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Abstract

Hippocampal place cells and entorhinal grid cells are thought to form a represen-
tation of space by integrating internal and external sensory cues. Experimental
studies show that different subsets of place cells are controlled by vision, self-
motion or a combination of both. Moreover, recent studies in environments
with a high degree of visual aliasing suggest that a continuous interaction be-
tween place cells and grid cells can result in a deformation of hexagonal grids
or in a progressive loss of visual cue control. The computational nature of such
a bidirectional interaction remains unclear. In this work we present a neu-
ral network model of a dynamic loop between place cells and grid cells. The
model is tested in two recent experimental paradigms involving double-room
environments that provide conflicting evidence about visual cue control over
self-motion-based spatial codes. Analysis of the model behavior in the two ex-
periments suggests that the strength of hippocampal-entorhinal dynamical loop
is the key parameter governing differential cue control in multi-compartment
environments. Construction of spatial representations in visually identical envi-
ronments requires weak visual cue control, while synaptic plasticity is regulated

by the mismatch between visual- and self-motion representations. More gener-
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ally our results suggest a functional segregation between plastic and dynamic
processes in hippocampal processing.
Keywords: place cells, grid cells, multisensory combination, hippocampus,

computational model, neural network

1 1. Introduction

2 It has long been accepted that spatial navigation depends crucially on a
s combination of visual and self-motion input (O’Keefe and Nadel, 1978). Since
4+ the seminal work of O’Keefe and Dostrovsky (1971), a neural locus of this com-
s bination is thought to be the place cell network in the CA1-CA3 subfields of the
s hippocampus proper (O’Keefe and Speakman, 1987, Muller and Kubie, 1987,
7 Knierim et al., 1998, Jayakumar et al., 2018), with different subsets of place cells
s sensitive to self-motion cues, to visual cues or, more often, to a combination of
o them (Markus et al., 1994, Chen et al., 2013, Fattahi et al., 2018). A more
w recent discovery of grid cells in the medial entorhinal cortex led to the sugges-
un  tion that the grid-cell network provides a self-motion-based representation of
12 location that is combined with other sensory information on the level of place
13 cells (Fyhn et al., 2004, McNaughton et al., 2006, Hayman and Jeffery, 2008,
1= Cheng and Frank, 2011). The grid-cell representation is itself vision-dependent,
15 since various properties of grid cells are affected by changes in visual features of
16 the environment (Hafting et al., 2005, Krupic et al., 2015). Combined with the
17 evidence showing that coherent changes in place-cell and grid-cell representa-
18 tions occur during environment deformation and cue manipulation, these data
19 suggest a bidirectional interaction between these representations at the neural
2 level (Fyhn et al., 2007). While this bidirectional link is always present in nor-
21 mal conditions, it may not be necessary for place cell activities, as shown in a
» number of lesion experiments (Sasaki et al., 2015, Schlesiger et al., 2018).

2 The nature of the dynamic interaction between visual and self-motion cues
2 on the level of grid cells has recently been tested in two experiments: in a

»s  merged room, formed by removal of a wall separating two visually similar en-
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s vironments (Wernle et al., 2018), and during exploration of an environment
2 consisting of two identical rooms connected by a corridor (Carpenter et al.,
22 2015). Results of the first experiment have shown that firing patterns of grid
2 cells were anchored by local sensory cues near environmental boundaries, while
s they underwent a continuous deformation far from the boundaries in the merged
a1 room, suggesting a strong control of local visual cues over grid-cell represen-
2 tation (Wernle et al., 2018). Results of the second experiment indicated in
;3 contrast that during learning in a double-room environment grid cells progres-
u  sively formed a global self-motion-based representation disregarding previously
55 learned local cues (Carpenter et al., 2015).

3 Existing models of the entorhinal-hippocampal system are mostly based on
s the feed-forward input from grid cells to place cells, with an additional possi-
s bility to reset grid-field map upon the entry to a novel environment (Solstad
s et al.; 2006, O’Keefe and Burgess, 2005, Blair et al., 2008, Sheynikhovich et al.,
w2009, Pilly and Grossberg, 2012), or focus on the feed-forward input from place
s cells to grid cells (Bonnevie et al., 2013). In addition to be at difficulty at
2 explaining the above results on dynamic interactions between visual and self-
4 motion cues, they are also not consistent with data showing that hippocampal
w spatial representations remain spatially tuned after MEC inactivation (Brun
s et al., 2008, Rueckemann et al., 2016) and that in pre-weanling rat pups, place
« fields can exist before the emergence of the grid cell network (Muessig et al.,
« 2015). Moreover, disruption of grid cell spatial periodicity in adult rats does not
s alter preexisting place fields nor prevent the emergence of place fields in novel
w0 environments (Koenig et al., 2011, Brandon et al., 2014).

50 In this paper we propose a model of continuous dynamic loop-like interaction
51 between grid cells and place cells, in which the main functional parameter is the
s feedback strength in the loop. We show that the model is able to explain the
53 pattern of grid-cell adaptation in the two experiments by assuming a progressive
s« decrease of visual control over self motion, and a plasticity mechanism regulated

ss by allothetic and idiothetic cue mismatch over a long time scale.
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s 2. Model

57 This section presents main neuronal populations in the model and their
ss interactions. Further technical details and model parameters are given in the
s Appendix.

60 The rat is modeled by a panoramic visual camera that is moving in an envi-
s ronment along quasi-random trajectories resembling those of a real rat (Fig. 2A,
2 top). The orientation of the camera corresponds to the head orientation of the
s model animal. The constant speed of the modeled rat is set to 10 cm/s, and
s« sampling of sensory input occurs at frequency 10 Hz, roughly representing hip-
s pocampal theta update cycles. The modeled rat receives two types of sensory
o input (Fig. 1). First, self-motion input to the model is represented by angu-
e lar and translational movement velocities integrated by grid cells in the medial
s entorhinal cortex (mEC) to provide self-motion representation of location, as
o0 proposed earlier (McNaughton et al., 2006). Competitive self-organization of
7 grid cell output occurs downstream from the entorhinal cortex in the dentate
7 gyrus (DG) - CA3 circuit and gives rise to a self-motion-based representation
2 of location, encoded by motion-based place cells (MPC). We did not include a
73 specific neuronal population to model DG (de Almeida et al., 2009a). Instead,
7« we implemented competitive learning directly on mEC inputs to CA3. Second,
7 visual input is represented by responses of a two-dimensional retina-like grid
7 of orientation-sensitive Gabor filters, applied to input camera images at each
77 time step. For instance, in featureless rectangular rooms used in most of the
7 simulations below, the only features present in the input images are the outlines
79 of the environment walls (Fig. 2A, bottom). Importantly, the ‘retinal’ responses
so are assumed to be aligned with an allocentric directional frame further along
s the dorsal visual pathway (not modeled), the directional frame being set by
2 head direction cells (Byrne et al., 2007, Sheynikhovich et al., 2009, Bicanski
&z and Burgess, 2018). That is, visual input to the model at each spatial location
s« is independent on the head direction that the model rat has upon arriving at

s that location. The visual input aligned with an allocentric directional frame is
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s assumed to be encoded in the inputs to the hippocampal formation from the
& lateral entorhinal cortex (IEC). Competitive self-organization of these inputs
s results in a purely vision-based representation of location, encoded by a pop-
s ulation of wisual place cells (VPCs). Both MPCs and VPCs project to CAl
o cells that form a conjunctive representation of location in conjunctive place cells
a (CPCs). The principal novelty of the model is that CPCs in CA1 project back to
o the entorhinal grid cells and thus form a recurrent loop, reflecting the anatomy

o3 of entorhinal-hippocampal connections (Iijima et al., 1996).

w Integration of visual and self-motion input by grid cells

% The self-motion input is processed by 5 identical neuronal populations rep-
o resenting distinct grid cell populations in the dorsal mEC (Hafting et al., 2005).
o Each grid cell population can be represented as a two-dimensional sheet of neu-
e rons equipped with attractor dynamics on a twisted-torus topology, as has been
o proposed in earlier models (Guanella et al., 2007, Sheynikhovich et al., 2009,
wo Burak and Fiete, 2009). The position of an attractor state (or activity packet)
1w in each grid cell population is updated based on the self-motion velocity vector.
102 This is implemented by the modulation of recurrent connection weights between
w3 grid cells according to the model rat rotation and displacement, such that the
14 activity bump moves across the neural sheet according to the rat movements
s in space (Guanella et al., 2007). The only difference between grid-cell popu-
s lations is that the speed of movement of the activity bumps across the neural
w7 sheet is specific for each population, resulting in population-specific distance
s between neighbouring grid fields and field size (Hafting et al., 2005). As long
we as each location in an environment corresponds to a distinct combination of
o positions of the activity packets, population activity of all grid cells encodes the
ur  current position of the animal in the environment (Burak and Fiete, 2009). The
2 exact implementation of the attractor mechanism governing grid-cell network
u3  dynamics is not essential for the model to work.

114 In addition to the recurrent input from grid cells in the same population,

us each grid cell receives input from the CPC population which represent con-
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us  junctive visual and self-motion representation (described in detail later), and
w7 the relative strength of these two inputs is controlled by the parameter c. At
us a relatively high value of this parameter, grid-cell attractor dynamics in each
o layer is strongly influenced by the hippocampal input, leading to an overall
10 stronger effect of visual information. At a low value of «, the grid-cell dynamics
1 is governed almost exclusively by self-motion input.

122 Thus, the total synaptic input to a grid cell ¢ at time ¢ is (omitting grid cell

13 population index for clarity)

Lye(t,i) = alghe(t,i) + (1 — a)IJ:(t, 1) (1)

12« where the external input from CPC and recurrent inputs from other grid cells

s are determined by

MNepe

Icpc t Z Z A('p(' - 17J)W;(Z')c(t727])
nge (2)
I95(t, 1) ZAQC — L k)WJe(t,i, k)

s Here, Agpc(t,j) is the activity of j-th CPC at time t (described below) and
wr Age(t,k) = I,e(t, k) is the activity of k-th grid cell (we use linear activation
s function for grid cells).
Feedforward synaptic connections from CPCs are initialized by random val-
ues and updated during learning according to a standard Hebbian learning
scheme:

Wgee(t,i,5) = Wae(t = 1,4, 5) + nge Age(t, 1) Acpe(t, 1) (3)

19 followed by explicit normalization ensuring that the norm of the synaptic weight
1w vector of each cell is unity (a neurally plausible implementation of the normal-
11 ization step can be implemented by a change in the learning rule (Oja, 1982)).
132 Recurrent synaptic connections between grid cells are constructed such as to
133 ensure attractor dynamics, modulated by velocity vector (Guanella et al., 2007).
13« More specifically, the connection weights between cells ¢ and j is a Gaussian

135 function of the distance between these cells in the neural sheet. This connection
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s weight is modulated by the self-motion velocity vector, such that the activity
137 bump moves across the neural sheet according to the direction and norm of
s the velocity vector, with a proportionality constant that is grid-cell population
130 specific. These proportionality constants were tuned such that the grid spacing
uo across different grid cell populations were between 42 cm and 172 cm. Grid-
w cell firing patterns were oriented 7.5° with respect to one of the walls of an

12 experienced experimental enclosure (Krupic et al., 2015).

ws  Fncoding of visual and self-motion input by place cells

144 As mentioned above, the model includes three distinct populations of place
us  cells (Fig. 1). First, VPCs directly integrate allocentric visual inputs, presum-
us ably coming from IEC and project further to CA1l. We putatively assign VPC
w7 population to CA3 where a competitive mechanism based on recurrent feedback
ug  can result in self-organization of visual inputs, the resulting spatial code further
1o transmitted to to CAl. The model of this pathway is based on the evidence that
150 stable spatial representations were observed in CA1 after complete lesions of the
151 mEC containing grid cells (Brandon et al., 2014, Schlesiger et al., 2018). Second,
12 MPCs directly integrate input from grid cells and in the absence of visual inputs
153 the activity of these cells represents purely self-motion-based representation of
15« location. These cells represent CA3 place cells, acquiring their spatial selectivity
155 via a competitive mechanism based on mEC inputs (de Almeida et al., 2009a).
156 Third, CPCs that model CA1 pyramidal cells, combine visual and self-motion
17 inputs coming from VPC and MPC populations, respectively. Crucially, CPCs
158 project back to the grid cell populations, modeling anatomical projections from
10 CA1 back to the entorhinal cortex forming a loop (Iijima et al., 1996, Slomianka
wo et al., 2011) and controlled by the parameter « as described above.

161 Vision-based place cells. VPCs acquire their spatial selectivity as a result
12 of unsupervised competitive learning implemented directly on allocentric visual
163 inputs, represented by Gabor filter activities aligned to an allocentric directional
e frame (see Appendix). As a result of learning, different cells become sensitive to

165 constellations of visual features observed from different locations (independently
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s from head direction).

The total input to a VPC i at time t is given by

Navi

Lipe(t,4) ZAW t, ) Wige(t, i, 7) (4)

e where Agqi(t,j) is the activity of j-th Gabor filter aligned with the allocen-
s tric directional frame. A E%-max winner-take-all learning scheme (de Almeida
o et al.,, 2009a,b) is implemented, meaning that a small subset of maximally ac-
o tive cells is selected (i.e. all cells whose total input is within F,,.% of the cell
m  with maximal input). The synaptic weight updates according to the Hebbian
w2 modification rule (Eq. 3) are implemented only for the winner cells.
173 Motion-based place cells. MPCs read out grid cell activities similarly to
s previously proposed models (Solstad et al., 2006, Sheynikhovich et al., 2009).
s More specifically, they implement the E%-max winner-take-all learning scheme
s identical to that of VPCs learning described above (with parameter E,,,. de-
w7 termining the proportion of highly active cells).
Conjunctive place cells. Both VPCs and MPCs project to CPCs, that
model CA1 pyramidal cells sensitive to both visual and self-motion cues. The

total input to a conjunctive cell is:

Tepe(t, 1) = Iepe (t,4) + T8¢ (¢, 1) ()
s with
Ig;gcc (t,1) Z Appe(t — )ngpc%t i)
MNmpe (6)
Ig;;gc t Z Z Ampc - )ngfc(t ) k)

e Again, a E%-max w1nner—take—all learning scheme is implemented in this net-

1o work, but with a heterosynaptic update learning rule:

va(‘(t Z ) va((t - 1 i j) + nq)p(‘Acpc(ta Z)H(Avpc(thj) - 9)

cpe cpe cpe (7)
WPt i,5) = WIP(t — 1,1, ) + Nope Acpe (t, 1) H(Ampe(t, 5) — 0)

cpe cpe cpe
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e where 7(.) is the Heaviside step function (H(z) = 0 for z < 0, and H(z) = =
12 otherwise) and 6 is the presynaptic activity threshold.

183 Due to the fact that MPCs, CPCs and grid cells are connected in a loop, a
18s  local activity packet in an “upstream” cell population shifts the activity packet
15 in the “downstream” population towards the position of former. The size of
185 the induced shift on each cycle of theta is determined by connection strengths
17 between participating cells. In the absence of visual input, activity bumps in
18 the three interconnected populations settle at the global stable state of the
1w loop/attractor dynamics and hence all code for a single spatial location in the
10 environment, which can be considered as the estimation of the animal’s location
1 based on self-motion input. However, because of the visual input from VPCs,
12 the loop dynamics is biased towards the visual position, encoded in the VPC
13 population. Thus, the feedback strength in the loop determines the extent to

14 which visual input influences place cell activities in the model.

s 3. Results

196 Since the early experiments testing the influence of visual and self-motion
17 cues on place cell activity, it was clear that different subsets of place cells are
108 controlled by these cues to different degrees, with some cells being controlled
o exclusively by one type of cue (Markus et al., 1994, Chen et al., 2013, Aronov
20 and Tank, 2014, Fattahi et al., 2018). In the model we conceptualized these
20 differences in VPC, MPC and CPC neural populations, representing purely
22 vision-dependent, motion-dependent and multisensory place cells. Thus, when
23 the model has learned place fields in a visually structured environment by mov-
24 ing quasi-randomly around a rectangular box, VPCs have place fields only in
25 a ‘light’ condition, i.e. when the visual cues are visible. This is true even
26 if motion-based cues are absent (Fig. 2B, top row), as in a passive transport
27 through a virtual maze (Chen et al., 2013). Conceptually, these cells represent
28 the ability of hippocampal circuits to form self-organized representations of lo-

200 cation even in the absence of grid-cell input from the mEC (Hales et al., 2014,
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20 Brandon et al., 2014, Schlesiger et al., 2018). In contrast, MPCs will have place
an fields both in the light and dark conditions, but not during passive translation
a2 (Fig. 2B, middle row). Finally, CPCs will be active in all the three conditions
213 since they combine both types of input (Fig. 2B, bottom row).

214 In contrast to VPCs that are completely independent of self-motion cues and
25 encode stable visual features of the surrounding environment, MPCs and CPCs
25 will be influenced by both visual and self-motion input, by virtue of their loop-
a7 like interactions through the grid cells. To test the relative influence of vision
218 and self motion on the activity of these cells when the two types of cue provide
29 conflicting sensory information, we decreased the gain of self-motion input to
220 grid-cells while the model animal was crossing the environment from left to right
o1 (Fig. 2C). This decrease in gain was applied only to the horizontal component
22 of motion, i.e. the horizontal component of the self-motion velocity vector was
23 set to 3/4 of the baseline value. Such a modulation is similar to a change in the
24 gain of ball rotation in a virtual corridor (Chen et al., 2013), but implemented
25 in a two-dimensional environment instead of a linear track. The change in gain
26 resulted in a shift of receptive fields of MPCs and CPCs to the right relative
227 to their position in baseline conditions and the size of the shift is smaller than
»s  what would be predicted from purely self-motion integration (Figs. 2E,F).

29 To illustrate the loop dynamics in this simple example, consider the case
20 when the model animal crosses the middle line of the environment moving from
a1 left to right (Fig. 2D). The integration of pure self-motion input over time would
22 estimate the current position to be behind the visually estimated position due
23 to the decrease in speed gain. This will cause a cell that normally fires at
24 the center of the environment to shift its receptive field ahead of it. Thus,
25 in the dark condition MPCs and CPCs have place fields shifted forward by
26 an amount proportional to the gain factor, relative to their positions in the
27 baseline condition (i.e. without the change in gain). However, in the light
28 condition this self-motion-based estimation will be in conflict with visual cues
29 that are not affected by changes in gain and represent the actual position in

20 the environment. As a result of the dynamic loop-like interaction, at each

10
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2n moment of time visual cues induce a forward shift of the activity packet in
22 the grid-cell populations towards the visually identified location, the size of the
23 shift being controlled by the parameter «. Grid cells would similarly affect
21 the MPCs, and then CPCs, closing the loop. Therefore, in the presence of
25 conflicting cues receptive fields shift to an intermediate position between the
26 self-motion and visual estimates (Figs. 2EF). These results are reminiscent of
27 those by Gothard et al. (1996), simulated in several earlier computational models
2 (Samsonovich and McNaughton, 1997, Byrne et al., 2007, Sheynikhovich et al.,
20 2009), and indeed the proposed mechanistic explanation is similar in this case.
0 However, in the present model the parameter controlling the interaction between
1 the visual and self-motion cues is cast in terms of the strength of the entorhinal-
2 hippocampal loop.

253 To illustrate the same multisensory integration mechanism on the level of
s grid cells, we conducted another simulation in which the horizontal velocity gain
s was transiently decreased when the model animal crossed a specific portion of
256 the environment (Fig. 3A). In this case of a transient cue conflict, grid patterns
»s7 - were locally deformed in that firing fields near the gain-decrease zone shifted to
253 the right relative to control conditions, reflecting the sensory conflict (Figs. 3B-
20 D). Near the borders of the environment, where the speed input was identical
%0 to the baseline conditions, grid pattern remained stable. The same effect on
s the level of the whole population of grid cells was quantified by the analysis of
2 displacement vectors (Fig. 3C) and by sliding correlation maps (Fig. 3D), see
s Appendix and Wernle et al. (2018). These results suggest that local modifi-
x4 cations of grid patterns can be induced by conflicting sensory representations,
x5 similarly to what has been observed in a recent experiment by Wernle et al.
26 (2018). As mentioned in the Introduction, these results are at odds with an
27 earlier experiment (Carpenter et al., 2015) that studied adaptation of grid-cell
x%s  patterns during construction of a spatial representation in an environment con-
xe sisting in two identical rooms connected by a corridor. In the following sections
oo we simulated the results of both experiments in an attempt to explain this con-

on flict and to understand neural mechanisms responsible for apparently different

11
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a2 patterns of grid-cell adaptation in the two experiments.

a3 3.1. Merged-room experiment

274 Wernle et al. (2018) studied the integration between visual and self-motion
s cues by recording grid cells in two adjacent rectangular compartments initially
o separated by a wall. The two compartments were inserted in a bigger envi-
o7 ronment equipped with distal visual cues. The wall was subsequently removed
s and grid cells were recorded while the rat foraged in the merged environment.
a9 The authors observed that at the locations far from the removed wall grid cells
20 conserved their firing patterns, while at the locations near those previously oc-
2 cupied by the wall grid-cell firing fields shifted towards the removed wall so as to
»2  form a continuous quasi-hexagonal pattern. Results from the previous section
23 suggest that the observed local deformation of the grid pattern can result from
2+ the local visual deformation caused by wall removal.

285 To verify that our model can reproduce these results, we recorded activities
2 of simulated grid cells and place cells cells in experimental conditions similar
27 to those in Wernle et al. More specifically, the model learned place fields in
28 two virtual rooms separated by a wall (Fig. 4A). The two rooms were located
20 inside a bigger room with distal visual cues (not shown), such that learned
20 representations of the two rooms were different after initial exploration. After
2 place fields were established, the wall was removed, the synaptic weights were
22 fixed and neural activity was recorded. We observe that after wall removal, grid
203 fields near distant walls remain fixed to the local cues, while near the former
2a  wall location they shift towards this location in the model, as in the experi-
25 ment (Fig. 4B). The same phenomenon on the level of the whole population
206 was quantified by the analysis of displacement vectors (Fig. 4C) and by sliding
27 correlation (Fig. 5D).

208 Thus, the low-correlation band near the location of the removed wall is
200 induced in the model by changes in visual input in the merged environment,
s0  which affect place coding via VPC activities. Local visual features at the loca-

s tions distant from the removed wall are similar in the corresponding locations

12


https://doi.org/10.1101/602235
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/602235; this version posted April 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

s of the original environments A and B, since visual patterns formed by the clos-
w3 est walls and extramaze cues remain largely unchanged after the central wall
s4  removal. Therefore, VPCs activities at these locations during testing are very
305 similar to those during training (Fig. 5A), leading to the same grid pattern at
ss  these locations. However, at the locations close to the removed wall, the com-
s07 bined effect of stable distal cues and modified proximal wall cues result in an
ws  extension of VPC receptive fields over the previous location of the removed wall.
a0 These changes in visual receptive fields induce local corrections of grid cell ac-
s tivity by shifting grid-cell activity packets towards the center, resulting in local
su  deformations of grid-cell firing patterns similar to those observed during gain
sz modification experiments. These deformations will in turn affect place fields
sz of MPCs and CPCs, by shifting place fields of the cells near the removed wall
s towards it (Figs. 5B,C). These results suggest that local deformations of grid
a1is fields can result from the same correction mechanism as the one studied in the
a6 previous section, but in which local sensory conflict is induced by changes in
sz the visual input instead of changes in self-motion gain.

318 Two principal neural processes affect the formation of spatial representa-
si9 tion in our model: while the acquisition of new spatial representations cru-
0 cially depends on synaptic plasticity, the dynamic interaction between visual
s and self-motion cues is mediated by neuronal dynamics. We therefore tested
3 the contribution of these two processes to the observed results. The influence of
23 plasticity was assessed by letting the model learn during testing in the merged
s24  room, while that of neuronal dynamics was tested by progressively decreasing
»s  the strength of the loop (i.e. decreasing the control of vision over self-motion
26 cues) in the absence of synaptic plasticity. The results of these manipulations
;27 can be summarized as follows. First, when learning was allowed during testing
»s and the testing session in the merged room was sufficiently long, the particular
2o correlation pattern (see Fig. 4C,D) was broken and a new representation was
s formed as a result of learning (Figs. 6A-C), unlike what was observed by Wernle
s et al. In particular, the newly formed global pattern was aligned with only one

s of the walls, resembling the results of Carpenter et al. (2015) addressed in the
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sz following section. Moreover, learning of the new representation was faster when
s the control of visual cues (controlled by a) was low (not shown), since slower
35 dynamics favors the learning of new connections between self-motion-based and
;s visual representations. These results suggests that either the band-correlation
s pattern is a transient effect and should disappear with a longer exposure to the
a8 environment, or that learning of a new representation is inhibited in the merged
;9 room in real rats. Second, the decrease of o across separate sessions resulted in
s widening of the low correlation band (Fig. 6D). This modification of the corre-
s lation pattern is explained by the fact that under a weak control of place fields

s2 by vision, it takes longer for the visual cues to correct self-motion.

s 3.2. Double-room experiment.

344 In the experiment of Carpenter et al. (2015), grid cells were recorded in rats
us during foraging in an experimental environment consisting of two rectangular
us  rooms connected by a corridor (Fig. TA, see Carpenter et al., 2015). The rooms
sz were rendered as similar as possible in their visual appearance in order to favor
us  visual aliasing. If local visual cues are the main determinant of grid cell activity,
a9 identical grid fields in the two environments were expected. In contrast, if self-
0 motion cues are used to distinguish between the two rooms, grid cells should
1 have distinct firing fields in the two environments. The results of this experi-
2 ment revealed that both external and internal cues influence neuronal activity,
13 but in a temporally-organized fashion. In particular, during early exploration
34 sessions, grid cells had similar firing patterns in the two rooms, and this effect
35 was maintained during the whole period of a session (tens of minutes). However,
36 as the number of sessions (or days, as 1 session per day was run) increased, grid
37 cells formed a global representation of the experimental environment, such that
s initial association between local cues and grid fields was progressively lost in
9 one of the two rooms. These results are in apparent conflict with the data from
w0 the merged-room experiment considered earlier, since in that experiment local
s cues at the distant walls kept their control of nearby grid fields for up to 10

2 daily sessions.
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363 What could be the reason for the differences in learned grid-cell representa-
s tions in the two experiments? Suppose that, in the conditions of the double-
s room paradigm, the rat first enters room A, such that initial associations be-
w6 tween self-motion and visual cues are established in that room. The key question
7 1s whether or not a new representation for the subsequently entered room B will
s be formed, despite its identical visual appearance with room A (note that in
e the following we refer to any initially experienced room as room A, indepen-
s dently on which actual room was visited first in the simulations). Results from
sn  the previous section suggest that a weaker control of visual cues combined with
sz synaptic plasticity leads to the formation of a new representation. To verify this
sz hypothesis, we run our model in the conditions of Carpenter et al. experiment,
s and we progressively (i.e. session by session) decreased the strength of the
w5 hippocampal-entorhinal feedback loop (without disabling synaptic plasticity).
s As the feedback strength controls the influence of visual input in our model, we
sr - expected that this procedure will result in the construction of a global represen-
ss tation on the level of grid cells when the strength of the loop is sufficiently low.
srs This was indeed the case as the global fit was high when the loop strength was
30 set to low values (small «), and, conversely, the local fit was high for a strong
s loop (Figs. 7B,C, both of these measures were calculated in the same way as in
s the study by Carpenter et al., 2015, see also Appendix).

383 The local representation in early sessions is a consequence of the fact that
s only a representation of one room is learned, so that once the model rat enters
s the second room, grid-cells activities are quickly reset by vision to the represen-
s tation of the first (or, in terms of Skaggs and McNaughton (1998), the represen-
37 tation of room A is “instantiated” upon the entry to the room B). In this case
s both MPCs and CPCs had identical firing fields in the two rooms (Fig. 8A).
s This was quantified in the model by computing the spatial correlation between
30 place fields of each cell in the two rooms (correlation of 1 corresponds to iden-
s tical place fields). On the level of the whole population, the mean place-field
32 correlation is high for a strong feedback loop (early sessions, large a, Fig. 8B).

s The transition to a global representation in later sessions results from newly
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s formed synaptic associations between MPCs in CA3 (that are under a strong
305 influence of self-motion input from grid cells), and CPCs in CA1 that are driven
w6 by vision. Synaptic plasticity at these connections is favored by a decreased
37 hippocampal input to the EC, leading to a stronger reliance on self motion (late
0 sessions, small «, Fig. 8B). The development of such a new representation is
200 reflected in lower place-field correlation on the level of MPCs and CPCs (late
w0 sessions, small «, Fig. 8B). Note that purely vision-driven VPCs always have
w1 identical place fields in the two environments (not shown).

02 To summarize, the results of both the merged-room experiment of Wernle
w3 et al. (2018) and the double-room experiment of Carpenter et al. (2015) can be
a0 explained by the same model under two assumptions: First, synaptic plasticity
ws is slow or inhibited when rats are placed into the merged room after learning
w06 in room A and B, but not when the rats are exposed to a stable double-room
w7 environment; Second, the control of visual cues progressively decreases in a fa-
w8 miliar environment in the course of daily sessions (this requirement is crucial
w0 to reproduce the result of the second experiment, but, according to our simula-
a0 tions, has only a weak effect in the first). What could be the explanation for the
an  inhibition of learning in the merged-room, as opposed to continuous learning in
a2 the double-room experiment across daily sessions? Analysis of our model offers
az the following possible explanation: In early sessions of the double-room exper-
ae iment, a large mismatch between visual (i.e. encoded in VPC activities) and
a5 self-motion (encoded by MPC activities) input occurs at the moment of entry
a6 to, or exit from, the room B, since the population activity of VPSs “jumps”
a7 to reflect the room A cues or the corridor cues, respectively. This jump of
as  population activity can be quantified by the drop in correlation between the
a0 projections of VPCs and MPCs in CA3 onto the CPCs in CA1 near the room
w20 doors (Fig. 9A). In contrast, the mismatch is smaller for the merged-room ex-
o1 periment, since the visual and self-motion cues near the removed wall code for
«2  similar spatial positions (Fig. 9B). Therefore, it is possible that learning across
w3 sessions is regulated by the size of the mismatch between visual and self-motion

24 cues. Note that statistical characterization of the mismatch in Fig. 9 required
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25 averaging over many experimental runs and even in our idealized model can not
w6 be reliably detected online. This could be a possible reason why building of a
27 global environment representation in Carpenter et al. experiment takes many
w28 days. We thus propose that CAl area or, more likely, its output structures im-
20  plement a mismatch detection process that can regulate hippocampal synaptic

a0 plasticity on the time scale of days (see below).

w1 4. Discussion

432 Our model is based on two main assumptions: that of a loop-like dynamics in
a3 the entorhinal-hippocampal network, and that of an independent visual place-
s cell representation formed on the basis of hippocampal inputs other than grid
a5 cells. Place cells in the CA1 area receive spatially organized inputs from grid
a6 cells via direct projections from mEC layer III and via perforant path projections
w7 from layer IIT via DG and CA3. Isolating direct feedforward mEC input to CA1
s only weakly affect place-sensitive activity in CA1 suggesting that mEC inputs
a9 are sufficient for the establishment of representation in this area (Brun et al.,
w0 2002). Isolating only indirect projections resulted in noisier CA1 place fields
a1 that formed although relatively impaired but still stable spatial representations
w2 (Brun et al., 2008). These results suggest a complementary role of both the
w3 direct and indirect pathways for spatial coding in the CA1l. Place cells in CA1l
ua  project back to the entorhinal cortex both directly and via subiculum (Naber
ws et al., 2001, Kloosterman et al., 2003, Slomianka et al., 2011) and hippocampal
ws input is necessary for grid cell activity (Bonnevie et al., 2013), supporting the
wr loop-like structure of entorhinal-hippocampal interactions (Iijima et al., 1996).
a8 That a subset of hippocampal place cells can form spatial representations
o independently from grid cells is supported by the evidence showing that place
w0 fields can exist before the emergence of the grid cell network in rat pups (Mues-
s sig et al., 2015) and that the disruption of grid cell activity in adult rats does
2 not prevent the emergence of place fields in novel environments (Brandon et al.,

553 2014). These grid-cell independent place fields retain all principal properties
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ssa of a self-organized representation in control animals: it can be learned in new
w5 environments, it is stable over time, and independent maps are established in
w6 different rooms (Rueckemann et al., 2016, Schlesiger et al., 2018). These data
w7 suggest that some place cells rely mostly on grid-cell input, likely representing
ss  self-motion-based spatial signals, while other place cells preferentially use other
a0 sensory information to form spatial representation in a self-organized manner.
w0 This separation of place cells depending on their principal source of sensory input
w1 is also supported by observations showing that in virtual environment subsets of
w2 place cells are differentially responsive to sensory manipulations: during passive
w3 movement 25% of cells keep their firing fields unchanged; 20% of cells do change
s their firing patterns when all visual cues are turned off; most of the cells are
w5 modified to various degrees by cue manipulations (Chen et al., 2013), see also
ws  Markus et al. (1994). Moreover, recent evidence suggests that CA1 cells respon-
w7 sive to visual and self-motion input are anatomically separated: place cells more
w8 responsive to self-motion cues are located predominantly in superficial layers of
w0 CA1, while those more responsive to visual cues are found in deep layers (Fat-
w0 tahi et al., 2018), see also Mizuseki et al. (2011). It was also recently shown that
o CALl cells in deep and superficial layers receive stronger excitation from mEC
a2 and 1EC, respectively, with the amount of excitation being also dependent on
w3 the position of the neurons along the longitudinal hippocampal axis (Masurkar
s et al,, 2017). These data further support the existence of functionally differ-
a5 ent subsets of place cells in CAl, that can either be inherited from similarly
a  segregated cells in CA3 or to be formed directly from IEC inputs to CAl.

ar7 Our model is constructed to reflect the above data in a simplified way. While
a8 the neural basis for the aforementioned grid-cell-independent code is not clear,
a0 we conceptualized it by a population of VPCs, which learn subsets of visual fea-
a0 tures corresponding to a particular location using simple competitive learning
a1 scheme. Similarly to experimental data described above, VPCs form a sta-
2 ble and independent code for different environments as long as visual cues in
s3 these environments are stable. It is likely that such a code is formed inside the

s hippocampus itself based on the inputs either from parietal-cingulate network
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w5 (Byrne et al., 2007, Bicanski and Burgess, 2018), or from IEC input (Schlesiger
w5 et al., 2018), since no location-sensitive code was observed directly upstream
w7 of the hippocampus (but see Mao et al., 2017). While in its current version
s our model assumes that VPCs are learned in CA3 and transmitted to CAl, the
w0 model can be modified to implement competitive learning in CA1 directly on vi-
w0 sual inputs from IEC, bypassing CA3. Our self-motion based code in GC-MPC
w01 populations is based on internal attractor dynamics and does not in principle
w2 Tequire place-cell input, contrary to experimental data (Bonnevie et al., 2013).
w3 However, this dependence can be included in the model by adding strong inhi-
w0 bition to the grid cell layer, such that a nonspecific excitatory drive from CA1l
w5 were required for grid-cell activities (Bonnevie et al., 2013). Such a modification
w5 of the model will not significantly change any of the present results.

a07 Main conclusions from our modeling results are twofold. First, the con-
w8 struction of a global representation in the double-room experiment requires a
a0 diminished control of visual cues over path integration, translated in the model
soo by decreasing the strength of the hippocampal input to the EC. By slowing
s down the dynamical correction of GCs and MPCs by vision, it allows synaptic
s plasticity to form new associations between visual representations (encoded in
ss VPC activity) and CA3-mediated representations at the level of CAl, and to
ss  disambiguate the two rooms. Thus, in our model, synaptic plasticity at CA3-
sos CA1 synapses is crucial for the formation of new representations in visually
sos identical environments. Ultimately, the construction of this representation is
s determined by relative time scales of two processes: (i) correction of path inte-
ss gration by visual cues using network dynamics, and (i) synaptic plasticity at
so0  Schaffer collaterals. Second, the fact that rats learn a global representation in
s the double-room, but not in the merged-room experiment is explained in the
su model by a strongly reduced or inhibited synaptic plasticity in the latter case.
sz Indeed, under the hypothesis that grid cells express hexagonal patterns as a
si3  consequence of attractor dynamics with circular weight matrices (McNaughton
s et al., 2006), translocation of grid fields at the center of the environment must

sis result from dynamic correction mechanisms, since synaptic plasticity between
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sis  place-cell and grid-cell networks will necessarily lead to the emergence of a co-
sz herent (global) grid-cell representation. If this explanation is correct, then what
sis could be the mechanism that regulate synaptic plasticity differently in the two
siv cases? One possibility suggested by the analysis of the model is that such a
s0 regulation mechanism can act on the basis of a mismatch between visual and
s self-motion representations. On the level of population activity, a high degree of
s2  mismatch corresponds to incoherent ”jumps” of visual representation caused by
23 visual aliasing, relative to the representation formed by path integration. While
s these jumps are reflected in the distribution of synaptic inputs to modeled CA1
s5  cells in our model (Fig. 9), the fact that learning of a global representation in
6 real animals takes many days (Carpenter et al., 2015) suggests that detection
s of this mismatch may involve memory consolidation mechanisms (Skaggs and
s McNaughton, 1996, Girardeau et al., 2009, Benchenane et al., 2010).

529 A number of experiments studied place fields dynamics in environments
s consisting of two or more visually identical compartments (Skaggs and Mc-
s Naughton, 1998, Tanila, 1999, Fuhs et al., 2005, Paz-Villagran et al., 2006,
s Spiers et al., 2015, Grieves et al., 2016). The objective of these experiments
533 was to check whether path integration can be used to distinguish between com-
s partments and to assess the extent to which visual cues control path integration
s3  information. Earlier experiments provided evidence for a partial (Skaggs and
s McNaughton, 1998) or a nearly complete (Tanila, 1999) remapping when rats
s travelled between two similarly looking compartments, suggesting that path in-
s38 tegration can be used to distinguish between them. A major difference between
530  experimental setups in these latter experiments was that the two compartments
s in Skaggs and McNaughton (1998) were oriented in the same way, whereas in
s Tanila (1999) there was a 180° difference in their orientation. A follow-up ex-
se»  periment (Fuhs et al., 2005) has demonstrated a key role of angular, but not
si3 linear, path integration in complete remapping observed by Tanila et al. 1999.
s However, Fuhs et al. did not observe partial remapping in conditions very simi-
ss  lar to those of Skaggs and McNaughton (1998), as most cells had identical place

sss  flelds in the two compartments. More recent experiments with multiple visually
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se7  identical compartments confirmed the importance of angular path integration
ss  for remapping (Spiers et al., 2015, Grieves et al., 2016, see also Paz-Villagran et
se0  al., 2006), and suggested that a long amount of time (about 2-3 weeks) is nec-
ss0  essary to build separate representations for visually identical rooms connected
ss1 by a corridor (Carpenter et al., 2015).

552 In our simulations, we assumed that the animals head direction system pro-
3 vides a correct orientation information (i.e. relative to an arbitrary fixed refer-
s« ence orientation) at any moment in time, and so the visual input to the model is
s always aligned to the common directional frame in all environments (in the ex-
ss  periment of Carpenter et al. a common directional frame could be provided by
ss7 the corridor cues, whereas it was provided by distal extramaze cues in Wernle
s et al. experiment). As a result of competitive learning, synapses to a visual
ss0  place cell learn visual cues observed at a location where this cell was recruited.
se0o Therefore, a place is visually “recognized” (i.e. visual place cells strongly fire) if
ss1  the previously learned visual cues are observed in the same allocentric direction
s (independently of any path integration signal). If, however, the same visual cues
ses are observed at a very different orientation (e.g. is a room is rotated 180°) visual
s« place cells will not be activated (unless visual cues are rotationally symmetric),
ss and new cells will be recruited to represent this environment, in agreement with
s6  Fuhs et al. (2015) study. At smaller rotation angles, the model predicts that
ss7  place cells will be activated to a higher degree, depending on the autocorre-
ses  lation width of the learned visual snapshots (Grieves et al., 2016). That the
sso  head direction system can maintain a fixed orientation in the presence of visual
s cue rotation is supported by experimental evidence (Jacob et al., 2017, see also
sn  Paz-Villagrén et al., 2006).

572 The ability (or inability) of the hippocampal representations to express par-
ss tial remapping has been discussed in view of the multichart model (McNaughton
s et al., 1996, Samsonovich and McNaughton, 1997). This model predicted that
sis  if rats could learn room identities despite their similar visual appearance, place-
s field representations of the two rooms would be orthogonal (different charts are

s active in different rooms), whereas they would be identical in the opposite case
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ss (the same chart is active in both rooms). Partial remapping observed by Skaggs
so - and McNaughton (1998) contradicted this hypothesis, as some cells had identi-
ss0  cal fields in the two rooms, while other cells and different place fields, suggesting
ss1  that two charts could be active at the same time. In similar conditions Fuhs
s22 et al. (2005) observed no partial remapping for unclear reasons, but suggested
se3  that the map of one compartment was somehow “extended” to the second one,
ss«  instead of loading a new map. Our results contribute to this question in two
sss  ways. First, we argued that a learning of new representation is under control of
ss  a putative neural mismatch detection mechanism. In the experimental condi-
se7  tions of the two above studies, the largest amount of mismatch occurs upon the
sss  door crossing, and so the number of door crossings experienced by the rat may
ss0  be an important parameter with respect to learning. While in Skaggs and Mec-
so  Naughton (1998) the rats were freely moving between the compartments during
s a trial, in Fuhs et al. (2005) the number of transitions between rooms was lim-
s ited to 2 per trial, potentially affecting the results. Second, our results provide
s3  a neuronal mechanism for the map observed map extension, i.e. progressive
s learning of a global representation.

505 Our results lead to a number of testable predictions. First, VPC in the
ses model acquire representation of only one compartment (among two or more
sov identically looking ones). We thus predict that a subset of place cells, that do
s 10t rely on self-motion signals (e.g. such as those observed in Chen et al., 2013)
so0 and potentially located in the deep sublayer of CAl pyramidal layer (Fattahi
so et al., 2018), will persist through learning and will have repetitive place fields
sn even when a global representation has been learned. Second, learning of separate
s> mneuronal representations of different compartments (i.e. progressive remapping)
o3 will be require the formation of new associations between CA3 cells and CAl
s cells preferentially from the superficial sublayer of pyramidal cells. Third, place
s cells that will remap first should have place fields close to the door, since for these
s cells the difference between visual and motion-based inputs is largest. Finally,
o7 as the width of the low-correlation band (Fig. 6D) is proposed to be related

ss to the strength of the visual cue control over path integration, it is predicted
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s0 that stronger reliance on path integration will result in a wider band. This
s10  might occur for example in aged animals, in which a stronger reliance on path
su integration (or, conversely, an weaker control by visual cues) has been observed

s (Tanila, 1999, Rosenzweig et al., 2003).
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s Appendix

o7 Visual input

618 The artificial retina was modeled as a rectangular grid of Gabor filters uni-
s19  formly covering the panoramic cylindrical camera with visual field 160° x 360°.
s20 At each location of the grid, 4 filters of different orientations were used. We
e used two spatial frequencies for all the filters (180 Hz, 72 Hz) chosen so as to
2 detect visual features of simulated environments. Activities of all Gabor filters
&3 were computed by the convolution with the input visual image at each time
ea step. Filter activities were then aligned with a common allocentric directional
es frame, such that if the model rat rotated without changing its spatial position,

o6 the activities of aligned filters would stay constant.

sr  Virtual environments

628 Virtual environments for the three simulations presented in this paper were
s developed with Unity (www.unity3d.com). In Simulation 1 (Figs. 2 and 3) the
60 environment was a rectangular room 2x1 m with featureless gray walls. In
e Simulation 2 (Figs. 4-6), the experimental room was modeled as a square arena
62 2x2 m. During training, it was separated into two rooms by a wall at the
s13  center of the environment. The experimental arena was located inside a bigger
s environment (4x4 m) with four salient visual cues (large circles) on each wall.
e In Simulation 3 (Figs. 7-8), the environment consisted of two identical rooms

3 1x1 m connected by a corridor (0.5x2 m).
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o7 Stmulation details
638 In all three simulations, VPCs were learned from the simulation environment
s before the training of the place cells and grid cells. Model parameters are listed

s0 1n Table 1.

Parameter Value
« 0.03 (Sim. 1), decreasing from 0.04 to 0.005 (Sim. 2, 3)

Mope 0.01

Nepe Mepe s TMge: Mimpe 0.0025
Eype 15%

Eimpe 20%

Eecpe 30%

0 0.75

Table 1: Parameters of the model.

e Simulation 1

642 Training. The model was trained for about 25 minutes (15000 time steps)
63 by moving quasi-randomly in the experimental room.

644 Testing. Synaptic weights were fixed, and activities of all the cells in the
ss  model were recorded in the following three experimental conditions. In the
s ‘light’ condition the full model was run to randomly explore the environment.
ez In the ‘passive translation’ condition, the velocity vector input to the grid cell
«s populations was set to (0,0). In the ‘dark’ condition, the model was run with
ss0 visual cues turned off (uniform gray images were presented as visual input).
0 Next, the trained model was run to cross the environment from left to right in
o1 ‘light and ‘dark‘ conditions as before, but with the speed gain in the grid cell

sz populations modulated as described in the Results.

3 Simulation 2
654 Training. The model was trained separately in rooms A and B for 30 min-

s utes, and synaptic weight were fixed to the learned values.
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656 Testing. In the main experiment, neural activities were recorded while the
es7  model rat randomly explored the merged room for 1 h. In the experiment testing
s the influence of plasticity, synaptic weights were updated while the model rat
oo additionally explored the merged room for 1h. In the experiment testing the
so influence of the strength of the feedback loop, the model rat was run in the
sr  merged room for 20 trials per each value of «, ranging from 0.005 to 0.04. To
ez average data, 4 testing trials were run in each condition.

663 Sliding correlation. The sliding correlation heat maps for grid-cell firing
s patterns were calculated as described in Wernle et al. (2018). The size of the
o5 sliding correlation window was defined based on the grid spacing of the cell.
e ' The window moved from the top left to the bottom right corner in the grid field
e maps of the environment A|B (i.e. before the wall removal) and AB (i.e. after
s the wall removal). At each window location, the portion of the grid maps in
se0 the environments A|B and AB, outlined by the sliding window, were correlated
e0  with each other.

671 Displacement vector analysis. Displacement vectors were calculated as de-
s scribed in Wernle et al. (2018). To obtain a displacement vector for one grid cell,
s the experimental environment was divided into 4x4 blocks (50x50 cm each).
e« In each block, the vector corresponding to the shift of grid fields in the environ-
os  ment AB relative to that in the environment A|B was calculated. The vectors
o6 were sorted into the corresponding blocks based on the grid field location in
o7 the training environment and the mean over all vectors was computed. To an-
es  alyze displacement vector lengths, the environment was divided into 8 x8 bins.
e9  The vectors were then sorted into the corresponding bins based on the original
o grid field location in the training environment, and the mean vector length was

61 computed.

2 Simulation 3
683 Training. At the beginning of each training session, the model was placed
s into the center of the corridor and then explored the complete environment

s quasi-randomly for 1 h. In subsequent training sessions, the strength of the
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s feedback loop a decreased from 0.04 (first session) to 0.005 (last session) with
67 step 0.005.

688 Testing. After each training session, the weights were fixed and neural activ-
e0 ity was recorded. In order to average the results, the experiment was repeated
0 20 times for each value of a.

Global and local fits. The firing rate maps of modeled grid cells were fit with
ideal local and global grid patterns using the procedure described in Carpenter
et al. (2015). First, grid spacing was identified by correlating the firing pattern
with 30 ideal firing grids. Each ideal grid pattern is a product of three cosine

gratings
f(@) = A[l + cos(k1(Z + ©))][1 + cos(ka(Z + €))][1 + cos(ks(Z + ©))]

s1  With peak firing rate A, wave vectors Eh Eg and E3 and phase offsets ¢ = (cg, ¢y).
ez The wave vectors are defined as k = (2 cos(p), 2 sin(p)), where A = ?G is
o3 the grating wave length, G is the grid spacing and ¢ is the grid orientation. The
s 30 ideal grid patterns were created with grid spacing evenly distributed between
ss 30 and 170 cm. Since the grid orientation in the model is set to 7.5°, ¢ in the
ss three wave vectors is equal to 7.5°, 127.5° and 247.5°, respectively. Spatial
eor cross-correlograms were computed between the recorded firing rate map and
es the ideal grid patterns over a range of spatial phase offsets. The grid spacing of
s0 the recorded firing pattern is then set to that of the ideal grid pattern with the
700 highest correlation. Second, a local and global fit with the identified grid spacing
1 was computed for the recorded firing rate map. The local fit was performed using
72 two grid patterns (one per room) with the same phase offset. The global fit was
703 performed using only one grid pattern with continuous phase across the two
s  rooms. The Pearson product-moment correlation between the recorded firing
s rate map and the local and global grid patterns were computed over a range
w6 of phase offsets. The highest correlation with the local and global model was

77 identified as the value of local and global fit, respectively.

26


https://doi.org/10.1101/602235
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/602235; this version posted April 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

s  References

0o J. O’Keefe, L. Nadel, The hippocampus as a cognitive map, Clarendon Press,

710 Oxford, ISBN 0198572069, 1978.

m J. O’Keefe, J. Dostrovsky, The hippocampus as a spatial map. Preliminary
712 evidence from unit activity in the freely-moving rat, Brain Res. 34 (1971)

713 171-175.

ns J. O’Keefe, A. Speakman, Single unit activity in the rat hippocampus during a
715 spatial memory task, Exp. Brain Res. 68 (1987) 1-27.

76 R. U. Muller, J. L. Kubie, The effects of changes in the environment on the
77 spatial firing of hippocampal complex-spike cells, J. Neurosci. 7 (7) (1987)
718 1951-1968, ISSN 0270-6474.

79 J. J. Knierim, H. S. Kudrimoti, B. L. McNaughton, Interactions between id-
720 iothetic cues and external landmarks in the control of place cells and head

721 direction cells., J. Neurophysiol. 80 (1) (1998) 425-46.

22 R. P. Jayakumar, M. S. Madhav, F. Savelli, H. T. Blair, N. J. Cowan, J. J.
723 Knierim, Recalibration of path integration in hippocampal place cells, bioRxiv

724 (2018) 319269d0i:10.1101/319269.

s . J. Markus, C. A. Barnes, B. L. McNaughton, V. L. Gladden, W. E. Skaggs,
726 Spatial information content and reliability of hippocampal CA1 neurons: Ef-
727 fects of visual input, Hippocampus 4 (4) (1994) 410-421, ISSN 1050-9631,
728 d0i:10.1002/hipo.450040404.

729 G. Chen, J. A. King, N. Burgess, J. O’Keefe, How vision and movement combine
730 in the hippocampal place code., Proc. Natl. Acad. Sci. U. S. A. 110 (1) (2013)
731 378-383, ISSN 1091-6490, doi:10.1073/pnas.1215834110.

72 M. Fattahi, F. Sharif, T. Geiller, S. Royer, Differential Representa-
733 tion of Landmark and Self-Motion Information along the CAl Ra-
734 dial Axis:  Self-Motion Generated Place Fields Shift toward Land-

27


https://doi.org/10.1101/602235
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/602235; this version posted April 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

735 marks during Septal Inactivation, J. Neurosci. 38 (30) (2018) 6766—
736 6778, ISSN 0270-6474, doi:10.1523/JINEUROSCI.3211-17.2018, URL
737 http://www. jneurosci.org/lookup/doi/10.1523/INEUROSCI.3211-17.2018.

s M. Fyhn, S. Molden, M. P. Witter, E. I. Moser, M. B. Moser, Spatial represen-
739 tation in the entorhinal cortex., Science (80-. ). 305 (2004) 1258-1264.

uo  B. L. McNaughton, F. P. Battaglia, O. Jensen, E. I. Moser, M. B. Moser, Path
741 integration and the neural basis of the ’cognitive map’, Nat. Rev. Neurosci.

w7 (8) (2006) 663-678.

3 R. M. Hayman, K. J. Jeffery, How heterogeneous place cell responding
744 arises from homogeneous grids-A contextual gating hypothesis, Hippocam-

745 pus 18 (12) (2008) 1301-1313, ISSN 10509631, doi:10.1002/hipo.20513.

s S. Cheng, L. Frank, The structure of networks that produce the transformation
747 from grid cells to place cells, Neuroscience 197 (2011) 293-306, ISSN 0306-
748 4522, doi:10.1016/J.NEUROSCIENCE.2011.09.002.

no T. Hafting, M. Fyhn, S. Molden, M. B. Moser, E. 1. Moser, Microstructure of a
750 spatial map in the entorhinal cortex., Nature 436 (2005) 801-806.

= J. Krupic, M. Bauza, S. Burton, C. Barry, J. O’Keefe, Grid cell symmetry is
752 shaped by environmental geometry, Nature 518 (7538) (2015) 232-235, ISSN
753 0028-0836, doi:10.1038 /nature14153.

s M. Fyhn, T. Hafting, A. Treves, M.-B. Moser, E. I. Moser, Hippocampal remap-
755 ping and grid realignment in entorhinal cortex., Nature 446 (7132) (2007)
756 1904, ISSN 1476-4687, doi:10.1038 /nature05601.

7 T. Sasaki, S. Leutgeb, J. K. Leutgeb, Spatial and memory circuits in the medial
758 entorhinal cortex, Curr. Opin. Neurobiol. 32 (2015) 16-23, ISSN 18736882,
759 d0i:10.1016/j.conb.2014.10.008.

w0 M. I. Schlesiger, B. L. Boublil, J. B. Hales, J. K. Leutgeb, S. Leut-

761 geb, Hippocampal Global Remapping Can Occur without Input

28


https://doi.org/10.1101/602235
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/602235; this version posted April 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

762 from the Medial Entorhinal Cortex, Cell Rep. 22 (12) (2018)
763 3152-3159, ISSN 22111247, doi:10.1016/j.celrep.2018.02.082,  URL
764 https://linkinghub.elsevier.com/retrieve/pii/$2211124718302924.

s 1. Wernle, T. Waaga, M. Mgrreaunet, A. Treves, M. B. Moser, E. I. Moser,
766 Integration of grid maps in merged environments, Nat. Neurosci. 21 (1) (2018)

767 92-105, ISSN 15461726, doi:10.1038/s41593-017-0036-6.

s F. Carpenter, D. Manson, K. Jeffery, N. Burgess, C. Barry, Grid Cells Form a
769 Global Representation of Connected Environments, Curr. Biol. 25 (9) (2015)
770 1176-1182, ISSN 09609822, doi:10.1016/j.cub.2015.02.037.

m  T. Solstad, E. I. Moser, G. T. Einevoll, From grid cells to place cells: A math-
72 ematical model, Hippocampus 16 (12) (2006) 1026-1031.

s J. O’Keefe, N. Burgess, Dual phase and rate coding in hippocampal place cells:
774 Theoretical significance and relationship to entorhinal grid cells, Hippocam-

ns pus 15 (7) (2005) 853-866, ISSN 10509631, doi:10.1002/hipo.20115.

76 H.T. Blair, K. Gupta, K. Zhang, Conversion of a phase- to a rate-coded position
T signal by a three-stage model of theta cells, grid cells, and place cells, Hip-
778 pocampus 18 (12) (2008) 1239-1255, ISSN 10509631, doi:10.1002/hipo.20509.

79 D. Sheynikhovich, R. Chavarriaga, T. Strosslin, A. Arleo, W. Gerstner,
780 T. Strosslin, A. Arleo, W. Gerstner, Is there a geometric module for spa-
781 tial orientation? Insights from a rodent navigation model., Psychol. Rev.

782 116 (3) (2009) 540-566, ISSN 0033295X, doi:10.1037/a0016170.

73 P. K. Pilly, S. Grossberg, How Do Spatial Learning and Memory Occur in the
784 Brain? Coordinated Learning of Entorhinal Grid Cells and Hippocampal
785 Place Cells, J. Cogn. Neurosci. 24 (5) (2012) 1031-1054, ISSN 0898-929X.

7w 'T. Bonnevie, B. Dunn, M. Fyhn, T. Hafting, D. Derdikman, J. L. Kubie,
787 Y. Roudi, E. I. Moser, M.-B. Moser, Grid cells require excitatory drive from
788 the hippocampus, Nat. Neurosci. 16 (3) (2013) 309-317, ISSN 1097-6256,
789 doi:10.1038/nn.3311, URL http://www.nature.com/articles/nn.3311.

29


https://doi.org/10.1101/602235
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/602235; this version posted April 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

0 V. H. Brun, S. Leutgeb, H.-Q. Wu, R. Schwarcz, M. P. Witter, E. I. Moser,
701 M.-B. Moser, Impaired Spatial Representation in CA1 after Lesion of Direct
792 Input from Entorhinal Cortex, Neuron 57 (2) (2008) 290-302, ISSN 0896-
793 6273, doi:10.1016/j.neuron.2007.11.034.

7w J. W. Rueckemann, A. J. DiMauro, L. M. Rangel, X. Han, E. S. Boyden,
795 H. Eichenbaum, Transient optogenetic inactivation of the medial entorhi-
796 nal cortex biases the active population of hippocampal neurons, Hippocam-
797 pus 26 (2) (2016) 246-260, ISSN 10509631, doi:10.1002/hipo.22519, URL
798 http://doi.wiley.com/10.1002/hipo.22519.

799 L. Muessig, J. Hauser, T. J. Wills, F. Cacucci, A Developmental Switch in
800 Place Cell Accuracy Coincides with Grid Cell Maturation, Neuron 86 (5)
801 (2015) 1167-1173, ISSN 0896-6273, doi:10.1016/J.NEURON.2015.05.011.

s2 J. Koenig, A. N. Linder, J. K. Leutgeb, S. Leutgeb, The Spatial Periodicity of
803 Grid Cells Is Not Sustained During Reduced Theta Oscillations, Science (80-.
804 ). 332 (6029) (2011) 592-595, ISSN 0036-8075, doi:10.1126/science.1201685.

s M. P. Brandon, J. Koenig, J. K. Leutgeb, S. Leutgeb, New and
806 Distinct Hippocampal Place Codes Are Generated in a New
807 Environment during Septal Inactivation, Neuron 82 (4) (2014)
808 789796, ISSN 08966273, doi:10.1016/j.neuron.2014.04.013, URL
809 https://linkinghub.elsevier.com/retrieve/pii/S0896627314003031.

s L. de Almeida, M. Idiart, J. E. Lisman, The Input-Output Transformation of
811 the Hippocampal Granule Cells: From Grid Cells to Place Fields, J. Neurosci.
812 29 (23) (2009a) 7504-7512, doi:10.1523/JNEUROSCI.6048-08.2009.

sz P. Byrne, S. Becker, N. Burgess, Remembering the past and imagining the
814 future: A neural model of spatial memory and imagery, Psychol. Rev. 114 (2)

815 (2007) 340-375.

sis  A. Bicanski, N. Burgess, A neural-level model of spatial memory and imagery,

817 Elife 7 (7052) (2018) e33752, ISSN 2050-084X, doi:10.7554 /eLife.33752.

30


https://doi.org/10.1101/602235
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/602235; this version posted April 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

sis L. Iijima, M. P. Witter, M. Ichikawa, T. Tominaga, R. Kaji-
819 wara, G. Matsumoto, Entorhinal-Hippocampal Interactions Re-
820 vealed by Real-Time Imaging, Science (80-. ). 272 (5265) (1996)
821 1176-1179, ISSN 0036-8075, doi:10.1126/science.272.5265.1176, URL
822 http://www.sciencemag.org/cgi/doi/10.1126/science.272.5265.1176.

223 A. Guanella, D. Kiper, P. Vershure, A model of grid cells based on a twisted
824 torus topology, Int. J. Neural Syst. 17 (04) (2007) 231-240, ISSN 0129-0657,
825 doi:10.1142/50129065707001093.

s2s Y. Burak, I. R. Fiete, Accurate path integration in continuous attractor network
827 models of grid cells., PLoS Comput. Biol. 5 (2) (2009) 1000291, ISSN 1553-
828 7358, doi:10.1371/journal.pcbi.1000291.

e20 E. Oja, Simplified neuron model as a principal component analyzer., J. Math.

=0 Biol. 15 (3) (1982) 267-273.

g L. Slomianka, I. Amrein, I. Knuesel, J. C. Sgrensen, D. P. Wolfer, Hippocampal
832 pyramidal cells: the reemergence of cortical lamination, Brain Struct. Funct.
833 216 (4) (2011) 301-317, ISSN 1863-2653, doi:10.1007 /s00429-011-0322-0, URL
834 http://link.springer.com/10.1007/s00429-011-0322-0.

g5 L. de Almeida, M. Idiart, J. E. Lisman, A Second Function of Gamma Frequency
836 Oscillations: An E%-Max Winner-Take-All Mechanism Selects Which Cells
837 Fire, J. Neurosci. 29 (23) (2009b) 7497-7503, doi:10.1523/JINEUROSCI.6044-
838 08.2009.

g0 D. Aronov, D. W. Tank, Engagement of Neural Circuits Underlying 2D Spatial
840 Navigation in a Rodent Virtual Reality System, Neuron 84 (2) (2014) 442-
841 456, ISSN 0896-6273, doi:10.1016/J.NEURON.2014.08.042.

sz J. B. Hales, M. I. Schlesiger, J. K. Leutgeb, L. R. Squire, S. Leutgeb, R. E. Clark,
843 Medial Entorhinal Cortex Lesions Only Partially Disrupt Hippocampal Place
844 Cells and Hippocampus-Dependent Place Memory, Cell Rep. 9 (3) (2014)
845 893-901, ISSN 2211-1247, do0i:10.1016/J.CELREP.2014.10.0009.

31


https://doi.org/10.1101/602235
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/602235; this version posted April 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

s K. M. Gothard, W. E. Skaggs, B. L. McNaughton, Dynamics of mismatch cor-
847 rection in the hippocampal ensemble code for space: Interaction between path

848 integration and environmental cues, J. Neurosci. 16 (24) (1996) 8027-8040.

a0 A. Samsonovich, B. L. McNaughton, Path integration and cognitive mapping
850 in a continuous attractor neural network model, J. Neurosci. 17 (15) (1997)

851 5900-5920.

2 W. E. Skaggs, B. L. McNaughton, Spatial Firing Properties of Hippocam-
853 pal CA1l Populations in an Environment Containing Two Visually Identi-
854 cal Regions, J. Neurosci. 18 (20) (1998) 8455-8466, ISSN 0270-6474, doi:
855 10.1523/JNEUROSCI.18-20-08455.1998.

sss V. H. Brun, M. K. Otnaess, S. Molden, H.-A. Steffenbach, M. P. Witter, M.-
857 B. Moser, M. E. L., Place Cells and Place Recognition Maintained by Direct
858 Entorhinal-Hippocampal Circuitry, Science (80-. ). 296 (5576) (2002) 2243—
859 2246, ISSN 00368075, doi:10.1126/science.1071089.

so P. A. Naber, F. H. Lopes da Silva, M. P. Witter, Reciprocal connections between
861 the entorhinal cortex and hippocampal fields CA1l and the subiculum are in
862 register with the projections from CA1 to the subiculum, Hippocampus 11 (2)
863 (2001) 99-104, ISSN 1050-9631, doi:10.1002/hipo.1028.

ss F. Kloosterman, T. van Haeften, M. P. Witter, F. H. Lopes da Silva, Elec-
865 trophysiological characterization of interlaminar entorhinal connections: an
866 essential link for re-entrance in the hippocampal-entorhinal system, Eur. J.
867 Neurosci. 18 (11) (2003) 3037-3052, ISSN 0953-816X, doi:10.1111/j.1460-
868 9568.2003.03046.x.

so K. Mizuseki, K. Diba, E. Pastalkova, G. Buzséki, Hippocampal CA1 pyramidal
870 cells form functionally distinct sublayers, Nat. Neurosci. 14 (9) (2011) 1174—
&1 1181, ISSN 1097-6256, doi:10.1038/nn.2894.

sz A. V. Masurkar, K. V. Srinivas, D. H. Brann, R. Warren, D. C. Lowes, S. A.
873 Siegelbaum, Medial and Lateral Entorhinal Cortex Differentially Excite Deep

32


https://doi.org/10.1101/602235
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/602235; this version posted April 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

874 versus Superficial CA1 Pyramidal Neurons, Cell Rep. 18 (1) (2017) 148-160,
875 ISSN 2211-1247, doi:10.1016/J.CELREP.2016.12.012.

srs  D. Mao, S. Kandler, B. L. McNaughton, V. Bonin, Sparse orthogonal population
877 representation of spatial context in the retrosplenial cortex, Nat. Commun.

ws 8 (1) (2017) 243, ISSN 2041-1723, doi:10.1038/s41467-017-00180-9.

s W. E. Skaggs, B. L. McNaughton, Replay of neuronal firing sequences in rat
880 hippocampus during sleep following spatial experience, Science (80-. ). 271

881 (1996) 1870-1873.

sz G. Girardeau, K. Benchenane, S. I. Wiener, G. Buzséki, M. B. Zugaro, Selective
883 suppression of hippocampal ripples impairs spatial memory, Nat. Neurosci.

884 12 (10) (2009) 1222-1223, ISSN 1546-1726, doi:10.1038/nn.2384.

ss K. Benchenane, A. Peyrache, M. Khamassi, P. L. Tierney, Y. Gioanni, F. P.
886 Battaglia, S. I. Wiener, Coherent theta oscillations and reorganization of spike
887 timing in the hippocampal-prefrontal network upon learning, Neuron 66 (6)
888 (2010) 921-936, ISSN 08966273, doi:10.1016/j.neuron.2010.05.013, URL
889 http://linkinghub.elsevier.com/retrieve/pii/S0896627310003818.

so H. Tanila, Hippocampal place cells can develop distinct representations of two
s01 visually identical environments, Hippocampus 9 (3) (1999) 235-246, doi:
892 10.1002/(SICI)1098-1063(1999)9:3j235:: AID-HIP04;,3.0.CO;2-3.

g3 M. C. Fuhs, S. R. VanRhoads, A. E. Casale, B. McNaughton, D. S. Touret-
894 zky, Influence of Path Integration Versus Environmental Orientation on Place
895 Cell Remapping Between Visually Identical Environments, J. Neurophysiol.
896 94 (4) (2005) 26032616, ISSN 0022-3077, doi:10.1152/jn.00132.2005, URL
807 http://www.physiology.org/doi/10.1152/jn.00132.2005.

s V. Paz-Villagran, E. Save, B. Poucet, Spatial discrimination of vi-
899 sually similar environments by hippocampal place cells in the pres-

900 ence of remote recalibrating landmarks, Eur. J. Neurosci. 23 (1)

33


https://doi.org/10.1101/602235
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/602235; this version posted April 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

%01 (2006) 187-195, ISSN 0953816X, doi:10.1111/j.1460-9568.2005.04541.x, URL
s02 http://doi.wiley.com/10.1111/3j.1460-9568.2005.04541.x.

w3 H. J. Spiers, R. M. A. Hayman, A. Jovalekic, E. Marozzi, K. J. Jeffery,
904 Place Field Repetition and Purely Local Remapping in a Multicompart-
905 ment Environment, Cereb. Cortex 25 (1) (2015) 10-25, ISSN 1047-3211, doi:
006 10.1093/cercor /bht198.

sz R. M. Grieves, B. W. Jenkins, B. C. Harland, E. R. Wood, P. A. Dud-
a08 chenko, Place field repetition and spatial learning in a multicompartment
900 environment, Hippocampus 26 (1) (2016) 118-134, ISSN 10509631, doi:
910 10.1002/hipo.22496, URL http://doi.wiley.com/10.1002/hipo.22496.

on P.-Y. Jacob, G. Casali, L. Spieser, H. Page, D. Overington, K. Jeffery, An
012 independent, landmark-dominated head-direction signal in dysgranular ret-
o3 rosplenial cortex, Nat. Neurosci. 20 (2) (2017) 173-175, ISSN 1097-6256, doi:
014 10.1038/nn.4465, URL http://www.nature.com/articles/nn.4465.

as  B. L. McNaughton, C. A. Barnes, J. L. Gerrard, K. Gothard, M. W. Jung, J. J.
016 Knierim, H. Kudrimoti, Y. Qin, W. E. Skaggs, M. Suster, K. L. Weaver, De-
017 ciphering the hippocampal polyglot: the hippocampus as a path integration
018 system, J. Exp. Biol. 199 (Pt 1) (1996) 173-185, ISSN 0022-0949.

oo E. S. Rosenzweig, A. D. Redish, B. L. McNaughton, C. A. Barnes, Hippocampal
920 map realignment and spatial learning., Nat. Neurosci. 6 (6) (2003) 609-15.

34


https://doi.org/10.1101/602235
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/602235; this version posted April 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

o1 Figures

CAl

CPCs

mEC CA3

VPCs
MPCs

Self-motion
velocity

GCs

Figure 1: Schematic representation of the model. Self-motion input is integrated in the grid
cell populations of the medial EC, and via competitive interactions results in a self-motion-
driven space representation in CA3 (encoded by the MPC population). Visual input, coming
via the 1EC, results in a purely vision-based representation in CA3, encoded by the VPC
population. Both MPCs and VPCs project to CA1 where the conjunctive representation of
location is encoded in the CPC population. The projection from CPCs in CA1l back to the
mEC closes the dynamic hippocampal processing loop and the strength of this projection is
determined by the parameter o. The full arrows represent the information flow in the network.
The dashed arrow represents an alternative way to model visual input processing. The DG is
not modeled.
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Figure 2: Multisensory integration in modeled place cells. A. An example of the trajectory
of the modeled animal in a rectangular environment (top) and the visual input to the model
(bottom) from the location marked by the red dot. In the bottom plot, the dots represent
the grid of Gabor filters, and lines represent the orientations of most active filters. Visual
input at each location is independent from head direction. B. Firing fields of VPCs (top row),
MPCs (middle row) and CPCs (bottom row) in simulated ‘light’ condition (left column),
‘dark’ condition (middle column) and passive translation (right column). C. Trajectories of
model animal crossing the rectangular environment from left to right. The red dots denote
the starting positions. D. When the model rat crosses the environment from left to right,
self-motion position estimate (dotted circle) is behind the visual position estimate (full circle)
in the conditions of decreased speed gain, leading to a forward-shift of receptive fields. EF.
Forward-shift of receptive fields in the population of CPCs (top) and MPCs (bottom). Full
red lines represent the mean shift in the population. Dashed red lines represent the shift due
to purely self-motion input.
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Figure 3: Multisensory integration in grid cells. A. The speed gain was transiently decreased
to 3/4 of the normal gain when the model animal approached the portion of the environment
marked by the dotted lines. B. An example of firing pattern of a grid cell in the conditions
of normal speed (top) and with transiently decreased speed gain (middle). The black and
red circles represent the centers of firing fields in the baseline condition and during decreased
gain, respectively. The shift of firing fields is quantified by displacement vectors shown by the
black arrows (bottom). C. Color map of the mean displacement vector lengths in different
portions of the environment. D. Color map of mean sliding correlation over all grid cells.
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Figure 4: Simulation of the merged-room experiment of Wernle et al. (2018). A. The training
environment with two separate rooms, referred to as room ‘A|B’, and the testing environment,
referred to as merged room ‘AB’. B. Firing fields of an example grid cell in the training (left)
and testing (middle) environments, as well as firing-field displacement vectors calculated in
the testing environment (right). C. A color map of mean vector lengths. D. Top plot: A color
map representing the mean sliding correlation over all grid cells. Bottom plot: the correlation
profiles at the center of the environment along two cardinal directions.
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Figure 5: Place fields in the merged-room experiment. A. Left: receptive fields of two VPCs
in the training and testing environments, either close to the removed wall (top) or distal
from it (bottom). Middle: displacement vectors of the cells on the left. Right: color map of
displacement vector lengths for all cells (top) and all displacement vectors with their mean
direction shown in red (right). B,C. Receptive fields and displacement vectors for MPCs (B)
and CPCs (C). Refer to A for details.
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Figure 6: Influence of plasticity and dynamics on grid patterns in the merged-room experi-
ment. A,B. Displacement vectors (top) and corresponding sliding correlation maps (bottom)
of two example grid cells after learning in the merged room. C. Averaged over many grid
cells, sliding correlation maps can result in different mean correlation patterns. D. Correla-
tion profile for different values of the the strength « of the hippocampal feedback loop.
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Figure 7: Simulation of the double-room experiment of Carpenter et al., 2015. A. Top view
of the experimental environment. B. Local fit (left) versus global fit (right) during early (top)
and late (bottom) sessions for two example grid cells (rows). C. Population estimates of the
local fit (red) and global fit (black) as a function of session number (the value of o decreased
from 0.04 to 0.005 across sessions).
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Figure 8: Evolution of place fields in the double room experiment. A. An example of MPC
(top) and CPCs (bottom) place field during early learning sessions (left column, high o) and
late sessions (right column, low «). In early sessions a majority of place cells have similar
place fields in the two rooms, whereas in late sessions a majority of place cells have a place
field only in one of the rooms. B. Spatial correlation between place fields of a cell in the two
rooms, averaged over all place cells, as a function of session number (or, equivalently, as a
function of decreasing value of .
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Figure 9: Mismatch between the visual and self-motion representations in the double-room
(A) and merged-room (B) experiments. The colors denote the correlation between VPCs and

MPCs projections onto the CPS population.
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