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Abstract

Although homologous recombination is accepted to be common in bacteria, so far it has been challenging
to accurately quantify its impact on genome evolution within bacterial species. We here introduce methods
that use the statistics of single-nucleotide polymorphism (SNP) splits in the core genome alignment of a
set of strains to show that, for many bacterial species, recombination dominates genome evolution. Each
genomic locus has been overwritten so many times by recombination that it is impossible to reconstruct the
clonal phylogeny and, instead of a consensus phylogeny, the phylogeny typically changes many thousands
of times along the core genome alignment.

We also show how SNP splits can be used to quantify the relative rates with which different subsets
of strains have recombined in the past. We find that virtually every strain has a unique pattern of
recombination frequencies with other strains and that the relative rates with which different subsets of
strains share SNPs follow long-tailed distributions. Our findings show that bacterial populations are
neither clonal nor freely recombining, but structured such that recombination rates between different
lineages vary along a continuum spanning several orders of magnitude, with a unique pattern of rates
for each lineage. Thus, rather than reflecting clonal ancestry, whole genome phylogenies reflect these
long-tailed distributions of recombination rates.

Introduction

The only illustration that appears in Darwin’s Origin of species [1] is of a phylogenetic tree. Indeed, the
tree has become the archetypical concept representing biological evolution. Since every biological cell that
has ever lived was the result of a cell division, all cells are connected through cell divisions in a giant tree
that stretches all the way back to the earliest cells that existed on earth. Thus, the study of biological
evolution in some sense corresponds to the study of the structure of this giant cell-division tree. Indeed,
virtually all models of evolutionary dynamics formulate the dynamics as occurring along the branches
of a tree, and many mathematical and computational methods have been developed for inference and
modeling of evolutionary dynamics along the branches of a tree, e.g. [2, 3].

It is thus natural that the first step in the analysis of a set of related biological sequences is to
reconstruct the phylogenetic tree that reflects the cell division history of the sequences, i.e their ‘ancestral
phylogeny’. Once the ancestral relationships between the sequences are known, the evolution of the
sequences can then be modeled along the branches of this tree. This strategy has been employed from the
earliest days of sequence analysis [4] and is almost invariable applied in the analysis of microbial genome
sequences, which is the main topic of this work.

A second key concept in models of evolutionary dynamics is the idea of a ‘population’ of organisms
that are mutually competing for resources and that, for purposes of mathematical modeling, can be
considered exchangeable in the sense that they are subjected to the same environment. Indeed, populations
of exchangeable individuals form the basis of almost all mathematical population genetics models (see
e.g. [5]), including coalescent models for phylogenies [6]. Although it is of course well recognized that, in
the real world, populations are structured into sub-populations with varying degrees of interaction between
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them, population genetics models almost by definition assume that at some level there are sub-populations
of exchangeable individuals sharing a common environment.

In this paper we present evidence that we believe challenges the usefulness of applying these two
concepts for describing genome evolution in prokaryotes. First, we find that for most bacterial species
recombination is so frequent that, within an alignment of strains, each genomic locus has been overwritten
by recombination many times and the phylogeny typically changes tens of thousands of times along the
genome. Moreover, for most pairs of strains, none of the loci in their pairwise alignment derives from their
ancestor in the ancestral phylogeny, and the vast majority of genomic differences result from recombination
events, even for very close pairs. Consequently, the ancestral phylogeny cannot be reconstructed from
the genome sequences using currently available methods and, more generally, the strategy of modeling
microbial genome evolution as occurring along the branches of an ancestral phylogeny breaks down.

Second, we show that the structure represented in whole genome phylogenies of microbial strains
does not reflect ancestry, but instead the relative rates with which different lineages have recombined in
the past. Whereas almost every short genomic segment follows a different phylogeny, these phylogenies
are not uniformly randomly sampled from all possible phylogenies, but sampled from highly biased
distributions. In particular, the relative frequencies with which particular sub-clades of strains occur in
the phylogenies at different loci follow roughly power-law distributions and each strain has a distinct
distribution of co-occurrence frequency with the other stains. Since each strain has a unique ‘finger print’
of recombination rates with the lineages of other strains, the assumption that at some level strains can be
considered as exchangeable members of a population, also fundamentally breaks down.

The structure of the paper is as follows. To present our analyses, we will focus on a collection of 91
wild E. coli strains that were isolated over a short period from a common habitat [7]. After introducing
these strains, we introduce the main puzzle of bacterial whole genome phylogeny: although the phylogenies
of individual genomic loci are all distinct, the phylogeny inferred from any large collection of genomic
loci converges to a common structure, e.g. [8–10]. We first study recombination by studying pairs of
strains, extending a recent approach by Dixit et al. [11] to model each pairwise alignment as a mixture
of ancestrally inherited and recombined regions. We show that, as the distance to the pair’s common
ancestor increases, the fraction of the genome covered by recombined segments increases, and at some
pairwise distance all clonally inherited DNA disappears. Importantly, this distance is far below the typical
divergence of pairs of strains such that for the vast majority of pairs, none of the DNA in their genome
alignment stems from their common ancestor.

Much of the new analysis methodology that we introduce is based on bi-allelic SNPs (which constitute
almost all SNPs in the core alignment). Although bi-allelic SNPs have been studied to estimate the
number of recombinations along alignments of sexually reproducing species [12], as far as we are aware
they have received very little attention in the study of prokaryotic genomes. We show that virtually all
bi-allelic SNPs correspond to single mutational events in the history of its genomic locus, so that each
SNP provides a bi-partition that occurs at the phylogeny at that locus. We show various ways in which
these bi-allelic SNPs can be used to investigate which SNPs are consistent with given phylogenies, and
each other, and use them to quantify the amount of phylogenetic variation along the alignment. We use
these SNPs to show there is no consensus phylogeny, that the phylogeny changes every few SNPs along
the core phylogeny, and to estimate a lower bound on the ratio of recombination to mutation events in a
genome alignment.

We then show how these SNPs can also be used to quantify the relative rates with which different
lineages share mutations, and show that these rates follow approximately scale free distributions, indicating
that there is ‘population structure’ on every scale. Finally, we define entropy profiles of phylogenetic
variability of each strain and show that these entropy profiles provide a unique phylogenetic fingerprint of
each strain.

We close by showing how all the statistics that we developed for E. coli apply to a set of other bacterial
species including: B. subtilis, H. pylori, M. tuberculosis, S. enterica, and S. aureus. We show that, with
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the exception of M. tuberculosis where all strains are very closely related and no pair has yet been fully
recombined, all other species follow the same general behavior as E. coli. Thus, for almost all bacterial
species that we studied, there is no common or consensus phylogeny, but many thousands of different
phylogenies along the core genome. These phylogenies are drawn from a distribution with scale-free
properties, and each strain has a unique fingerprint of recombination with the others. We feel that these
observations necessitate a new way of thinking about how to model genome evolution in prokaryotes.

Results

To illustrate our methods we focus on the SC1 collection of wild E. coli isolates that were collected in
2003− 2004 near the shore of St. Louis river in Duluth, Minnesota [7]. We sequenced 91 strains from this
collection together with the K12 MG1655 lab strain as a reference. In a companion paper [13] we discuss
this collection in more detail and extensively analyze the evolution of gene content and phenotypes of
this collection. Here we focus on sequence evolution in the core genome of these strains. Although the
SC1 strains were collected from a common habitat over a short period of time, they show a remarkable
diversity, with no two identical strains, all known major groups of E. coli represented, as well as an ‘out
group’ of 9 strains that are more than 8% diverged at the nucleotide level from other E. coli strains (see
Suppl. Fig. S1 for a phylogenetic tree constructed using maximum likelihood on the joint core genome of
the SC1 strains and 189 reference strains, [13]).

Phylogenies of individual loci disagree with the phylogeny of the core genome

To construct a core genome alignment of the SC1 strains and K12 MG1655 we used the REALPHY
software [14] (see Methods), resulting in a multiple alignment across all 92 strains of 2′756′541 base pairs
long. REALPHY used PhyML [15] to reconstruct a phylogeny from the core genome alignment and will
refer to this tree as the core tree from here on (Fig. 1).

We first checked to what extent the alignments of individual genomic loci are statistically consistent
with the core tree. For each 3 kilobase block of the core alignment we used PhyML to reconstruct a
phylogeny and then compared its log-likelihood with the log-likelihood that can be obtained when the
phylogeny is constrained to have the topology of the core tree. We find that essentially all 3 Kb alignment
blocks reject the core tree (Suppl. Fig. S2, left panel). Moreover, each alignment block rejects the
topologies that were constructed from all other alignment blocks (Suppl. Fig. S2, right panel).

Although it thus appears that the phylogeny at each genomic locus is statistically significantly distinct,
it is still possible that all these phylogenies are highly similar. In order to quantify the differences between
the core tree and the phylogenies of 3Kb blocks we calculated, for each split in the core tree, the fraction
of 3Kb blocks for which the same split occurred in the phylogeny reconstructed from that alignment block.
As shown in the top row of Fig. 1, the phylogenies of individual blocks differ substantially from the core
tree: roughly two-thirds of the splits in the core tree occur in less than half of 3Kb block phylogenies and
half of the core tree splits occur in less than a quarter of all 3Kb block phylogenies. Especially the splits
higher up in the core tree do not occur in the large majority of block phylogenies.

These observations are not particularly novel. There is by now a vast and sometimes contentious
literature on the role of recombination in prokaryotic genome evolution which is beyond the scope of this
article to review. We thus focus on a few key points that are central to the questions and methods we
study here. First, systematic studies of complete microbial genomes have shown that horizontal gene
transfer is relatively common and can significantly affect phylogenies of individual loci, e.g. [16, 17]. Such
observations caused some researchers to question whether trees can be meaningfully used to describe
genome evolution [18]. However, many in the researchers field feel that, given careful study, a major
phylogenetic backbone can be extracted from genomic data. For example, it has been observed that,
whenever a phylogeny is reconstructed from the alignments of a large number of genomic loci, one
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Figure 1. Whereas phylogenies of individual alignment blocks differ substantially from the core tree,
phylogenies reconstructed from a large number of blocks are highly similar to the core tree. Top left:
For each split (i.e. branch) in the core tree, the color indicates what fraction of the phylogenies of 3 Kb
blocks support that bi-partition of the strains. Top right: Cumulative distribution of branch support,
i.e. fraction of 3 Kb blocks supporting each branch. The dotted lines indicated show the fraction of
branches that have less than 50% support (yellow) and the median support per branch (purple). Bottom
left and bottom right : As in the top row, but now based on phylogenies reconstructed from random
subsets of 50% of all 3 Kb blocks as opposed to individual blocks.
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obtains the same or highly similar phylogenies, e.g. [8–10]. We also observe this behavior for our strains.
Phylogenies reconstructed from a random sample of 50% of all 3Kb blocks look highly similar to the core
tree, i.e. with two thirds of the core tree’s splits occurring in all phylogenies (Fig. 1, bottom row).

How should we interpret this convergence of phylogenies to the core phylogeny as increasing numbers
of genomic loci are included? One interpretation, proposed by some researchers, is that once a large
number of genomic segments is considered, effects of horizontal transfer are effectively averaged out, and
the phylogeny that emerges corresponds to the clonal ancestry of the strains, e.g. [8, 19]. Based on this
idea, several tools have been developed that detect recombination events by comparing local phylogenies
with the overall reference phylogeny constructed from the entire genome [20, 21]. In contrast, some recent
studies have argued that recombination is so common in some bacterial species that it is impossible to
meaningfully reconstruct the clonal ancestry from the genome sequences, and that these species should
be considered freely recombining, e.g. [22]. However, if members of the species are freely recombining,
one would expect the core tree to take on a star-like structure as opposed to the clear and consistent
phylogenetic structure that phylogenies converge to as more genomic regions are included in the analysis.
Addressing this puzzle is one of the topics of this work.

Quantifying recombination through analysis of pairs of strains

As a first analysis of the impact of recombination, we follow an approach recently proposed by Dixit et al.
based on the pairwise comparison of strains [11]. The simplest measure of the distance between a pair
of strains is their nucleotide divergence, i.e. the fraction of mismatching nucleotides in the core genome
alignment of the two strains. For pairs of strains with very low divergence, e.g. D6 and F2 at 4× 10−4

divergence (Fig. 2A), the effects of recombination are almost directly visible in the pattern of SNP density
along the genome. While the SNP density is very low along most of the genome, i.e. 0 − 2 SNPs per
kilobase, there are a few segments, typically tens of kilobases long, where the SNP density is much higher
and similar to the typical SNP density between random pairs of E. coli strains, i.e. 10 − 30 SNPs per
kilobase. These high SNP density regions almost certainly result from horizontal transfer events in which
a segment of DNA from another E. coli strain, for example carried by a phage, made it into one of the
ancestor cells of this pair, and was incorporated into the genome through homologous recombination. For
pairs of increasing divergence, e.g. the pair C10-D7 with divergence 0.002 in Fig. 2B, the frequency of
these recombined regions increases, until eventually the majority of the genome is covered by such regions
(pair D6-H10 in Fig. 2C).

For close pairs, the histograms of SNP densities also clearly separate into two components: a majority
of clonally inherited regions with up to at most 3 SNPs per kilobase, and a long tail of recombined regions
with up to 50 or 60 SNPs per kilobase (Fig. 2D-E). As explained in the methods, we can accurately model
the distributions of SNP densities as a mixture of a Poisson distribution for the clonally inherited regions
plus a negative binomial for the recombined regions (solid line fits in Fig. 2D-F). In this way we can
estimate, for each pair of strains, the fraction of the genome that is clonally inherited, and the number of
SNPs that fall in clonally inherited versus recombined regions. Using a Hidden Markov model on close
pairs, we also estimated the distribution of lengths of recombined regions (see Methods), finding that
recombined blocks are typically in the range of 10− 70 kilobases long (Fig. 2J).

From this analysis we see that, whenever the pairwise divergence is less than 0.001, the large majority
of blocks is clonally inherited, which is indicated as the light-green segment in Fig. 2G. However, over
a narrow range of divergence between 0.001 and 0.01 the fraction of clonally inherited DNA drops
dramatically (yellow segment in Fig. 2G) and at a divergence of about 0.014 essentially the entire
alignment has been overwritten by recombination and all clonally inherited DNA is lost (blue segment
in Fig. 2G). Notably, 80% of all pairs of strains lie in this fully recombined regime (Fig. 2I). Thus,
for the large majority of pairs of strains, none of the DNA in their alignment derives from their clonal
ancestor, making it impossible to estimate the distance to their clonal ancestor from comparing their
DNA. Moreover, as shown in Fig. 2H, even for pairs that are so close that most of their genomes are
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Figure 2. Summary statistics of pairwise analysis for the SC1 strains. A-C: SNPs densities
(per kilobase) along the core genome for three pairs of strains at overall nucleotide divergences of 4× 10−4

(D6-F2), 0.002 (C10-D7), and 0.0048 (D6-H10). D-F: Corresponding histograms for the number of SNPs
per kilobase (dots) together with fits of the mixture model for D6-F2 (blue), C10-D7 (green), and D6-H10
(red). Note the vertical axis is on a logarithmic scale. G: For each pair of strains (dots), the fraction of
the genome that was inherited clonally is shown as a function of the nucleotide divergence of the pair,
shown on a logarithmic scale. The three pairs that were shown in panels A-F are shown as the blue,
green, and red dots. The light green, yellow, and blue segments show strains that are mostly clonal, a
mixture of clonal and recombined, and fully recombined, respectively. H: Fraction of all SNPs that lie in
recombined regions as a function of the clonally inherited fraction of the genome. I: Reverse cumulative
distribution of the clonal fractions of the pairs. J: Reverse cumulative distribution of the lengths of
recombined segments for pairs that are in the mostly clonal regime. The mean length of recombined
regions is 31′197, with first quartile 2000, median 19′500, and third quartile 66′000.
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clonally inherited, the large majority of the SNPs derives from the recombined regions.
For later comparison with the data on other species, we summarize our observations from the pairwise

analysis by a few key statistics. First, half of the genome is recombined at a critical divergence of 0.0032.
Second, at this critical divergence, the fraction of all SNPs that is in recombined regions is 0.95. Third,
the fraction of mostly clonal pairs is 0.077, and finally, the fraction of fully recombined pairs is 0.78 (see
Methods). All these statistics suggest that pairwise divergences between strains are almost entirely driven
by recombination and do not reflect distances to their clonal ancestors. To understand how a consistent
phylogenetic structure can still emerge when the full core genomes of all strains are compared, we need to
go beyond studying pairs.

SNPs in the core genome alignment correspond to splits in the local phylogeny

Whereas there may not be a single phylogeny that captures the evolution of our genomes, we will assume
that each single position in the core genome alignment, i.e. each alignment column, has evolved according
to some phylogenetic tree. A key insight is that our set of strains is sufficiently closely related that, for
almost all of these alignment columns, the number of substitutions that have occurred in their evolutionary
history is either zero or one. In particular, of the 2′457′464 columns in the core genome alignment, only
10.85% are polymorphic. Moreover, almost all of these SNP columns are bi-allelic, i.e. for 93.6% of the
SNPs only 2 nucleotides appear, 6.3% have 3 nucleotides, and in 0.2% all 4 nucleotides occur, suggesting
that most positions have not undergone any substitutions, and that columns with multiple substitutions
are rare. Notably, these statistics are still inflated due to the occurence of an outgroup of 9 strains
that is far removed from the other strains (the clade from B5 to B3 visible on the right in Fig. 1). We
observe that almost 36% of all SNPs correspond to SNPs in which all 9 strains of this outgroup have
one nucleotide, and all other 83 strains have another nucleotide. If we remove the outgroup from our
alignment, the fraction of SNP positions in the alignment drops from 10.85% to 6.7%, and the fraction of
SNPs that are bi-allelic increases to 95.5%.

We analyzed the frequencies of columns with 1, 2, 3 and 4 different nucleotides that are expected
under a simple substitution model, separately analyzing positions that are under least selection (third
positions of 4-fold degenerate codons) and positions under most selection (second positions in codons),
and either including or excluding the outgroup (see Methods). These analyses indicate that around 98%
of all bi-allelic SNP columns correspond to columns in which only a single substitution took place.

Since almost all bi-allelic SNPs correspond to a single substitution, each such SNP provides an
important piece of information about the phylogeny at that position in the alignment: whatever this
phylogeny is, it must contain a split, i.e. a branch bipartitioning the set of strains, such that all strains
with one letter occur on one side of the split, and all strains with the other letter on the other side (Fig.
3).

As illustrated in Fig. 3, pairs of SNPs can either be consistent with a common phylogeny, i.e. columns
X and Y or columns Y and Z, or they can be inconsistent with a common phylogeny, i.e. columns X and
Z. The pairwise comparison of SNP columns for consistency with a common phylogeny is known as the
four-gamete test in the literature on sexual species [12] but has so far rarely been used for quantifying
recombination in bacteria (see [23] for the only exception we are aware of). In the rest of this paper we
show how analysis of bi-allelic SNPs (which from now on we will just call SNPs) can be systematically
used to quantify recombination in bacterial species.

SNP statistics are inconsistent with a single consensus phylogeny

As a first test, we investigated to what extent the SNPs support the branches in the core tree. Since
each branch in the core tree corresponds to a split, we calculated what fraction of SNPs correspond to a
branch in the core tree, and what fraction are inconsistent with the core tree. Overall, 58% of the SNPs
that are shared by at least 2 strains correspond to a branch of the core tree, whereas 42% clash with it
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Figure 3. SNP columns correspond to phylogeny splits. A segment of a multiple alignment of 6
strains containing 3 bi-allelic SNPs, X, Y , and Z. The 3 diagrams below the alignment show that each
SNP constrains the local phylogeny to contain a particular split, i.e. bi-partition of the strains. In this
example, the neighboring pairs of SNPs (X,Y ) and (Y, Z) are both consistent with a common phylogeny
and can be used to further resolve the phylogeny in the local segment of the alignment as shown in the
bottom two diagrams. However, SNPs X and Z are mutually inconsistent with a common phylogeny
indicating that somewhere between X and Z a recombination event must have occurred.
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(SNPs that occur in only a single strain are consistent with any phylogeny). However, this relatively high
fraction results almost entirely from SNPs on the single branch connecting the outgroup to the other
strains, which is responsible for almost 36% of all SNPs. When the outgroup is removed, only 27.4% of all
SNPs are consistent with the core tree. Since the core tree was constructed using a maximum likelihood
approach that assumes the entire alignment follows one common tree, we investigated to what extent the
number of tree supporting SNPs can be improved by specifically constructing a tree to maximize the
number of supporting SNPs (see Methods). However, such trees only marginally improve the number of
supporting SNPs by 0.1%.

To assess the extent to which SNPs are consistent with individual branches of the core tree we counted,
for each branch, the number of supporting SNPs S that match the split, and the number of clashing SNPs
C that are inconsistent with the split, to calculate the fraction f = S/(S + C) of SNPs supporting the
branch. Figure 4 shows that, for two-thirds of the branches, there are more clashing than supporting
SNPs. Moreover, for as many as half of the branches in the core tree, the fraction of supporting SNPs is
less than 5%, i.e. there are 20-fold more clashing than supporting SNP columns.

support
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Figure 4. SNP support of the branches of the core genome tree. Left Panel: Fraction of supporting
versus clashing SNPs for each branch of the core tree. Right panel: Cumulative distribution of the
fraction of supporting SNPs across all branches. The purple and orange dotted lines show the median and
the frequency of branches with 50% or less support, respectively.

Besides the brach to the outgroup, the only branches for which supporting SNPs outnumber clashing
SNPs are branches toward groups of highly similar strains near the bottom of the tree. We thus wondered
if it would be possible to construct well supported subtrees for clades of closely-related strains near the
bottom of the tree. We devised a method that builds subtrees bottom-up by iteratively fusing clades so as
to minimize the number of clashing SNPs at each step (see Methods and Suppl. Fig S3, left panel). As
shown in Suppl. Fig. S3, while the fraction of clashing SNPs is initially low, it rises quickly as soon as the
average divergence within the reconstructed subtrees exceeds 10−4, which is more than 100-fold below the
typical pairwise distance between E. coli strains. Thus, while some groups of very closely-related strains
can be unambiguously identified, only a minute fraction of sequence divergence falls within these groups,
and the bulk of the sequence variation between the strains is not consistent with a single phylogeny.

It is also conceivable that there is a single dominant phylogeny for most strains, but that this is
concealed from view when analyzing the full alignment because of a subset of strains with aberrant
behavior. To investigate this, we focused on the smallest subsets of strains that have meaningfully different
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phylogenetic tree topologies. For a quartet of strains (I, J,M,N), there are 3 possibly binary trees, i.e
with (I, J) and (M,N) nearest neighbors, with (I,M) and (J,N), or with (I,N) and (J,M) (See Suppl.
Fig. S4). We selected quartets of roughly equidistant strains and checked, for each quartet, whether the
SNPs clearly supported one of the tree possible topologies. However, we find that alternative topologies
are always supported by a substantial fraction of the SNPs, and that for most quartets the most supported
topology is supported by less than half of the SNPs (Suppl. Fig S4).

Thus, consistent with our analysis of pairs of strains, all these results show that the core tree does not
capture the sequence relationships between the strains. In fact, rather than a single phylogeny representing
the evolutionary relationships between the strains, the SNP data suggest a large number of different
phylogenies across the core genome alignment. It may thus seem all the more puzzling that, when trees
are constructed from sufficiently many genomic loci, the core tree reliably emerges (Fig. 1, bottom). To
underscore this puzzle, we observed that if we remove all SNP columns from the core genome alignment
that correspond to branches of the core tree, and then reconstruct a phylogeny from this edited alignment,
the resulting tree is still highly similar to the core tree (Suppl. Fig. S5). However, almost all SNPs of this
edited alignment clash with the tree that is reconstructed from it. Thus, the core tree reconstructed from
an alignment does not need to match the phylogeny of any of the genomic loci. Rather, the core tree
represents some sort of average of the distribution of phylogenies across the genome. Note that, whenever
a quantity x has a multi-modal distribution, it can easily occcur that there is almost no probability for
any sample of x to occur near its average 〈x〉. Similarly, the actual phylogenies occurring across the
core genome alignment may all be very different from the global ‘average’ phylogeny that the core tree
represents.

Phylogeny changes every few dozens of base pairs along the core alignment

So far we have analyzed SNP consistency without regard to their relative positions. We now analyze to
what extent mutually consistent SNPs are clustered along the alignment. In particular, we calculate the
lengths of segments along the alignment that are consistent with a single phylogeny.
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Figure 5. SNP compatibility along the core genome alignment. A: Linkage disequilibrium (squared
correlation, see Methods) as a function of the separation of a pair of columns in the core genome
alignment. B: Probability distribution of the number of consecutive SNP columns that are consistent
with a common phylogeny for the core genome alignment (orange) and for an alignment in which the
position of all columns has been randomized (blue). C: Probability distribution of the number of
consecutive alignment columns consistent with a common phylogeny for both the real (orange) and
randomized alignment (blue).

We first asssessed the length-scale over which phylogenies are correlated by calculating a standard
linkage measure as a function of distance along the alignment (Fig. 5A and Methods). Linkage drops
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quickly over the first 100 base pairs and becomes approximately constant at distances beyond 200− 300
base pairs, indicating that segments of correlated phylogenies are much shorter than the typical length of
a gene. Very short linkage profiles were recently also observed in thermophilic cyanobacteria isolated in
Yellowstone National Park [22].

We next determined the lengths of segments consistent with a common phylogeny. Starting from
each SNP s, we determined the number of consecutive SNPs n that are all mutually consistent with a
common phylogeny. As shown in Fig. 5B, the distribution of tree-compatible stretches has a mode at
n = 4, and stretches are very rarely longer than 20 consecutive SNPs. In terms of number of base pairs
along the genome, tree-compatible segments are typically just a few tens of base pairs long, and very
rarely more than 300 base pairs (Fig. 5C). Thus, stretches of tree-compatible segments are very short.
For comparison, we also calculated the distribution of tree-compatible segment lengths in an alignment
where the positions of all columns have been completely randomized and observe that these are still a bit
shorter (blue distributions in Fig. 5). Thus, while there is some evidence that neighboring SNPs are more
likely to be compatible than random pairs of SNPs, this compatibility is lost very quickly, typically within
a handful of SNPs.

A lower bound on the ratio of recombination to substitution events

Every time inconsistent SNP columns are encountered as one moves along the core genome alignment,
the local phylogeny must change. For example, somewhere between columns X and Z in Fig. 3 the
phylogeny must change. This in turn implies that at least one recombination event must occur between
columns X and Z. By going along the core genome, and determining the minimum number of times
the phylogeny must change, one can thus derive a lower bound on the total number of recombination
events [12] (see Methods). Using this we find that the phylogeny must change at least C = 43′575 times
along the core phylogeny, i.e. there are at least C recombination events. If we denote by R the true
total number of recombination events, then we can write C = Rf , where f can be thought of as the
fraction of recombination events that are detected by SNP inconsistencies in the alignment. As we argued
previously, almost all SNP columns correspond to a single substitution event, such that the total number
of SNP columns M is a good estimate of the total number of substitutions in the alignment. Consequently,
the ratio of phylogeny changes C to SNPs M provides a lower bound on the ratio of recombinations to
mutations in the alignment, i.e.

C

M
= f

R

M
<

R

M
. (1)

Figure 6 shows the ratio C/M for random subsets of our 92 strains as a function of the number of strains
in the subset.

We see that, for small subsets of strains, the recombination to mutation ratio C/M shows substantial
fluctuations. For example, for subsets of n = 10 strains, the recombination to mutation ratio C/M ranges
from 0.036 to 0.167, with a median of 0.1. However, as the number of strains in the subset increases, the
recombination to mutation ratio converges to a value of C/M ≈ 0.155. In particular, whenever there is
a substantial fraction of the strains, i.e. n ≥ 50, the ratio C/M is highly consistent across the subsets.
Thus, the ratio C/M gives a highly informative summary statistic of the relative rate of recombination to
mutation events along the alignment.

These results confirm that, also on the level of the entire alignment, the strains are in a regime where
each position has been affected by recombination. For example, given the ratio C/M = 0.155, and the
overall SNP rate of 0.1085, the average length of aligment segments between changes in phylogeny is
1/(0.1550.1085) ≈ 59.4 base pairs. From the analysis of close pairs we saw that the typical length of a
recombined segment is about 20′000 base pairs (Fig. 2J). Thus, as an order of magnitude estimate, a
given position in the genome has been overwritten roughly 20′000/59.4 ≈ 337 times by recombination
events. Moreover, since we only detect a fraction of the phylogeny changes across the alignment, the true
number of times each locus has been overwritten by recombination is likely considerably higher.
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Figure 6. Ratio C/M of the minimal number of recombinations C to mutations M for random subsets
of strains. For strain numbers ranging from n = 4 to n = 92, we collected random subsets of n strains and
calculated the ratios C/M of phylogeny changes to mutations in the alignment. The figure shows
box-whisker plots that indicate, for each strain number n, the 5th percentile, first quartile, median, third
quartile, and 95th percentile of the distribution of C/M across subsets. The blue line shows C/M = 0.155.
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Although, it is tempting to interpret the ratio C/M as an estimate of the relative rates of recombination
and mutation in the evolution of the strains, this would require defining a specific evolutionary model, and
even for simple models, e.g. a Kingman coalescent with a fixed rate of recombination [24], the relationship
between the ratio of recombination and mutation rates, and the observed ratio C/M would be nontrivial.
Moreover, we will see below that the data in fact suggests that recombination rates vary over a wide range
across lineages.

Recombination rates across lineages follow scale-free distributions

The analyses above have shown that the core alignment consists of tens of thousands of short segments
with different phylogenies. Thus, one approximate way of thinking about the core genome alignment is
that the phylogeny at every genomic locus is drawn from some distribution of possible phylogenies. In a
freely recombining population, every strain would be equally likely to recombine with any other, leading
to a uniform distribution over all possible phylogenies. However, under such a model each pair of strains
would become approximately equidistant and phylogenies build from large numbers of genomic loci would
take a star-shape, which is clearly at odds with our observations. This suggests that the phylogenies along
the genome are drawn from a highly non-uniform distribution in which some lineages are more likely to
have recombined recently than others.

The distribution of observed SNP types in fact contains extensive information about the relative
frequencies with which different lineages have recombined at different times in the past. For example,
imagine a SNP where two strains share a nucleotide which differs from the nucleotide that all other strains
possess. We will denote such SNPs as 2-SNPs or pair-SNPs. If, at some genomic locus g, we find a 2-SNP
shared by strains s1 and s2, then it follows that, whatever the phylogeny is at locus g, the strains s1 and
s2 must be nearest neighbors in the tree, and the SNP corresponds to a mutation that occurred on the
branch connecting the ancestor of s1 and s2 to all other strains.

Thus, to quantify to which extent the lineage of a strain s has recently recombined with the lineages of
the other strains, we can extract all 2-SNPs in which s shares a letter with one other strain s′ and compare
their frequencies. For example, Fig. 7A graphically shows the frequencies of all pair-SNPs (A1, s) in which
A1 shares a SNP with one other strain s. Note that, if there was a dominant clonal phylogeny, then A1
should essentially only have 2-SNPs with its nearest neighbor in this dominant phylogeny. However, we
see that A1 shares 2-SNPs with 17 of the 92 strains in our collection. If, one the other hand, A1 were
freely recombining with all other strains, then we would expect roughly equal frequencies of all possible
2-SNPs (A1, s). However, we see that A1 shares 2-SNPs with some strains much more often than with
others. For example, whereas 2-SNPs with strains A2, A11, and D8 are the most frequent and occur
almost 200 times each, for 11 of the 17 strains the number of occurrences is 10 or less, and for 4 strains a
2-SNP with A1 is observed only once.

Figure 7B shows a graph representation of all observed pair-SNPs, with the thickness of the edges
proportional to the logarithm of the frequency of occurrence of the 2-SNP type. We see that each strain
is connected through 2-SNPs to a substantial number of other strains, indicating a high diversity of recent
recombination events across the strains. At the same time, the large variability in the thickness of the edges
indicates that some pairs occur much more frequently than others. Figure 7C shows the reverse cumulative
distribution of the frequencies of all observed 2-SNPs, i.e. the distribution of the thickness of the edges in
Fig. 7B (blue dots). Note that, if the strains were to recombine freely, each 2-SNP would be equally likely
to occur, and the distribution of 2-SNPs would be peaked around a typical number of occurrences per
type. Instead, we see that 2-SNP frequencies f vary over more than 3 orders of magnitude, i.e. from an
occurrence of just f = 1 for many 2-SNPs to f = 2965 occurrences for the most common 2-SNP. Moreover,
the reverse cumulative distribution of 2-SNP frequencies follows an approximate straight-line in a log-log
plot. In other words, the distribution of frequencies P (f) is approximately power-law, i.e P (f) ∝ f−α.
Fitting the 2-SNP data to a power-law (see Methods) we find that the exponent equals approximately
α ≈ 1.41 (blue line in Fig. 7C). Importantly, this means that there is no clear most common 2-SNP
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Figure 7. SNP-type frequencies follow approximately power-law distributions Distributions of the
frequencies with which different SNP patterns occur. A: Frequencies of 2-SNPs of the type (A1, s) in
which a SNP is shared between strain A1 and one other strain s. Each edge corresponds to a 2-SNP
(A1, s) and the thickness of the edge is proportional to the logarithm of the number of occurrences of the
2-SNP. The frequency of each edge is also indicated at the corresponding outer node. B: A graph showing
all 2-SNPS (s, s′) that were observed in the core genome alignment. Each node corresponds to a strain
and each edge to a 2-SNP, with the thickness of the edge proportional to the logarithm of the number of
occurrences of the SNP. C: Reverse cumulative distributions of the frequencies of all observed 2-SNPs
(blue dots), 3-SNPs (orange dots), 4-SNPs (green dots), and 12-SNPs (red dots). The solid lines in
corresponding colors show power-law fits. Both axes are shown on a logarithmic scale. D: Exponents of
the power-law fits to the n-SNP frequency distributions, as a function of the number of strains sharing a
SNP n. Error bars correspond to 95% posterior probability intervals.
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partner for each strain, and that one cannot naturally divide 2-SNPs into common and rare types. Instead,
the distribution of 2-SNP frequencies is approximately scale-free.

Beyond SNPs shared by pairs of strains, we can of course also look at SNPs shared by triplets, quartets,
and so on. Besides the distribution of 2-SNP frequencies, Fig. 7C also shows the reverse cumulative
distributions of 3-SNPs (orange dots), 4-SNPs (green dots), and 12-SNPs (red dots). We see that all
these distributions follow approximately straight lines in a log-log plot and can be fitted with power-law
distributions (solid lines). The n-SNP distributions drop more steeply as n increases. Figure 7D shows the
exponent α of the n-SNP distribution as a function of n, showing that the exponents range from α ≈ 1.25
for singlets, i.e. n = 1, to α ≈ 2.8 for n ≥ 20.

We find that essentially all n-SNP distributions are approximately scale-free, i.e. can be fitted with
power-laws. Thus, while some subgroups of n strains share a common ancestor much more often than
others subgroups of n strains, their frequencies fall along a scale-free continuum, so that there is no
natural way of dividing the strains into groups of ’highly recombining’ clades. Note also that each n-SNP
corresponds to a mutation that occurred in the branch leading to the ancestor of a group of n strains.
Therefore, n-SNPs for larger n typically correspond to mutational events that occurred further back in
time. The fact that n-SNP distributions become more steep as n increases means that the average number
of occurrences per n-SNP decreases as n increases. Thus, the diversity of n-SNPs tends to be larger
further back in time (see Suppl Fig. S6).

Phylogenetic entropy profiles of individual strains

Another way to think about the structure evident in the n-SNP distributions is to quantify, for each strain
s, how diverse the phylogenies are that s occurs in at different n. In particular, for a given n, all n-SNP
types in which s is one of the strains sharing the minority nucleotide, are all mutually inconsistent with a
common tree. For example, if the strain s occurs in 10 different quartets of strains, i.e. in 10 different
4-SNP types, then each of these 10 quartets must correspond to different phylogenies and the diversity of
quartets among which s occurs can be quantified by the entropy of the frequency distribution of 4-SNP
types in which s occurs. That is, for each strain s, and each n, we can extract all n-SNPs in which s
occurs and calculate their relative frequencies, and then summarize the diversity of phylogenies by the
entropy of this distribution across n-SNPs. In this way, for each strain s we can calculate an entropy
profile Hs(n) that contains the entropies of the n-SNP distributions in which strain s occurs, as a function
of n (see Methods). Supplementary Fig. S7 shows the entropy profiles for 5 example strains, as well as
the distribution of entropy profiles across all strains. We see that the entropy generally increases as n
increases, again indicating that the diversity of phylogenies increases as one goes further back in time.
The entropy profiles are highly diverse, e.g. for strains like A10 and H6 the entropy increases quickly
to 5− 6 bits, while for the strain G8, which belongs to a cluster of 20 strains that are extremely closely
related, the entropy only increases for n > 20. Most significantly, each strain s has an essentially unique
entropy profile Hs(n) , showing that each strain has its own ’fingerprint’ of the frequencies with which its
lineage shares recent ancestors with the other strains. Finally, the entropy profiles become more similar as
n increases, and for large n the entropy converges to roughly 7.5 bits, which corresponds to effectively 180
different possible ancestries per strain.

Other species of bacteria exhibit qualitatively similar statistics

To investigate to what extent the observations we made for E. coli generalize to other species of bacteria,
we selected 5 additional species from different bacterial groups for which sufficiently many complete
genome sequences of strains were available, and used REALPHY to obtain a core genome alignment of
the strains for each species (see Table S1 for a list of the species, the number of strains, and other core
genome statistics for each species). We then performed most of the analyses that we presented above
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for E. coli on each of these core alignments. Figure 8 presents a summary of the results that we observe
across the species.

Figure 8A shows the cumulative distributions of pairwise divergences between strains for all species.
We see that, while among our E. coli strains that were sampled from a common habitat there is a small
percenage of very close pairs with divergence around 10−6, for the strains of the other species the closest
pairs are at divergence 10−5. With the exception of M. tuberculosis, where the median pair divergence is
around 10−4, the median pairwise divergence in all other species is around 10−2 or larger. The vertical
lines in Fig. 8A indicate the critical divergences, for each species, where half of the alignment is recombined.
With the exception of M. tuberculosis, where all pairs are mostly clonal, the critical divergences lie in a
fairly narrow range of 0.003− 0.01. Figure 8B shows the reverse cumulative distributions, across pairs
of strains, of the fraction of the alignment that is clonally inherited, i.e. as for Fig. 2I for E. coli. Note
that, for all species except M. tuberculosis, the large majority of the pairs is fully recombined. For H.
pylori the fraction of pairs that still contain clonally inherited DNA is almost zero, whereas for S. aureus
the fraction of pairs with a substantial fraction of clonally inherited DNA is largest. Thus, we see that
for almost all species the situation is similar to what we observed in E. coli: for most pairs the distance
to their common ancestor cannot be estimated from their alignment, because the entire alignment has
been overwritten by recombination events. Note also that, for all species, there is only a relatively small
fraction of pairs that lie in the partially recombined regime (yellow segment in Fig. 8B).

Figure 8C shows, for each species, the fraction of all SNPs that derive from recombination, for pairs
of strains that are at the critical divergence where half of the alignment is recombined. Even though
this critical divergence occurs for pairs that are relatively close compared to the typical distance between
pairs, for all species more than 90% of the SNPs derive from recombination. That is, we also see that
for all 5 species the divergence between close strains is dominated by SNPs that are introduced through
recombination.

Figure 8D summarizes the distributions of support of the branches of the core tree as violin plots, i.e.
as shown for E. coli as a cumulative distribution in Fig. 4. In E. coli most branches have many more
SNPs that reject the split than support it, and even stronger rejection of the branches of the core tree are
observed for B. subtilis and H. pylori. For the other three species, including M. tuberculosis, an almost
uniform distribution of branch support is shown, i.e. for these species there are roughly as many branches
that are strongly supported by the SNPs, strongly rejected by the SNPs, or supported and rejected by
roughly equally many SNPs.

Figure 8E summarizes, for each species, the distribution of distances between SNPs along the core
alignment as box-whisker plots (green) as well as the distribution of distances between phylogeny
breakpoints (blue), i.e. as shown in Fig. 5C for E. coli. The figure shows that, with the exception of M.
tuberculosis, the inter-SNP distances range from a few to a few dozen basepairs, with a median inter-SNP
distance of 4 (H. pylori) to 15 (S. aureus) base pairs. For these 5 species, the median distances between
phylogeny breakpoints range from around 10 (H. pylori) to about 100 base pairs for S. aureus. Note that,
for all species, the tail of the distributions stretches to very short distances between breakpoints, whereas
distances between breakpoints of more than 200 bps are very rare for all these 5 species. Thus, for these
species the segments that are consistent with a single phylogeny are always much shorter than the typical
length of a gene. In contrast, for M. tuberculosis both the distances between SNPs and the distances
between breakpoints are almost two orders of magnitude larger.

Finally, Fig. 8F shows box-whisker plots for the distribution of the number of consecutive SNPs
between breakpoints, as was shown for E. coli in Fig. 5B. We see that for all species, including M.
tuberculosis, there are typically less than a handful of SNPs in a row before a phylogeny breakpoint occurs,
and very rarely more than a dozen SNPs. The smallest number of SNPs per breakpoint is observed for
H. pylori, i.e. typically less than 2 SNPs per breakpoint, but the range of SNPs per breakpoint is very
similar across all species.

We next investigated whether the n-SNPs of the other species also exhibit approximately power-law
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Figure 8. Summary of the results across species. A: The cumulative distribution of pairwise
divergernces is shown as a different colored line for each species (see legend in panel). Both axes are shown
on logarithmic scale. The vertical lines in corresponding colors show the critical divergence at which half
of the genome is recombined for each species. B: Reverse cumulative distribution of clonal fractions
across the pairs of strains of each species, with the green, yellow, and blue shaded regions indicating the
mostly clonal, partly recombined, and fully recombined regimes, respectively, i.e. analogous to Fig. 2I C:
For each species, the height of the bar shows the fraction of SNPs that fall in recombined regions for pairs
of strains for which half of the genome is recombined, i.e. see Fig. 2H. D: The violin plots show, for each
species, the distribution of branch support, i.e. the relative ratio of SNPs supporting or clashing with
each branch split, analogous to the right panel of Fig. 4. The blue lines correspond to the medians of the
distributions. E: Box-whisker plots showing the 5, 25, 50, 75, and 95 percentiles of the distributions of
nucleotide distances between consecutive SNPs (green) and phylogeny breakpoints (blue, i.e. analogous to
Fig. 5C), for each species. The axis is shown on a logarithmic scale. F: Box-whisker plot of the
distribution of the number of consecutive SNPs in tree-compatible segments, i.e. analogous to Fig. 5B.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601914doi: bioRxiv preprint 

https://doi.org/10.1101/601914
http://creativecommons.org/licenses/by-nc-nd/4.0/


18

� �� �� ��

�

�

�

�

��

������ �� ������� ������� ���

�
�
�
�
�
�
�
�
�
�
�
�
�-
��
�

��������� �-��� �������������

�� ����

�� ��������

�� ������

�� ������������

�� ��������

�� ������

� �� �� ��
�

�

�

�

�

�

�

������ �� ������� ������� ���

�
�
��
�
�
�
�
-
�
�
�
�
��
��
��
�
���
�
�

���� ������� �-��� ������������� ��� ������

Figure 9. Left panel: Exponents of the power-law fits to the n-SNP frequency distributions, as a
function of the number of strains sharing a SNP n for each of the species (different colors). Error bars
correspond to 95% posterior probability intervals. Right panel: Mean entropy of the entropy profiles
Hn(s), averaged over all strains s, as a function of the number n of strains sharing the SNP, for each of
the species (different colors). The error bars correspond to two standard-errors of the mean.

distributions, as observed in E. coli. Supplementary figure S8 shows the reverse cumulative distributions
of 2-SNPs, 3-SNPs, 4-SNPs, and 12-SNPs across all 6 species together with power-law fits. Although
the curves often deviate substantially from simple straight lines, they all exhibit long tails and range
over several orders of magnitudes, i.e. up to 5 orders of magnitude for 2-SNPs in S. enterica. Note that,
since in M. tuberculosis the total number of different n-SNP types is small, only the 2-SNP and 3-SNP
distributions can be reasonably defined. Figure 9 (left panel) shows the fitted exponents of the power-law
distributions of n-SNPs as a function of n for all species. With the exception of M. tuberculosis, for
which the exponents are small for all n, we see that the exponents generally increase with n indicating
that the phylogenetic diversity generally increases as one moves further back in time, i.e. to larger n.
Consistent with other observations, H. pylori shows the highest exponents, i.e. the highest diversity, and
M. tuberculosis the lowest. While the exponents become roughly constant for n > 20 for E. coli, H. pylori
and S. aureus, B. subtilis and S. enterica, exhibit more complex patterns with sudden drops in exponent
at particular values of n, suggesting more complex population structures for these species.

As an aside, we decided to investigate what the distribution of n-SNP frequencies looks like for a
sexually reproducing organism with complex population structure such as human. We extracted SNP
data for chromosome 21 for 2504 humans from the 1000 Genome project [25] and calculated the frequency
distributions of n-SNP types. Supplementary Fig. S9 shows examples of the n-SNP distributions for
human together with the fitted exponents for n ranging from 1 to 30. Interestingly, the n-SNP distributions
in human are all well fit by power-law distributions but instead of exponents that systematically increase
with n, as we observed for the bacteria, for human the exponent is slightly larger than 3 and independent
of n.

Returning to the bacterial species, supplementary Figure S10 shows the entropy profiles Hn(s) for all
strains s in each of the species. As we observed in E. coli, essentially every strain s exhibits a unique
entropy profile Hn(s), showing that also in these other species each strain has a unique ‘fingerprint’ of
frequencies with which its lineage shares ancestors with those of other lineages. Although the entropy rises
quickly to values in the range 4− 8 for most strains, we also see strains for which the entropy only rises
after n exceeds some fairly large value of n, e.g. at n = 10 for some strains in H. pylori, and at n = 24
and n = 62 for some S. enterica strains, suggesting that these strains are part of groups of closely-related
strains. Note also that these events appear to correspond to the sudden drops in the exponents of the
n-SNP distributions of those strains (Fig. 9, left panel), reiterating that these n-SNP statistics encode
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extensive information about the population structure of each species. To summarize the entropy profiles of
each species, the right panel of Fig. 9 shows the mean and standard-error of the entropy profiles, averaged
over all strains, as a function of n. As for most other statistics, M. tuberculosis is an outlier whose strains
generally only show low phylogenetic entropy. For all other species, the average entropy clearly increases
as n increase, indicating again that the phylogenetic diversity increases further back in the past. For 4 of
the 6 species, the mean entropy at large n falls in a narrow range between 5 and 6, suggesting that the
effective number of ancestries far back in the past is relatively similar for these species.

Discussion

In this work we have introduced new methods to analyze prokaryotic genome evolution from multiple
alignments of the core genomes of strains from a species. In particular, showing that almost all bi-allelic
SNPs in the core genome alignment correspond to single mutations in the history of that position in
the alignment, we showed several new ways in which these SNPs can be used to quantify phylogenetic
structures and the role of recombination in genome evolution within prokaryotic species.

Our analysis shows that, for the species studied here, evolution of the core genome is almost entirely
driven by recombination. That is, even for very closely related pairs of strains, the large majority of
mutations that separate them derive from recombination events. Moreover, for the large majority of pairs
of strains, none of the DNA in their pairwise alignment derives from their common ancestor, and each
position in the core alignment has been overwritten many times by recombination. Given this, it seems
highly unlikely that the ancestral phylogeny of the strains can be reconstructed from the core genome
alignment.

Although we cannot completely exclude that sufficient information about the ancestral phylogeny
is still encoded in some way into the core alignment, it is clear that currently no method exists that is
capable of extracting this information, and we suspect that it is in fact impossible, i.e. that recombination
has destroyed the necessary information. However, even if it were possible to reconstruct the ancestral
phylogeny, it is not clear how useful this clonal phylogeny would be for understanding core genome
evolution. Our analysis of SNP compatibility along the core alignment shows that the phylogeny changes
every few dozen basepairs (and every handful of SNPs), so that the core alignment fragments into many
thousands of short segments with different phylogenies. Thus, modeling sequence evolution in the core
genome as occurring along the branches of a fixed phylogenetic tree is clearly inappropriate.

One might infer from these statistics that bacterial species are quasi-sexual and recombining freely,
but this is inconsistent with the observation that strains do not appear roughly equidistant and that
phylogenies build from large numbers of genomic loci clearly converge to a well-defined average phylogeny.
To understand how this phylogenetic structure emerges in the face of rampant recombination we developed
several methods for using bi-allelic SNPs for quantifying population structure from the core genome
alignment. In particular, although recombination is evident across the ancestral lineages of almost all
strains, we find that some lineages recombine much more frequently than others, and that the relative
rates with which different groups of strains share a recent common ancestor vary over 3 − 5 orders of
magnitude and follows roughly power-law distributions. Thus, the phylogeny build from the core genome
alignment does not reflect the clonal history of the strains, but rather reflects the rates with which different
lineages have recombined in the past. Notably, since the n-SNP distributions follow smooth long-tailed
distributions that do not appear to have a characteristic scale, it is not possible to naturally subdivide
a species into subspecies of freely recombining groups of strains. Rather, there is a large continuum of
relative rates. As an aside, given that recombination rates vary over orders of magnitude across different
lineages, the idea of an effective recombination rate for a species seems inherently misleading, and models
that fit the data to a model that assumes a constant rate of recombination within a species, e.g. [26], seem
inappropriate.

Essentially all population genetics and coalescent models start from assuming one or more populations
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of individuals that, for the purpose of the model, are exchangeable. However, using the entropy profiles
of the n-SNP distributions of each strain, we observed that every strain has unique relative rates with
which its lineage shares common ancestors with the lineages of other strains. That is, each strain has
unique recombination statistics. These observations thus suggest that models that assume individuals are
exchangeable are inappropriate by definition.

Given that models that assume either a single consensus tree, a fixed rate of recombination across
strains, or even just exchangeable individuals, are all clearly at odds with the data on prokaryotic genome
evolution, this raises the question of what would be an appropriate mathematical ‘null model’ that can
capture the statistics that we observed here. In such a model, each lineage must have different rates of
recombination with all other lineages, these rates must vary over multiple orders of magnitude, and the
model should reproduce the roughly power-law distributions of n-SNP frequencies, ideally with exponents
that can be tuned by parameters in the model. It is currently unclear how to construct such a model.

Given that recombination rates between different lineages appear to vary over several orders of
magnitude, it also raises the question as to what sets these relative recombination rates. For example, it is
not even clear whether these rates are shaped by natural selection, e.g. that due to epistatic interactions
only recombinant segments from other strains with similar ‘ecotypes’ are not removed by purifying
selection, or that recombination rates may rather be set by parameters such as the frequency with which
lineages co-occur at the same geographical location. It is also conceivable that phages are a major source
of transfer of DNA between strains, so that recombination rates may reflect the rates at which different
lineages are infected by the same types of phages. It is also noteworthy that homologous recombination
requires sufficient homology between the endpoints of the DNA fragment and the homologous segment
in the host genome. Thus, recombination rates will intrinsically decrease with the nucleotide divergence
between strains and previous studies have estimated that the rate of successful recombination decreases
exponentially with nucleotide divergence [27,28]. In this regard it is interesting that the critical divergence
at which half of the genome is recombined varies over a relatively small range, i.e. from 0.003 − 0.01
(Fig. 8A). It is thus conceivable that a species is essentially defined by the collection of strains that
are sufficiently close to allow efficient recombination [29]. However, the statistics reported here seem to
suggest a much larger range of recombination rates than such a simple DNA-homology based model would
predict.

While we here studied the frequency distribution of n-SNP types as well as the entropies Hn(s) of the
n-SNP distributions for each strain, it appears to us that this is just the tip of the iceberg of possible ways
in which n-SNPs can be used to study the evolution of a set of strains from their core genome alignment.
Our analyses indicate that prokaryotic genome evolution is driven by recombination that occurs at a
very wide distribution of different rates between different lineages, and there is now a strong need for
the development of new mathematical tools and models that can accurately describe this kind of genome
evolution.

Methods

Data

The E. coli sequences analysed here can be accessed on NCBI Bioproject via the accession number
PRJNA432505 [7,13]. In Table S2 strains names and details for the reference strains used for Figure S1
can be found.

Genome sequences for all other species were downloaded from ftp.ncbi.nlm.nih.gov/genomes/

refseq/bacteria/. All strain names and download dates are listed in Table S3.
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Core genome alignment and core tree

To build a core genome alignment for the SC1 strains we used the Realphy tool [14] with default parameters
and Bowtie 2 [30] for the alignments. Realphy used PhyML [15] with parameters -m GTR -b 0 to infer
trees from the whole and parts of the core alignment. The tree visualizations were made using the Figtree
software [31].

Analysis of core alignment blocks

For each 3 Kb block of the core alignment we used PhyML using the option -c 1 to infer a phylogeny
while restricting the number of relative substitution rate categories to one. Furthermore, to calculate the
log-likelihood of a given 3Kb block under the tree topologies of other blocks, we reran PhyML using the
-o ’lr’ option, which only optimizes the branch lengths as well as the substitution rate parameters but
doesn’t alter the topology of the phylogeny.

Pairwise analysis and mixture modeling

For each pair of strains we slide a 1Kb window over the core genome alignment of the pair, shifting by
100 bp at a time, and build a histogram of the number of SNPs per kilobase by counting the number of
SNPs in each window. That is, we obtain the distribution Pn of the fraction of 1 Kb windows that have n
SNPs. We then assumed that the one kilobase blocks can be separated into a fraction fa of ‘ancestral
blocks’, i.e. regions that were inherited from the clonal ancestor of the pair, and a fraction (1− fa) that
have been recombined since the pair diverged from a common ancestor. Although in previous work a
simple ad hoc scheme was used in which it was assumed that blocks with less than a particular number of
SNPs are ancestral and blocks with more SNPs are recombined [11], we found that this approach is not
satisfactory and results significantly depend on the cut-off chosen.

We thus decided to employ a more principled mixture model approach. For the ancestral regions,
the number of SNPs per kilobase should follow a simple Poisson distribution Pn = µne−µ/n!, with µ
the expected number of mutations per block. For the recombined regions, we note that these regions
themselves will consist of mosaics of subregions that have been recombined. Consequently, the recombined
regions will consist of a mixture of Poisson distributions with different rates. It is well-known that
mixtures of Poisson distributions with rates that are (close to) Gamma-distributed follow a negative
binomial distribution and we found empirically that negative binomial distributions give excellent fits
to the observed SNP distributions in our data. For the recombined regions we thus assume a negative
binomial distribution of the form

Pn =
Γ(n+ α)

Γ(α)n!
λn(1− λ)α, (2)

where 0 ≤ λ ≤ 1 and α ≥ 1 are parameters of the distribution. We thus fit the observed distribution of
SNPs per block Pn using the following mixture:

Pn = fa
µn

n!
e−µ + (1− fa)

Γ(n+ α)

Γ(α)n!
λn(1− λ)α, (3)

where fa is the fraction of the genome that is ancestral. Fits were obtained using maximum likelihood.
While expectation maximization was used to fit the parameters fa, µ, and λ, a grid search was employed
to find the optimal dispersion parameter α.

Note that, in terms of the fitted parameters, the total number of mutations in ancestral blocks is µfa,
and the number of mutations in recombined blocks is (1− fa)αλ/(1− λ).

To estimate the lengths of recombination events, we first extracted pairs that are sufficiently close
(divergence less than 0.002) such that multiple overlapping recombination events are unlikely. We then
used a two-state HMM with the same two components, i.e. a Poisson and a negative binomial component
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corresponding to ancenstral and recombined segments, and having fixed rates of transitioning from
ancestral to recombined and vice versa, to parse the pairwise alignment into ancestral and recombined
segments. We took the distribution of recombined segments in these alignments as the distribution of
recombination events.

We define mostly clonal pairs as pairs with more than 90% of the alignment classified as ancestral,
fully recombined pairs as pairs with less than 10% of the alignment classified as ancestral, and all other
pairs as transition pairs. In order to estimate the critical divergence at which half of the genome is
recombined we fit a linear model to the observed relationship between divergence and clonal fraction in
all transition pairs, and define the critical divergence as the divergence at which the linear fit has a clonal
fraction of 50%. To calculate the fraction of mutations that derive from recombined segments at the
critical divergence we compute the fraction of mutations in recombined segments for all transition pairs
(using the results from the mixture model) and fit a linear model to the observed dependence between the
ancestral fraction an the fraction of mutations in recombined segments. We then define the fraction of
mutations in recombined regions at the critical divergence as the fraction of mutations in the linear fit
when the ancestral fraction is 50%.

Estimating the fraction of SNPs that correspond to single mutational events

The relatively low frequency of SNPs and the fact that almost all SNPs are bi-allelic strongly suggests
that almost all bi-allelic SNPs correspond to single mutational events. Here we use a simple model to
estimate the fraction of bi-allelic SNPs that correspond to single mutational events. To do this we will
analyze the observed frequencies of columns with 1, 2, 3, and 4 different nucleotides under a simple model.
To assess the effects of selection, we will consider these frequencies both for the subset of positions that
should be under relatively little selection, i.e. third positions in fourfold degenerate codons, and positions
that should be under relatively strong selection, i.e. second positions in codons. We will also do this
separately for all strains, and all strains minus the 9 strains of the outgroup.

For a given position in the alignment, let µ denote the product of the mutation rate times the total
length of the branches in the phylogeny at that position. The variable µ thus corresponds to the expected
number of mutations at this position. The probability that n mutations took place at this position is
given by a Poisson distribution:

Pn =
µn

n!
e−µ. (4)

We will assume that, every time a mutation occurs, each of the 3 possible target nucleotides is equally
likely. Let d denote the number of different nucleotides in the column and let T (d′|d) be the matrix of
probabilities, that under a single mutation, the number of different nucleotides transitions from d to d′.
We have T (2|1) = 1, T (2|2) = 1/3, T (3|2) = 2/3, T (3|3) = 2/3, T (4|3) = 1/3, T (4|4) = 1, and all other
transition probabilities are zero. Starting from a single nucleotide in the column, the probability P (d|n) to
end up with d different nucleotides after n mutations is given by the n-th power of the transition matrix
T , i.e. P (d|n) = Tn(d|1). From this we can work out the probability P (d|µ) to end up with d different
nucleotides as a function of the expected number of mutations µ as

P (d|µ) =
∞∑
n=0

Tn(d|1)
µn

n!
e−µ. (5)

The infinite sums can all be evaluated analytically and we find

P (1|µ) = e−µ, (6)

P (2|µ) = 3e−µ
(
eµ/3 − 1

)
, (7)
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P (3|µ) = 3e−µ
(
eµ/3 − 1

)2
, (8)

and

P (4|µ) = e−µ
(
eµ/3 − 1

)3
. (9)

Assume we observe cd columns with d different nucleotides, with d running from 1 to 4. The
log-likelihood of this count data given µ is

L(µ) =
4∑
d=1

cd log [P (d|µ)] . (10)

Maximizing the log-likelihood with respect to µ we find that the optimal value of µ given these counts as

µ∗ = 3 log

[
3(c1 + c2 + c3 + c4)

3c1 + 2c2 + c3

]
. (11)

Finally, given µ∗, the fraction fsm of bi-allelic SNPs that correspond to single mutations is given by

fsm =
µ∗

3
(
eµ∗/3 − 1

) . (12)

Table 1 shows the estimated expected number of mutations per column µ∗ and the estimated fraction
of bi-allelic SNPs that correspond to single mutations fsm for the 5 different subsets of columns. We see
that, for all 5 subsets, the fraction fsm is over 95% and close to 100% for the second positions in codons.

Column set µ∗ fsm
All columns 0.118 0.9804
Synonymous positions 0.287 0.953
Second positions in codons 0.0258 0.9957
Synom. pos. without outgroup 0.149 0.975
Sec. pos. without outgroup 0.0172 0.9971

Table 1. Estimated expected number of mutations per position µ∗ and estimated fraction of bi-allelic
SNPs that correspond to single mutation events fsm for 5 different subsets of core alignment columns: all
columns, all synonymous positions (third positions in fourfold degenerate codons), second positions in
codons, synonymous positions excluding the outgroup, second positions in codons excluding the outgroup.

In addition, Supplementary Fig. S11 shows a comparison of the observed and predicted frequencies
of columns with 1, 2, 3, and 4 letters. Since effects of selection are likely least for the synonymous
positions, we expect the simple model to fit the data best and we indeed observe that, for the synonymous
positions, the simple model can reasonably accurately fit the observed frequencies, and even for the set of
all alignment columns the fits are quite accurate (Suppl. Fig. S11). In contrast, for the second positions
in codons, we can see the effects of selection in that, from the larger fractions of columns without SNPs,
the model infers a lower µ∗, and this leads to an underestimation of columns with 4 nucleotides. Thus,
the true fraction fsm is more likely close to the values inferred from the synonymous positions. Note that
fsm = 0.953 when including the outgroup and fsm = 0.975 when the outgroup is excluded. The difference
between these two estimates derives from the very high fraction of SNP columns in which the 9 strains
of the outgroup have another nucleotide than all other strains. For this subset of SNPs the fraction of
columns that have more than one mutation is much higher than for any other SNP column. Thus, for all
other SNP columns, the estimate that 97.5% correspond to single mutations is likely the most accurate.
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Constructing a tree that maximizes the number of compatible SNPs

We classify all SNPs in the core genome alignment into SNP types as follows. For each bi-allelic SNP,
we map all letters with the majority nucleotide to a 0 and the minority nucleotide to a 1 and sort the
bits according to the alphabetic order of the strain names. In this way, each SNP is mapped to a binary
sequence of length 92. This binary sequence defines the SNP type. Note that a SNP type corresponds to
a particular bi-partitition of the strains.

We next counted the number of occurrences nt of each SNP type t and sorted the SNP types from
most to least common. We then used the following greedy algorithm to a collect a subset T of mutually
compatible SNP types that accounts for as many SNPs as possible. We seed T with the most common
SNP type, i.e. the SNP type occurring at the top of the list. We then go down the list of SNP types,
iteratively adding SNP types t to the set T that are compatible with all previous types in the set T .

Bottom up tree building

In this procedure we build phylogenies of subclades in a bottom-up manner, starting from the full set of
92 strains and iteratively fusing pairs, minimizing the number of incompatible SNPs at each step.

For any subset of strains S, we define the number of supporting SNPs nS as the number of SNPs that
fall on the branch between the subset S and the other strains, i.e. the number of SNPs in which all strains
in S have one letter, and all other strains another letter. Similarly, we define the number of clashing SNPs
cS as the number of SNPs that are incompatible with the strains in S forming a subclade in the tree.

The iterative merging procedure is initiated with each of the 92 strains forming a subclade S. At
each step of the iteration we calculate, for each pair of existing subclades S1, S2, the number of clashing
SNPs cS and supporting SNPs nS for the set of strains S = S1 ∪ S2 consisting of the union of the strains
in S1 and S2. We then merge the pair (S1, S2) that minimizes the clashes cS and, when their are ties,
maximizes the number of supporting SNPs nS . At each step of the calculation we keep track of the total
number of SNPs on the branches of the subtrees build so far, as well as the total number of SNPs that are
inconsistent with the subtrees build so far. In addition, we calculate the average pairwise divergences of
the strains within the subclades. Supplementary Fig. S3 shows the ratio of clashing to supporting SNPs
as a function of the divergence within the subclades.

Quartet analysis

Quartets were assembled in the following way. We construct a grid of target distances d starting at 0.00001
and having 50 points with 0.0005 sized distance. For every target distance d we scan the alignment for
four strains which have all pairwise distances within 1.25 fold of distance d. Every target distance d for
which no quartet can be found fulfilling these criteria is ignored.

For each quartet we extract all SNP columns where two strains have a specific nucleotide and the
other two strains have another nucleotide. Every such SNP column unambiguously supports one out of
three possible tree topologies for this quartet. For each quartet we determine which topology has the
largest number of supporting SNPs, and what the fraction of SNPs is that support this topology.

Linkage Disequilibrium measure

A standard measure of linkage disequilibrium of SNPs at a given distance is given by the average squared-
correlation of the genotypes at these positions [32]. For a pair of loci with bi-allelic SNPs there are 4
possible genotypes which we indicate as binary patterns 00, 01, 10, and 11. If the frequencies of these
genotypes are f00, f01, f10, and f11, then the squared correlation is calculated as

r2 =
(f00f11 − f01f10)2

f1.f0.f.0f.1
, (13)
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where the variables with dots correspond to marginal probabilities, e.g. f1. = f10 + f11, f.1 = f01 + f11,
and so on.

Minimum number of phylogeny switches

We iterate over all SNP columns in order of the core genome and add the current SNP to a list if it is
pairwise compatible with all SNPs currently in the list. If it is incompatible with at least one SNP in this
list we empty the list, re-initialize the list with the current SNP, and increase the phylogeny counter by
one.

Power-law fits of n-SNP distributions

We extract each n-SNP from the core genome alignment and count the frequency, i.e. the number of
occurrences, ft of each n-SNP type t as well as the total number T of n-SNP types that occur at least
once. We assume the n-SNP type occurrences are drawn from a power-law of the form

P (f) =
1

ζ(α)
f−α, (14)

where ζ(α) is the Riemann zeta function defined by

∞∑
f=1

f−α = ζ(α). (15)

The log-likelihood of the frequencies ft as a function of α is given by

L(α) = −T log[ζ(α)]−
∑
t

α log[ft] = −T (log[ζ(α)] + α〈log[f ]〉) , (16)

where 〈log[f ]〉 is the average of the logarithm of the SNP-type frequencies. Using a uniform prior on α,
the posterior distribution of α is simply proportional to the likelihood function. The optimal exponent α∗
is the solution of

ζ ′(α∗)

ζ(α∗)
= −〈log[f ]〉. (17)

To calculate error-bars on the fitted exponentials we approximate the posterior by a Gaussian by
expanding the log-likelihood to second order around the optimal exponent α∗. We then find for the
standard-devation of the posterior distribution:

σ(α) =
1√

T
(
ζ′′(α∗)
ζ(α∗)

− ζ′(α∗)2

ζ(α∗)2

) . (18)

Entropy profiles of n-SNP distributions

For a given strain X we first extract all SNP types t for which X is one of the strains that shares the
minority nucleotide. We then further stratify these SNP types by the number of SNPs sharing the minority
nucleotide. For each n we thus obtain a set S(X,n) of n-SNPs in which strain X is one of the strains
sharing the SNP. We denote the number of occurrences of a SNP of type t by ft and the total number of
n-SNPs within set S(X,n) as F (X,n), i.e.

F (X,n) =
∑

t∈S(X,n)

ft (19)
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The entropy H(X,n) of the n-SNP distribution of strain X is then defined as

H(X,n) = −
∑

t∈S(X,n)

ft
F (X,n)

log2

[
ft

F (X,n)

]
. (20)
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Supplementary Figures

Species Strains Genome size Core size Informative SNPs
Escherichia coli 92 4929299 2756541 (56%) 247822
Bacillus subtilis 75 4155843 2341553 (56%) 182535
Helicobacter pylori 83 1655288 850827 (51%) 114993
Mycobacterium tuberculosis 40 4465985 4150139 (93%) 3502
Salmonella enterica 155 4810980 2846634 (59%) 192117
Staphylococcus aureus 95 2881899 2002833 (69%) 73756

Table S1. Summary statistics of the core genome alignments of the different bacterial species. For each
species, the number of strains, the median genome size, the size of the core genome alignment, and the
number of informative SNPs in the core alignment are listed.
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Figure S1. Maximum likelihood tree reconstructed from the core genome alignments of the SC1 strains
(red font names), the K-12 lab strain (green font name), and 189 E. coli reference strains (black font
names). The Known phylogroups are indicated as different colored leaf nodes. Note that the SC1 strains
represent and are distributed across essentially all known phylogroups, and include some strains that
cannot be easily assigned to a particular phylogroup. Also note the ‘outgroup’ of 9 SC1 strains shown as
black leaf nodes, which have approximately 8% nucleotide divergence with the other strains (this branch
is artificially shortened to fit into the figure), whereas all other strains are less than 3% diverged from
each other.
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Figure S2. All 3kb alignment blocks reject the core tree topology as well as the topologies of the
phylogenies reconstructed from all other blocks. Left panel: For each 3Kb block in the core alignment
we used PhyML to reconstruct a phylogeny and then calculated the difference in the log-likelihood of the
alignment block under the topology of the core tree and the log-likelihood of the reconstructed phylogeny.
The figure shows the reverse cumulative distribution of these log-likelihood differences, with the vertical
axis shown on a logarithmic scale. There are virtually no blocks for which the log-likelihood of the core
tree topology is close to the log-likelihood under the block’s own phylogeny. Right panel: As in the left
panel, but now we calculated, for each 3kb block, the log-likelihood differences for the topologies of the
phylogenies reconstructed from all other blocks. Each block attains a significantly higher log-likelihood
when using its own topology than using the topology of any other alignment block.
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Figure S3. Bottom-up tree building, minimizing SNP clashes. Left panel: Illustration of the iterative
bottom-up tree reconstruction. At each step the pair of clades is fused that minimizes the number of
SNPs that clash with the fusion (red arrows). In case of multiple pairs that have the same number of
clashing SNPs, the pair with the largest number of supporting SNPs (green arrows) is chosen. Right
panel: Fraction of SNPs that support vs. clash with the partially reconstructed tree as a function of the
average pairwise divergence of strains that occur within the same clade of the partially reconstructed tree.
The blue curve corresponds to the full set of SC strains and the red curve to all SC strains except for the
outgroup. The horizontal axis is shown on a logarithmic scale.
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Figure S4. Quartets of roughly equidistant strains have no consensus phylogeny. Left: Using the
distribution of pairwise distances (top panel) we select, for each pairwise distance D, quartets of strains
whose pairwise distances are all within a factor 1.25 of D. SNPs for which two strains have one letter and
two strains another are informative for the topology and each support one of the three possible topologies.
Right: For each quartet we determined the topology that is supported by most SNPs and then
calculated the fraction of topology-informative SNPs that supported the most common topology. The
plot shows the fraction of SNPs supporting the most common topology (vertical axis) as a function of the
total number of informative SNPs (horizontal axis). The horizontal line marks the minimal possible
fraction, which is attained when all 3 topologies are supported by 1/3 of the SNPs. Note that, for the
majority of quartets, the most common topology is supported by less than half of the informative SNPs.
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Figure S5. Differences between the core tree T and the tree T ′ reconstructed from the alignment from
which all SNPs that fall on branches of the core tree have been removed. Each branch of the core tree T
is colored green when the branch also occurs in T ′ and pink if it does not. The Robinson-Foulds distance
between two trees is defined as the number of branches (i.e. bipartitions) that occur in only one of the
two trees. For T and T ′ the Robinson-Foulds distance is 62 out of a maximal 178, i.e. a fraction 0.35 does
not match. Note also that for tree T ′ only 3% of the SNPs fall on its branches.
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Figure S6. Overall frequency and diversity of n-SNPs. A: Total number of occurrences of n-SNPs, i.e.
SNPs shared by n strains (vertical axis) as a function of n (horizontal axis). The vertical axis is shown on
a logarithmic scale. Note the outlier at n = 9, which corresponds to the very large number of SNPs shared
by the 9 strains of the outgroup. Note also that for n ≥ 10 the number of n-SNPs is approximately
constant around 2000. B: Number of unique n-SNP types as a function of n. The number of n-SNP types
increases quickly with n and then saturates around a value of approximately 800− 1000 for n ≥ 10.
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Figure S7. Entropy profiles of the n-SNP distributions across E. coli strains. A: Examples of the
n-SNP entropy profiles for 5 different strains s (indicated in the legend). The entropy Hs(n) of the
distribution of n-SNPs in which a particular strain occurs is shown as a function of the number of strains
n. B: Box-whisker plots showing the 5, 25, 50 (median), 75 and 95 percentiles of the distribution of the
entropies of the n-SNP distributions as a function of the number of strains n. The blue line shows an
entropy of 7.5 bits.
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Figure S8. Power-law fits of the n-SNP distributions for all 6 species. Each panel shows the reverse
cumulative distributions of the frequencies of all observed 2-SNPs (blue dots), 3-SNPs (orange dots),
4-SNPs (green dots), and 12-SNPs (red dots), with the solid lines in corresponding colors showing
power-law fits. The species is indicated at the top of the panel.
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Figure S9. Human n-SNPs frequencies are also power-law distributed. Left panel: Reverse cumulative
distributions of the frequencies of all observed 2-SNPs (blue dots), 3-SNPs (orange dots), 4-SNPs (green
dots), and 12-SNPs (red dots), with the solid lines in corresponding colors showing power-law fits, for the
human data. Both axes are shown on a logarithmic scale. Right panel: Fitted exponents for the
power-law n-SNP distributions on the human data for n ranging from 1 to 30. The error bars correspond
to 95% posterior probability intervals.
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Figure S10. Entropy profiles of all the strains of each of the 6 species. Each panel corresponds to one
species (indicated at the top) and shows the entropy profiles Hs(n) of the distribution of n-SNPs in which
a particular strain occurs is shown as a function of the number of strains n for each strain s (different
colors).
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Figure S11. Comparison of the observed frequencies of columns with 1, 2, 3, and 4 different nucleotides
under the simple model described in the methods. Different colored dots correspond to different subsets
of columns, as indicated in the legend. For each color, 4 dots are shown corresponding to the observed
frequencies of columns with 1, 2, 3, and 4 nucleotides (horizontal axis) and the predicted frequencies
according to the simple model (vertical axis). The dashed line shows the identity y = x. Both axes are
shown on logarithmic scales.
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RefSeq ID Short Name Provenance
NC 000913.3 K-12 MG1655 (NC 000913.3) Laboratory
NC 004431.1 CFT073 Natural
NC 002695.1 O157:H7 Sakai Natural
NC 012892.2 BL21 DE3 (NC 012892.2) Engineered
NC 007779.1 K-12 W3110 Laboratory
NC 011415.1 SE11 Natural
NC 013654.1 SE15 Natural
NC 013353.1 O103:H2 12009 Natural
NC 013364.1 O111:H- 11128 Natural
NC 007946.1 UTI89 Natural
NC 008253.1 536 Natural
NC 008563.1 APEC O1 Natural
NC 009801.1 E24377A Natural
NC 009800.1 HS Natural
NC 012967.1 B REL606 Engineered
NC 010468.1 ATCC 8739 Laboratory
NC 010473.1 K-12 DH10B Engineered
NC 010498.1 SMS-3-5 Natural
NC 011353.1 O157:H7 EC4115 Natural
NC 013008.1 O157:H7 TW14359 Natural
NC 012759.1 BW2952 Engineered
NC 012971.2 BL21 DE3 (NC 012971.2) Engineered
NC 017625.1 DH1 Engineered
NC 012947.1 BL21 Gold DE3 pLysS AG Engineered
NC 013941.1 O55:H7 CB9615 Natural
NC 017628.1 IHE3034 Natural
NC 011748.1 55989 Natural
NC 011741.1 IAI1 Natural
NC 011750.1 IAI39 Natural
NC 011601.1 O127:H6 E2348/69 Natural
NC 017626.1 O42 Natural
NC 013361.1 O26:H11 11368 Natural
NC 016902.1 KO11 Engineered
NC 017631.1 ABU 83972 Natural
NC 017632.1 UM146 Natural
NC 017634.1 O83:H1 NRG 857C Natural
NC 017635.1 W (NC 017635.1) Laboratory
NC 017633.1 ETEC H10407 Natural
NC 017641.1 UMNK88 Natural
NC 017644.1 NA114 Natural
NZ CP006632.1 PCN033 Natural
NC 017646.1 O7:K1 CE10 Natural
NC 017651.1 clone D i2 Natural
NC 017652.1 clone D i14 Natural
NC 017656.1 O55:H7 RM12579 Natural
NC 017663.1 P12b Natural
NC 017660.1 KO11FL Engineered
NC 017664.1 W (NC 017664.1) Laboratory
NC 017906.1 Xuzhou21 Natural
NC 017638.1 DH1 ME8569 Engineered
NC 011993.1 LF82 Natural
NZ HG941718.1 ST131 EC958 Natural
NC 018650.1 O104:H4 2009EL-2050 Natural
NC 018658.1 O104:H4 2011C-3493 Natural
NC 018661.1 O104:H4 2009EL-2071 Natural
NC 020163.1 APEC O78 Natural
NC 020518.1 K12 MDS42 Engineered
NC 022364.1 LY180 Engineered
NC 022648.1 JJ1886 Natural
NZ HG738867.1 K-12 MC4100 Engineered
NZ CP006027.1 O145:H28 RM13514 Natural
NZ CP006262.1 O145:H28 RM13516 Natural
NZ CP007265.1 ST540 (NZ CP007265.1) Natural
NZ CP007390.1 ST540 (NZ CP007390.1) Natural
NZ CP007391.1 ST540 (NZ CP007391.1) Natural
NZ CP007392.1 ST2747 (NZ CP007392.1) Natural
NZ CP007393.1 ST2747 (NZ CP007393.1) Natural
NZ CP007394.1 ST2747 (NZ CP007394.1) Natural
NZ CP007133.1 O145:H28 RM12761 Natural
NZ CP007136.1 O145:H28 RM12581 Natural
NZ CP007799.1 Nissle 1917 Natural
NZ CP008801.1 KLY Engineered

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601914doi: bioRxiv preprint 

https://doi.org/10.1101/601914
http://creativecommons.org/licenses/by-nc-nd/4.0/


36

NZ CP008805.1 O157:H7 SS17 Natural
NZ CP008957.1 O157:H7 EDL933 Natural
NZ CP009072.1 ATCC 25922 Natural
NZ CP009273.1 K-12 BW25113 Laboratory
NZ CP009859.1 ECONIH1 Natural
NZ CP009644.1 ER2796 Laboratory
NZ CP009789.1 K-12 ER3413 Engineered
NZ CP007149.1 RS218 Natural
NZ CP009104.1 RM9387 Natural
NZ CP009106.2 94-3024 Natural
NZ CP009685.1 K-12 MG1655 (NZ CP009685.) Laboratory
NZ CP010304.1 O157:H7 SS52 Natural
NZ CP005930.1 APEC IMT5155 Natural
NZ CP010371.1 6409 Natural
NZ CP010315.1 789 Natural
NZ CP007592.1 O157:H16 Santai Natural
NZ CP009166.1 1303 Natural
NZ CP010585.1 C41 DE3 Engineered
NZ CP010344.1 ECC-1470 Natural
NZ CP010816.1 BL21 TaKaRa Engineered
NZ CP010876.1 MNCRE44 Natural
NZ LM995446.1 EcRV308 Engineered
NZ LM993812.1 EcHMS174 Engineered
NZ HF572917.1 HUSEC2011 Natural
NZ CP011134.1 VR50 Natural
NZ CP011018.1 CI5 Natural
NZ CP010438.1 K-12 ER3454 Engineered
NZ CP010439.1 K-12 ER3440 Engineered
NZ CP010440.1 K-12 ER3476 Engineered
NZ CP010441.1 K-12 ER3445 Engineered
NZ CP010442.1 K-12 ER346 Engineered
NZ CP010443.1 K-12 ER3446 Engineered
NZ CP010444.1 K-12 ER3475 Engineered
NZ CP010445.1 K-12 ER343 Engineered
NZ LN832404.1 K-12 EcoliK12AG100 Engineered
NZ CP011331.1 O104:H4 C227-11 Natural
NZ CP007594.1 SEC470 Natural
NZ CP011320.1 SQ37 Engineered
NZ CP011321.1 SQ88 Engineered
NZ CP011324.1 SQ2203 Engineered
NZ CP011416.1 CFSAN029787 Natural
NZ CP011342.2 K-12 GM4792 Lac+ Laboratory
NZ CP011343.2 K-12 GM4792 Lac- Laboratory
NZ CP006636.1 PCN061 Natural
NZ CP011938.1 C43 DE3 Engineered
NZ CP011495.1 NCM3722 Engineered
NZ CP007442.1 ACN001 Natural
NZ CP012125.1 DH1Ec095 Engineered
NZ CP012126.1 DH1Ec104 Engineered
NZ CP012127.1 DH1Ec169 Engineered
NZ CP011113.1 RR1 Engineered
NZ CP012635.1 SF-088 Natural
NZ CP012625.1 SF-468 Natural
NZ CP012633.1 SF-166 Natural
NZ CP012631.1 SF-173 Natural
NZ CP012802.1 O157:H7 WS4202 Natural
NZ CP012868.1 K-12 MG1655 (NZ CP012868.1) Laboratory
NZ CP012869.1 K-12 MG1655 TMP32XR1 Laboratory
NZ CP012870.1 K-12 MG1655 TMP32XR2 Laboratory
NZ CP013029.1 2012C-4227 Natural
NZ CP013025.1 2009C-3133 Natural
NZ CP013112.1 YD786 Natural
NZ CP013253.1 CQSW20 Natural
NZ CP013658.1 uk P46212 Natural
NZ CP008697.1 ST648 Natural
NZ CP013831.1 CD306 Natural
NZ CP013835.1 JJ2434 Natural
NZ CP007491.1 ACN002 Natural
NZ CP014197.1 MRE600 Laboratory
NZ CP014225.1 K-12 MG1655 (NZ CP014225.1) Laboratory
NZ CP014314.1 O157:H7 JEONG-1266 Natural
NZ CP014268.2 B C2566 Engineered
NZ CP014269.1 B C3029 Engineered
NZ CP014270.1 K-12 DHB4 Engineered
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NZ CP014272.1 K-12 C3026 Engineered
NZ CP014348.1 K-12 MG1655 JW5437-1 Engineered
NZ CP014495.1 SaT040 Natural
NZ CP014488.1 G749 Natural
NZ CP014492.1 MVAST0167 Natural
NZ CP014497.1 ZH193 Natural
NZ CP014522.1 ZH063 Natural
NZ CP014316.1 JJ1887 Natural
NZ CP011061.1 Sanji Natural
NZ CP015020.1 28RC1 Natural
NZ CP015023.1 SRCC 1675 Natural
NZ CP015138.1 Ecol 732 Natural
NZ CP015069.1 Ecol 743 Natural
NZ CP015074.2 Ecol 745 Natural
NZ CP015076.1 Ecol 448 Natural
NZ CP015240.1 2011C-3911 Natural
NZ CP015241.1 2013C-4465 Natural
NZ CP015832.1 O157 180-PT54 Natural
NZ CP015831.1 O157 644-PT8 Natural
NZ CP015846.1 O157:H7 FRIK2069 Natural
NZ CP015842.1 O157:H7 FRIK2533 Natural
NZ CP015843.1 O157:H7 FRIK2455 Natural
NZ CP015995.1 S51 Natural
NZ CP016007.1 NGF1 Engineered
NZ CP016018.1 ER1821R Engineered
NZ CP015159.1 Eco889 Natural
NZ CP014667.1 ECONIH2 Natural
NZ CP015229.1 06-00048 Natural
NZ CP015228.1 09-00049 Natural
NZ CP013662.1 08-00022 Natural
NZ CP013031.1 H1827/12 Natural
NZ CP013663.1 GB089 Natural
NZ CP015912.1 210205630 Natural
NZ CP016182.1 EC590 Natural
NZ CP016358.1 K-15KW01 Natural
NZ CP016497.1 UPEC 26-1 Natural
NZ CP016546.1 O177:H21 Natural
NZ CP016625.1 O157:H7 FRIK944 Natural
NZ CP014670.1 CFSAN004177 Natural
NZ CP014583.1 CFSAN004176 Natural
NZ CP015834.1 MS6198 Natural
NZ CP017100.1 K-12 NEB 5-alpha Engineered
NZ LT601384.1 NCTC86EC Laboratory

Table S2. The details of the reference strains used in this work. RefSeq IDs and short names are from
the NCBI nucleotide database. Provenance refers to where the strain came from: a natural strain was
sequenced directly after isolation, whereas a laboratory strain has passed many generations in artificial
conditions, and engineered strains have had specific changes deliberately introduced to their genomes.
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Strain name Dowload date
Bacillus subtilis Feb 16, 2016
GCF 001043765.1 ASM104376v1 genomic
GCF 000931835.1 G4C10 genomic
GCF 000699465.1 ASM69946v1 genomic
GCF 000740475.1 ASM74047v1 genomic
GCF 000155325.1 ASM15532v1 genomic
GCF 000338735.1 ASM33873v1 genomic
GCF 000293765.1 ASM29376v1 genomic
GCF 000340295.1 ASM34029v1 genomic
GCF 000782835.1 ASM78283v1 genomic
GCF 000699525.1 ASM69952v1 genomic
GCF 000724125.1 BSUBE1 genomic
GCF 000830695.1 ASM83069v1 genomic
GCF 000816805.1 ASM81680v1 genomic
GCF 000696635.1 ASM69663v1 genomic
GCF 000227485.1 ASM22748v1 genomic
GCF 000735115.1 ASM73511v1 genomic
GCF 001015095.1 ASM101509v1 genomic
GCF 000245035.1 ASM24503v2 genomic
GCF 000706705.1 ASM70670v1 genomic
GCF 000321395.1 ASM32139v1 genomic
GCF 000830595.1 ASM83059v1 genomic
GCF 000878265.1 ASM87826v1 genomic
GCF 000827065.1 ASM82706v1 genomic
GCF 000155375.1 ASM15537v1 genomic
GCF 000934165.1 ASM93416v1 genomic
GCF 000497365.1 MP11 genomic
GCF 000830715.1 ASM83071v1 genomic
GCF 000582885.1 QH-1 V1.0 genomic
GCF 000959025.1 ASM95902v1 genomic
GCF 000183765.1 ASM18376v2 genomic
GCF 000696615.1 ASM69661v1 genomic
GCF 000523045.1 ASM52304v1 genomic
GCF 001465815.1 ASM146581v1 genomic
GCF 000789295.1 ASM78929v1 genomic
GCF 000691185.1 ASM69118v1 genomic
GCF 001541905.1 ASM154190v1 genomic
GCF 000341775.1 ASM34177v1 genomic
GCF 000146565.1 ASM14656v1 genomic
GCF 000973605.1 ASM97360v1 genomic
GCF 000230755.1 ASM23075v2 genomic
GCF 000186085.1 ASM18608v1 genomic
GCF 000186745.1 ASM18674v1 genomic
GCF 000830735.1 ASM83073v1 genomic
GCF 000009045.1 ASM904v1 genomic
GCF 000177595.1 ASM17759v1 genomic
GCF 000209795.2 ASM20979v2 genomic
GCF 000332645.1 BSI1.0 genomic
GCF 000931825.1 G1A4 genomic
GCF 000953615.1 BS49Ch genomic
GCF 000385985.1 Bacillus subtilis PS216 genomic
GCF 000349795.1 ASM34979v1 genomic
GCF 000507005.1 PTS394 genomic
GCF 001037985.1 ASM103798v1 genomic
GCF 000828495.1 ASM82849v1 genomic
GCF 000971925.1 ASM97192v1 genomic
GCF 000743215.1 BST genomic
GCF 000227465.1 ASM22746v1 genomic
GCF 000830635.1 ASM83063v1 genomic
GCF 000931815.1 G1A3 genomic
GCF 000245295.1 ASM24529v1 genomic
GCF 000830645.1 ASM83064v1 genomic
GCF 001187765.1 BSMS1577 genomic
GCF 000497345.1 MP9 genomic
GCF 000830605.1 ASM83060v1 genomic
GCF 000830675.1 ASM83067v1 genomic
GCF 000789275.1 ASM78927v1 genomic
GCF 000344745.1 ASM34474v1 genomic
GCF 000409585.1 Hal1 genomic
GCF 000497485.1 ASM49748v1 genomic
GCF 000747645.1 ASM74764v1 genomic
GCF 000155355.1 ASM15535v1 genomic
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GCF 000832195.1 ASM83219v1 genomic
GCF 000740485.1 ASM74048v1 genomic
GCF 000931845.1 G5B15 genomic
GCF 001534785.1 ASM153478v1 genomic
Helicobacter pylori Oct 5, 2016
GCF 000008785.1 ASM878v1 genomic
GCF 000498335.1 ASM49833v1 genomic
GCF 000185245.1 ASM18524v1 genomic
GCF 000307815.1 ASM30781v1 genomic
GCF 000685745.1 ASM68574v1 genomic
GCF 000270065.1 ASM27006v1 genomic
GCF 000600205.1 ASM60020v1 genomic
GCF 000600125.1 ASM60012v1 genomic
GCF 000213135.1 ASM21313v1 genomic
GCF 000091345.1 ASM9134v1 genomic
GCF 000600185.1 ASM60018v1 genomic
GCF 001653415.1 ASM165341v1 genomic
GCF 000192315.1 ASM19231v1 genomic
GCF 000600045.1 ASM60004v1 genomic
GCF 000392455.3 ASM39245v3 genomic
GCF 000307835.1 ASM30783v1 genomic
GCF 000270025.1 ASM27002v1 genomic
GCF 000826985.1 ASM82698v1 genomic
GCF 000685665.1 ASM68566v1 genomic
GCF 001433515.1 ASM143351v1 genomic
GCF 000600145.1 ASM60014v1 genomic
GCF 000315955.1 ASM31595v1 genomic
GCF 000392515.3 ASM39251v3 genomic
GCF 001653455.1 ASM165345v1 genomic
GCF 000148915.1 ASM14891v1 genomic
GCF 000590775.1 ASM59077v1 genomic
GCF 000439295.2 ASM43929v2 genomic
GCF 000277405.1 ASM27740v1 genomic
GCF 000178935.2 ASM17893v2 genomic
GCF 000392475.3 ASM39247v3 genomic
GCF 000093185.1 ASM9318v1 genomic
GCF 000270005.1 ASM27000v1 genomic
GCF 000185205.1 ASM18520v1 genomic
GCF 001653435.1 ASM165343v1 genomic
GCF 000192335.1 ASM19233v1 genomic
GCF 000828955.1 ASM82895v1 genomic
GCF 001653395.1 ASM165339v1 genomic
GCF 000259235.1 ASM25923v1 genomic
GCF 001549875.1 ASM154987v1 genomic
GCF 000020245.1 ASM2024v1 genomic
GCF 000021165.1 ASM2116v1 genomic
GCF 000008525.1 ASM852v1 genomic
GCF 000600085.1 ASM60008v1 genomic
GCF 000829135.1 ASM82913v1 genomic
GCF 000600225.1 ASM60022v1 genomic
GCF 000685625.1 ASM68562v1 genomic
GCF 000011725.1 ASM1172v1 genomic
GCF 000307795.1 ASM30779v1 genomic
GCF 001653375.1 ASM165337v1 genomic
GCF 000013245.1 ASM1324v1 genomic
GCF 000317875.1 ASM31787v1 genomic
GCF 001549715.1 ASM154971v1 genomic
GCF 000023805.1 ASM2380v1 genomic
GCF 000255955.1 ASM25595v1 genomic
GCF 000224535.1 ASM22453v1 genomic
GCF 000392535.3 ASM39253v3 genomic
GCF 000348885.1 ASM34888v1 genomic
GCF 000148895.1 ASM14889v1 genomic
GCF 000348865.1 ASM34886v1 genomic
GCF 000185185.1 ASM18518v1 genomic
GCF 000148875.1 ASM14887v1 genomic
GCF 000277425.1 ASM27742v1 genomic
GCF 000817025.1 ASM81702v1 genomic
GCF 000270045.1 ASM27004v1 genomic
GCF 000224555.1 ASM22455v1 genomic
GCF 000224575.1 ASM22457v1 genomic
GCF 000600165.1 ASM60016v1 genomic
GCF 000148855.1 ASM14885v1 genomic
GCF 000498315.1 ASM49831v1 genomic
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GCF 001653475.1 ASM165347v1 genomic
GCF 000982695.1 ASM98269v1 genomic
GCF 000827025.1 ASM82702v1 genomic
GCF 000277365.1 ASM27736v1 genomic
GCF 000829115.1 ASM82911v1 genomic
GCF 001433495.1 ASM143349v1 genomic
GCF 000185225.1 ASM18522v1 genomic
GCF 000685705.1 ASM68570v1 genomic
GCF 000262655.1 ASM26265v1 genomic
GCF 000829095.1 ASM82909v1 genomic
GCF 000277385.1 ASM27738v1 genomic
GCF 000021465.1 ASM2146v1 genomic
GCF 000148665.1 ASM14866v1 genomic
GCF 000196755.1 ASM19675v1 genomic
Mycobacterium tuberculosis Oct 5, 2016
GCF 000277735.2 ASM27773v2 genomic
GCF 000756545.1 ASM75654v1 genomic
GCF 000153685.2 ASM15368v2 genomic
GCF 000831245.1 ASM83124v1 genomic
GCF 000572155.1 ASM57215v1 genomic
GCF 000008585.1 ASM858v1 genomic
GCF 000154585.2 ASM15458v2 genomic
GCF 001544705.1 ASM154470v1 genomic
GCF 000828995.1 ASM82899v1 genomic
GCF 001545015.1 ASM154501v1 genomic
GCF 000023625.1 ASM2362v1 genomic
GCF 000706665.1 ASM70666v1 genomic
GCF 000016925.1 ASM1692v1 genomic
GCF 001544985.1 ASM154498v1 genomic
GCF 001702435.1 ASM170243v1 genomic
GCF 000350205.1 ASM35020v1 genomic
GCF 000422125.1 ASM42212v1 genomic
GCF 000756525.1 ASM75652v1 genomic
GCF 001545055.1 ASM154505v1 genomic
GCF 000331445.1 ASM33144v1 genomic
GCF 000827085.1 ASM82708v1 genomic
GCF 000195955.2 ASM19595v2 genomic
GCF 001275565.2 ASM127556v2 genomic
GCF 000572175.1 ASM57217v1 genomic
GCF 000016145.1 ASM1614v1 genomic
GCF 000572125.1 ASM57212v1 genomic
GCF 000193185.2 ASM19318v2 genomic
GCF 000389945.1 ASM38994v1 genomic
GCF 000224435.1 ASM22443v1 genomic
GCF 000786505.1 MT49-02 genomic
GCF 001708265.1 ASM170826v1 genomic
GCF 000738475.1 ASM73847v1 genomic
GCF 000270365.1 ASM27036v1 genomic
GCF 000698475.1 ASM69847v1 genomic
GCF 000154605.2 ASM15460v2 genomic
GCF 000572195.1 ASM57219v1 genomic
GCF 001544955.1 ASM154495v1 genomic
GCF 000400615.1 ASM40061v1 genomic
GCF 000364825.1 ASM36482v1 genomic
GCF 000738445.1 ASM73844v1 genomic
Salmonella enterica Feb 26, 2016
GCF 000011885.1 ASM1188v1 genomic
GCF 001185245.1 ASM118524v1 genomic
GCF 000380325.1 ASM38032v1 genomic
GCF 000188735.1 ASM18873v1 genomic
GCF 000750395.2 ASM75039v2 genomic
GCF 000486365.2 ASM48636v2 genomic
GCF 001305235.1 ASM130523v1 genomic
GCF 001441205.1 ASM144120v1 genomic
GCF 000272715.3 ASM27271v3 genomic
GCF 000623375.1 ASM62337v1 genomic
GCF 000940935.1 ASM94093v1 genomic
GCF 000953495.1 SINFA genomic
GCF 000940975.1 ASM94097v1 genomic
GCF 000626335.1 ASM62633v1 genomic
GCF 000636135.1 ASM63613v1 genomic
GCF 000018625.1 ASM1862v1 genomic
GCF 000020885.1 ASM2088v1 genomic
GCF 000623315.1 ASM62331v1 genomic
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GCF 000828595.1 ASM82859v1 genomic
GCF 000750435.1 ASM75043v1 genomic
GCF 000626355.1 ASM62635v1 genomic
GCF 000626115.1 ASM62611v1 genomic
GCF 000626155.1 ASM62615v1 genomic
GCF 000623355.1 ASM62335v1 genomic
GCF 000335875.2 ASM33587v2 genomic
GCF 001484025.1 ASM148402v1 genomic
GCF 000210855.2 ASM21085v2 genomic
GCF 000272755.3 ASM27275v3 genomic
GCF 000020745.1 ASM2074v1 genomic
GCF 000750215.1 ASM75021v1 genomic
GCF 000195995.1 ASM19599v1 genomic
GCF 000473275.1 ASM47327v1 genomic
GCF 000503845.1 ASM50384v1 genomic
GCF 000462995.1 ASM46299v1 genomic
GCF 000624155.1 ASM62415v1 genomic
GCF 000486405.2 ASM48640v2 genomic
GCF 000612325.1 ASM61232v1 genomic
GCF 000486445.2 ASM48644v2 genomic
GCF 000626235.1 ASM62623v1 genomic
GCF 001006525.1 ASM100652v1 genomic
GCF 000487575.2 ASM48757v2 genomic
GCF 000016045.1 ASM1604v1 genomic
GCF 001457675.1 NCTC10384 genomic
GCF 000940895.1 ASM94089v1 genomic
GCF 000988525.1 ASM98852v1 genomic
GCF 001454965.1 ASM145496v1 genomic
GCF 000245535.1 ASM24553v1 genomic
GCF 000742815.1 ASM74281v1 genomic
GCF 000487915.2 ASM48791v2 genomic
GCF 000626195.1 ASM62619v1 genomic
GCF 000487295.2 ASM48729v2 genomic
GCF 000750475.1 ASM75047v1 genomic
GCF 000623295.1 ASM62329v1 genomic
GCF 000020705.1 ASM2070v1 genomic
GCF 000626175.1 ASM62617v1 genomic
GCF 001558355.1 ASM155835v1 genomic
GCF 001409175.1 99 3134 genomic
GCF 000818075.1 ASM81807v1 genomic
GCF 000623115.2 ASM62311v2 genomic
GCF 000213635.1 ASM21363v1 genomic
GCF 000993725.1 ASM99372v1 genomic
GCF 000623095.1 ASM62309v2 genomic
GCF 000430085.2 ASM43008v2 genomic
GCF 000272775.3 ASM27277v3 genomic
GCF 000754375.1 ASM75437v1 genomic
GCF 001441245.1 ASM144124v1 genomic
GCF 000385905.1 ASM38590v1 genomic
GCF 000444445.1 ASM44444v1 genomic
GCF 001302625.1 ASM130262v1 genomic
GCF 000007545.1 ASM754v1 genomic
GCF 000623735.2 ASM62373v2 genomic
GCF 000750335.1 ASM75033v1 genomic
GCF 000272735.3 ASM27273v3 genomic
GCF 000018385.1 ASM1838v1 genomic
GCF 000623195.2 ASM62319v2 genomic
GCF 000022165.1 ASM2216v1 genomic
GCF 001409195.1 C2346 genomic
GCF 001447095.1 ASM144709v1 genomic
GCF 000009525.1 ASM952v1 genomic
GCF 000750415.2 ASM75041v2 genomic
GCF 001293505.1 ASM129350v1 genomic
GCF 001409135.1 10259 genomic
GCF 001540845.1 SO4698 09 genomic
GCF 000009505.1 ASM950v1 genomic
GCF 000963535.1 ASM96353v1 genomic
GCF 001409155.1 98 11262 genomic
GCF 000715155.1 ASM71515v2 genomic
GCF 000258365.1 ASM25836v1 genomic
GCF 000750375.1 ASM75037v1 genomic
GCF 000623135.1 ASM62313v2 genomic
GCF 000020925.1 ASM2092v1 genomic
GCF 000626275.2 ASM62627v2 genomic
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GCF 000505365.2 ASM50536v2 genomic
GCF 000487775.1 ASM48777v2 genomic
GCF 000626315.1 ASM62631v1 genomic
GCF 000623055.1 ASM62305v2 genomic
GCF 000280315.2 ASM28031v2 genomic
GCF 000624395.2 ASM62439v2 genomic
GCF 000831045.1 ASM83104v1 genomic
GCF 000430165.1 ASM43016v1 genomic
GCF 000626295.1 ASM62629v1 genomic
GCF 000623275.1 ASM62327v1 genomic
GCF 000623475.1 ASM62347v2 genomic
GCF 000430125.1 ASM43012v1 genomic
GCF 000750455.1 ASM75045v1 genomic
GCF 000626135.1 ASM62613v1 genomic
GCF 000272835.3 ASM27283v3 genomic
GCF 000626415.1 ASM62641v1 genomic
GCF 000430145.2 ASM43014v3 genomic
GCF 000623335.1 ASM62333v1 genomic
GCF 000330485.2 ASM33048v2 genomic
GCF 000973665.1 ASM97366v1 genomic
GCF 000188955.2 ASM18895v5 genomic
GCF 000626255.1 ASM62625v1 genomic
GCF 001441225.1 ASM144122v1 genomic
GCF 000430105.1 ASM43010v1 genomic
GCF 001185215.1 ASM118521v1 genomic
GCF 000941015.1 ASM94101v1 genomic
GCF 000008105.1 ASM810v1 genomic
GCF 000973645.1 ASM97364v1 genomic
GCF 001302605.1 ASM130260v1 genomic
GCF 000623395.2 ASM62339v2 genomic
GCF 000018705.1 ASM1870v1 genomic
GCF 000750295.1 ASM75029v1 genomic
GCF 001447115.1 ASM144711v1 genomic
GCF 000272895.2 ASM27289v3 genomic
GCF 000973685.1 ASM97368v1 genomic
GCF 000235545.1 ASM23554v1 genomic
GCF 000027025.1 ASM2702v1 genomic
GCF 000283735.1 ASM28373v1 genomic
GCF 000329365.2 ASM32936v2 genomic
GCF 000750255.1 ASM75025v1 genomic
GCF 000006945.1 ASM694v1 genomic
GCF 000493535.1 DT2 genomic
GCF 000493675.1 DT104 genomic
GCF 001305815.1 ASM130581v1 genomic
GCF 000442415.1 ASM44241v1 genomic
GCF 000487615.2 ASM48761v2 genomic
GCF 000626375.1 ASM62637v1 genomic
GCF 001305835.1 ASM130583v1 genomic
GCF 000750495.1 ASM75049v1 genomic
GCF 000272815.2 ASM27281v2 genomic
GCF 000505705.1 ASM50570v1 genomic
GCF 000626215.1 ASM62621v1 genomic
GCF 000831025.1 ASM83102v1 genomic
GCF 000026565.1 ASM2656v1 genomic
GCF 000439415.1 ASM43941v1 genomic
GCF 000743055.1 ASM74305v1 genomic
GCF 000341425.1 ASM34142v1 genomic
GCF 000818115.1 ASM81811v1 genomic
GCF 000486765.2 ASM48676v2 genomic
GCF 000252875.1 ASM25287v1 genomic
GCF 000756465.1 ASM75646v1 genomic
GCF 000484195.2 ASM48419v2 genomic
GCF 000623455.2 ASM62345v2 genomic
Staphylococcus aureus Feb 23, 2016
GCF 000382985.1 ASM38298v1 genomic
GCF 000382965.1 ASM38296v1 genomic
GCF 001465635.1 ASM146563v1 genomic
GCF 001281145.1 ASM128114v1 genomic
GCF 000967345.1 ASM96734v1 genomic
GCF 000463055.1 ASM46305v1 genomic
GCF 001307235.1 ASM130723v1 genomic
GCF 000769575.1 ASM76957v1 genomic
GCF 000967325.1 ASM96732v1 genomic
GCF 001515665.1 ASM151566v1 genomic
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GCF 001183705.1 ASM118370v1 genomic
GCF 001515705.1 ASM151570v1 genomic
GCF 001444345.1 ASM144434v1 genomic
GCF 000010445.1 ASM1044v1 genomic
GCF 000967365.1 ASM96736v1 genomic
GCF 001457495.1 NCTC13435 genomic
GCF 000967385.1 ASM96738v1 genomic
GCF 001046095.2 ASM104609v2 genomic
GCF 000626615.1 ASM62661v1 genomic
GCF 000969225.1 ASM96922v1 genomic
GCF 001183725.1 ASM118372v1 genomic
GCF 000011265.1 ASM1126v1 genomic
GCF 001465755.1 ASM146575v1 genomic
GCF 000815085.1 ASM81508v1 genomic
GCF 000695215.1 ASM69521v1 genomic
GCF 000009585.1 ASM958v1 genomic
GCF 001021875.1 ASM102187v1 genomic
GCF 000025145.1 ASM2514v1 genomic
GCF 000462955.1 ASM46295v1 genomic
GCF 001515685.1 ASM151568v1 genomic
GCF 000756205.1 ASM75620v1 genomic
GCF 000009665.1 ASM966v1 genomic
GCF 000016805.1 ASM1680v1 genomic
GCF 001515745.1 ASM151574v1 genomic
GCF 000237125.1 ASM23712v1 genomic
GCF 000597965.1 ASM59796v1 genomic
GCF 000010465.1 ASM1046v1 genomic
GCF 000013465.1 ASM1346v1 genomic
GCF 000296595.1 ASM29659v1 genomic
GCF 001558795.1 ASM155879v1 genomic
GCF 000237265.1 ASM23726v1 genomic
GCF 000815205.1 ASM81520v1 genomic
GCF 001278745.1 ASM127874v1 genomic
GCF 000253135.1 ASM25313v1 genomic
GCF 000245495.1 ASM24549v1 genomic
GCF 001457515.1 NCTC8532 genomic
GCF 000746505.1 ASM74650v1 genomic
GCF 001549675.1 ASM154967v1 genomic
GCF 000145595.1 ASM14559v1 genomic
GCF 000485885.1 ASM48588v1 genomic
GCF 000412775.1 ASM41277v1 genomic
GCF 000011525.1 ASM1152v1 genomic
GCF 000011505.1 ASM1150v1 genomic
GCF 000027045.1 ASM2704v1 genomic
GCF 000017085.1 ASM1708v1 genomic
GCF 000013425.1 ASM1342v1 genomic
GCF 000159535.2 ASM15953v2 genomic
GCF 000009645.1 ASM964v1 genomic
GCF 000239235.1 ASM23923v1 genomic
GCF 000160335.2 ASM16033v2 genomic
GCF 000204665.1 ASM20466v1 genomic
GCF 000144955.1 ASM14495v1 genomic
GCF 000828035.1 ASM82803v1 genomic
GCF 000383005.1 ASM38300v1 genomic
GCF 000568455.1 ASM56845v1 genomic
GCF 001456215.1 ASM145621v1 genomic
GCF 001045995.2 ASM104599v2 genomic
GCF 001548295.1 ASM154829v1 genomic
GCF 000772025.1 ASM77202v1 genomic
GCF 000418345.1 ASM41834v1 genomic
GCF 001548415.1 ASM154841v1 genomic
GCF 000815125.1 ASM81512v1 genomic
GCF 001021895.1 ASM102189v1 genomic
GCF 000815165.1 ASM81516v1 genomic
GCF 000953255.1 Staphylococcus aureus Sa ILRI 217 genomic
GCF 000815045.1 ASM81504v1 genomic
GCF 000967405.1 ASM96740v1 genomic
GCF 001515765.1 ASM151576v1 genomic
GCF 001027045.1 ASM102704v1 genomic
GCF 001296985.1 ASM129698v1 genomic
GCF 000284535.1 ASM28453v1 genomic
GCF 000009005.1 ASM900v1 genomic
GCF 000012045.1 ASM1204v1 genomic
GCF 001549655.1 ASM154965v1 genomic
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GCF 001465675.1 ASM146567v1 genomic
GCF 000024585.1 ASM2458v1 genomic
GCF 001027105.1 ASM102710v1 genomic
GCF 000017125.1 ASM1712v1 genomic
GCF 000737615.1 ASM73761v1 genomic
GCF 001045795.2 ASM104579v2 genomic
GCF 000470865.1 ASM47086v1 genomic
GCF 000210315.1 ASM21031v1 genomic
GCF 000695875.1 ASM69587v1 genomic
GCF 000470845.1 ASM47084v1 genomic
GCF 000815245.1 ASM81524v1 genomic

Table S3. For each of the other 5 species, the table lists the strain names and that date on which the
sequences were donwloaded from the database.
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