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 8 

Abstract 9 

Eukaryotic genes often generate a variety of RNA isoforms that can lead to functionally distinct 10 

protein variants. The synthesis and stability of RNA isoforms is however poorly characterized. 11 

The reason for this is that current methods to quantify RNA metabolism use ‘short-read’ 12 

sequencing that cannot detect RNA isoforms. Here we present nanopore sequencing-based 13 

Isoform Dynamics (nano-ID), a method that detects newly synthesized RNA isoforms and 14 

monitors isoform metabolism. nano-ID combines metabolic RNA labeling, ‘long-read’ nanopore 15 

sequencing of native RNA molecules and machine learning. Application of nano-ID to the heat 16 

shock response in human cells reveals that many RNA isoforms change their synthesis rate, 17 

stability, and splicing pattern. nano-ID also shows that the metabolism of individual RNA 18 

isoforms differs strongly from that estimated for the combined RNA signal at a specific gene 19 

locus. And although combined RNA stability correlates with poly(A)-tail length, individual RNA 20 

isoforms can deviate significantly. nano-ID enables studies of RNA metabolism on the level of 21 

single RNA molecules and isoforms in different cell states and conditions. 22 

 23 

24 
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Main 25 

In metazoan cells, a single gene locus can give rise to a variety of different RNA molecules that 26 

are generally referred to as isoforms. These RNA isoforms can differ in their 5’- and 3’-ends that 27 

arise from the use of different transcription start sites and polyadenylation sites, respectively 1-4. 28 

In addition, alternative splicing results in RNA isoforms that differ in the composition of their 29 

RNA body 5, 6. Different mRNA isoforms can result in functionally different proteins. 30 

Vulnerabilities in splicing can lead to non-functional protein products. Diseases have been linked 31 

to alternative splicing, which can generate malignant RNA isoforms 7. Duchenne muscular 32 

dystrophy (DMD), for example, can be pinpointed to a single gene encoding the protein 33 

dystrophin. The underlying malignant RNA isoform exhibits a different splicing pattern and 34 

leads to a non-functional protein, which disrupts muscular cell integrity 8. Likewise, the three 35 

most common types of breast tumors are linked to exon skipping and intron retention 9. 36 

RNA isoforms can also differ in their stability. The untranslated region of an RNA 37 

isoform can differ in length and contains regulatory elements 10. The length of the poly(A)-tail at 38 

the 3’-end of RNA isoforms can also differ and influence RNA stability 11, 12, and this is relevant 39 

for disease as well 13. Finally, introns may be retained in RNAs and can influence stability 14. 40 

Little is known however about the synthesis and stability of single RNA isoforms in cells. 41 

This is because the systematic characterization of RNA isoforms and their metabolism is 42 

technically difficult. In particular, the detection, quantification and estimation of the stability of 43 

RNA isoforms is essentially impossible with ‘short-read’ RNA sequencing methods because 44 

reads generally cannot be assigned to RNA isoforms. Also, alternative splicing patterns can be 45 

manifold and are difficult to identify using ‘short-read’ sequencing approaches 15. Finally, 46 

although the length of poly(A)-tails of RNAs can be measured genome-wide 16, 17, they can 47 

currently not be obtained at the level of individual RNA isoforms. 48 

The architecture of RNA isoforms has been addressed so far by ‘short-read’ RNA 49 

sequencing approaches such as VastDB 18 and MPE-seq 19 to study alternative splicing or TIF-50 

seq 1, 3 to elucidate combinations of paired 5’- and 3’-ends of individual RNAs. More recent 51 

approaches include ‘long-read’ sequencing approaches on the PacBio SMRT Sequencing 52 

platform 6 or Oxford Nanopore Technologies nanopore sequencing platform 5, 20, 21. These 53 
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methods however are not able to study the metabolism of individual RNA isoforms because they 54 

lack the ability to assign age to single reads.  55 

Methods to measure the synthesis and stability of combined RNA for entire gene loci are 56 

available 22-24. Transient transcriptome sequencing (TT-seq) is a protocol that allows to 57 

distinguish newly synthesized from pre-existing RNA in human cells 25. TT-seq involves a brief 58 

exposure of cells to the nucleoside analogue 4-thiouridine (4sU). 4sU is incorporated into RNA 59 

during transcription, and the resulting 4sU-labeled RNA can be purified and sequenced to 60 

provide a snapshot of immediate transcription activity. This then enables to computationally 61 

infer RNA synthesis and stability at the level of the combined RNA signal from a gene locus.  62 

Recent methods to assess RNA stability include SLAM-seq 26 and TimeLapse-seq 27. 63 

Like TT-seq, SLAM-seq and TimeLapse-seq involve an exposure of cells to 4sU for labeling of 64 

newly synthesized RNA. A chemical modification of the incorporated 4sU then allows for the 65 

identification of labeled RNA in silico without the need for purification. All of these methods, 66 

however, have limitations. First, sequencing reads can normally only be assigned to entire gene 67 

loci and not to RNA isoforms and thus only allow a combined RNA stability assessment. 68 

Second, they require template amplification, which can lead to an imbalance in measured 69 

sequences and information loss, e.g. modified RNA bases 28. Third, labeled RNA purification 70 

(TT-seq) and cDNA library preparation (TT-seq, SLAM-seq & TimeLapse-seq) can also 71 

introduce biases. 72 

Therefore, monitoring RNA metabolism at the level of RNA isoforms requires a method 73 

that can detect individual RNA molecules. Recent advances in ‘long-read’ nanopore sequencing 74 

indeed enable the sequencing of single, full-length RNA molecules 5. Nanopore technology can 75 

directly sequence the original native RNA molecule with its modifications, may they be natural 76 

or acquired by metabolic RNA labeling. Moreover, the availability of the entire RNA and coding 77 

sequence (CDS) within a single read allows to unambiguously and directly determine exon usage 78 
29. Direct RNA ‘long-read’ nanopore sequencing also has the potential to detect the position and 79 

length of the poly(A)-tail along with each single isoform. 80 

Here we developed nanopore sequencing-based Isoform Dynamics (nano-ID), which 81 

combines metabolic RNA labeling with native RNA ‘long-read’ nanopore sequencing for RNA 82 

isoform detection. In combination with computational modeling and machine learning this 83 
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allows for a full characterization of RNA isoforms dynamics. nano-ID can identify and quantify 84 

RNA isoforms along with their synthesis rate, stability and poly(A)-tail length in the human 85 

myelogenous leukemia cell line K562. We show that this is possible with nano-ID in a 86 

quantitative manner in steady state and also during the transcriptional response to heat shock. 87 

nano-ID is able to resolve the dynamic metabolism of RNA isoforms upon heat shock and 88 

demonstrates the need for individual RNA isoform assessment. Taken together, nano-ID can be 89 

used to elucidate a largely unexplored complex layer of gene regulation at the level of single 90 

native RNA isoforms and their metabolism. 91 

 92 

Results 93 

Experimental design 94 

To monitor the metabolism of RNAs at the level of single isoforms, we sought to combine 95 

metabolic RNA labeling with direct, single-molecule RNA nanopore sequencing (Figure 1a). By 96 

culturing cells in the presence of a nucleoside analogue, cells will take up and incorporate the 97 

analogue in nascent RNA during transcription, allowing to distinguish newly synthesized RNA 98 

isoforms from pre-existing RNA isoforms in silico based on the quantification of analogue-99 

containing subpopulations. This will allow to infer the synthesis rate and stability of single RNA 100 

isoforms. In order to dynamically characterize functional and fully processed RNA transcripts, 101 

we decided to measure poly-adenylated RNA species. The library preparation kit offered by 102 

Oxford Nanopore Technologies for direct RNA sequencing (SQK-RNA001) is specifically 103 

optimized for this purpose. A 3’ poly(A)-tail specific adapter is ligated to the transcript in a first 104 

step. Then a second sequencing adapter equipped with a motor protein is ligated to the first 105 

adapter. The preparation of RNA libraries from biological samples for direct RNA nanopore 106 

sequencing is established and can be carried out within 2h 30. Major challenges that we faced 107 

were however the search of a suited nucleoside analogue for RNA labeling and the detection of 108 

labeled RNA isoforms, provided that the labeling efficiency is known to be limited to about 2-109 

3%, i.e. only two or three out of 100 natural nucleotides are replaced by the analogue 31. 110 

 111 

5-Ethynyluridine (5EU) can be detected in RNA by nanopore sequencing 112 
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To investigate if nucleoside analogues incorporated into RNA are detectable in the nanopore, we 113 

used synthetic RNAs derived from the ERCC RNA spike-in mix (Life Technologies). These 114 

synthetic RNAs of an approximate length of 1,000 nucleotides were chosen with similar U 115 

content (Supplementary Table 3). RNAs were transcribed in vitro using either the standard 116 

bases A, U, C, G as a control, or with one of the natural bases exchanged for a nucleoside 117 

analogue (Figure 1b, Methods). Subsequently, we subjected these synthetic RNAs to direct 118 

RNA nanopore sequencing (Supplementary Figure 1a-b). We compared the nucleoside 119 

analogues 5-Ethynyluridine (5EU), 5-bromouridine (5BrU), 5-iodouridine (5IU), 4-thiouridine (4sU) 120 

and 6-thioguanine (6sG). To this end we used the base-called and mapped direct RNA sequencing 121 

results to calculate how probable the identification would be on the level of single nucleotides. In 122 

particular, we compared the error rate in single nucleotide base-calls of nucleoside analogues to 123 

that of natural U or G (Figure 1c, Methods). 124 

The thiol-based analogues, 4sU and 6sG, showed lower incorporation efficiencies during 125 

in vitro transcription (IVT) and led to blockages during nanopore sequencing. 5EU and 5IU could 126 

be detected to a similar extent by nanopore sequencing, whereas 5BrU was less easily recognized 127 

(Figure 1c). Since 5EU is not toxic to cells 31, 32, we used 5EU for a more detailed analysis. 128 

Approximately 50% of all U positions in 5EU-containing synthetic RNAs are consistently 129 

miscalled by the standard base-calling algorithm and can thus be discerned from U (Figure 1d, 130 

Supplementary Figure 1b). This is clearly visible in the raw data. Aberrations caused by 131 

stretches of RNA containing 5EU are distinguishable from stretches of RNA containing the 132 

naturally occurring U in the nanopore (Figure 1d). Taken together, 5EU-based RNA labeling is 133 

well suited for nanopore sequencing. 134 

 135 

Detection and sequencing of newly synthesized RNA isoforms 136 

We next investigated whether it is possible to use metabolic RNA labeling with 5EU in human 137 

cells to detect single RNA molecules by nanopore sequencing. Calculations on the direct RNA 138 

nanopore sequencing results of the 5EU-containing synthetic RNAs showed that RNAs are 139 

recognizable as 5EU containing with a probability of 0.9 when a minimum length of 500 140 

nucleotides is reached (Supplementary Figure 1c-d). This covers the vast majority (93%) of all 141 

mature RNAs in the human organism (UCSC RefSeq GRCh38). 142 
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We then established direct RNA nanopore sequencing in the human myelogenous 143 

leukemia cell line K562. We cultured K562 cells in the presence of 5EU for 60 minutes (5EU 60 144 

min) in 4 biological replicates (Methods). For comparison, we created 3 biological replicates 145 

exposed to 5EU labeling for 24 h (5EU 24 h) and 3 biological replicates that were not labeled 146 

(Control). After standard base-calling, we could map reads to support 13,110 RefSeq annotated 147 

transcription units (RefSeq-TUs, Methods), 8,098 of these were supported in all conditions and 148 

1,726 were supported in all samples.  149 

All combined samples were then used to perform a full-length alternative RNA isoform 150 

analysis by means of the FLAIR algorithm 21. This allows defining instances of unique exon-151 

intron architecture with unique start and end sites in human K562 cells. Raw human direct RNA 152 

nanopore reads were corrected with the use of short-read sequencing data (RNA-seq) to increase 153 

splice site accuracy. We could detect 33,199 distinct RNA isoforms with an average of 3 154 

isoforms per gene. This shows that direct RNA nanopore sequencing uncovers individual RNA 155 

isoforms in human K562 cells (Figure 2) with high reproducibility (Supplementary Figure 2). 156 

 157 

A neural network identifies newly synthesized RNA isoforms 158 

The next step was to derive a computational method that could classify each sequenced RNA 159 

molecule into one of two groups, newly synthesized (5EU-labeled) or pre-existing (unlabeled) 160 

RNA. To this end, the nucleoside analogue 5EU had to be detected in RNA molecules. This 161 

would allow the quantification of RNA isoforms generated during the 5EU labeling pulse. Due to 162 

the high error rate of nanopore sequencing, a single 5EU base-call is inappropriate as an indicator. 163 

We rather used the raw signal of the entire RNA nanopore read, including the base-calls and the 164 

alignment, to discriminate labeled from unlabeled RNAs. This discrimination was implemented 165 

as a classifying neural network. We developed a custom multi-layered data collection scheme to 166 

train a neural network for the classification of human RNA isoforms under the assumption that 167 

the 5EU 24 h samples solely contain labeled reads and the fact that the Control samples solely 168 

contain unlabeled reads (Figure 3a, Methods). 169 

We then trained a neural network (Methods) on the 5EU 24 h versus Control samples 170 

with an accuracy of 0.87 and a false discovery rate (FDR) of 0.025 (5-fold cross-validated). A 171 

ROC analysis (1 – specificity versus sensitivity) for all reads of the test set showed an area under 172 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601856doi: bioRxiv preprint 

https://doi.org/10.1101/601856


Maier†1, Gressel1, Cramer1*, and Schwalb1†* Page 7 

the curve (AUC) of 0.94. For reads with an alignment length larger than 500 nt and 1,000 nt the 173 

AUC improved to 0.96 (Figure 3b, Supplementary Figure 3a, b). Subsequently we used the 174 

trained neural network to classify reads of the 5EU 60 min samples into 5EU-labeled and 175 

unlabeled. Taken together, 5EU containing RNA isoforms are computationally detectable with 176 

high accuracy (Figure 3c). For validation purposes, we used another machine learning approach. 177 

We trained a random forest on the same data, which yielded similar results (Supplementary 178 

Figure 3c, d). Thus, we were able to determine for each single RNA molecule if it has been 179 

produced during 5EU labeling or before, with a low false discovery rate (Figure 3c). 180 

 181 

nano-ID provides the stability and poly(A) tail length of RNA isoforms 182 

The ability to distinguish newly synthesized and pre-existing RNA molecules allowed us to 183 

derive estimates for the stability of RNA isoforms. For each single direct RNA nanopore read we 184 

were able to assign the RNA isoform it reflects. Additionally, we were able to assess the stability 185 

of RNA for single RNA isoforms by applying a first-order kinetic model (Methods, 186 

Supplementary Figure 3e-f) to derive estimates for RNA isoform specific synthesis and 187 

stability. This can be done based on the number of reads classified as 5EU-labeled and unlabeled 188 

by the neural network. Taken together, nano-ID has the capability to infer synthesis and stability 189 

of individual RNA isoforms in different cell states and conditions, and thus to monitor their 190 

dynamic metabolism. 191 

Moreover, we developed an algorithm to determine poly(A)-tail lengths for each RNA 192 

isoform (Figure 4). This is possible by estimating the dwell time of the poly(A)-tail in the 193 

nanopore by factoring in the measurement frequency in kHz and the speed of RNA translocation 194 

through the nanopore (Methods). Sequencing adaptor ligation in the direct RNA nanopore 195 

sequencing library preparation guarantees full-length poly(A)-tails because ligation of the 196 

adapter would not be successful otherwise. The resulting poly(A)-tail length distribution is in 197 

line with the current literature 16 (Figure 4a) and reveals a pattern that likely corresponds to the 198 

26 nucleotide footprint of the poly(A) binding protein (Supplementary Figure 4a) 33. The direct 199 

RNA nanopore sequencing kit contains the so-called RNA calibration strand (RCS). The RCS is 200 

a synthetic RNA with a poly(A)-tail of exactly 30 adenines. Using the RCS of the direct RNA 201 

nanopore sequencing kit, we could assess the accuracy of the poly(A)-tail length estimates 202 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601856doi: bioRxiv preprint 

https://doi.org/10.1101/601856


Maier†1, Gressel1, Cramer1*, and Schwalb1†* Page 8 

(coefficient of variation 0.63). Our algorithm derives this length for the added RCS 203 

subpopulation (Figure 4b). Taken together, nano-ID reveals the synthesis, stability, and poly(A) 204 

tail length for individual RNA isoforms in human cells. 205 

 206 

nano-ID monitors RNA isoform dynamics during heat shock 207 

To demonstrate the advantages of nano-ID, we subjected human K562 cells to heat shock (42 208 

°C) for 60 min in the presence of 5EU (5EU 60 min HS) (Figure 5a). The heat shock response 209 

provides a well-established model system 34-39 (Supplementary Figure 5). We first asked 210 

whether RNA isoforms do retain more introns after heat shock as this was shown in the mouse 211 

system 40. Indeed, we observed widespread intron retention which significantly increased upon 212 

heat shock (Figure 5b). Although intron retention generally influences the stability of an RNA, it 213 

does not explain changes in RNA isoform stability upon heat shock (Figure 5c). This finding is 214 

consistent with the idea that specific RNA elements occurring only in specific RNA isoforms 215 

influence RNA stability. 216 

We next asked if RNA isoform synthesis is altered by heat shock and observed 217 

significant differential RNA isoform synthesis for 285 isoforms (fold change > 1.25 and p-value 218 

< 0.1). 187 RNA isoforms were significantly upregulated, while 98 were downregulated (Figure 219 

5d). RNA isoforms that changed their synthesis during heat shock were also observed to alter 220 

their stability (Figure 5e-f). In particular, RNA isoforms that were upregulated in their synthesis 221 

during heat shock also showed a lower stability, and the other way around, resembling typical 222 

stress response behavior 23. The destabilization of upregulated RNA isoforms is likely to ensure 223 

their rapid removal toward the end of the stress response. Similarly, downregulated RNA 224 

isoforms are stabilized, perhaps to preserve them for translation at later stages. 225 

 226 

nano-ID reveals the biogenesis of RNA isoforms 227 

Although standard native RNA isoform sequencing can reveal isoforms present in a sample after 228 

perturbation, it cannot distinguish whether these isoforms were derived by synthesis, stability, 229 

splicing, or any combination of these.  nano-ID however is able to disentangle these parameters. 230 

For example, although we observe a general increase in intron retention upon heat shock, we find 231 
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exceptions at the level of RNA isoforms. This can be clearly seen at the human C1orf63 gene 232 

locus (Supplementary Figure 5g). Here, the majority of reads, that retain the entire 3rd intron, 233 

were newly synthesized in the control samples. It is however unclear if this intron will be 234 

retained throughout the existence of these RNA molecules. Investigation of the same gene locus 235 

upon heat shock showed that the vast majority of reads were pre-existing RNAs. This indicates 236 

that this RNA is not transcribed anymore upon heat shock and allows for the conclusion that 237 

intron retention is not altered, rather, less introns are seen retained when only old RNA is 238 

detected. Taken together, this shows that nano-ID is able to resolve the dynamic behavior of 239 

RNA isoforms upon stimuli that could not be seen otherwise. It demonstrates the need for 240 

individual RNA isoform detection and classification into newly synthesized and pre-existing 241 

molecules. By providing information on the age of RNA molecules, nano-ID enables an analysis 242 

of the biogenesis of RNA isoforms. 243 

 244 

The metabolism of individual RNA isoforms differs from combined RNA estimates 245 

To demonstrate the importance of individual RNA isoform assessment, we first derived 246 

estimates for the half-lives of combined RNAs that stem from entire gene loci under steady state 247 

conditions (Methods, Supplementary Figure 3e-f). We found a robust correlation of combined 248 

RNA stability with poly(A)-tail length (Spearman’s rank correlation coefficient 0.48) (Figure 249 

5g). We now asked whether changes in RNA stability would also be reflected in changes in 250 

poly(A)-tail length upon heat shock, and this was not the case (Figure 5h). Instead, we found 251 

genes that showed the opposite behavior to the overall correlation as demonstrated for the human 252 

HSPB1 locus (Figure 6a-b). Here, destabilization of combined RNAs is accompanied by 253 

lengthening of the poly(A)-tail. This view changes dramatically when considering individual 254 

RNA isoforms (Figure 6c). For those three RNA isoforms at the human HSPB1 gene locus for 255 

which stability estimates were supported by all 3 biological replicates (Methods) we found that 256 

poly(A)-tails were generally longer. RNA stability however was decreased for 2 out of the 3 257 

RNA isoforms and increased for the third. This clearly indicates the need for detailed individual 258 

RNA isoform assessment as individual RNA isoforms can lead to functionally distinct protein 259 

variants. Thus, it is crucial to also study the behavior of individual RNA isoforms instead of 260 

breaking it down to the combined view of the entire gene locus. 261 
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As a second example, we picked RNA isoforms at the human TAGLN2 gene locus 262 

(Figure 6d). We could identify 7 different RNA isoforms and reliably calculate RNA stability 263 

for 6 RNA isoforms. Two of them were stabilized upon heat shock, 4 of them were destabilized. 264 

All 4 destabilized RNA isoforms include the second to last exon, which might cause this change 265 

in stability. RNA isoform 7 is an exception to this observation as it is stabilized upon heat shock. 266 

It, however, also contains a 3’ UTR that is 42 bases shorter than all the other RNA isoforms. We 267 

asked whether there is differential behavior of individual RNA isoforms genome-wide or if RNA 268 

isoforms generally reflect the changes in stability of the combined RNA from their respective 269 

gene loci. To that end, we compared RNA stability estimates of individual RNA isoforms to 270 

those from combined RNAs and found that the dynamics of individual RNA isoform during heat 271 

shock varies globally (Figure 6e, Supplementary Figure 6). Taken together, this shows that 272 

conclusions can be misleading when combined RNAs are used and how much can be learned on 273 

the level of single RNA isoforms by using nano-ID. 274 

 275 

Discussion 276 

Here we develop nano-ID, a method that allows for dynamic characterization of functional and 277 

fully processed RNA isoforms on the level of single native RNA molecules. nano-ID combines 278 

metabolic RNA labeling with native RNA nanopore sequencing to enable RNA isoform 279 

identification, estimation of its stability, and a measurement of its poly(A)-tail length from a 280 

single sample. nano-ID is able to visualize changes in RNA isoform synthesis and stability and 281 

reveals a hidden layer of gene regulation. nano-ID thus allows to study transcriptional regulation 282 

in unprecedented detail and can prevent misleading conclusions that would be obtained when 283 

only combined RNAs from an entire gene locus are considered, as is done by RNA-seq, 4sU-seq 284 

or TT-seq. 285 

nano-ID has many advantages over other sequencing-based transcriptomic strategies as it 286 

allows to sequence the original native RNA molecule. In particular, there is no need for 287 

fragmentation of RNA prior to sequencing and hence no ambiguity in assigning reads to RNA 288 

isoforms. nano-ID also does not require template amplification and thus omits copying errors and 289 

sequence-dependent biases. It comes without a lengthy library protocol and eliminates 290 

sequencing by synthesis and therefore prevents loss of information on epigenetic modifications 291 

and artificially introduced RNA base analogues. It is PCR-free and shows neither sequence bias 292 
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nor read duplication events. Taken together, it overcomes drawbacks and limitations of state-of-293 

the-art approaches and increases the gathered information vastly. 294 

Generally, nanopore sequencing has still limitations in throughput and accuracy. These 295 

drawbacks, however, are outweighed by the information obtained on the sequencing substrates. 296 

The longer the sequenced molecules are, the less problematic is the lack in accuracy in 297 

identifying their origin or classifying it into newly-synthesized or pre-existing. On top of that, 298 

there are strategies to improve splice site calling with already existing high accuracy ‘short-read’ 299 

sequencing data to reduce sequencing errors or to assess the likelihood of real nucleotide 300 

variants. We can however show that our algorithmic strategies are already sufficient to address 301 

metabolic rate estimation in a reliable manner. Technical improvements in nanopore sequencing 302 

or their computational processing will strongly improve the accuracy of individual read 303 

sequences and thus detectability of 5EU. The task at hand will be the development of a novel 304 

base-calling algorithm for direct RNA nanopore sequencing with extended base alphabet (A, C, 305 

G, U & 5EU). Furthermore, increased throughput will foster statistical precision of metabolic rate 306 

estimation and will also allow to elucidate low abundant or transient processes. 307 

Nanopore-based transcriptomic studies will allow us to monitor the formation of 308 

transcripts, post-transcriptional processing, export and translation at the level of single RNA 309 

isoforms. nano-ID is in principle also transferable to single cell methodologies, to catch 310 

heterogeneity of the RNA population in any state of the cell. This however requires sequencing 311 

library preparation with lower input amounts. The use of 5EU is widely established for in vivo 312 

applications in the field such as fluorescence microscopy. We thus envision that nano-ID is in 313 

principle applicable to many types of organisms, cells and conditions. 314 

 315 

316 
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Methods 317 

 318 

Labeling and direct RNA nanopore sequencing of synthetic RNAs. Labeled synthetic RNAs 319 

and synthetic control RNAs are derived from selected RNAs of the ERCC RNA Spike-in Mix 320 

(Ambion) as described in 25. Characteristics of selected RNAs of the ERCC RNA Spike-in Mix 321 

are listed in (Supplementary Table 3). Briefly, selected spike-in sequences were cloned into a 322 

pUC19 cloning vector and verified by Sanger sequencing. For IVT template generation, the 323 

plasmid (3 µg) was linearized using EcoRV-HF (blunt end cut) digestion mix containing 324 

CutSmart buffer and EcoRV-HF enzyme. The digestion mix was incubated at 37 °C for 1 h and 325 

the reaction was terminated adding 1/20 volume of 0.5 M EDTA. Subsequently, DNA was 326 

precipitated in 1/10 volume of 3 M sodium acetate pH 5.2, and 2 volumes of 100 % ethanol at -327 

20 °C for 15 min. DNA was collected by centrifugation at 4 °C and 16,000 x g for 15 min. The 328 

pellet was washed twice using 75 % ethanol. DNA was air-dried and resuspended in 5 µL of 329 

H2O at a concentration of 0.1-1.0 µg/µL (quantified by NanoDrop). Synthetic RNAs were in 330 

vitro transcribed using the MEGAscript T7 kit (Ambion). In vitro transcription (IVT) of 331 

synthetic control RNAs was performed following the manufacturer’s instruction. For IVT of 332 

labeled synthetic RNAs, 100 % of UTP (resp. GTP) was substituted with either 5-ethynyl-UTP 333 

(5EU, Jena Bioscience), 5-bromo-UTP (5BrU, Sigma), 5-iodo-UTP (5IU, TriLink BioTechnologies 334 

LLC), 4-thio-UTP (4SU, Jena Bioscience) or 6-thio-GTP (6SG, Sigma). Note that, for performing 335 

a successful IVT with 4-thio-UTP and 6-thio-GTP, only a reduction to 80% substitution gave 336 

successful yield. IVT reactions were incubated at 37 °C. After 4 h, reaction volume was filled up 337 

with H2O to 40 µL, then 2 µL of TURBO DNase was added and incubated at 37 °C for 338 

additional 15 min. Synthetic RNAs were purified with RNAClean XP beads (Beckman Coulter) 339 

following the manufacturer’s instructions. The final synthetic RNA pool contained equal mass of 340 

all respective synthetic RNAs in a given library (Supplementary Table 1). RNA was quantified 341 

using Qubit (Invitrogen). RNA quality was assessed with the TapeStation System (Agilent) 342 

Synthetic RNA pools were poly(A)-tailed using the E. coli Poly(A) Polymerase (NEB). The 343 

reaction was incubated for 5 min and stopped with 0.1 M EDTA.  Spike-ins were then purified 344 

with phenol:chloroform:isoamyl alcohol and precipitated. Poly(A)-tailed synthetic RNA pools 345 

were subsequently subjected to direct RNA nanopore sequencing library preparation (SQK-346 

RNA001, Oxford Nanopore Technologies) following manufacturer’s protocol. All libraries were 347 
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sequenced on a MinION Mk1B (MIN-101B) for 20 h, unless reads sequenced per second 348 

stagnated dramatically. 349 

 350 

Culturing of human K562 cells. Human K562 erythroleukemia cells were obtained from 351 

DSMZ (Cat. # ACC-10). K562 cells were cultured antibiotic-free in accordance with the DSMZ 352 

Cell Culture standards in RPMI 1640 medium (Thermo Fisher Scientific) containing 10 % heat 353 

inactivated fetal bovine serum (FBS) (Thermo Fisher Scientific), and 1x GlutaMAX supplement 354 

(Thermo Fisher Scientific) at 37 °C in a humidified 5 % CO2 incubator. Cells used in this study 355 

display the phenotypic properties, including morphology and proliferation rate, that have been 356 

described in literature. Cells were verified to be free of mycoplasma contamination using Plasmo 357 

Test Mycoplasma Detection Kit (InvivoGen). Biological replicates were cultured independently. 358 

 359 

5EU labeling and direct RNA nanopore sequencing of human K562 cells. K562 cells were 360 

kept at low passage numbers (<6) and at optimal densities (3x10^5 - 8x10^5) during all 361 

experimental setups. Per biological replicate, K562 cells were diluted 24 h before the experiment 362 

was performed (Supplementary Table 1). Per 5EU 60 min sample (4 replicates), cells were 363 

incubated at 37 °C, 5 % CO2 for 1 h after a final concentration of 500 µM 5-Ethynyluridine (5EU, 364 

Jena Bioscience) was added. Per 5EU 24 h sample (3 replicates), cells were incubated at 37 °C, 365 

5% CO2 for 24 h. 5EU was added 3 times during the 24h incubation, i.e. every 8 hours (0h, 8h, 366 

16h) at a final concentration of 500 µM. Control samples were not labeled (3 replicates). Per 5EU 367 

60 min HS (heat shock) sample (3 replicates), cells were incubated at 42 °C for 5 min (until cell 368 

suspension reached 42 °C), and then 5EU was added at a final concentration of 500 µM. Further, 369 

heat shock treatments were performed in a water bath (LAUDA, Aqualine AL12) at 42 °C. for 1 370 

h. Temperature was monitored by thermometer. To avoid transcriptional changes by freshly 371 

added growth medium, fresh growth medium was added ~24 h prior to heat shock treatments 41. 372 

Exactly after the labeling duration, cells were centrifuged at 37 °C and 1,500 x g for 2 min. Total 373 

RNA was extracted from K562 cells using QIAzol (Quiagen) according to manufacturer’s 374 

instructions. Poly(A) RNA was purified from 1 mg of total RNA using the µMACS mRNA 375 

Isolation Kit (Milteny Biotec) following the manufacturer’s protocol. The quality of poly(A) 376 

RNA selection was assessed using the TapeStation System (Agilent). Poly(A) selected RNAs 377 
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were subsequently subjected to direct RNA nanopore sequencing library preparation (SQK-378 

RNA001, Oxford Nanopore Technologies) following manufacturer’s protocol with 1000 ng 379 

input. All libraries were sequenced on a MinION Mk1B (MIN-101B) for 48 h, unless reads 380 

sequenced per second stagnated dramatically. 381 

 382 

RNA-seq. Two biological replicates of K562 cells were diluted 24 h before the experiment was 383 

performed. Per replicate, 3.6 x 107 cells in growth medium were labeled at a final concentration 384 

of 500 µM 4-thio-uracil (4sU, Sigma-Aldrich), and incubated at 37 °C, 5 % CO2 for 5 min. 385 

Exactly after 5 min of labeling, cells were harvested at 37 °C and 1,500 x g for 2 min. Total 386 

RNA was extracted from K562 cells using QIAzol according to manufacturer’s instructions 387 

except for the addition of 150 ng RNA spike-in mix 25 together with QIAzol. To isolate polyA 388 

RNA from 75 µg of total RNA, two subsequent rounds of purification by Dynabeads 389 

Oligo (dT)25 (invitrogen) were performed. Purification based on manufacturer’s instructions was 390 

performed twice, using 1 mg of Dynabeads Oligo (dT)25 beads for the first round and 0.5 mg for 391 

the second round of purification. The quality of polyadenylated RNA selection was assessed 392 

using RNA ScreenTape on a TapeStation (Agilent). Sequencing libraries were prepared using the 393 

NuGEN Ovation Universal RNA-seq kit according to manufacturer’s instructions. Fragments 394 

were amplified by 10 cycles of PCR, and sequenced on an Illumina NextSeq 550 in paired-end 395 

mode with 75 bp read length. 396 

 397 

Direct RNA nanopore sequencing data preprocessing of synthetic RNAs. Direct RNA 398 

nanopore sequencing reads were obtained for each of the samples (Supplementary Table 1).  399 

FAST5 files were base-called using Albacore 2.3.1 (Oxford Nanopore Technologies) with the 400 

following parameters: read_fast5_basecaller.py -f FLO-MIN106 -k SQK-RNA001. Direct RNA 401 

nanopore sequencing reads were mapped with GraphMap 0.5.2 42 to the synthetic RNA reference 402 

sequence with the following parameters: graphmap align --evalue 1e-10. Further data processing 403 

was carried out using the R/Bioconductor environment. 404 

 405 
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Direct RNA nanopore sequencing data preprocessing of human K562 cells. Direct RNA 406 

nanopore sequencing reads were obtained for each of the samples (Supplementary Table 1).  407 

FAST5 files were base-called using Albacore 2.3.1 (Oxford Nanopore Technologies) with the 408 

following parameters: read_fast5_basecaller.py -f FLO-MIN106 -k SQK-RNA001. Direct RNA 409 

nanopore sequencing reads were mapped with Minimap2 2.10 43 to the hg20/hg38 (GRCh38) 410 

genome assembly (Human Genome Reference Consortium) with the following parameters: 411 

minimap2 -ax splice -k14 --secondary=no. Samtools 44 was used to quality filter SAM files, 412 

whereby alignments with MAPQ smaller than 20 (-q 20) were skipped. Further data processing 413 

was carried out using the R/Bioconductor environment and custom python scripts. 414 

 415 

Probability of 5EU-labeled RNA isoform identification based on synthetic RNAs. The 416 

following parameters were collected on the direct RNA nanopore sequencing data of synthetic 417 

RNAs and used to calculate the probability of identification of a 5EU-labeled RNA isoform as 418 

labeled. Detectability d - the number of 5EU caused mismatches in the 5EU-labeled sample. 419 

Background b - the number of U caused mismatches in the unlabeled control sample. Given 420 

these parameters, the probability of identification p can be calculated as the probability of a U-421 

based mismatch being caused by a 5EU in the transcript as 422 

𝑝 = 0.25 ∙ 0.028 ∙ 𝑑 ∙ 1 − 𝑏  423 

with 0.25 - the empirical probability of U content, and labeling efficiency 0.028 - the empirical 424 

probability of a U being replaced by a 5EU in the labeling process 31. This then allows to calculate 425 

the probability of labeled RNA identification pRNA as 426 

𝑝-./ = 1 − 1 − 𝑝 #12343 427 

, the probability, that an RNA contains at least 1 detectable 5EU. 428 

 429 

Definition of transcription units based on the UCSC RefSeq genome assembly GRCh38 430 

(RefSeq-TUs). For each annotated gene, transcription units were defined as the union of all 431 

existing inherent transcript isoforms (UCSC RefSeq GRCh38). 432 

 433 
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Definition of isoform-independent exonic and intronic regions (constitutive exons and 434 

introns). Isoform-independent exonic and intronic regions were determined using a model for 435 

constitutive exons 45 and constitutive introns respectively based on UCSC RefSeq annotation 436 

(GRCh38). 437 

 438 

Isoform determination for human K562 cells. The FLAIR (Full-Length Alternative Isoform 439 

analysis of RNA) algorithm 21 was used for the correction and isoform definition of raw human 440 

K562 direct RNA nanopore reads. Corrected and collapsed isoforms were obtained by adding 441 

short-read data (RNA-seq) to help increase splice site accuracy of the nanopore read splice 442 

junctions (https://github.com/BrooksLabUCSC/FLAIR). 443 

 444 

Parameter collection for neural network training and classification. For each read in each 445 

human K562 sample (5EU 60 min, Control, 5EU 24 h & 5EU 60 min HS) we obtained ~1500 446 

parameters from three different layers: Raw signal (ionic current), base-call event probabilities 447 

and alignment derived mismatch properties. As raw signal, 1193 parameters were gathered 448 

consisting of the raw ionic current measurements gathered for each possible 5-mer of nucleotides 449 

as well as the raw ionic current measurements gathered for each possible 3-mer centered in a 5-450 

mer. The latter parameters were collected for U-containing and non-U-containing instances. In 451 

addition to that, raw ionic current measurements were gathered for 5-mers with all possible 452 

nucleotides in their center position also for U-containing and non-U-containing instances, as well 453 

as 5-mers exclusively leading or lagging U content. All collected raw signal parameters were z-454 

score normalized on all non-U-containing instances given the mean values of the pore model on 455 

which the original base-calling algorithm is based provided by Oxford Nanopore Technologies. 456 

As base-call event probabilities, 120 parameters were gathered including ‘model state’, ‘move’, 457 

‘weights’, ‘p model state’, the probability that ‘model state’ gave rise to the observation of the 458 

event, the most probable ‘model state’, the probability that ‘p model state’ gave rise to the 459 

observation of the event and the probabilities that events may be associated with the certain base 460 

from the event probabilities table provided by the base-calling algorithm. As alignment derived 461 

mismatch properties, 135 parameters were gathered including length of the reads, nucleotide 462 
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occurrences, number of nucleotide transitions, number of inserts and deletions on a single 463 

nucleotide basis as well as on a 5-mer basis for U-containing and non-U-containing instances. 464 

 465 

Neural network training, validation and classification of human RNA isoforms into 5EU-466 

labeled and unlabeled. Neural network was trained on the 5EU 24 h versus Control samples 467 

under the assumption that 5EU 24 h sample solely contains labeled reads and the fact that the 468 

Control sample solely contains unlabeled reads. The trained neural network consists of a batch 469 

normalization layer and 3 dense layers with decreasing output shape (Supplementary Figure 470 

4a). 2 dropout layers (with 25% dropout) in between regularize the attempted classification. 471 

Training was conducted on 404.201 reads, validation was performed on 173.240 reads in 40 472 

epochs with the R interface to Keras on a TensorFlow backend 46, as 473 

 474 

		𝑚𝑜𝑑𝑒𝑙	 < −	𝑘𝑒𝑟𝑎𝑠_𝑚𝑜𝑑𝑒𝑙_𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙()	475 

		𝑚𝑜𝑑𝑒𝑙	% > %		476 

				𝑙𝑎𝑦𝑒𝑟_𝑏𝑎𝑡𝑐ℎ_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒	 = 	1448)	% > %	477 

				𝑙𝑎𝑦𝑒𝑟_𝑑𝑒𝑛𝑠𝑒(𝑢𝑛𝑖𝑡𝑠	 = 	64, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛	 = 	"𝑟𝑒𝑙𝑢", 𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒	 = 	1448)	% > %	478 

				𝑙𝑎𝑦𝑒𝑟_𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑟𝑎𝑡𝑒	 = 	0.25)	% > %	479 

				𝑙𝑎𝑦𝑒𝑟_𝑑𝑒𝑛𝑠𝑒(𝑢𝑛𝑖𝑡𝑠	 = 	8, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛	 = 	"𝑟𝑒𝑙𝑢")	% > %	480 

				𝑙𝑎𝑦𝑒𝑟_𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑟𝑎𝑡𝑒	 = 	0.25)	% > %	481 

				𝑙𝑎𝑦𝑒𝑟_𝑑𝑒𝑛𝑠𝑒(𝑢𝑛𝑖𝑡𝑠	 = 	1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛	 = 	"𝑠𝑖𝑔𝑚𝑜𝑖𝑑")	482 

	483 

		𝑚𝑜𝑑𝑒𝑙	% > %	𝑐𝑜𝑚𝑝𝑖𝑙𝑒(	484 

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟	 = 	𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟_𝑟𝑚𝑠𝑝𝑟𝑜𝑝(),	485 

𝑙𝑜𝑠𝑠	 = 	′𝑏𝑖𝑛𝑎𝑟𝑦_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦′)	486 

 487 

The neural network was 5-fold cross-validated with an accuracy of 0.87 and a false discovery 488 

rate (FDR) of 0.025 and used to classify reads of the 5EU 60 min and 5EU 60 min HS samples 489 

into 5EU-labeled and unlabeled. A ROC analysis (1 – specificity vs sensitivity) for all reads of the 490 

test set showed an area under the curve (AUC) of 0.94. For reads with an alignment length larger 491 

than 500 nt and 1000 nt the AUC improved to 0.96. Note that, limiting the neural network 492 
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classification to reads produced in the first few hours of sequencing, i.e. reads with a generally 493 

higher accuracy, improves the AUC to 0.98. 494 

 495 

Random forest training, validation and classification of human RNA isoforms into 5EU-496 

labeled and unlabeled. For validation purposes, a random forest 47 was trained on the 5EU 24 h 497 

versus Control samples on the same data as the neural network above. The random forest was 5-498 

fold cross-validated with an accuracy of 0.85 and a false discovery rate (FDR) of 0.32 and used 499 

to classify reads of the 5EU 60 min sample into 5EU-labeled and unlabeled. 500 

 501 

Poly(A)-tail length determination. Poly(A)-tail length is estimated by identifying the dwell 502 

time of the poly(A)-tail in the nanopore. For each direct RNA nanopore sequencing read, the raw 503 

signal readout of the nanopore in pico-Ampere [pA] was extracted from the FAST5 file. Every 504 

data point above the 99.99% quantile or below the 0.001% quantile was set to the respective cut-505 

off value for reasons of robustness (Supplementary Figure 5c, upper panel). Subsequently 506 

kmeans clustering was used to define two trend lines at 1/3 and 2/3 the distance between the two 507 

cluster centers. The two trend lines were then used to squish the raw data by taking the parallel 508 

minimum or maximum (Supplementary Figure 5c, lower panel). A loss score of a piecewise 509 

linear function of two consecutive segments of the trend lines is then used to identify segments 510 

along the squished data points (Supplementary Figure 5c, middle panel). The length of the 511 

third identified segment 𝑟T is used to calculate the length of the poly(A)-tail 𝑙T of read 𝑗 in sample 512 

𝑖 as 513 

𝑙T = median
T

𝑠T ∙
𝑟T

ℎ𝑒𝑟𝑡𝑧\
+ 5	 514 

with the sequencing read speed 𝑠T of read 𝑗 in [nt/s] and the frequency ℎ𝑒𝑟𝑡𝑧\ in [Hz] used in 515 

measuring sample 𝑖 and 5 additional adenines that are concealed in the flanking 5-mers. 516 

 517 

Intron retention ratio. For each RefSeq-TU (UCSC RefSeq GRCh38) the intron retention ratio 518 

for the 5EU 60 min and 5EU 60 min HS samples were calculated using the above defined model of 519 

constitutive exons and introns by calculating the ratio of length normalized coverages of the 520 
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maximum value for all respective introns and the average of all respective exons. This yielded 521 

358 gene loci with at least 5% intron retention in either of the samples.   522 

 523 

RNA stability (degradation rate 𝝀𝒊𝒋, half-life 𝒉𝒍𝒊𝒋) and synthesis rate 𝝁𝒊𝒋 estimation of 524 

human RNA isoforms. Each neural network classified direct RNA nanopore sequencing read of 525 

the 5EU 60 min and 5EU 60 min HS samples was assigned to a FLAIR defined human isoform (or 526 

RefSeq-TU) either as 5EU-labeled 𝐿\T and unlabeled 𝑇\T − 𝐿\T. The resulting counts were 527 

subsequently converted into synthesis rates 𝜇\T and degradation rates 𝜆\T for isoform 𝑖 in sample 528 

𝑗 assuming first-order kinetics as in 23 using the following equations: 529 

𝜆\T = −𝛼T −
1
t
∙ 𝑙𝑜𝑔 1 − 𝐿\T 𝑇\T  530 

𝜇\T = 𝑇\T 𝛼T + 𝜆\T  531 

where t is the labeling duration in minutes and 𝛼 is the growth rate (dilution rate, i.e. the 532 

reduction of concentration due to the increase of cell volume during growth) defined as 533 

𝛼T =
log	(2)
𝐶𝐶𝐿T

 534 

with cell cycle length 𝐶𝐶𝐿T [min]. The half-life ℎ𝑙\T for isoform 𝑖 in sample 𝑗 can thus be 535 

calculated as 536 

ℎ𝑙\T =
log	(2)
𝜆\T

 537 

in minutes [min]. 538 

 539 

RNA-seq data preprocessing and antisense bias correction. Paired-end 75 base reads with 540 

additional 6 base reads of barcodes were obtained for each of the samples (Supplementary 541 

Table 1).  Reads were demultiplexed and mapped with STAR 2.3.0 48 to the hg20/hg38 542 

(GRCh38) genome assembly (Human Genome Reference Consortium). Samtools 44 was used to 543 

quality filter SAM files, whereby alignments with MAPQ smaller than 7 (-q 7) were skipped and 544 

only proper pairs (-f2) were selected. Further data processing was carried out using the 545 
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R/Bioconductor environment. We used a spike-in (RNAs) normalization strategy essentially as 546 

described 25 to allow observation of antisense bias ratio 𝑐T (ratio of spurious reads originating 547 

from the opposite strand introduced by the reverse transcription reaction). Antisense bias ratios 548 

were calculated for each sample j according to 549 

𝑐T = median
\

𝑘\T2no\34n34

𝑘\T34n34
 550 

for all available spike-ins i. Read counts (kij) for spike-ins were calculated using HTSeq 49. The 551 

number of transcribed bases (tbj) for all samples was calculated as the sum of the coverage of 552 

evident (sequenced) fragment parts (read pairs only) for all fragments in addition to the sum of 553 

the coverage of non-evident fragment parts for fragments with an inner mate interval not entirely 554 

overlapping a Refseq annotated intron (UCSC RefSeq GRCh38). The number of transcribed 555 

bases (tbj) or read counts (kj) for all features (RefSeq-TUs) were corrected for antisense bias cj as 556 

follows using the parameter calculated as described above. The real number of read counts or 557 

coverage sij for transcribed unit i in sample j was calculated as 558 

𝑠\T =
𝑆\T − 𝑐T𝐴\T
1 − 𝑐Tr

 559 

where Sij and Aij are the observed numbers of read counts or coverage on the sense and antisense 560 

strand. RPKs were calculated upon antisense bias corrected read counts (kj) falling into the 561 

region of a RefSeq-TU divided by its length in kilobases. Coverages were calculated upon 562 

antisense bias corrected number of transcribed bases (tbj) falling into the region of a RefSeq-TU 563 

divided by its length in bases. 564 

  565 
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Figures 699 

 700 
Figure 1. Nanopore sequencing-based Isoform Dynamics (nano-ID) combines metabolic 701 

RNA labeling with ‘long-read’ nanopore sequencing of native RNA molecules. (a) 702 

Experimental schematic of 5EU-labeled RNA isoforms subjected to direct RNA ‘long-read’ 703 

nanopore sequencing. Metabolic labeling of human K562 cells with the nucleoside analogue 5-704 

Ethynyluridine (5EU) in vivo. Newly-synthesized RNA isoforms will incorporate 5EU instead of 705 

standard uridine (U) residues. This allows to distinguish the newly synthesized RNA isoforms 706 

(Labeled) from pre-existing RNA isoforms (Unlabeled) in silico after sequencing the native full-707 

length molecules on an array of nanopores 5. 5EU containing RNA isoforms are computationally 708 
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traceable and thus allow classification. Identification and quantification of RNA isoforms 709 

subsequently enable assessment of RNA stability, exon usage, intron retention and polyA-tail 710 

length. (b) Experimental schematic to derive synthetic RNAs for nucleoside analogue 711 

benchmark. RNAs were in vitro transcribed using either the standard bases A, U, C, G as a 712 

control, or one of the natural bases was exchanged for a nucleoside analogue (shown for 5EU). (c) 713 

Barplot showing the probability of nucleoside analogue identification compared to natural 714 

UTP/GTP based on base-miscalls (Methods) of all tested nucleoside analogues (5EU, 5-715 

bromouridine (5BrU), 5-iodouridine (5IU), 4-thiouridine (4SU) and 6-thioguanine (6SG)). (d) Upper 716 

panel: Base miscalls (colored vertical bars) of the standard base-calling algorithm for synthetic 717 

RNAs containing 5EU instead of U (-5EU-, 3.563 molecules) and synthetic control RNAs (-U-, 718 

15.840 molecules) in comparison to the original sequence (Reference) of an exemplary region on 719 

synthetic RNA ‘Spike-in 8’ (Methods, Supplementary Table 3). Middle panel: Synthetic RNA 720 

sequences with (-5EU-) and without 5EU (-U-) depicted above the reference sequence (Reference). 721 

Lower panel: Alignment of the raw signal readout of the nanopore in pico-Ampere [pA] to the 722 

reference sequence. Synthetic control RNAs (-U-) are shown in black. 5EU containing synthetic 723 

RNAs are shown in red (-5EU-). 5EU containing synthetic RNAs show a clear deviation from the 724 

expected signal level in blue. Blue boxes indicate mean and standard deviation of the pore model 725 

on which the original base-calling algorithm is based. 726 

 727 
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 729 
Figure 2. Direct RNA ‘long-read’ nanopore sequencing of 5EU-labeled RNA isoforms in 730 

human K562 cells. Upper panel: Illustration of the experimental set-up. Human K562 cells were 731 

cultured in the presence of the nucleoside analogue 5EU for 60 minutes (5EU 60 min, 4 replicates) 732 

and 24 h (5EU 24 h, 3 replicates). Control samples were not labeled (Control, 3 replicates). Lower 733 

panel: Genome browser view of direct RNA ‘long-read’ nanopore sequencing results of the 734 

human GAPDH gene locus on chromosome 12 (~8 kbp, chr12: 6,532,405-6,540,375) visualized 735 

with the Integrative Genomics Viewer (IGV, version 2.4.10; human hg38) 50. From top to 736 

bottom: raw nanopore sequencing reads (light grey, shown are typical aligned raw reads below 737 

the accumulated coverage of all measured reads), corrected and collapsed isoforms (dark grey) 738 

determined with the FLAIR algorithm 21 based on raw reads and RefSeq GRCh38 annotation 739 

(blue). 740 

 741 
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 743 
Figure 3. Neural network based classification of human RNA isoforms into 5EU-labeled and 744 

unlabeled. (a) Multi-layered data collection scheme. Parameter collection of human K562 745 

samples (5EU 60 min, Control & 5EU 24 h) was realized on three different layers: Raw signal 746 

(ionic current), base-call event probabilities and alignment derived U based mismatch properties 747 

(Methods). Neural network was trained on the 5EU 24 h versus Control samples with an 748 

accuracy of 0.87 and a false discovery rate (FDR) of 0.025 and used to classify reads of the 5EU 749 

60 min samples into 5EU-labeled and unlabeled. (b) ROC analysis of 5-fold cross-validated 750 

neural network training. Plot shows ROC curves (1 – specificity versus sensitivity) for all reads 751 

of the test set (black, alignment length >=0 nt, AUC = 0.94), for reads with an alignment length 752 
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larger than 500 nt (grey, alignment length >=500 nt, AUC = 0.96) and for reads with an 753 

alignment length larger than 1000 nt (dashed grey, alignment length >=1000 nt, AUC = 0.96). (c) 754 

Genome browser view of classified direct RNA ‘long-read’ nanopore sequencing reads of the 755 

human GAPDH gene locus on chromosome 12 (~8 kbp, chr12: 6,532,405-6,540,375) visualized 756 

with the Integrative Genomics Viewer (IGV, version 2.4.10; human hg38) 50. Unlabeled reads 757 

are shown in grey, 5EU-labeled reads are shown in red. 758 
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 760 
Figure 4. Poly(A)-tail length determination of human RNA isoforms. (a) Histogram of 761 

poly(A)-tail length estimates of 714,536 RNA isoforms (mean: 81 nt, median: 73 nt). (b) 762 

Cumulative distribution function of poly(A)-tail length estimates of the RNA calibration strand 763 

(RCS, yeast derived spike-in RNAs that are equipped with a poly(A)-tail of exactly 30 adenines 764 

(ONT, SQK-RNA001)). Vertical solid black line indicates optimal result of 30 nt (median: 30.6, 765 

coefficient of variation: 0.62). Vertical dashed black lines indicate 2-fold in either direction. (c) 766 

Genome browser view of classified direct RNA ‘long-read’ nanopore sequencing reads with 767 

poly(A)-tail (green) of the human GAPDH gene locus on chromosome 12 (~8 kbp, chr12: 768 
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6,532,405-6,540,375) visualized with the Integrative Genomics Viewer (IGV, version 2.4.10; 769 

human hg38) 50. 770 

 771 

 772 
Figure 5. nano-ID monitors RNA isoform dynamics during heat shock. (a) Experimental set-773 

up of the heat shock treatment (60 min at 42 °C) in human K562 cells. (b) Boxplot shows intron 774 

retention rate (Methods, min 5% in either condition) of 358 gene loci comparing heat shock (5EU 775 

60 min HS) against control (5EU 60 min). (c) Bar plot shows correlation (Spearman’s rank 776 

correlation coefficient) of RNA half-lives and intron retention ratios before and after heat shock 777 

(1,027 loci). The third bar shows the correlation of their respective folds. (d) Boxplot shows 778 

upregulated (red) and downregulated (blue) RNA isoforms upon 60 min of heat shock (42 °C). A 779 

minimum fold change of 1.25 and a maximum p-value of 0.1 was set for calling a significant 780 

expression change. (e) Boxplot shows half-lives of significantly upregulated RNA isoforms 781 

comparing heat shock (5EU 60 min HS) against the control (5EU 60 min). (f) As in (e) for 782 

significantly downregulated RNA isoforms. (g) Scatter plot with color-coded density of RNA 783 

half-lives and RNA poly(A)-tail lengths in both conditions. Shown are 1,230 highly expressed 784 
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RefSeq GRCh38 annotated genes. Correlation is calculated as Spearman’s rank correlation 785 

coefficient (0.48) rounded to the second decimal. (h) As in (c) using the RNA poly(A)-tail 786 

lengths (1,230 loci). 787 
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 789 
Figure 6. nano-ID resolves the characteristics of individual RNA isoforms. (a) Boxplot 790 

shows half-life estimates of RNAs from the human HSPB1 gene locus (chr6:31,813,514-791 

31,819,942) comparing heat shock (HS, 5EU 60 min HS) against control (Ctrl, 5EU 60 min). 792 
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Standard deviation is shown as error bars. Red points depict half-life estimate of merged 793 

replicates in each condition. (b) Boxplot shows the poly(A)-tail length distributions of RNAs 794 

from the human HSPB1 gene locus. 437 RNAs from heat shocked samples (HS, 5EU 60 min HS) 795 

are compared to 341 RNAs in the respective control sample (Ctrl, 5EU 60 min). (c) Schematic 796 

shows direct RNA nanopore sequencing derived RNA isoforms at the human HSPB1 gene locus 797 

above annotated transcription start sites (TSSs) from published GRO-cap data generated in K562 798 

cells 2 and RefSeq GRCh38 annotation. Bar plots show RNA isoform half-life fold changes, 799 

poly(A)-tail length fold changes and their respective significance as standard deviation (error 800 

bars) or -log10(p-value). Red lines indicate no fold change or -log10(p-value) with p-value 0.01. 801 

(d) As in (c) for RNA isoforms at the human TAGLN2 gene locus (chr1:159,916,107-802 

159,927,542). (e) Half-life fold change (y-axis) depicted for RNAs encoded by 306 high 803 

confident gene loci (x-axis). All estimates are supported across biological replicates (n³3) and 804 

conditions (n=2). Half-life estimates for RNA encoded by the entire gene loci (combined) are 805 

depicted as a black line (sorted in decreasing order). Blue dots represent individual RNA isoform 806 

half-life estimates at respective gene loci (1,169 isoforms in total). Perpendicular blue and black 807 

lines represent standard deviations of individual estimates. For individual RNA isoform half-life 808 

estimates, standard deviations are only shown if not overlapping with the standard deviation of 809 

the respective combined half-life estimates (black). 810 
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