Loss of lamin B1 in lamina releases a part of chromatin |
| 1016 | from nuclear periphery to nuclear interior. The change of chromosome compaction state   |
| 1017 | induces expansion of chromosome territories and thus increases the interaction ratio    |
| 1018 | between different chromosomes. Besides, loss of lamin B1 reduces the integrity and      |
| 1019 | segregation of chromatin compartments and part of genomic regions switches between A    |
| 1020 | and B compartments. However, lamin B1 is not required for TAD insulation.               |
| 1021 | Furthermore, depletion of lamin B1 can increase genomic loci dynamics. The dynamic      |
| 1022 | motion of the same locus in different subnuclear regions demonstrates significant       |
| 1023 | difference, and nuclear periphery-localized loci is much less mobile than the           |
| 1024 | nucleoplasmic-positioned loci. Besides, chromatin compaction is a more fundamental      |
| 1025 | factor affecting chromatin dynamics. Genomic loci in less compact compartment A are of  |
| 1026 | higher mobility than those in more compact compartment B.                               |

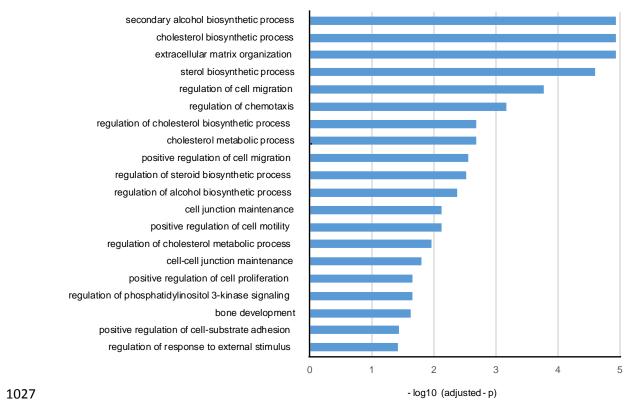



Fig. S7 GO (Biological Process) analysis of down-regulated genes upon lamin B1
KO.

1030

|                                        | WT-r1       | WT-r2       | Lamin B1 KO-<br>r1 | Lamin B1 KO-<br>r2 |
|----------------------------------------|-------------|-------------|--------------------|--------------------|
| Total read pairs <sup>[1]</sup>        | 138,193,618 | 223,885,207 | 250,362,318        | 253,024,668        |
| Uniquely aligned read                  | 108,155,179 | 172,561,205 | 182,642,642        | 194,536,722        |
| pairs <sup>[2]</sup>                   | 78.26%      | 77.08%      | 72.95%             | 76.88%             |
| Valid interaction <sup>[3]</sup>       | 95,264,155  | 152,469,233 | 148,123,567        | 166,884,723        |
| vand interaction <sup>es</sup>         | 88.08%      | 88.36%      | 81.10%             | 85.79%             |
| Self-Circle <sup>[4]</sup>             | 123,564     | 178,371     | 520,046            | 222,818            |
| Self-Circle <sup>11</sup>              | 0.11%       | 0.10%       | 0.28%              | 0.11%              |
| D                                      | 2,726,851   | 4,213,273   | 13,818,685         | 6,521,973          |
| Dangling-end <sup>[5]</sup>            | 2.52%       | 2.44%       | 7.57%              | 3.35%              |
| <b>X7 1: 1:</b> 4 4 1 [6]              | 79,041,927  | 131,026,015 | 129,693,005        | 134,947,244        |
| Valid interaction rmdup <sup>[6]</sup> | 73.08%      | 75.93%      | 71.01%             | 69.37%             |
| <b>m</b> • 4 • [7]                     | 7,834,781   | 13,603,317  | 15,747,086         | 16,307,003         |
| Trans_interaction <sup>[7]</sup>       | 9.91%       | 10.38%      | 12.14%             | 12.08%             |
| C' · · · · [8]                         | 71,207,146  | 117,422,698 | 113,945,919        | 118,640,241        |
| Cis_interaction <sup>[8]</sup>         | 90.09%      | 89.62%      | 87.86%             | 87.92%             |
|                                        | 22,113,855  | 34,770,742  | 37,869,246         | 39,050,597         |
| Cis_shortRange <sup>[9]</sup>          | 31.06%      | 29.61%      | 33.23%             | 32.92%             |
|                                        | 49,093,291  | 82,651,956  | 76,076,673         | 79,589,644         |
| Cis_longRange <sup>[10]</sup>          | 68.94%      | 70.39%      | 66.77%             | 67.08%             |

# 1031 Table S1 Quality control statistics for Hi-C data processing.

The percentage denominators of [2] are the read pair numbers in [1]; the percentage denominators of [3][4][5][6] are the uniquely aligned read pair numbers in [2]; the percentage denominators of [7][8] are in [6]; and the percentage denominators of [9][10] are in [8].