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Significance Statement 

Human urine is a non-invasive source of stem cells with regeneration potential. Here, we 

investigated the cellular and molecular identities, and the gene regulation driving self-renewal 

and differentiation of these cells in vitro. These cells express pluripotency-associated 

markers enabling easy reprogramming. Based on the expression of renal associated genes, 

proteins and functionality, we refer to these cells as urine derived renal progenitor cells- 

UdRPCs. CHIR99021-induced differentiation of UdRPCs activated WNT-related genes- 

AXIN2, JUN and NKD1. Protein interaction network identified JUN as a putative regulator of 

differentiation whereas self-renewal is maintained by FGF2-driven TGFβ-SMAD2/3. Our data 

will enhance understanding of the molecular identities of UdRPCs, and enable the generation 

of renal disease models in vitro and eventually kidney-associated regenerative therapies. 
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Abstract 

Background Human urine is now recognised as a non-invasive source of stem cells with 

regeneration potential. These cells are mesenchymal stem cells but their detailed molecular 

and cellular identities are poorly defined. Furthermore, unlike the mouse, the gene regulatory 

network driving self-renewal and differentiation into functional renal cells in vitro remain 

unresolved.  

Methods We isolated urine stem cells from 10 individuals from both genders and distinct 

ages, characterized them as renal progenitor cells and explored the gene regulatory network 

sustaining self-renewal.  

Results These cells express pluripotency-associated proteins- TRA-1-60, TRA-1-81, 

SSEA4, C-KIT and CD133. Expression of pluripotency-associated proteins enabled rapid 

reprogramming into iPSCs using episomal-based plasmids without pathway perturbations. 

Transcriptome analysis revealed expression of a plethora of nephrogenesis-related genes 

such as SIX2, OSR1, CITED1, NPHS2, NPHS1, PAX2, SALL1, AQP2, EYA1, SLC12A1 and 

UMOD. As expected, the cells transport Albumin by endocytosis. Based on this, we refer to 

these cells as urine derived renal progenitor cells- UdRPCs. Associated GO-term analysis of 

UdRPCs and UdRPC-iPSCs underlined their renal identity and functionality. Upon 

differentiation by WNT activation using the GSK3β-inhibitor (CHIR99021), transcriptome and 

KEGG pathway analysis revealed upregulation of WNT-associated genes-AXIN2, JUN and 

NKD1. Protein interaction network identified JUN- a downstream target of the WNT pathway 

in association with STAT3, ATF2 and MAPK1 as a putative regulator of self-renewal and 

differentiation in UdRPCs. Furthermore, like pluripotent stem cells, self-renewal is maintained 

by FGF2-driven TGFβ-SMAD2/3 pathway.  

Conclusion This in vitro model and the data presented should lay the foundation for 

studying nephrogenesis in man. 

Key words: Kidney, urine, renal progenitor cells, iPSCs, self-renewal, nephrogenesis, WNT, 

TGFβ, SIX2, JUN.  
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Introduction 

Approximately 2000 to 7000 cells are flushed out of the renal system in our urine, which 

contain cells of epithelial origin, erythrocytes, leukocytes, neutrophils, lymphocytes and a 

rare population renal stem cells.1 Urine stem cells which originate from the metanephric 

mesenchyme (MM) and those from the glomeruli are capable of giving rise to podocytes, 

proximal tubular cells and distal cells. These progenitor cells express renal markers such as 

PAX2, PAX8,2 SYNPO, NPHS1, PODXL and NPHS2.3 Interestingly, these cells exhibit stem 

cell properties, i.e. expression of pluripotency-associated markers such as TRA-1-60, TRA-1-

81, SSEA4, C-KIT (CD117), CD133 and SSEA4; and possess high proliferation capacity as 

they show telomerase activity. Further, they endow multi-differentiation potential and like 

bone marrow derived mesenchymal stem cells express Vimentin, CD105, CD90, CD73 and 

not the hematopoietic stem cell markers- CD14, CD31, CD34 and CD45.4,5 Studies in mice 

have shown that Osr1, Six2, Wnt and Wt1 are required to maintain renal progenitor cells 

during kidney organogenesis.6,7,8,9,10,11 Additionally, signalling pathways such as Wnt, Fgf, 

Tgfβ and Notch play major roles in renal stem cell maintenance and differentiation.12,13, 14,15 

 

The transcription factor, Odd-skipped related 1 (Osr1), is an early marker specific for the 

intermediate mesenchyme (IM); knockout mice lack renal structures due to the failure to form 

the IM.16 The homeodomain transcriptional regulator Six2 is expressed in the cap 

mesenchyme (CM) originating from MM. Six2 positive populations can generate all cell types 

of the main body of the nephron.17 Inactivation of Six2 results in premature and ectopic renal 

vesicles, leading to a reduced number of nephrons and to renal hypoplasia.18 

Mechanistically, Osr1 plays a crucial role in Six2-dependent maintenance of mouse nephron 

progenitors by antagonizing Wnt-directed differentiation, whereas Wt1 maintains self-renewal 

by modulating Fgf signals.9,10 Furthermore, it has been demonstrated in mice that Bmp7 

promotes proliferation of nephron progenitor cells via a Jnk-dependent mechanism involving 

phosphorylation of Jun and Atf2.19 

 

To date, research related to transcriptional regulatory control of mammalian nephrogenesis 

has been limited to the mouse 6,12 or to transcriptome “snapshots” in human.20 A recent study 

demonstrated conserved and divergent genes associated with human and mouse kidney 

organogenesis,21 thus further highlighting the need for primary human renal stem cell models 

to better dissect nephrogenesis at the molecular level. Furthermore, species differences 

need to be considered, for example, mammalian nephrons arise from a limited nephron 

progenitor pool through a reiterative inductive process extending over days (mouse) or 

weeks (human) of kidney development.22 Human kidney development initiates around 4 
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weeks of gestation and ends around 34-37 weeks of gestation. At the anatomical level, 

human and mouse kidney development differ in timing, scale, and global features such as 

lobe formation and progenitor niche organization.21,22,23 These are all further evidence in 

support of the need of a reliable and robust human renal cell culture model. 

 

Expression of pluripotency-associated proteins has enabled rapid reprogramming of urine 

derived mesenchymal and epithelial cells into induced pluripotent stem cells 

(iPSCs).24,25,26,27,28 Differentiation protocols for generating kidney-associated cell types from 

human pluripotent stem cells have mimicked normal kidney development.14,29,30,31 For 

example, WNT activation using a GSK3β inhibitor (CHIR99021), FGF9, Activin A, Retinoic 

acid (RA) and BMP7 as instructive signals have been employed to derive functional 

podocytes, proximal renal tubules, and glomeruli.15,32,33,34,35,36 Despite these efforts and 

achievements, there will always be variabilities between differentiation protocols, the 

maturation state of the differentiated renal cells and genes associated with temporal 

maturation during human kidney organoids formation from human iPSCs.37,38 We propose 

that using native renal stem cells isolated directly from urine will circumvent most of the 

shortfalls and deficiencies associated with human pluripotent stem cell-based models. 

 

Here we provide for the first time the full characterisation of UdRPCs at the transcriptome, 

secretome and cellular level, which has led to the identification of a gene regulatory network 

and associated signalling pathways that maintain their self-renewal. We anticipate that our 

data will enhance our meagre understanding of the properties of UdRPCs, and enable the 

generation of renal disease models in vitro and eventually kidney-associated regenerative 

therapies. 
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Concise Methods  

Ethics 

Ethical approval (Number: 5704) was granted by the ethical committee of the medical faculty 

of Heinrich Heine University, Düsseldorf, Germany. 

 

UdRPCs isolation and culture 

Urine samples were collected from 10 healthy donors with diverse age, gender and ethnicity 

(Table 1). Isolation and expansion of the UdRPCs followed the previously established 

protocols.24,28 Adult kidney biopsy derived primary human renal epithelial cells (hREPCs) (C-

12665, Promo Cell) were used as control. Description of the other cell line used in this study 

and culture condition has been provided in Supplemental Material and Methods. 

 

CYP2D6 genotyping and phenotyping 

CYP2D6 genotyping and phenotyping of five individuals were carried out by CeGat GmbH 

Germany using genomic DNA. The CYP2D6 variant assay reveals the pharmacogenetics 

(PGx) profile of an individual’s genotype and phenotype based on tested pharmacogenetics 

markers. The assay identifies and discriminates individuals with poor, normal, intermediate 

and ultra-rapid metabolizing activity.39 

 

Analysis of cell proliferation  

Cell proliferation were analysed using resazurin metabolic colorimetric assay is described in 

details in the Supplemental Material and Methods. 

 

Immunophenotyping by flow cytometry 

The analysis of MSC-associated cell surface marker expression of UdRPCs was performed 

using MSC Phenotyping Kit (Miltenyi) according to the manufacturer´s instructions and as 

described before.40 Description of the details methods has been provided in Supplemental 

Material and Methods. 

  

Albumin endocytosis assay 

Albumin endocytosis assay was performed as described before. 41 Description of the details 

methods has been provided in Supplemental Material and Methods. 

 

Differentiation into adipocytes, chondrocytes and osteoblasts  

Differentiation of UdRPCs into adipocytes, chondrocytes and osteoblasts were tested using 

the StemPro Adipogenesis, Chondrogenesis, and Osteogenesis differentiation Kits (Gibco, 
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Life Technologies, CA, USA) as described before.40,41 A light microscope was used for 

imaging. Methods described in details in the Supplemental Material and Methods. 

 

Bisulfite genomic sequencing 

Bisulfite sequencing was performed following bisulfite conversion with the EpiTec Kit 

(Qiagen, Hilden, Germany). Primers were designed after excluding pseudogenes or other 

closely related genomic sequences which could interfere with specific amplification by 

amplicon and primer sequences comparison in BLAT sequence database 

(https://genome.ucsc.edu/FAQ/FAQblat.html). In brief, the amplification conditions were 

denaturation at 95°C for 13min. followed by 37 cycles of 95°C for 50s, TM for 45s and 72°C 

for 30s. The amplification product is 469 bp in size. Amplification product was cloned into 

pCR2.1vector using the TA Cloning Kit (Invitrogen, Carlsbad, United States) according to the 

manufacturer’s instructions. On average 30 clones were sequenced using the BigDye 

Terminator Cycle Sequencing Kit (Applied Biosystems, Foster City, United States) on a DNA 

analyzer 3700 (Applied Biosystems) with M13 primer to obtain a representative methylation 

profile the OCT4 promoter region. 5´-regulatory gene sequences are defined by +1 

transcription start of the following sequence: Homo sapiens POU class 5 homeobox 1 

(POU5F1), transcript variant 1, mRNA. NCBI Reference Sequence: NM_002701.6 

 

Generation of iPSC from UdRPCs  

UdRPCs were reprogrammed into iPSCs using an integration-free episomal based 

transfection system without pathway inhibition. Briefly, UdRPCs were nucleofected with two 

plasmids pEP4 E02S ET2K (Addgene plasmid #20927) and pEP4 E02S CK2M EN2L 

(Addgene plasmid #20924) expressing a combination of pluripotency factors including OCT4, 

SOX2, LIN28, c-MYC, KLF4, and NANOG using the Amaxa 4D-Nucleofector Kit according to 

the manufacturer’s guidelines and as described previously.28 

 

Immunofluorescence study and Western blot analysis 

Immunofluorescence study was performed as described previously.40 List of primary antibody 

presents in Supplementary Table S1. Details methods of Immunofluorescence study and 

Western blot analysis have been described in Supplemental Material and Methods. 

 

Quantitative RT-PCR analysis 

Real-time quantitative PCR was performed in technical triplicates with Power SYBR Green 

Master Mix (Life Technologies), 12.5�ng cDNA per sample and 0.6�μM primers on a VIIA7 

(Life Technologies) machine. Mean values were normalized to levels of the housekeeping 
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gene ribosomal protein L37A calculated by the 2−ΔΔCt method. Primers used were 

purchased from MWG (primer sequences and predicted sizes of amplicons presented in 

supplementary table S2). 

 

Culture supernatant analysis  

For the detection of cytokines secreted by the UdRPCs, we employed the Proteome Profiler 

Human Cytokine Array Panel A (R&D Systems, MA, USA) following the manufacturer's 

instructions. Correlation variations and p values were calculated based on the pixel density. 

 

Microarray data analyses 

Total RNA (1μg) preparations were hybridized on the PrimeView Human Gene Expression 

Array (Affymetrix, Thermo Fisher Scientific) at the core facility Biomedizinisches 

Forschungszentrum (BMFZ) of the Heinrich Heine University Düsseldorf. Gene expression 

data will be available online at the National Center of Biotechnology Information (NCBI) Gene 

Expression Omnibus. The raw data was imported into the R/Bioconductor environment 42 and 

further processed with the package affy 43 using background-correction, logarithmic (base 2) 

transformation and normalization with the Robust Multi-array Average (RMA) method. The 

heatmap.2 function from the gplots package 44 was applied for cluster analysis and to 

generate heatmaps using Pearson correlation as similarity measure. Gene expression was 

detected as previously described 45 using a detection-p-value threshold of 0.05. Differential 

gene expression was determined via the p-value from the limma package 46 which was 

adjusted for false discovery rate using the q value package.47 Thresholds of 1.33 and 0.75 

were used for up-/down-regulation of ratios and 0.05 for p-values. Venn diagrams were 

generated with the VennDiagram package.48 Subsets from the venn diagrams were used for 

follow-up GO and pathway analyses. 

 

KEGG pathway, GO and network analysis 

Gene ontology (GOs) terms were analysed within the Bioconductor environment employing 

the package GOstats.49 GOs of category Biological Process (BP) were further summarized 

with the REVIGO tool 50 to generate treemaps populating the parameter for allowed similarity 

with tiny=0.4. GO networks were generated from the REVIGO tool in xgmml format and 

imported into Cytoscape.51 To reduce the network to a readable size they were filtered in 

Cytoscape by the log10(p) between -3.75 and -2.75. The saturation of the red nodes 

representing GO terms indicates the significance via the p-value while the grey value of the 

edges represents their similarity. KEGG pathways 52 were downloaded from the KEGG 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 8, 2019. ; https://doi.org/10.1101/602417doi: bioRxiv preprint 

https://doi.org/10.1101/602417


9 

 

server in March 2018 and tested for over-representation with the R-built-in hypergeometric 

test. 

 

Activated WNT pathway associated protein interaction network  

The network was constructed from the 20 most significantly up- and down down-regulated 

genes between CHIR99021 treatment and untreated controls. Genes were ranked by the 

limma-p-value and passed the criteria: detection p-value < 0.05 for the dedicated condition, 

ratio < 0.75 or ratio > 1.33, limma-p-value < 0.05. The resulting 40 genes are marked as 

green nodes in the network. Interacting proteins containing at least one protein coded by the 

40 genes were retrieved from BioGrid version 3.4.161.53 To reduce complexity and increase 

visualization, the network was minimized by adding only the n=30 interacting proteins 

(marked as red nodes) with the most interactions to proteins coded by the 40 genes. The plot 

of the interactions network was drawn employing the R package network.54 Communities of 

related proteins within the network were detected employing an in-betweenness clustering 

analysis via the method cluster_edge_betweenness () from the R package igraph.55 

 

Statistics 

All data are presented as arithmetic means ± standard error of mean. At least 3 independent 

experiments were used for the calculation of mean values. Statistical analysis was performed 

by U-test and student’s t-test. P values of <0.05 were considered significant. 
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Results 

UdRPCs express a subset of pluripotent stem cell-associated markers and possess 

features typical of bone marrow-derived MSC 

Urine samples were collected from 10 healthy adult donors (4 males-UM and 6 females-UF) 

with ages ranging from 21 to 61 years, and of mixed ethnicity (3 african and 7 caucasian) 

(Table 1). Attached cells emerged as isolated clusters after 7 days, thereafter these acquired 

a ‘‘rice grain’’ fibroblast-like morphology resembling MSCs (Figure 1A). A selection of distinct 

UdRPC populations (n=4) were used to assay cell proliferation and growth. After 3 days in 

culture, the cells exited the lag phase and growth began in an exponential phase. Cells 

attained stationary phase at day 7 of subculture, and entered in a decline phase after 7-9 

days (Figure 1B). All four populations- UM27, UM16, UM51 and UF45 showed similar 

proliferation and growth patterns. 

 

Flow cytometry analysis revealed that approximately 98.9% of the cells express SSEA4, 

TRA-1-60 (11.3%) and TRA-1-81 (16.5%) (Figure 1C). These data were confirmed by 

immunofluorescent-based staining which also showed expression of the typical 

mesenchymal marker- Vimentin and the proliferation-associated stem cell markers- C-KIT 

and CD133 (Figure 1D). In order to reveal the detailed methylation pattern of the 5’-

regulatory region of the OCT4 gene in iPSCs derived from the UM51 and the corresponding 

parental cells (control) we employed standard bisulfite sequencing. In total 330 Cytosine-

phosphatidyl-Guanine-dinucleotides (CpG) slightly upstream of the transcription starting site 

(TSS) of the OCT4 gene were analysed. Within this 469bp long region, a dense methylation 

pattern was observed in the UM51 control cells, with 92.4% (305) of the CpG dinucleotides 

identified were methylated. In contrast, iPSCs derived from UM51 had 72.12% (207) of 

analysed CpGs were unmethylated (Supplemental Figure S1). 

 

Flow cytometry analysis of critical MSC cell surface markers were negative for the 

hematopoietic markers CD14, CD20, CD34, and CD45 and positive for CD73, CD90 and 

CD105 albeit at variable levels (Supplemental Figure Figure S2). Typical of MSCs, UdRPCs 

can be driven to differentiate into osteocytes, chondrocytes, and adipocytes when cultured in 

the respective differentiation medium for 3 weeks (Figure 1E). Furthermore, employing a 

cytokine array (n=2), a repertoire of trophic factors such as IL8, GDF-15, SERPINE-1, 

Angiogenin, VEGF, and Thrombospondin-1 was detected as secreted in a similar manner as 

fetal-femur derived MSCs (Figure 1F, Supplemental Figure S2). 
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The CYP2D6 genotypes investigated were distinct between groups of individuals, thus 

reflecting the diverse drug metabolizing activity between individuals. UM51 for example 

expresses the CYP2D6 *4/*17 genotype which confers an intermediate metabolizing 

activity28 whereas UF31 bears the CYP2D6*1/*41 genotype which confers an ultra-rapid 

metabolizing activity. The other three individuals (UF21, UF45 and UM27) are endowed with 

normal drug metabolizing rates (Table 1). 

 

UdRPCs express key renal progenitor cell markers and are able to endocytose 

Albumin 

Immunofluorescence-based staining revealed expression of the key proteins including 

transcription factors associated with kidney development- SIX2, CITED1, WT1, Nephrin, 

LHX1, and PAX8 as shown by representative pictures (Figure 2A). Additionally they were 

shown to express Cytokeratin 19 and PODXL (Supplemental Figure S2) and transport 

Albumin (Figure 2B).  

 

Comparative transcriptome analysis of UdRPCs and kidney biopsy derived hREPCs 

A hierarchical clustering and heatmap analysis was carried out to compare the 

transcriptomes of UdRPCs with the kidney biopsy-derived renal epithelial proximal cells 

(hREPCs). As anticipated, all UdRPCs clustered together as a common cell type distinct 

from hREPCs. 

UdRPCs express higher levels of renal progenitor cell markers such as SIX2, CITED1, 

UMOD, PAX2, NPHS2, GDNF, SALL4, MIXL1 and OSR1. This heatmap also revealed that 

UdRPCs are of mesenchymal origin expressing VIM and SIX2 whereas the hREPCs are 

differentiated epithelial expressing CDH1 and elevated levels of GATA3 and SOX17 (Figure 

3A). Direct comparison of logarithmic (base 2) gene expression values of UdRPCs, for 

instance UM51 with hREPCs, in a scatter plot (Figure 3B) shows similarity with a high 

Pearson correlation of 0.9575. The more epithelial character of hREPCs is reflected by 

CDH1 which has one of the highest ratios between hREPCs and UM51 r = 156.96. 

Additionally, an elevated expression of the mesenchymal marker VIM in UM51 r = 1.1 

confirmed the mesenchymal phenotype of UdRPCs. The comparison of expressed genes 

(det-p < 0.05) in UdRPCs (UM51) and hREPCs in a venn diagram (Figure 3C) showed that 

most genes are expressed in common (12281), whereas 566 are expressed exclusively in 

UM51 and 438 exclusively in hREPCs. The 10 most over-represented GO BP terms 

(biological processes) in the UM51 exclusive gene-set include triglyceride homeostasis, 

kidney development and urogenital system development, whereas the hREPCs exclusive 

gene set includes chloride transmembrane transport, anion transport and response to 
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lipopolysaccharides (Figure 3D). The common gene set consists of 874 up-regulated genes 

(ratio > 2) in UM51 (e.g. renal tubule development, urogenital system development and 

anterior/posterior pattern specification) and 1042 down-regulated genes (ratio < 0.5) in UM51 

(e.g. cell division and cholesterol biosynthetic process) (Figure 3E).  

 

Confirmation of the renal origin of UdRPCs and retention of renal-associated genes in 

UdRPC derived iPSCs 

A venn diagram-based comparison of gene expression (det-p < 0.05) in UdRPCs and human 

foreskin fibroblasts (HFF) was carried out (Figure 4A) in order to dissect common and distinct 

gene expression patterns. The majority of genes (11649) are expressed in common, 463 

exclusively in UdRPCs and 891 in fibroblasts. The 463 genes were further analysed for over-

represented GOs and summarized as a GO network (Figure 4B) with the tools REVIGO, and 

Cytoscape was used for the GO terms of the category BP. In addition to several 

developmental terms such as organ induction, regulation of embryonic development (high 

number of edges referring to similarity to many terms), specific renal-related terms including 

urogenital system development, mesenchymal cell proliferation involved in ureteric bud 

development and positive regulation of nephron tubule epithelial cell differentiation (marked 

with blue ellipse, intense red indicating higher significance) were identified. Interestingly, the 

non-canonical Wnt signalling pathway, which plays a major role in kidney development, is 

also over-represented (orange ring-top left). 

The dendrogram based on the global transcriptome analysis revealed a clear separation of 

UdRPCs lines (n=9) from the differentiated UdRPCs (CHIR 99021 treated UdRPCs, n=3), 

UdRPCs-iPSCs (n=4) and embryonic stem cells (H1 and H9) (Figure 4C). Characterization of 

the derived UdRPC-iPSCs is depicted in Supplemental Figure S2 (Supplemental Figure S3A, 

S3B, S3C, and S3D). In the venn diagram (Figure 4D) we compared expressed genes (det-p 

< 0.05) in UdRPC-iPSCs with ESCs and HFF-iPSCs. Most genes (12092) are expressed in 

common in all cell types while 150 genes are expressed exclusively in UdRPC-iPSCs. The 

genes expressed exclusively in one cell type were further analysed for over-representation of 

GO terms. The treemap summarizing the GO terms of category BP over-represented in the 

150 genes expressed exclusively in UdRPC-iPSCs (Figure 4E) indicates that UdRPC-iPSCs 

retain a memory of their kidney origin. In addition to the largest most significant group- 

positive regulation of urine volume, it consists of other renal-related GO terms (e.g. calcium 

transport, vitamin D). Stem-cell-related and developmental terms such as positive regulation 

of cell proliferation are due to their pluripotent nature. Within the treemap summarizing the 

GO-BP terms over-represented in the 312 genes expressed exclusively in HFF-iPSCs, the 
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largest most significant group is associated with negative regulation of myoblast 

differentiation, thus pointing at the fibroblast origin of these iPSCs (Figure 4E). Furthermore, 

within the treemap summarizing the GO-BP terms over-represented in the 197 genes 

expressed exclusively in ESCs, the largest most significant group is associated with negative 

regulation of astrocyte differentiation- hinting at their known propensity to differentiate into 

the ectodermal lineage (Supplemental Figure S4). 

 

WNT pathway activation by GSK3β inhibition induces differentiation of UdRPCs into 

renal epithelial proximal tubular cells 

To differentiate 3 independent UdRPC preparations, the cells were treated with 10 μM 

CHIR99021 (WNT pathway activation by GSK3β inhibition) for 2 days and morphological 

changes from fibroblastic to elongated tubular shape were observed (Figure 5A). In the venn 

diagram, expressed genes (det-p < 0.05) in untreated UdRPCs are compared to UdRPCs 

treated with CHIR99021. Genes expressed in common amounts to 11790, of these 2491 are 

upregulated in the CHIR99021 treatment (p < 0.05, ratio > 1.33) and 2043 are down-

regulated (p < 0.05, ratio < 0.75) (Figure 5B, Supplemental Table S6). Among the 

upregulated genes, 27 are considered “novel” (gene symbol starting with “LOC”), 21 among 

the down-regulated genes and 98 among the non-regulated genes (Supplemental Table S6). 

The heatmap based on the top 20 regulated genes shows a clear separation between 

untreated and treated cells (Figure 5C). Amongst the up-regulated genes, the associated 

KEGG pathways include WNT-signaling (AXIN2, JUN, NKD1) (Supplemental Figure S5). 

Over-representation analysis of the up-regulated genes and their associated KEGG 

pathways identified protein processing in endoplasmic reticulum as highly significant and 

several signalling pathways such as mTOR, Insulin, p53, AMPK and TNF. Over-

representation analysis of the down-regulated genes and associated KEGG pathways 

revealed cell cycle, cellular senescence, focal adhesion, FoxO, ErbB and thyroid hormone 

signalling. Interestingly Hippo pathway was regulated in both undifferentiated and 

differentiated UdRPCs (Figure 5D). 

 

Regulation of self-renewal and differentiation in UdRPCs 

Further to the transcriptome analyses (Figure 5), Real-time PCR revealed downregulation of 

the stem cell self-renewal associated gene CD133 and activated expression of the 

nephrogenesis-associated gene BMP7 after CHIR stimulation (Figure 6A). 

 

To identify key self-renewal regulators and pathways in UdRPCs, a protein-protein-

interaction network was generated. The network of the 40 proteins, encoded by the 20 most 
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significantly up- and down-regulated genes between CHIR treated and untreated UdRPCs 

(Figure 5C) indentified JUN as a major hub – in terms of having most connections to other 

proteins in the network. However, in the WNT-signaling pathway JUN is at the end of a 

downstream cascade from GSK3B, including further downstream targets- AXIN2 and 

CTNNB1. The genes encoding these proteins were differentially regulated by the CHIR 

treatment (green nodes) (Figure 6B). Several communities with more interactions within the 

community than to other communities can be detected in the network via community 

clustering of the network via edge-betweenness includes JUN (red), GSK3B / AXIN2 / 

CTNNB1 (green), LATS2 (yellow), EGFR (pink) (Figure 6C). To analyze the effect of WNT 

activation on the TGFβ-SMAD pathway, Western blot analysis was performed to detect 

phosphorylation levels of SMAD 2/3 and SMAD 1/5/8 in UF45, UM51 and UM27. In the 

differentiated cells (UdRPCs after CHIR treatment) a decreased level of phosphorylated 

SMAD 2/3 and increased levels of phosphorylated SMAD 1/5/8 were observed (Figure 6D).  
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Discussion 

Here we describe urine as a reliable, robust and cheap source of renal stem cells, in contrast 

to amniotic fluid or kidney biopsies.41,56 Urine can be accessed non-invasively, without risk for 

the patient and repeated samples can be collected from the same donor over prolonged 

periods. Urine derived stem cells can be expand from a single clone with high proliferation 

potency.24,57 We propose naming these cells as urine derived renal progenitor cells- 

UdRPCs, because they can be kept in culture for almost 12 passages whilst maintaining 

expression of the self-renewal associated proteins- CD133, C-KIT, TRA-1-60, TRA-1-81 and 

SSEA4 (Figure 1D) as has been shown by others24,41  Despite the expression of these 

pluripotency-associated factors, UdRPCs do not express OCT4, SOX2 and NANOG- which 

are key pluripotency-regulating transcription factors.58,59 Further evidence in support of the 

lack of OCT4 expression is our observed OCT4 promoter methylation pattern in the UM51 

cells, with 92.4% (305) of the CpG dinucleotides identified as methylated whereas iPSCs 

derived from UM51 had 72.12% (207) of analysed CpGs unmethylated (Supplemental Figure 

S1).  

 

UdRPCs express key renal progenitor-regulatory proteins SIX2, CITED1, WT1 and NPHS1 

(Figure 2A) indicating they originate from the kidney as described from others.13,56,60 

Furthermore, UdRPCs transport Albumin (Figure 2B) as observed in renal stem cells.41,61 We 

have shown that UdRPCs are in fact bon-fide MSCs- i.e. they express VIM and not CDH1, 

adhere to plastic surfaces, express CD73, CD90 and CD105 and not the hematopoietic 

markers CD14, CD20, CD34, and CD45 (Supplemental Figure S2). Typical of MSCs, 

UdRPCs can be differentiated into osteoblasts, chondrocytes and adipocytes (Figure 

1E).41,56,62 They also secrete a plethora of cytokines and growth factors- such as EGF, GDF, 

PDGF and Serpin E1 (Figure 1F).63  

With regards to nephrogenesis-associated regulatory genes,17,30 we observed SIX2, CITED1, 

GDNF, WT1, NPHS1, PAX2 expression in UdRPCs but at variable expression levels 

between individual cell preparations (Figure 3A). The GOs network derived from the 

exclusively expressed genes in UdRPCs (compared to HFF) unveiled renal system 

development- related terms (Figure 4B). Furthermore, the GOs from the UdRPCs-iPSC 

exclusive genes set, in contrast to pluripotent stem cells, identified terms related to renal 

function therefore implying the preservation of their kidney origin (Figure 4E). As the 

conservation of tissue of origin in iPSCs might be linked to epigenetic memory,4,64 UdRPCs 

as well as UdRPCs-iPSCs, especially with known CYP2D6 status, might be advantageous 

for differentiation into renal cells, modelling kidney-related diseases, nephrotoxicity studies 
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and regenerative medicine. However, dissecting the gene regulatory mechanisms that drive 

human renal progenitor growth and differentiation in vitro represents the key step for 

translation but remains a challenge due to the absence of well-characterised urine derived 

stem cells. Here we have shown that UdRPCs are a self-renewing stem cell population 

unlike the kidney biopsy-derived hREPCs which are differentiated renal epithelial cells 

(Figure 3A, Figure 3B). To demonstrate that UdRPCs can maintain self-renewal when 

cultured under undifferentiation conditions but yet retain the potential for epithelial 

differentiation and nephrogenesis, we induced active WNT signalling, by treatment with the 

GSK-3β inhibitor- CHIR99021. The differentiated cells adopted an elongated tubular 

morphology (Figure 5A) and reduced proliferation as also shown for human ESC and iPSC 

derived renal epithelial cells.65,66,67  

Although WNT pathway activation induced an epithelial phenotype, we did not see a 

dramatic increase in CDH1 expression but rather activation of CDH-3 expression (8.86 fold) 

(Supplemental Table S6). Cdh-3, a gene encoding a member of the cadherin superfamily, 

functions in epithelial cell morphogenesis in Caenorhabditis elegans68 an event which is 

poorly understood in human nephrogenesis.  

In line with our previously published observations in amniotic fluidic-derived renal cells, the 

down-regulated expression of SIX2, WT1, CD133 and upregulated expression of BMP7 

(Figure 6A) induced the loss of self-renewal.41 Global transcriptome analyses also revealed 

the down-regulation of 2043 genes some of which are associated with pathways such as cell 

cycle, FoxO, Hippo and ErbB signalling (Figure 5D). The Hippo pathway which is composed 

of WNT target genes such as LATS2, AXIN2 and CTNNB1 have been reported to regulate 

epithelialization of nephron progenitors.69,70 

We detected differential expression 40 genes in which 20 most significantly up- and down-

regulated between WNT-induced differentiated and self-renewing UdRPCs (Figure 5C). 

Amongst the genes up regulated in the CHIR treated cells are the WNT targets- AXIN2, JUN 

and NKD1 known to be associated with WNT signalling (Supplemental Figure S5). 

Interestingly, a protein interaction network identified JUN as a major hub connected to 

GSK3β and interlinked with ATF2, STAT3, GATA2 and MAPK1 (Figure 6B, Figure 6C). 

Interestingly, in a mouse nephrogenesis model, Bmp7 phosphorylates Jun and Atf2 via Jnk 

signalling which promote the proliferation of mouse nephron progenitors.19 This indeed might 

be contradictory to our observed elevated expression of BMP7 upon WNT induced 

differentiation of UdRPCs- i.e. suppression of BMP7 expression is needed to maintain self-

renewal in UdRPCs. It is well known that TGFβ signals through pSMAD2/3 whereas BMPs 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 8, 2019. ; https://doi.org/10.1101/602417doi: bioRxiv preprint 

https://doi.org/10.1101/602417


17 

 

activate SMAD1/5/8. Since, SMADs are a target of MAPK particularly of JNK, BMPs and 

TGFβ both can activate the SMAD circuit.71,72 

Based on this study and our previously published data in human amniotic fluid-derived renal 

cells,41 we propose that similar to self-renewal in human pluripotent stem cells, UdRPCs 

maintain self-renewal by active FGF signalling leading to phosphorylated TGFβ- SMAD2/3 

(Figure 6D).59,73 In contrast, activation of WNT/β-catenin signalling leads to an upregulation 

of JUN and BMP7 leading to activation of SMAD1/5/8 signalling (Figure 6D) and exit of self-

renewal by downregulation of WT1, SIX2, CITED1, and CD133 expression. To surmise, we 

derived a hypothetic scheme of the WNTβ catenin and TGFβ pathway-mediated cell fate 

decisions in UdRPCs. This simplistic model is depicted in Figure 7.  

Comparing self-renewal of renal progenitor cells in both human (UdRPCs) and mouse, it is 

clear that an intricate balance is needed between SIX2, WT1, CITED1 expression and 

Wnt/β-catenin activity in order to determine the cell fate of nephron progenitor cells.7,11,17,21 

Furthermore, it remains to be determined if indeed there exist subtle human and mouse 

differences in the gene regulatory network needed to maintain a self-renewing renal 

progenitor pool in both species and we believe that human UdRPCs as described here will 

facilitate these studies. 
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Tables 
 

Table 1. UdRPCs sample overview 

Sample ID Gender Age Ethnicity iPSC CYP2D6 Genotype CYP2D6 Phenotype 
UM48 M 48 African NO -  - 
UF60 F 60 Caucasian NO -  - 
UM27 M 27 Caucasian NO CYP2D6*1x2/*4 Normal metabolizer (NM) 
UF27 F 27 Caucasian NO -  - 
UF61 F 61 Caucasian NO -  - 
UM51 M 51 African YES CYP2D6*4/*17 Intermediate metabolizer (IM) 
UF45 F 45 Caucasian YES CYP2D6*1/*4 Normal metabolizer (NM) 
UF31 F 31 African YES CYP2D6*1/*41 Ultra metabolizer (UM) 
UF21 F 21 Caucasian YES CYP2D6*2/*2 Normal metabolizer (NM) 
UM54 M 54 Caucasian NO  - - 
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Figure 1 
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Figure 2 

 

 

 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 8, 2019. ; https://doi.org/10.1101/602417doi: bioRxiv preprint 

https://doi.org/10.1101/602417


28 

 

Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure legends 

Figure 1. Propagation and characterisation of UdRPCs. (A) Representative pictures of 

the “rice grain”-like appearance of the cells from the initial attachment to an elongated MSC-

like morphology. (B) Growth curve analysis of selected UdRPCs carried out using the 

Resazurin metabolic assay. Data are presented as means ±SEMs. (C) Immune-phenotyping 

and (D) immunofluorescence-based detection of the expression of pluripotency-associated 

stem cell- proteins (SSEA4 (red), TRA-1-60 (red), TRA-1-81 (red), C-KIT (green), CD133 

(green) and the mesenchymal-associated protein Vimentin (green); cell nuclei were stained 

using Hoechst/DAPI (scale bars: 100µm). (E) In vitro Osteoblast, Chondrocyte and Adipocyte 

differentiation potential of UdRPCs. (F) Cytokines secreted by UdRPCs in culture media. 

Lists of significant GO`s and KEGG pathways associated with the genes encoding the 

secreted cytokines, are shown in Supplemental Figure S1. 

Figure 2. Expression of kidney-associated proteins in UdRPCs and Albumin transport. 

(A) UdRPCs express the renal markers- SIX2, CITED1, WT1, PAX8, Nephrin (NPHS1) and 

LHX1. Renal markers (red), phalloidin (green), cell nuclei were stained using DAPI/Hoechst 

(blue). (B) UdRPCs (n=4) like the human kidney biopsy-derived hREPCs also transport 

Albumin. Albumin was coupled to Alexa Fluor 488 (green) and cell nuclei stained with DAPI 

(blue). Scale bars indicate 50µm. 

Figure 3. Transcriptome analysis of UdRPCs in comparison to kidney biopsy-derived 

renal epithelial proximal cells- hREPCs. (A) The heatmap of kidney-specific markers 

expressed in UdRPCs and hREPCs. (B) Comparison of gene expression values of UdRPCs 

(UM51) with hREPCs in a scatter plot confirms the mesenchymal phenotype of UdRPCs, i.e. 

expression of Vimentin (VIM) and expression of E-cadherin (CDH1) in hREPCs (C) 

Expressed genes (det-p < 0.05) in UdRPCs (sample UM51) and hREPCs are compared in 

the venn diagram. (D) The 10 most over-represented GO BP-terms in 566 UM51 genes 

include triglyceride homeostasis and kidney development and in 438 hREPCs genes include 

chloride transmembrane transport. (E) The 10 most over-represented GO BP-terms in the 

up- and down-regulated genes in UM51 in comparison to hREPCs are shown. The complete 

dataset is presented in Supplemental Table S3. 

Figure 4. In-depth bioinformatic analysis of UdRPCs and UdRPC-iPSCs. (A) Expressed 

genes (det-p < 0.05) in UdRPCs and fibroblasts are compared in a venn diagram. Most 

genes are expressed in common (11649), 463 genes are expressed exclusively in UdRPCs 

and 891 in fibroblasts. The subsets and UdRPCs GOs are presented in 

supplemental_table_S4. (B) The gene ontology network was generated with the tools 
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REVIGO and Cytoscape and summarizes the GO terms of category Biological Process (BP) 

over-represented in the 463 genes expressed exclusively in UdRPCs. Several general 

developmental terms emerged, e.g. “organ induction”. Specific renal-related terms including 

“urogenital system development” are marked with a blue ellipse. GOs are represented by 

network nodes with the intensity of red indicating the significance of over-representation of a 

GO term. The edges refer to similarities between the GO terms. (C) The dendrogram shows 

a clear separation of UdRPCs, differentiated UdRPCs (black bar), ESCs (H1 and H9, red 

bar) and UdRPCs-iPSCs (green bar). (D) Venn diagram of HFF-iPSCs, UdRPCs-iPSCs and 

ESCs. (E) GO terms of 150 genes expressed exclusively in UdRPC-iPSCs indicate that 

UdRPC-iPSCs retain the memory of renal origin. In the treemap for the HFF-iPSCs the GO-

BP terms of the 312 over-represented genes of the exclusive gene set are summarized. The 

most significant group is associated with negative regulation of myoblast differentiation 

including genes DDIT3, MBNL3, TGFB1, ZFHX3 pointing at the fibroblast origin of these 

iPSCs. The entire dataset is presented in Supplemental Table S5. 

Figure 5. Supplementation of UdRPCs with the GSK-3β inhibitor. (A) Activation of WNT 

signalling by supplementation with GSK-3β-inhibitor CHIR99021 led to differentiation into 

renal epithelial proximal tubular cells. (B) Heatmap of 3 independent UdRPC preparations 

with and without CHIR treatment. (C) In the venn diagram, expressed genes (det-p < 0.05) in 

untreated UdRPCs are compared to UdRPCs treated with the GSK-3β-inhibitor CHIR99021. 

Among the 11790 genes expressed in both conditions, 2491 are up-regulated in the 

CHIR99021 treatment (p < 0.05, ratio > 1.33) and 2043 down-regulated (p < 0.05, ratio < 

0.75). (D) Over-representation analysis of the up-regulated genes and associated KEGG 

pathways revealed protein processing in endoplasmic reticulum as highly significant and 

several signalling and metabolic pathways including mTOR, Insulin, p53 and TNF. Over-

representation analysis of the down-regulated genes in KEGG pathways identified cell cycle, 

cellular senescence, focal adhesion, FoxO and adherens junction as most significant. 

Supplemental Table S6 provides the full list of regulated genes and associated pathways. 

Figure 6. Regulation of self-renewal and differentiation in UdRPCs. (A) Real-time PCR-

based confirmation of down-regulation of CD133 and activated expression of BMP7 after 

CHIR stimulation. (B) JUN is a major hub of protein interaction networks of UdRPCs treated 

with CHIR. Based on the Biogrid database protein interaction networks were constructed 

from the set of the most highly regulated 40 genes either up- or down in the UdRPCs treated 

with CHIR. The selected genes used to connect to the network with interactions from the 

Biogrid database are marked in green, genes added as Biogrid interactions are marked in 

red. Induction of WNT leading to GSK3B inhibition is reflected by the connection of GSK3B 
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to JUN and to AXIN2 which is connected to CTNNB1 (β-catenin) – these all downstream 

targets of GSK3B in the WNT-signaling pathway. (C) Community clustering of the network 

identified several communities: JUN (red), GSK3B/AXIN2/CTNNB1 (green), LATS2 (yellow), 

EGFR (pink). Black lines refer to edges within a community, red lines to edges between 

different communities. (D) Western blot analysis of the phosphorylated levels of SMAD 2/3 

and SMAD 1/5/8 in undifferentiated and differentiated UF45, UM51 and UM27.  

 

Figure 7. WNTβ catenin and TGFβ pathway-mediated cell fate decisions in UdRPCs. 

Self-renewal (inactive WNT/βcatenin signalling and active TGFβ-SMAD2/3 signalling) is 

maintained by elevated expression of the renal progenitor markers SIX2, WT1, CITED1, 

CD133, in addition to phospho-SMAD2/3 and FGF2 resulting in and down regulated 

expression of BMP7. In contrast, activation of WNT/β-catenin signalling induces upregulated 

expression of JUN and BMP7 leading to activation of phospho-SMAD1/5/8, downregulated 

expression of WT1, SIX2, CITED1, FGF2, CD133 and ultimately exit of self-renewal.  
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Supplemental 
Number 

Legends 

Supplemental 
Figure S1 

Detailed analysis by bisulfite sequencing of CpG island methylation patterns within 
the 5´- regulatory region of the OCT4 gene in UM51 (control) and its iPSC derivative. 
Detailed CpG methylation profiles of the OCT4 5´-regulatory region are documented 
as revealed by bisulfite sequencing. Filled circles (black) denote methylated CpG 
dinucleotides, white denote unmethylated CpGs and gray CpG dinucleotides of 
unknown methylation status. Arrows indicate the transcription start site. 

Supplemental 
Figure S2 

(A) Immuno-phenotyping for MSC markers. (B) Secretome profile membrane. (C) 
Secretome genes related GOs and KEGG Pathways. (D) PODXL and CK19 staining. 
 

 

Supplemental 
Figure S3 

Generation and characterization of iPSCs from UdRPCs. 

Supplemental 
Figure S3_A 

(A) The reprogrammed vector-free UdRPCs-iPSCs stained positive for the 
transcription factors Oct4, Sox2 and Nanog and for the surface markers TRA-1-60, 
TRA-1-81 and SSEA-4 confirmed by immunofluorescence. 

Supplemental 
Figure S3_B 

(B) The immunofluorescence-based study shows a successful undirected 
differentiation into the mesoderm lineage detected with the mesoderm marker α-SMA 
and a successful specification along the endoderm layer confirmed with AFP, as well 
as the ectoderm layer proved with Nestin. 

Supplemental 
Figure S3_C 

(C) Dendrogram resulting from hierarchical clustering of global gene expression 
profiles of UdRPCs-iPSCs, UdRPCs, and established ESCs (H1, H9). 
Transcriptomes of UdRPCs-iPSCs cluster with H1, H9 while those of the UdRPCs 
cluster separately. Pearson correlation analysis of transcriptome data revealed a 
high correlation (green) of UdRPCs-iPSCs with ESCs but low correlation with 
UdRPCs. Pearson's correlation coefficient was calculated in which each replicate 
was pairwise compared with each other replicate. A value of 1 indicates perfect linear 
correlation while a value of 0 implies no correlation. 

Supplemental 
Figure S3_D 

(D) The origin of the formed iPSCs was assigned to its donor UdRPC line by 
determining the individual DNA signature. For this purpose, a PCR-based DNA 
fingerprinting using specific primer sets, which amplify different VNTRs (variable 
number of tandem repeats) was employed. Ultimately, the genotyping provide 
evidence, that reprogrammed iPSC clones originate from their parental UdRPC line 
and hence exclude the possibility of cross-contamination. Collecting all data, the 
excellent quality and integrity of the reprogrammed urinary progenitor cells was 
proven by a normal 46, XY karyotype. 

 

Supplemental 
Figure S4 

ESC-exclusively GOs when compared to HFF-iPSCs and UdPC-iPSCs. Treemap 
summarizing the GO-BP terms overrepresented in the 197 genes expressed 
exclusively in ESCs. The largest most significant group is associated with “negative 
regulation of astrocyte differentiation”, second comes “anion transmembrane 
transport”. 

 

Supplemental 
Figure S5 

KEGG pathways associated with genes up and down regulated upon CHIR treatment 
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Supplemental 
Table S1 

List of Antibodies used for immunocytochemistry/flow-cytometry. 

Supplemental 
Table S2 

List of primers 

Supplemental 
Table S3 

(Excel file) 

Sheet 1: Subsets of venn diagram comparison of UdRPCs of sample UM51 vs. 
hREPCs.  
Sheet 2: Overrepresented GOs in the exclusive UM51 subset with 566 genes from 
the venn diagram comparison of UdRPCs of sample UM51 vs. hREPCs.  
Sheet 3: Overrepresented GOs in the exclusive hREPCs subset with 438 genes from 
the venn diagram comparison of UdRPCs of sample UM51 vs. hREPCs.  
Sheet 4: Overrepresented GOs in the up-regulated genes (limma-p-value < 0.05, 
ratio > 2) from the overlap subset of the venn diagram comparison of UdRPCs of 
sample UM51 vs. hREPCs. 
Sheet 5: Overrepresented GOs in the down-regulated genes (limma-p-value < 0.05, 
ratio < 0.5) from the overlap subset of the venn diagram comparison of UdRPCs of 
sample UM51 vs. hREPCs 

Supplemental 
Table S4 

(Excel file) 

Sheet 1: Subsets of venn diagram comparison of UdRPCs vs. fibroblasts.  
Sheet 2: Overrepresented GOs in the exclusive UdRPC subset with 463 genes from 
the venn diagram comparison of UdRPCs vs. fibroblasts 

Supplemental 
Table S5 

(Excel file) 

Sheet 1: Subsets of venn diagram comparison of iPSCs derived from UdRPCs 
(UdRPC_iPSCs), iPSCs derived from human foreskin fibroblasts (B4_HFF_iPSCs) 
and human embryonic stem cells (ESCs).  
Sheet 2: Overrepresented GOs in the exclusive UdRPC_iPSCs subset with 150 
genes from the venn diagram comparison of UdRPC_iPSCs, B4_HFF_iPSCs and 
ESCs.   
Sheet 3: Overrepresented GOs in the exclusive B4_HFF_iPSCs subset with 312 
genes from the venn diagram comparison of UdRPC_iPSCs, B4_HFF_iPSCs and 
ESCs. 
Sheet 4: Overrepresented GOs in the exclusive ESCs subset with 197 genes from 
the venn diagram comparison of UdRPC_iPSCs, B4_HFF_iPSCs and ESCs. 

Supplemental 
Table S6 

(Excel file) 

Sheet 1: Subsets of venn diagram comparison of UdRPCs treated with CHIR99021 
vs. untreated UdRPCs. 
Sheet 2: The set of 2491 up-regulated genes (p<0.05, ratio>1.33) from the venn 
diagram intersection of UdRPCs treated with CHIR99021 vs. untreated UdRPCs. 
Sheet 3: The set of 2043 down-regulated genes (p<0.05, ratio<0.75) from the venn 
diagram intersection of UdRPCs treated with CHIR99021 vs. untreated UdRPCs. 
Sheet 4: The set of 7255 not regulated genes (p>0.05, 0.75<ratio<1.33) from the 
venn diagram intersection of UdRPCs treated with CHIR99021 vs. untreated 
UdRPCs.  
Sheet 5: Overrepresented KEGG pathways in the set of 2491 up-regulated genes 
from the venn diagram intersection of UdRPCs treated with CHIR99021 vs. untreated 
UdRPCs.  
Sheet 6: Overrepresented KEGG pathways in the set of 2043 down-regulated genes 
from the venn diagram intersection of UdRPCs treated with CHIR99021 vs. untreated 
UdRPCs.  
Sheet 7: Novel genes beginning with LOC (without published symbol) in the set of 
2491 up-regulated genes (p<0.05, ratio>1.33) from the venn diagram intersection of 
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Sheet 8: Novel genes beginning with LOC (without published symbol) in the set of 
2043 down-regulated genes (p<0.05, ratio<0.75) from the venn diagram intersection 
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Sheet 9: Novel genes beginning with LOC (without published symbol) in the set of 
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Supplemental Material and Methods 

 

UdRPCs differentiation  

For differentiation of the UdRPCs 10µM CHIR99021 was added to the cell culture medium 

for 2 days. Adult kidney biopsy derived primary human renal epithelial cells (hREPCs) (C-

12665, Promo Cell, Heidelberg, Germany) were used as control. 

 

Immunophenotyping by flow cytometry 

The analysis of MSC-associated cell surface marker expression of UdRPCs was performed 

using MSC Phenotyping Kit (Miltenyi) according to the manufacturer´s instructions. In case of 

pluripotency-associated markers, TRA-1-60, TRA-1-81, and SSEA4 dye-coupled antibodies 

were used (anti-TRA-1-60-PE, human (clone: REA157), number 130-100-347; anti-TRA-1-

81-PE, human (clone: REA246), number 130-101-410, and anti-SSEA-4-PE, human (clone: 

REA101), number 130-098-369; Miltenyi Biotec GmbH). Flow cytometric analysis of the 

stained cells was performed via BD FACSCanto (BD Biosciences, Heidelberg, Germany) and 

CyAn ADP (Beckman Coulter, CA, USA). Histograms were generated using the Summit 

4.3.02 software. 

 

RNA isolation and cDNA synthesis 

RNA was isolated using the Direct-zol RNA MiniPrep Kit (Zymo Research, CA, USA) 

according to provider guidelines. After checking the quality of mRNA, 500 ng of RNA were 

used for complementary DNA synthesized with the TaqMan Reverse Transcription Kit 

(Applied Biosystems). 

 

Culture supernatant analysis  

For the detection of cytokines secreted by the UdRPCs, we employed the Proteome Profiler 

Human Cytokine Array Panel A (R&D Systems, MA, USA) following the manufacturer's 

instructions. 1.5�ml of conditioned medium from cultured UdRPCs at a density of 95% was 
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used. The array was evaluated by detection of the emitted chemiluminescence. The pixel 

density of each spotted cytokine was analysed using the software ImageJ. All spots on the 

membrane including reference and negative control spots were measured separately. 

Correlation variations and p values were calculated based on the pixel density. 

 

Differentiation into adipocytes, chondrocytes and osteoblasts  

Differentiation of UdRPCs into adipocytes, chondrocytes and osteoblasts were tested using 

the StemPro Adipogenesis, Chondrogenesis, and Osteogenesis differentiation Kits (Gibco, 

Life Technologies, CA, USA). After the differentiation periods, cells were fixed using 4% PFA 

for 20 min at RT and stained with Oil Red-O for detecting adipocytes, Alcian Blue for 

chondrocytes, and Alizarin Red S for osteoblasts as described previously. A light microscope 

was used for imaging. 

 

Generation of iPSC from UdRPCs  

UdRPCs were reprogrammed into iPSCs using an integration-free episomal based 

transfection system without pathway inhibition. Briefly, UdRPCs were nucleofected with two 

plasmids pEP4 E02S ET2K (Addgene plasmid #20927) and pEP4 E02S CK2M EN2L 

(Addgene plasmid #20924) expressing a combination of pluripotency factors including OCT4, 

SOX2, LIN28, c-MYC, KLF4, and NANOG using the Amaxa 4D-Nucleofector Kit according to 

the manufacturer’s guidelines and as described previously. The nucleofected cells were 

cultured on Matrigel coated 6-well plate containing StemMACs or mTeSR media under 

hypoxic conditions. Emerging colonies were picked and transferred to a new plate and 

cultured under normoxic conditions. After few passaging, vector-dilution PCR and genomic 

DNA fingerprinting were performed. Karyotyping was performed at the Institute of Human 

Genetics and Anthropology, Heinrich Heine University, Düsseldorf. Finally, embryoid body 

(EB) formation and analysis were carried out.   
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Immunofluorescence-based detection of protein expression 

To analyse expression of specific markers, cells were fixed with 4% PFA (Polysciences Inc., 

PA, USA) for 15 min at room temperature (RT) and washed three times in PBS and 

permeability was increased using 1% Triton X-100 for 5 min. Next, for blocking we used: 

10% normal goat serum (NGS; Sigma), 0.5% Triton X-100, 1% BSA (Sigma) and 0.05% 

Tween 20 (Sigma) in PBS for 2h. The cells were incubated with primary antibodies 

(Supplementary Table S1) for 1h at RT followed by three washes with PBS. Thereafter the 

corresponding secondary Cy3-labeled or Alexa Fluor 488-labeled antibodies (Thermo Fisher 

Scientific) and Hoechst 33,258 dye (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) or 

DAPI (Southern Biotech) were added. A fluorescence microscope (LSM700; Zeiss, 

Oberkochen, Germany) was used for taking the pictures. All pictures were processed with 

the ZenBlue 2012 Software Version 1.1.2.0. (Carl Zeiss Microscopy GmbH, Jena, Germany). 

 

Albumin endocytosis assay 

UdRPCs were plated at a density of 40% without coating. After two days the cells were 

washed 1X with PBS and incubated in new medium contained 20 μg/ml of bovine serum 

albumin (BSA)-Alexa Fluor 488 conjugate (catalog no. A13100; Thermo Fischer) for 1 h at 

37°C. Thereafter, the cells were washed three times with ice-cold PBS and fixed with 4% 

PFA for 15 min. Cell-associated fluorescence was analyzed using an excitation wavelength 

of 488 nm and an emission wavelength of 540 nm and imaged using a florescence 

microscope (LSM700; Zeiss, Oberkochen, Germany). 

 

Western blot analysis 

For protein extraction, cells were harvested and lysed in RIPA buffer (Sigma Aldrich) 

supplemented with complete protease and phosphatase inhibitors cocktail (Roche). The 

lysates were separated on a 4-20% Bis-Tris gel and blotted onto a 0.45 µm nitrocellulose 

membrane (GE Healthcare Life Sciences). The membranes were then blocked with 5% 

skimmed milk in Tris-Buffered Saline Tween (TBS-T) and incubated overnight with the 
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respective primary antibodies: Total Smad 1 (CST, 1:1000, TBS-T 5% BSA), phospho Smad 

1/5/8 (CST, 1:1000, TBS-T 5% milk), Total Smad 2/3 (CST, 1:1000, TBS-T 5% BSA), and 

phospho Smad 2/3 (CST, 1:1000, TBS-T 5% milk). After incubation with the appropriate 

secondary antibodies, signals were acquired with a Fusion-FX7 imaging system. 

 

Analysis of cell proliferation  

Cell proliferation were analysed using resazurin metabolic colorimetric assay. UdRPCs were 

seeded (1x104 cells/well) in a 6-well plate and incubated at 37°C in a humidified atmosphere 

at 5% CO2. The medium was substituted with 10% of a resazurin solution (0.1 mg/ml 

resazurin salt solution (Sigma- Aldrich) in PBS) with an end-volume of 2 ml per well and 

changed on daily basis. The cultures were incubated for 4h at 37°C in 5% CO2. Following 

this incubation period, the resazurin-containing medium was collected and the rate of 

resazurin conversion to resofurin by metabolically active cells was evaluated by 

spectrophotometric analysis at 570 and 600 nm. A final optical density (O.D.f) was 

determined for each sample, as follows: (O.D. 570/O.D.600)-(O.D.570c/O.D. c 600), where 

‘OD.c’ are the O.D.s of control samples (fresh medium supplemented with resazurin, never in 

contact with cells). This procedure was carried out for 9 days, at the same hour, in triplicate. 

 

Cell lines used in this study and culture condition 

The fibroblast cell used in this study were obtained from human foreskin fibroblast (HFF1) 

(ATCC, #ATCC-SCRC-1041, Manassas, VA, USA, www.atcc.org). Pluripotent stem cells 

(HFF-iPSCs (human foreskin fibroblast-derived induced pluripotent stem cells (iPSCs)) and 

ESCs (H1 (#WA01) and H9 (#WA09), WiCell Research Institute, Madison, WI, USA, 

www.wicell.org) were cultured in mTeSR on cell culture dishes coated with Matrigel (BD). 

Media were replaced change every day. Passaging of pluripotent stem cells was carried out 

with a splitting ratio of 1:3 to 1:10. Passaging was conducted manually using a syringe 

needle and a pipette under a binocular microscope or using a cell scraper and PBS (−−).  
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