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Abstract

Hippocampal place cells and entorhinal grid cells are thought to form a represen-

tation of space by integrating internal and external sensory cues. Experimental

studies show that different subsets of place cells are controlled by vision, self-

motion or a combination of both. Moreover, recent studies in environments

with a high degree of visual aliasing suggest that a continuous interaction be-

tween place cells and grid cells can result in a deformation of hexagonal grids

or in a progressive loss of visual cue control. The computational nature of such

a bidirectional interaction remains unclear. In this work we present a neu-

ral network model of a dynamic loop between place cells and grid cells. The

model is tested in two recent experimental paradigms involving double-room

environments that provide conflicting evidence about visual cue control over

self-motion-based spatial codes. Analysis of the model behavior in the two ex-

periments suggests that the strength of hippocampal-entorhinal dynamical loop

is the key parameter governing differential cue control in multi-compartment

environments. Construction of spatial representations in visually identical envi-

ronments requires weak visual cue control, while synaptic plasticity is regulated

by the mismatch between visual- and self-motion representations. More gener-
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ally our results suggest a functional segregation between plastic and dynamic

processes in hippocampal processing.

Keywords: place cells, grid cells, multisensory combination, hippocampus,

computational model, neural network

1. Introduction1

It has long been accepted that spatial navigation depends crucially on a2

combination of visual and self-motion input (O’Keefe and Nadel, 1978). Since3

the seminal work of O’Keefe and Dostrovsky (1971), a neural locus of this com-4

bination is thought to be the place cell network in the CA1-CA3 subfields of the5

hippocampus proper (O’Keefe and Speakman, 1987, Muller and Kubie, 1987,6

Knierim et al., 1998, Jayakumar et al., 2018), with different subsets of place cells7

sensitive to self-motion cues, to visual cues or, more often, to a combination of8

them (Markus et al., 1994, Chen et al., 2013, Fattahi et al., 2018). A more9

recent discovery of grid cells in the medial entorhinal cortex led to the sugges-10

tion that the grid-cell network provides a self-motion-based representation of11

location that is combined with other sensory information on the level of place12

cells (Fyhn et al., 2004, McNaughton et al., 2006, Hayman and Jeffery, 2008,13

Cheng and Frank, 2011). The grid-cell representation is itself vision-dependent,14

since various properties of grid cells are affected by changes in visual features of15

the environment (Hafting et al., 2005, Krupic et al., 2015). Combined with the16

evidence showing that coherent changes in place-cell and grid-cell representa-17

tions occur during environment deformation and cue manipulation, these data18

suggest a bidirectional interaction between these representations at the neural19

level (Fyhn et al., 2007). While this bidirectional link is always present in nor-20

mal conditions, it may not be necessary for place cell activities, as shown in a21

number of lesion experiments (Sasaki et al., 2015, Schlesiger et al., 2018).22

The nature of the dynamic interaction between visual and self-motion cues23

on the level of grid cells has recently been tested in two experiments: in a24

merged room, formed by removal of a wall separating two visually similar en-25
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vironments (Wernle et al., 2018), and during exploration of an environment26

consisting of two identical rooms connected by a corridor (Carpenter et al.,27

2015). Results of the first experiment have shown that firing patterns of grid28

cells were anchored by local sensory cues near environmental boundaries, while29

they underwent a continuous deformation far from the boundaries in the merged30

room, suggesting a strong control of local visual cues over grid-cell represen-31

tation (Wernle et al., 2018). Results of the second experiment indicated in32

contrast that during learning in a double-room environment grid cells progres-33

sively formed a global self-motion-based representation disregarding previously34

learned local cues (Carpenter et al., 2015).35

Existing models of the entorhinal-hippocampal system are mostly based on36

the feed-forward input from grid cells to place cells, with an additional possi-37

bility to reset grid-field map upon the entry to a novel environment (Solstad38

et al., 2006, O’Keefe and Burgess, 2005, Blair et al., 2008, Sheynikhovich et al.,39

2009, Pilly and Grossberg, 2012), or focus on the feed-forward input from place40

cells to grid cells (Bonnevie et al., 2013). In addition to be at difficulty at41

explaining the above results on dynamic interactions between visual and self-42

motion cues, they are also not consistent with data showing that hippocampal43

spatial representations remain spatially tuned after MEC inactivation (Brun44

et al., 2008, Rueckemann et al., 2016) and that in pre-weanling rat pups, place45

fields can exist before the emergence of the grid cell network (Muessig et al.,46

2015). Moreover, disruption of grid cell spatial periodicity in adult rats does not47

alter preexisting place fields nor prevent the emergence of place fields in novel48

environments (Koenig et al., 2011, Brandon et al., 2014).49

In this paper we propose a model of continuous dynamic loop-like interaction50

between grid cells and place cells, in which the main functional parameter is the51

feedback strength in the loop. We show that the model is able to explain the52

pattern of grid-cell adaptation in the two experiments by assuming a progressive53

decrease of visual control over self motion, and a plasticity mechanism regulated54

by allothetic and idiothetic cue mismatch over a long time scale.55
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2. Model56

This section presents main neuronal populations in the model and their57

interactions. Further technical details and model parameters are given in the58

Appendix.59

The rat is modeled by a panoramic visual camera that is moving in an envi-60

ronment along quasi-random trajectories resembling those of a real rat (Fig. 2A,61

top). The orientation of the camera corresponds to the head orientation of the62

model animal. The constant speed of the modeled rat is set to 10 cm/s, and63

sampling of sensory input occurs at frequency 10 Hz, roughly representing hip-64

pocampal theta update cycles. The modeled rat receives two types of sensory65

input (Fig. 1). First, self-motion input to the model is represented by angu-66

lar and translational movement velocities integrated by grid cells in the medial67

entorhinal cortex (mEC) to provide self-motion representation of location, as68

proposed earlier (McNaughton et al., 2006). Competitive self-organization of69

grid cell output occurs downstream from the entorhinal cortex in the dentate70

gyrus (DG) - CA3 circuit and gives rise to a self-motion-based representation71

of location, encoded by motion-based place cells (MPC). We did not include a72

specific neuronal population to model DG (de Almeida et al., 2009a). Instead,73

we implemented competitive learning directly on mEC inputs to CA3. Second,74

visual input is represented by responses of a two-dimensional retina-like grid75

of orientation-sensitive Gabor filters, applied to input camera images at each76

time step. For instance, in featureless rectangular rooms used in most of the77

simulations below, the only features present in the input images are the outlines78

of the environment walls (Fig. 2A, bottom). Importantly, the ‘retinal’ responses79

are assumed to be aligned with an allocentric directional frame further along80

the dorsal visual pathway (not modeled), the directional frame being set by81

head direction cells (Byrne et al., 2007, Sheynikhovich et al., 2009, Bicanski82

and Burgess, 2018). That is, visual input to the model at each spatial location83

is independent on the head direction that the model rat has upon arriving at84

that location. The visual input aligned with an allocentric directional frame is85
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assumed to be encoded in the inputs to the hippocampal formation from the86

lateral entorhinal cortex (lEC). Competitive self-organization of these inputs87

results in a purely vision-based representation of location, encoded by a pop-88

ulation of visual place cells (VPCs). Both MPCs and VPCs project to CA189

cells that form a conjunctive representation of location in conjunctive place cells90

(CPCs). The principal novelty of the model is that CPCs in CA1 project back to91

the entorhinal grid cells and thus form a recurrent loop, reflecting the anatomy92

of entorhinal-hippocampal connections (Iijima et al., 1996).93

Integration of visual and self-motion input by grid cells94

The self-motion input is processed by 5 identical neuronal populations rep-95

resenting distinct grid cell populations in the dorsal mEC (Hafting et al., 2005).96

Each grid cell population can be represented as a two-dimensional sheet of neu-97

rons equipped with attractor dynamics on a twisted-torus topology, as has been98

proposed in earlier models (Guanella et al., 2007, Sheynikhovich et al., 2009,99

Burak and Fiete, 2009). The position of an attractor state (or activity packet)100

in each grid cell population is updated based on the self-motion velocity vector.101

This is implemented by the modulation of recurrent connection weights between102

grid cells according to the model rat rotation and displacement, such that the103

activity bump moves across the neural sheet according to the rat movements104

in space (Guanella et al., 2007). The only difference between grid-cell popu-105

lations is that the speed of movement of the activity bumps across the neural106

sheet is specific for each population, resulting in population-specific distance107

between neighbouring grid fields and field size (Hafting et al., 2005). As long108

as each location in an environment corresponds to a distinct combination of109

positions of the activity packets, population activity of all grid cells encodes the110

current position of the animal in the environment (Burak and Fiete, 2009). The111

exact implementation of the attractor mechanism governing grid-cell network112

dynamics is not essential for the model to work.113

In addition to the recurrent input from grid cells in the same population,114

each grid cell receives input from the CPC population which represent con-115
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junctive visual and self-motion representation (described in detail later), and116

the relative strength of these two inputs is controlled by the parameter α. At117

a relatively high value of this parameter, grid-cell attractor dynamics in each118

layer is strongly influenced by the hippocampal input, leading to an overall119

stronger effect of visual information. At a low value of α, the grid-cell dynamics120

is governed almost exclusively by self-motion input.121

Thus, the total synaptic input to a grid cell i at time t is (omitting grid cell122

population index for clarity)123

Igc(t, i) = αIcpcgc (t, i) + (1− α)Igcgc (t, i) (1)

where the external input from CPC and recurrent inputs from other grid cells124

are determined by125

Icpcgc (t, i) =

ncpc∑
j=1

Acpc(t− 1, j)W cpc
gc (t, i, j)

Igcgc (t, i) =

ngc∑
k=1

Agc(t− 1, k)W gc
gc (t, i, k)

(2)

Here, Acpc(t, j) is the activity of j-th CPC at time t (described below) and126

Agc(t, k) = Igc(t, k) is the activity of k-th grid cell (we use linear activation127

function for grid cells).128

Feedforward synaptic connections from CPCs are initialized by random val-

ues and updated during learning according to a standard Hebbian learning

scheme:

W cpc
gc (t, i, j) = W cpc

gc (t− 1, i, j) + ηcpcgc Agc(t, i)Acpc(t, j) (3)

followed by explicit normalization ensuring that the norm of the synaptic weight129

vector of each cell is unity (a neurally plausible implementation of the normal-130

ization step can be implemented by a change in the learning rule (Oja, 1982)).131

Recurrent synaptic connections between grid cells are constructed such as to132

ensure attractor dynamics, modulated by velocity vector (Guanella et al., 2007).133

More specifically, the connection weights between cells i and j is a Gaussian134

function of the distance between these cells in the neural sheet. This connection135

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2019. ; https://doi.org/10.1101/602235doi: bioRxiv preprint 

https://doi.org/10.1101/602235
http://creativecommons.org/licenses/by-nc-nd/4.0/


weight is modulated by the self-motion velocity vector, such that the activity136

bump moves across the neural sheet according to the direction and norm of137

the velocity vector, with a proportionality constant that is grid-cell population138

specific. These proportionality constants were tuned such that the grid spacing139

across different grid cell populations were between 42 cm and 172 cm. Grid-140

cell firing patterns were oriented 7.5◦ with respect to one of the walls of an141

experienced experimental enclosure (Krupic et al., 2015).142

Encoding of visual and self-motion input by place cells143

As mentioned above, the model includes three distinct populations of place144

cells (Fig. 1). First, VPCs directly integrate allocentric visual inputs, presum-145

ably coming from lEC and project further to CA1. We putatively assign VPC146

population to CA3 where a competitive mechanism based on recurrent feedback147

can result in self-organization of visual inputs, the resulting spatial code further148

transmitted to to CA1. The model of this pathway is based on the evidence that149

stable spatial representations were observed in CA1 after complete lesions of the150

mEC containing grid cells (Brandon et al., 2014, Schlesiger et al., 2018). Second,151

MPCs directly integrate input from grid cells and in the absence of visual inputs152

the activity of these cells represents purely self-motion-based representation of153

location. These cells represent CA3 place cells, acquiring their spatial selectivity154

via a competitive mechanism based on mEC inputs (de Almeida et al., 2009a).155

Third, CPCs that model CA1 pyramidal cells, combine visual and self-motion156

inputs coming from VPC and MPC populations, respectively. Crucially, CPCs157

project back to the grid cell populations, modeling anatomical projections from158

CA1 back to the entorhinal cortex forming a loop (Iijima et al., 1996, Slomianka159

et al., 2011) and controlled by the parameter α as described above.160

Vision-based place cells. VPCs acquire their spatial selectivity as a result161

of unsupervised competitive learning implemented directly on allocentric visual162

inputs, represented by Gabor filter activities aligned to an allocentric directional163

frame (see Appendix). As a result of learning, different cells become sensitive to164

constellations of visual features observed from different locations (independently165
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from head direction).166

The total input to a VPC i at time t is given by

Iavivpc(t, i) =

navi∑
j=1

Aavi(t, j)W
avi
vpc (t, i, j) (4)

where Aavi(t, j) is the activity of j-th Gabor filter aligned with the allocen-167

tric directional frame. A E%-max winner-take-all learning scheme (de Almeida168

et al., 2009a,b) is implemented, meaning that a small subset of maximally ac-169

tive cells is selected (i.e. all cells whose total input is within Evpc% of the cell170

with maximal input). The synaptic weight updates according to the Hebbian171

modification rule (Eq. 3) are implemented only for the winner cells.172

Motion-based place cells. MPCs read out grid cell activities similarly to173

previously proposed models (Solstad et al., 2006, Sheynikhovich et al., 2009).174

More specifically, they implement the E%-max winner-take-all learning scheme175

identical to that of VPCs learning described above (with parameter Empc de-176

termining the proportion of highly active cells).177

Conjunctive place cells. Both VPCs and MPCs project to CPCs, that

model CA1 pyramidal cells sensitive to both visual and self-motion cues. The

total input to a conjunctive cell is:

Icpc(t, i) = Ivpccpc (t, i) + Impccpc (t, i) (5)

with178

Ivpccpc (t, i) =

nvpc∑
j=1

Avpc(t− 1, j)W vpc
cpc (t, i, j)

Impccpc (t, i) =

nmpc∑
k=1

Ampc(t− 1, k)Wmpc
cpc (t, i, k)

(6)

Again, a E%-max winner-take-all learning scheme is implemented in this net-179

work, but with a heterosynaptic update learning rule:180

W vpc
cpc (t, i, j) = W vpc

cpc (t− 1, i, j) + ηvpccpcAcpc(t, i)H(Avpc(t, j)− θ)

Wmpc
cpc (t, i, j) = Wmpc

cpc (t− 1, i, j) + ηmpccpc Acpc(t, i)H(Ampc(t, j)− θ)
(7)
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where H(.) is the Heaviside step function (H(x) = 0 for x ≤ 0, and H(x) = x181

otherwise) and θ is the presynaptic activity threshold.182

Due to the fact that MPCs, CPCs and grid cells are connected in a loop, a183

local activity packet in an “upstream” cell population shifts the activity packet184

in the “downstream” population towards the position of former. The size of185

the induced shift on each cycle of theta is determined by connection strengths186

between participating cells. In the absence of visual input, activity bumps in187

the three interconnected populations settle at the global stable state of the188

loop/attractor dynamics and hence all code for a single spatial location in the189

environment, which can be considered as the estimation of the animal’s location190

based on self-motion input. However, because of the visual input from VPCs,191

the loop dynamics is biased towards the visual position, encoded in the VPC192

population. Thus, the feedback strength in the loop determines the extent to193

which visual input influences place cell activities in the model.194

3. Results195

Since the early experiments testing the influence of visual and self-motion196

cues on place cell activity, it was clear that different subsets of place cells are197

controlled by these cues to different degrees, with some cells being controlled198

exclusively by one type of cue (Markus et al., 1994, Chen et al., 2013, Aronov199

and Tank, 2014, Fattahi et al., 2018). In the model we conceptualized these200

differences in VPC, MPC and CPC neural populations, representing purely201

vision-dependent, motion-dependent and multisensory place cells. Thus, when202

the model has learned place fields in a visually structured environment by mov-203

ing quasi-randomly around a rectangular box, VPCs have place fields only in204

a ‘light’ condition, i.e. when the visual cues are visible. This is true even205

if motion-based cues are absent (Fig. 2B, top row), as in a passive transport206

through a virtual maze (Chen et al., 2013). Conceptually, these cells represent207

the ability of hippocampal circuits to form self-organized representations of lo-208

cation even in the absence of grid-cell input from the mEC (Hales et al., 2014,209

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2019. ; https://doi.org/10.1101/602235doi: bioRxiv preprint 

https://doi.org/10.1101/602235
http://creativecommons.org/licenses/by-nc-nd/4.0/


Brandon et al., 2014, Schlesiger et al., 2018). In contrast, MPCs will have place210

fields both in the light and dark conditions, but not during passive translation211

(Fig. 2B, middle row). Finally, CPCs will be active in all the three conditions212

since they combine both types of input (Fig. 2B, bottom row).213

In contrast to VPCs that are completely independent of self-motion cues and214

encode stable visual features of the surrounding environment, MPCs and CPCs215

will be influenced by both visual and self-motion input, by virtue of their loop-216

like interactions through the grid cells. To test the relative influence of vision217

and self motion on the activity of these cells when the two types of cue provide218

conflicting sensory information, we decreased the gain of self-motion input to219

grid-cells while the model animal was crossing the environment from left to right220

(Fig. 2C). This decrease in gain was applied only to the horizontal component221

of motion, i.e. the horizontal component of the self-motion velocity vector was222

set to 3/4 of the baseline value. Such a modulation is similar to a change in the223

gain of ball rotation in a virtual corridor (Chen et al., 2013), but implemented224

in a two-dimensional environment instead of a linear track. The change in gain225

resulted in a shift of receptive fields of MPCs and CPCs to the right relative226

to their position in baseline conditions and the size of the shift is smaller than227

what would be predicted from purely self-motion integration (Figs. 2E,F).228

To illustrate the loop dynamics in this simple example, consider the case229

when the model animal crosses the middle line of the environment moving from230

left to right (Fig. 2D). The integration of pure self-motion input over time would231

estimate the current position to be behind the visually estimated position due232

to the decrease in speed gain. This will cause a cell that normally fires at233

the center of the environment to shift its receptive field ahead of it. Thus,234

in the dark condition MPCs and CPCs have place fields shifted forward by235

an amount proportional to the gain factor, relative to their positions in the236

baseline condition (i.e. without the change in gain). However, in the light237

condition this self-motion-based estimation will be in conflict with visual cues238

that are not affected by changes in gain and represent the actual position in239

the environment. As a result of the dynamic loop-like interaction, at each240
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moment of time visual cues induce a forward shift of the activity packet in241

the grid-cell populations towards the visually identified location, the size of the242

shift being controlled by the parameter α. Grid cells would similarly affect243

the MPCs, and then CPCs, closing the loop. Therefore, in the presence of244

conflicting cues receptive fields shift to an intermediate position between the245

self-motion and visual estimates (Figs. 2E,F). These results are reminiscent of246

those by Gothard et al. (1996), simulated in several earlier computational models247

(Samsonovich and McNaughton, 1997, Byrne et al., 2007, Sheynikhovich et al.,248

2009), and indeed the proposed mechanistic explanation is similar in this case.249

However, in the present model the parameter controlling the interaction between250

the visual and self-motion cues is cast in terms of the strength of the entorhinal-251

hippocampal loop.252

To illustrate the same multisensory integration mechanism on the level of253

grid cells, we conducted another simulation in which the horizontal velocity gain254

was transiently decreased when the model animal crossed a specific portion of255

the environment (Fig. 3A). In this case of a transient cue conflict, grid patterns256

were locally deformed in that firing fields near the gain-decrease zone shifted to257

the right relative to control conditions, reflecting the sensory conflict (Figs. 3B-258

D). Near the borders of the environment, where the speed input was identical259

to the baseline conditions, grid pattern remained stable. The same effect on260

the level of the whole population of grid cells was quantified by the analysis of261

displacement vectors (Fig. 3C) and by sliding correlation maps (Fig. 3D), see262

Appendix and Wernle et al. (2018). These results suggest that local modifi-263

cations of grid patterns can be induced by conflicting sensory representations,264

similarly to what has been observed in a recent experiment by Wernle et al.265

(2018). As mentioned in the Introduction, these results are at odds with an266

earlier experiment (Carpenter et al., 2015) that studied adaptation of grid-cell267

patterns during construction of a spatial representation in an environment con-268

sisting in two identical rooms connected by a corridor. In the following sections269

we simulated the results of both experiments in an attempt to explain this con-270

flict and to understand neural mechanisms responsible for apparently different271
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patterns of grid-cell adaptation in the two experiments.272

3.1. Merged-room experiment273

Wernle et al. (2018) studied the integration between visual and self-motion274

cues by recording grid cells in two adjacent rectangular compartments initially275

separated by a wall. The two compartments were inserted in a bigger envi-276

ronment equipped with distal visual cues. The wall was subsequently removed277

and grid cells were recorded while the rat foraged in the merged environment.278

The authors observed that at the locations far from the removed wall grid cells279

conserved their firing patterns, while at the locations near those previously oc-280

cupied by the wall grid-cell firing fields shifted towards the removed wall so as to281

form a continuous quasi-hexagonal pattern. Results from the previous section282

suggest that the observed local deformation of the grid pattern can result from283

the local visual deformation caused by wall removal.284

To verify that our model can reproduce these results, we recorded activities285

of simulated grid cells and place cells cells in experimental conditions similar286

to those in Wernle et al. More specifically, the model learned place fields in287

two virtual rooms separated by a wall (Fig. 4A). The two rooms were located288

inside a bigger room with distal visual cues (not shown), such that learned289

representations of the two rooms were different after initial exploration. After290

place fields were established, the wall was removed, the synaptic weights were291

fixed and neural activity was recorded. We observe that after wall removal, grid292

fields near distant walls remain fixed to the local cues, while near the former293

wall location they shift towards this location in the model, as in the experi-294

ment (Fig. 4B). The same phenomenon on the level of the whole population295

was quantified by the analysis of displacement vectors (Fig. 4C) and by sliding296

correlation (Fig. 5D).297

Thus, the low-correlation band near the location of the removed wall is298

induced in the model by changes in visual input in the merged environment,299

which affect place coding via VPC activities. Local visual features at the loca-300

tions distant from the removed wall are similar in the corresponding locations301
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of the original environments A and B, since visual patterns formed by the clos-302

est walls and extramaze cues remain largely unchanged after the central wall303

removal. Therefore, VPCs activities at these locations during testing are very304

similar to those during training (Fig. 5A), leading to the same grid pattern at305

these locations. However, at the locations close to the removed wall, the com-306

bined effect of stable distal cues and modified proximal wall cues result in an307

extension of VPC receptive fields over the previous location of the removed wall.308

These changes in visual receptive fields induce local corrections of grid cell ac-309

tivity by shifting grid-cell activity packets towards the center, resulting in local310

deformations of grid-cell firing patterns similar to those observed during gain311

modification experiments. These deformations will in turn affect place fields312

of MPCs and CPCs, by shifting place fields of the cells near the removed wall313

towards it (Figs. 5B,C). These results suggest that local deformations of grid314

fields can result from the same correction mechanism as the one studied in the315

previous section, but in which local sensory conflict is induced by changes in316

the visual input instead of changes in self-motion gain.317

Two principal neural processes affect the formation of spatial representa-318

tion in our model: while the acquisition of new spatial representations cru-319

cially depends on synaptic plasticity, the dynamic interaction between visual320

and self-motion cues is mediated by neuronal dynamics. We therefore tested321

the contribution of these two processes to the observed results. The influence of322

plasticity was assessed by letting the model learn during testing in the merged323

room, while that of neuronal dynamics was tested by progressively decreasing324

the strength of the loop (i.e. decreasing the control of vision over self-motion325

cues) in the absence of synaptic plasticity. The results of these manipulations326

can be summarized as follows. First, when learning was allowed during testing327

and the testing session in the merged room was sufficiently long, the particular328

correlation pattern (see Fig. 4C,D) was broken and a new representation was329

formed as a result of learning (Figs. 6A-C), unlike what was observed by Wernle330

et al. In particular, the newly formed global pattern was aligned with only one331

of the walls, resembling the results of Carpenter et al. (2015) addressed in the332
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following section. Moreover, learning of the new representation was faster when333

the control of visual cues (controlled by α) was low (not shown), since slower334

dynamics favors the learning of new connections between self-motion-based and335

visual representations. These results suggests that either the band-correlation336

pattern is a transient effect and should disappear with a longer exposure to the337

environment, or that learning of a new representation is inhibited in the merged338

room in real rats. Second, the decrease of α across separate sessions resulted in339

widening of the low correlation band (Fig. 6D). This modification of the corre-340

lation pattern is explained by the fact that under a weak control of place fields341

by vision, it takes longer for the visual cues to correct self-motion.342

3.2. Double-room experiment.343

In the experiment of Carpenter et al. (2015), grid cells were recorded in rats344

during foraging in an experimental environment consisting of two rectangular345

rooms connected by a corridor (Fig. 7A, see Carpenter et al., 2015). The rooms346

were rendered as similar as possible in their visual appearance in order to favor347

visual aliasing. If local visual cues are the main determinant of grid cell activity,348

identical grid fields in the two environments were expected. In contrast, if self-349

motion cues are used to distinguish between the two rooms, grid cells should350

have distinct firing fields in the two environments. The results of this experi-351

ment revealed that both external and internal cues influence neuronal activity,352

but in a temporally-organized fashion. In particular, during early exploration353

sessions, grid cells had similar firing patterns in the two rooms, and this effect354

was maintained during the whole period of a session (tens of minutes). However,355

as the number of sessions (or days, as 1 session per day was run) increased, grid356

cells formed a global representation of the experimental environment, such that357

initial association between local cues and grid fields was progressively lost in358

one of the two rooms. These results are in apparent conflict with the data from359

the merged-room experiment considered earlier, since in that experiment local360

cues at the distant walls kept their control of nearby grid fields for up to 10361

daily sessions.362
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What could be the reason for the differences in learned grid-cell representa-363

tions in the two experiments? Suppose that, in the conditions of the double-364

room paradigm, the rat first enters room A, such that initial associations be-365

tween self-motion and visual cues are established in that room. The key question366

is whether or not a new representation for the subsequently entered room B will367

be formed, despite its identical visual appearance with room A (note that in368

the following we refer to any initially experienced room as room A, indepen-369

dently on which actual room was visited first in the simulations). Results from370

the previous section suggest that a weaker control of visual cues combined with371

synaptic plasticity leads to the formation of a new representation. To verify this372

hypothesis, we run our model in the conditions of Carpenter et al. experiment,373

and we progressively (i.e. session by session) decreased the strength of the374

hippocampal-entorhinal feedback loop (without disabling synaptic plasticity).375

As the feedback strength controls the influence of visual input in our model, we376

expected that this procedure will result in the construction of a global represen-377

tation on the level of grid cells when the strength of the loop is sufficiently low.378

This was indeed the case as the global fit was high when the loop strength was379

set to low values (small α), and, conversely, the local fit was high for a strong380

loop (Figs. 7B,C, both of these measures were calculated in the same way as in381

the study by Carpenter et al., 2015, see also Appendix).382

The local representation in early sessions is a consequence of the fact that383

only a representation of one room is learned, so that once the model rat enters384

the second room, grid-cells activities are quickly reset by vision to the represen-385

tation of the first (or, in terms of Skaggs and McNaughton (1998), the represen-386

tation of room A is “instantiated” upon the entry to the room B). In this case387

both MPCs and CPCs had identical firing fields in the two rooms (Fig. 8A).388

This was quantified in the model by computing the spatial correlation between389

place fields of each cell in the two rooms (correlation of 1 corresponds to iden-390

tical place fields). On the level of the whole population, the mean place-field391

correlation is high for a strong feedback loop (early sessions, large α, Fig. 8B).392

The transition to a global representation in later sessions results from newly393
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formed synaptic associations between MPCs in CA3 (that are under a strong394

influence of self-motion input from grid cells), and CPCs in CA1 that are driven395

by vision. Synaptic plasticity at these connections is favored by a decreased396

hippocampal input to the EC, leading to a stronger reliance on self motion (late397

sessions, small α, Fig. 8B). The development of such a new representation is398

reflected in lower place-field correlation on the level of MPCs and CPCs (late399

sessions, small α, Fig. 8B). Note that purely vision-driven VPCs always have400

identical place fields in the two environments (not shown).401

To summarize, the results of both the merged-room experiment of Wernle402

et al. (2018) and the double-room experiment of Carpenter et al. (2015) can be403

explained by the same model under two assumptions: First, synaptic plasticity404

is slow or inhibited when rats are placed into the merged room after learning405

in room A and B, but not when the rats are exposed to a stable double-room406

environment; Second, the control of visual cues progressively decreases in a fa-407

miliar environment in the course of daily sessions (this requirement is crucial408

to reproduce the result of the second experiment, but, according to our simula-409

tions, has only a weak effect in the first). What could be the explanation for the410

inhibition of learning in the merged-room, as opposed to continuous learning in411

the double-room experiment across daily sessions? Analysis of our model offers412

the following possible explanation: In early sessions of the double-room exper-413

iment, a large mismatch between visual (i.e. encoded in VPC activities) and414

self-motion (encoded by MPC activities) input occurs at the moment of entry415

to, or exit from, the room B, since the population activity of VPSs “jumps”416

to reflect the room A cues or the corridor cues, respectively. This jump of417

population activity can be quantified by the drop in correlation between the418

projections of VPCs and MPCs in CA3 onto the CPCs in CA1 near the room419

doors (Fig. 9A). In contrast, the mismatch is smaller for the merged-room ex-420

periment, since the visual and self-motion cues near the removed wall code for421

similar spatial positions (Fig. 9B). Therefore, it is possible that learning across422

sessions is regulated by the size of the mismatch between visual and self-motion423

cues. Note that statistical characterization of the mismatch in Fig. 9 required424
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averaging over many experimental runs and even in our idealized model can not425

be reliably detected online. This could be a possible reason why building of a426

global environment representation in Carpenter et al. experiment takes many427

days. We thus propose that CA1 area or, more likely, its output structures im-428

plement a mismatch detection process that can regulate hippocampal synaptic429

plasticity on the time scale of days (see below).430

4. Discussion431

Our model is based on two main assumptions: that of a loop-like dynamics in432

the entorhinal-hippocampal network, and that of an independent visual place-433

cell representation formed on the basis of hippocampal inputs other than grid434

cells. Place cells in the CA1 area receive spatially organized inputs from grid435

cells via direct projections from mEC layer III and via perforant path projections436

from layer III via DG and CA3. Isolating direct feedforward mEC input to CA1437

only weakly affect place-sensitive activity in CA1 suggesting that mEC inputs438

are sufficient for the establishment of representation in this area (Brun et al.,439

2002). Isolating only indirect projections resulted in noisier CA1 place fields440

that formed although relatively impaired but still stable spatial representations441

(Brun et al., 2008). These results suggest a complementary role of both the442

direct and indirect pathways for spatial coding in the CA1. Place cells in CA1443

project back to the entorhinal cortex both directly and via subiculum (Naber444

et al., 2001, Kloosterman et al., 2003, Slomianka et al., 2011) and hippocampal445

input is necessary for grid cell activity (Bonnevie et al., 2013), supporting the446

loop-like structure of entorhinal-hippocampal interactions (Iijima et al., 1996).447

That a subset of hippocampal place cells can form spatial representations448

independently from grid cells is supported by the evidence showing that place449

fields can exist before the emergence of the grid cell network in rat pups (Mues-450

sig et al., 2015) and that the disruption of grid cell activity in adult rats does451

not prevent the emergence of place fields in novel environments (Brandon et al.,452

2014). These grid-cell independent place fields retain all principal properties453
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of a self-organized representation in control animals: it can be learned in new454

environments, it is stable over time, and independent maps are established in455

different rooms (Rueckemann et al., 2016, Schlesiger et al., 2018). These data456

suggest that some place cells rely mostly on grid-cell input, likely representing457

self-motion-based spatial signals, while other place cells preferentially use other458

sensory information to form spatial representation in a self-organized manner.459

This separation of place cells depending on their principal source of sensory input460

is also supported by observations showing that in virtual environment subsets of461

place cells are differentially responsive to sensory manipulations: during passive462

movement 25% of cells keep their firing fields unchanged; 20% of cells do change463

their firing patterns when all visual cues are turned off; most of the cells are464

modified to various degrees by cue manipulations (Chen et al., 2013), see also465

Markus et al. (1994). Moreover, recent evidence suggests that CA1 cells respon-466

sive to visual and self-motion input are anatomically separated: place cells more467

responsive to self-motion cues are located predominantly in superficial layers of468

CA1, while those more responsive to visual cues are found in deep layers (Fat-469

tahi et al., 2018), see also Mizuseki et al. (2011). It was also recently shown that470

CA1 cells in deep and superficial layers receive stronger excitation from mEC471

and lEC, respectively, with the amount of excitation being also dependent on472

the position of the neurons along the longitudinal hippocampal axis (Masurkar473

et al., 2017). These data further support the existence of functionally differ-474

ent subsets of place cells in CA1, that can either be inherited from similarly475

segregated cells in CA3 or to be formed directly from lEC inputs to CA1.476

Our model is constructed to reflect the above data in a simplified way. While477

the neural basis for the aforementioned grid-cell-independent code is not clear,478

we conceptualized it by a population of VPCs, which learn subsets of visual fea-479

tures corresponding to a particular location using simple competitive learning480

scheme. Similarly to experimental data described above, VPCs form a sta-481

ble and independent code for different environments as long as visual cues in482

these environments are stable. It is likely that such a code is formed inside the483

hippocampus itself based on the inputs either from parietal-cingulate network484

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2019. ; https://doi.org/10.1101/602235doi: bioRxiv preprint 

https://doi.org/10.1101/602235
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Byrne et al., 2007, Bicanski and Burgess, 2018), or from lEC input (Schlesiger485

et al., 2018), since no location-sensitive code was observed directly upstream486

of the hippocampus (but see Mao et al., 2017). While in its current version487

our model assumes that VPCs are learned in CA3 and transmitted to CA1, the488

model can be modified to implement competitive learning in CA1 directly on vi-489

sual inputs from lEC, bypassing CA3. Our self-motion based code in GC-MPC490

populations is based on internal attractor dynamics and does not in principle491

require place-cell input, contrary to experimental data (Bonnevie et al., 2013).492

However, this dependence can be included in the model by adding strong inhi-493

bition to the grid cell layer, such that a nonspecific excitatory drive from CA1494

were required for grid-cell activities (Bonnevie et al., 2013). Such a modification495

of the model will not significantly change any of the present results.496

Main conclusions from our modeling results are twofold. First, the con-497

struction of a global representation in the double-room experiment requires a498

diminished control of visual cues over path integration, translated in the model499

by decreasing the strength of the hippocampal input to the EC. By slowing500

down the dynamical correction of GCs and MPCs by vision, it allows synaptic501

plasticity to form new associations between visual representations (encoded in502

VPC activity) and CA3-mediated representations at the level of CA1, and to503

disambiguate the two rooms. Thus, in our model, synaptic plasticity at CA3-504

CA1 synapses is crucial for the formation of new representations in visually505

identical environments. Ultimately, the construction of this representation is506

determined by relative time scales of two processes: (i) correction of path inte-507

gration by visual cues using network dynamics, and (ii) synaptic plasticity at508

Schaffer collaterals. Second, the fact that rats learn a global representation in509

the double-room, but not in the merged-room experiment is explained in the510

model by a strongly reduced or inhibited synaptic plasticity in the latter case.511

Indeed, under the hypothesis that grid cells express hexagonal patterns as a512

consequence of attractor dynamics with circular weight matrices (McNaughton513

et al., 2006), translocation of grid fields at the center of the environment must514

result from dynamic correction mechanisms, since synaptic plasticity between515
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place-cell and grid-cell networks will necessarily lead to the emergence of a co-516

herent (global) grid-cell representation. If this explanation is correct, then what517

could be the mechanism that regulate synaptic plasticity differently in the two518

cases? One possibility suggested by the analysis of the model is that such a519

regulation mechanism can act on the basis of a mismatch between visual and520

self-motion representations. On the level of population activity, a high degree of521

mismatch corresponds to incoherent ”jumps” of visual representation caused by522

visual aliasing, relative to the representation formed by path integration. While523

these jumps are reflected in the distribution of synaptic inputs to modeled CA1524

cells in our model (Fig. 9), the fact that learning of a global representation in525

real animals takes many days (Carpenter et al., 2015) suggests that detection526

of this mismatch may involve memory consolidation mechanisms (Skaggs and527

McNaughton, 1996, Girardeau et al., 2009, Benchenane et al., 2010).528

A number of experiments studied place fields dynamics in environments529

consisting of two or more visually identical compartments (Skaggs and Mc-530

Naughton, 1998, Tanila, 1999, Fuhs et al., 2005, Paz-Villagrán et al., 2006,531

Spiers et al., 2015, Grieves et al., 2016). The objective of these experiments532

was to check whether path integration can be used to distinguish between com-533

partments and to assess the extent to which visual cues control path integration534

information. Earlier experiments provided evidence for a partial (Skaggs and535

McNaughton, 1998) or a nearly complete (Tanila, 1999) remapping when rats536

travelled between two similarly looking compartments, suggesting that path in-537

tegration can be used to distinguish between them. A major difference between538

experimental setups in these latter experiments was that the two compartments539

in Skaggs and McNaughton (1998) were oriented in the same way, whereas in540

Tanila (1999) there was a 180◦ difference in their orientation. A follow-up ex-541

periment (Fuhs et al., 2005) has demonstrated a key role of angular, but not542

linear, path integration in complete remapping observed by Tanila et al. 1999.543

However, Fuhs et al. did not observe partial remapping in conditions very simi-544

lar to those of Skaggs and McNaughton (1998), as most cells had identical place545

fields in the two compartments. More recent experiments with multiple visually546
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identical compartments confirmed the importance of angular path integration547

for remapping (Spiers et al., 2015, Grieves et al., 2016, see also Paz-Villagrán et548

al., 2006), and suggested that a long amount of time (about 2-3 weeks) is nec-549

essary to build separate representations for visually identical rooms connected550

by a corridor (Carpenter et al., 2015).551

In our simulations, we assumed that the animals head direction system pro-552

vides a correct orientation information (i.e. relative to an arbitrary fixed refer-553

ence orientation) at any moment in time, and so the visual input to the model is554

always aligned to the common directional frame in all environments (in the ex-555

periment of Carpenter et al. a common directional frame could be provided by556

the corridor cues, whereas it was provided by distal extramaze cues in Wernle557

et al. experiment). As a result of competitive learning, synapses to a visual558

place cell learn visual cues observed at a location where this cell was recruited.559

Therefore, a place is visually “recognized” (i.e. visual place cells strongly fire) if560

the previously learned visual cues are observed in the same allocentric direction561

(independently of any path integration signal). If, however, the same visual cues562

are observed at a very different orientation (e.g. is a room is rotated 180◦) visual563

place cells will not be activated (unless visual cues are rotationally symmetric),564

and new cells will be recruited to represent this environment, in agreement with565

Fuhs et al. (2015) study. At smaller rotation angles, the model predicts that566

place cells will be activated to a higher degree, depending on the autocorre-567

lation width of the learned visual snapshots (Grieves et al., 2016). That the568

head direction system can maintain a fixed orientation in the presence of visual569

cue rotation is supported by experimental evidence (Jacob et al., 2017, see also570

Paz-Villagrán et al., 2006).571

The ability (or inability) of the hippocampal representations to express par-572

tial remapping has been discussed in view of the multichart model (McNaughton573

et al., 1996, Samsonovich and McNaughton, 1997). This model predicted that574

if rats could learn room identities despite their similar visual appearance, place-575

field representations of the two rooms would be orthogonal (different charts are576

active in different rooms), whereas they would be identical in the opposite case577
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(the same chart is active in both rooms). Partial remapping observed by Skaggs578

and McNaughton (1998) contradicted this hypothesis, as some cells had identi-579

cal fields in the two rooms, while other cells and different place fields, suggesting580

that two charts could be active at the same time. In similar conditions Fuhs581

et al. (2005) observed no partial remapping for unclear reasons, but suggested582

that the map of one compartment was somehow “extended” to the second one,583

instead of loading a new map. Our results contribute to this question in two584

ways. First, we argued that a learning of new representation is under control of585

a putative neural mismatch detection mechanism. In the experimental condi-586

tions of the two above studies, the largest amount of mismatch occurs upon the587

door crossing, and so the number of door crossings experienced by the rat may588

be an important parameter with respect to learning. While in Skaggs and Mc-589

Naughton (1998) the rats were freely moving between the compartments during590

a trial, in Fuhs et al. (2005) the number of transitions between rooms was lim-591

ited to 2 per trial, potentially affecting the results. Second, our results provide592

a neuronal mechanism for the map observed map extension, i.e. progressive593

learning of a global representation.594

Our results lead to a number of testable predictions. First, VPC in the595

model acquire representation of only one compartment (among two or more596

identically looking ones). We thus predict that a subset of place cells, that do597

not rely on self-motion signals (e.g. such as those observed in Chen et al., 2013)598

and potentially located in the deep sublayer of CA1 pyramidal layer (Fattahi599

et al., 2018), will persist through learning and will have repetitive place fields600

even when a global representation has been learned. Second, learning of separate601

neuronal representations of different compartments (i.e. progressive remapping)602

will be require the formation of new associations between CA3 cells and CA1603

cells preferentially from the superficial sublayer of pyramidal cells. Third, place604

cells that will remap first should have place fields close to the door, since for these605

cells the difference between visual and motion-based inputs is largest. Finally,606

as the width of the low-correlation band (Fig. 6D) is proposed to be related607

to the strength of the visual cue control over path integration, it is predicted608
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that stronger reliance on path integration will result in a wider band. This609

might occur for example in aged animals, in which a stronger reliance on path610

integration (or, conversely, an weaker control by visual cues) has been observed611

(Tanila, 1999, Rosenzweig et al., 2003).612
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Appendix616

Visual input617

The artificial retina was modeled as a rectangular grid of Gabor filters uni-618

formly covering the panoramic cylindrical camera with visual field 160◦ x 360◦.619

At each location of the grid, 4 filters of different orientations were used. We620

used two spatial frequencies for all the filters (180 Hz, 72 Hz) chosen so as to621

detect visual features of simulated environments. Activities of all Gabor filters622

were computed by the convolution with the input visual image at each time623

step. Filter activities were then aligned with a common allocentric directional624

frame, such that if the model rat rotated without changing its spatial position,625

the activities of aligned filters would stay constant.626

Virtual environments627

Virtual environments for the three simulations presented in this paper were628

developed with Unity (www.unity3d.com). In Simulation 1 (Figs. 2 and 3) the629

environment was a rectangular room 2×1 m with featureless gray walls. In630

Simulation 2 (Figs. 4-6), the experimental room was modeled as a square arena631

2×2 m. During training, it was separated into two rooms by a wall at the632

center of the environment. The experimental arena was located inside a bigger633

environment (4×4 m) with four salient visual cues (large circles) on each wall.634

In Simulation 3 (Figs. 7-8), the environment consisted of two identical rooms635

1×1 m connected by a corridor (0.5×2 m).636
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Simulation details637

In all three simulations, VPCs were learned from the simulation environment638

before the training of the place cells and grid cells. Model parameters are listed639

in Table 1.640

Parameter Value

α 0.03 (Sim. 1), decreasing from 0.04 to 0.005 (Sim. 2, 3)

ηavivpc 0.01

ηvpccpc ,ηmpccpc , ηcpcgc ,ηgcmpc 0.0025

Evpc 15%

Empc 20%

Ecpc 30%

θ 0.75

Table 1: Parameters of the model.

Simulation 1641

Training. The model was trained for about 25 minutes (15000 time steps)642

by moving quasi-randomly in the experimental room.643

Testing. Synaptic weights were fixed, and activities of all the cells in the644

model were recorded in the following three experimental conditions. In the645

‘light’ condition the full model was run to randomly explore the environment.646

In the ‘passive translation’ condition, the velocity vector input to the grid cell647

populations was set to (0, 0). In the ‘dark’ condition, the model was run with648

visual cues turned off (uniform gray images were presented as visual input).649

Next, the trained model was run to cross the environment from left to right in650

‘light‘ and ‘dark‘ conditions as before, but with the speed gain in the grid cell651

populations modulated as described in the Results.652

Simulation 2653

Training. The model was trained separately in rooms A and B for 30 min-654

utes, and synaptic weight were fixed to the learned values.655
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Testing. In the main experiment, neural activities were recorded while the656

model rat randomly explored the merged room for 1 h. In the experiment testing657

the influence of plasticity, synaptic weights were updated while the model rat658

additionally explored the merged room for 1h. In the experiment testing the659

influence of the strength of the feedback loop, the model rat was run in the660

merged room for 20 trials per each value of α, ranging from 0.005 to 0.04. To661

average data, 4 testing trials were run in each condition.662

Sliding correlation. The sliding correlation heat maps for grid-cell firing663

patterns were calculated as described in Wernle et al. (2018). The size of the664

sliding correlation window was defined based on the grid spacing of the cell.665

The window moved from the top left to the bottom right corner in the grid field666

maps of the environment A|B (i.e. before the wall removal) and AB (i.e. after667

the wall removal). At each window location, the portion of the grid maps in668

the environments A|B and AB, outlined by the sliding window, were correlated669

with each other.670

Displacement vector analysis. Displacement vectors were calculated as de-671

scribed in Wernle et al. (2018). To obtain a displacement vector for one grid cell,672

the experimental environment was divided into 4×4 blocks (50×50 cm each).673

In each block, the vector corresponding to the shift of grid fields in the environ-674

ment AB relative to that in the environment A|B was calculated. The vectors675

were sorted into the corresponding blocks based on the grid field location in676

the training environment and the mean over all vectors was computed. To an-677

alyze displacement vector lengths, the environment was divided into 8×8 bins.678

The vectors were then sorted into the corresponding bins based on the original679

grid field location in the training environment, and the mean vector length was680

computed.681

Simulation 3682

Training. At the beginning of each training session, the model was placed683

into the center of the corridor and then explored the complete environment684

quasi-randomly for 1 h. In subsequent training sessions, the strength of the685
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feedback loop α decreased from 0.04 (first session) to 0.005 (last session) with686

step 0.005.687

Testing. After each training session, the weights were fixed and neural activ-688

ity was recorded. In order to average the results, the experiment was repeated689

20 times for each value of α.690

Global and local fits. The firing rate maps of modeled grid cells were fit with

ideal local and global grid patterns using the procedure described in Carpenter

et al. (2015). First, grid spacing was identified by correlating the firing pattern

with 30 ideal firing grids. Each ideal grid pattern is a product of three cosine

gratings

f(~x) = A[1 + cos(k1(~x+ ~c))][1 + cos(k2(~x+ ~c))][1 + cos(k3(~x+ ~c))]

with peak firing rate A, wave vectors ~k1, ~k2 and ~k3 and phase offsets ~c = (cx, cy).691

The wave vectors are defined as ~k = ( 2π
λ cos(ϕ), 2πλ sin(ϕ)), where λ =

√
3
2 G is692

the grating wave length, G is the grid spacing and ϕ is the grid orientation. The693

30 ideal grid patterns were created with grid spacing evenly distributed between694

30 and 170 cm. Since the grid orientation in the model is set to 7.5◦, ϕ in the695

three wave vectors is equal to 7.5◦, 127.5◦ and 247.5◦, respectively. Spatial696

cross-correlograms were computed between the recorded firing rate map and697

the ideal grid patterns over a range of spatial phase offsets. The grid spacing of698

the recorded firing pattern is then set to that of the ideal grid pattern with the699

highest correlation. Second, a local and global fit with the identified grid spacing700

was computed for the recorded firing rate map. The local fit was performed using701

two grid patterns (one per room) with the same phase offset. The global fit was702

performed using only one grid pattern with continuous phase across the two703

rooms. The Pearson product-moment correlation between the recorded firing704

rate map and the local and global grid patterns were computed over a range705

of phase offsets. The highest correlation with the local and global model was706

identified as the value of local and global fit, respectively.707
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Figures921

Figure 1: Schematic representation of the model. Self-motion input is integrated in the grid
cell populations of the medial EC, and via competitive interactions results in a self-motion-
driven space representation in CA3 (encoded by the MPC population). Visual input, coming
via the lEC, results in a purely vision-based representation in CA3, encoded by the VPC
population. Both MPCs and VPCs project to CA1 where the conjunctive representation of
location is encoded in the CPC population. The projection from CPCs in CA1 back to the
mEC closes the dynamic hippocampal processing loop and the strength of this projection is
determined by the parameter α. The full arrows represent the information flow in the network.
The dashed arrow represents an alternative way to model visual input processing. The DG is
not modeled.
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Figure 2: Multisensory integration in modeled place cells. A. An example of the trajectory
of the modeled animal in a rectangular environment (top) and the visual input to the model
(bottom) from the location marked by the red dot. In the bottom plot, the dots represent
the grid of Gabor filters, and lines represent the orientations of most active filters. Visual
input at each location is independent from head direction. B. Firing fields of VPCs (top row),
MPCs (middle row) and CPCs (bottom row) in simulated ‘light’ condition (left column),
‘dark’ condition (middle column) and passive translation (right column). C. Trajectories of
model animal crossing the rectangular environment from left to right. The red dots denote
the starting positions. D. When the model rat crosses the environment from left to right,
self-motion position estimate (dotted circle) is behind the visual position estimate (full circle)
in the conditions of decreased speed gain, leading to a forward-shift of receptive fields. E,F.
Forward-shift of receptive fields in the population of CPCs (top) and MPCs (bottom). Full
red lines represent the mean shift in the population. Dashed red lines represent the shift due
to purely self-motion input.
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Figure 3: Multisensory integration in grid cells. A. The speed gain was transiently decreased
to 3/4 of the normal gain when the model animal approached the portion of the environment
marked by the dotted lines. B. An example of firing pattern of a grid cell in the conditions
of normal speed (top) and with transiently decreased speed gain (middle). The black and
red circles represent the centers of firing fields in the baseline condition and during decreased
gain, respectively. The shift of firing fields is quantified by displacement vectors shown by the
black arrows (bottom). C. Color map of the mean displacement vector lengths in different
portions of the environment. D. Color map of mean sliding correlation over all grid cells.
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Figure 4: Simulation of the merged-room experiment of Wernle et al. (2018). A. The training
environment with two separate rooms, referred to as room ‘A|B’, and the testing environment,
referred to as merged room ‘AB’. B. Firing fields of an example grid cell in the training (left)
and testing (middle) environments, as well as firing-field displacement vectors calculated in
the testing environment (right). C. A color map of mean vector lengths. D. Top plot: A color
map representing the mean sliding correlation over all grid cells. Bottom plot: the correlation
profiles at the center of the environment along two cardinal directions.
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Figure 5: Place fields in the merged-room experiment. A. Left: receptive fields of two VPCs
in the training and testing environments, either close to the removed wall (top) or distal
from it (bottom). Middle: displacement vectors of the cells on the left. Right: color map of
displacement vector lengths for all cells (top) and all displacement vectors with their mean
direction shown in red (right). B,C. Receptive fields and displacement vectors for MPCs (B)
and CPCs (C). Refer to A for details.
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Figure 6: Influence of plasticity and dynamics on grid patterns in the merged-room experi-
ment. A,B. Displacement vectors (top) and corresponding sliding correlation maps (bottom)
of two example grid cells after learning in the merged room. C. Averaged over many grid
cells, sliding correlation maps can result in different mean correlation patterns. D. Correla-
tion profile for different values of the the strength α of the hippocampal feedback loop.
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Figure 7: Simulation of the double-room experiment of Carpenter et al., 2015. A. Top view
of the experimental environment. B. Local fit (left) versus global fit (right) during early (top)
and late (bottom) sessions for two example grid cells (rows). C. Population estimates of the
local fit (red) and global fit (black) as a function of session number (the value of α decreased
from 0.04 to 0.005 across sessions).
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Figure 8: Evolution of place fields in the double room experiment. A. An example of MPC
(top) and CPCs (bottom) place field during early learning sessions (left column, high α) and
late sessions (right column, low α). In early sessions a majority of place cells have similar
place fields in the two rooms, whereas in late sessions a majority of place cells have a place
field only in one of the rooms. B. Spatial correlation between place fields of a cell in the two
rooms, averaged over all place cells, as a function of session number (or, equivalently, as a
function of decreasing value of α.
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BA

Figure 9: Mismatch between the visual and self-motion representations in the double-room
(A) and merged-room (B) experiments. The colors denote the correlation between VPCs and
MPCs projections onto the CPS population.

43

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2019. ; https://doi.org/10.1101/602235doi: bioRxiv preprint 

https://doi.org/10.1101/602235
http://creativecommons.org/licenses/by-nc-nd/4.0/

