
 1 

Brief Communication 1 

Title 2 

High-throughput, image-based flow cytometry and clustering method for phenotyping 3 

heterogeneous cell populations 4 

 5 

Authors 6 

Robert Peuß1,†, Andrew C. Box1,†,*, Alice Accorsi1,2,†, Christopher Wood1, Alejandro Sánchez 7 

Alvarado1,2,#, & Nicolas Rohner1,3,#  8 

†These authors contributed equally to this study 9 

#These authors share senior authorship 10 

*Author for correspondence: Andrew C. Box (acb@stowers.org) 11 

 12 

Affiliation 13 

1Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, United 14 

States 15 

2Howard Hughes Medical Institute, Stowers Institute for Medical Research, 1000 East 50th Street, 16 

Kansas City, MO 64110, United States 17 

3Department of Molecular & Integrative Physiology, KU Medical Center, Kansas City, KS 66160, 18 

United States. 19 

  20 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 9, 2019. ; https://doi.org/10.1101/603035doi: bioRxiv preprint 

https://doi.org/10.1101/603035


 2 

Abstract 21 

Image-based cell profiling has become a common tool to identify phenotypic changes in cells 22 

exposed to various stimuli. To apply this approach to any research organism, we developed 23 

Image3C (Image-Cytometry Cell Classification), a tool that enables clustering of single cells based 24 

on their intrinsic phenotypic features by combining image-based flow cytometry with cell cluster 25 

analysis. We conducted a morphology analysis of hematopoietic tissue from zebrafish and a 26 

phagocytosis experiment. Here, Image3C could identify major hematopoietic cell lineages and, in 27 

addition, cells with specific functions, which abundance can be statistically compared between 28 

different treatments. To test the versatility of Image3C, we also clustered hemocytes of the apple 29 

snail Pomacea canaliculata obtaining results consistent with those collected by classical 30 

histochemical approaches. These experiments illustrate how Image3C can be used to classify and 31 

visualize heterogenous cell population obtained from either invertebrates or vertebrates without 32 

the need of antibodies or molecular databases.33 
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Main text 34 

Modern technologies used to analyze individual cells and subsequently cluster them based on 35 

morphology, cell surface protein expression or transcriptome similarities are powerful methods for 36 

high-throughput analyses of biological processes at single cell-resolution. Recent advances in 37 

image-based cell profiling and single cell RNA-Seq (scRNA-Seq) allow quantification of 38 

phenotypic differences in cell populations and comparisons of cell type composition between 39 

samples2. While studies that use traditional research organisms (e.g. mouse, rat, human or fruit fly) 40 

benefit from these methods due to the availability of mature genomic platforms and established 41 

antibody libraries, the lack of such resources in non-traditional organisms prevents extensive use 42 

of single-cell based methods to interrogate their biology. In these cases, classical histochemical 43 

methods are often used to identify and characterize specific cells, but the quantification analysis 44 

of specific cell types can be affected by both observer bias3 and a dearth of quantitative frameworks 45 

for making determination of cell classes.  46 

To make the analysis of cell heterogeneity accessible to research organisms lacking genetic 47 

platforms or extensive species-specific reagents, we developed Image3C. Our method analyzes, 48 

visualizes and quantifies the composition of cell populations by using cell-intrinsic features and 49 

generic, non-species-specific fluorescent probes (e.g., Draq5 or other vital dyes), thus eliminating 50 

observer bias. Image3C is an extremely versatile method that is virtually applicable to any research 51 

organism from which dissociated cells can be obtained. By taking advantage of morphology and/or 52 

function-related fluorescent probes, Image3C can analyze single cell suspensions derived from any 53 

experimental design and identify different constituent cell populations. Image3C combines 54 

modern high-throughput data acquisition through image-based flow cytometry, advanced 55 

clustering analysis and statistics to compare the cell composition between different samples.  56 
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The general workflow of Image3C is presented in Fig. 1 using hematopoietic tissue from the 57 

zebrafish, Danio rerio. We tested whether Image3C can identify homogeneous and biologically 58 

meaningful clusters of hematopoietic cells by analyzing only intrinsic morphological and 59 

fluorescent features, such as cell and nuclear size, shape, darkfield (side scatter, SSC) signal and 60 

texture. Each sample from 8 adult fish was stained and run on the ImageStream®X Mark II (Amnis 61 

Millipore Sigma) and individual cell images were collected (Fig. 1a). Feature intensities from both 62 

morphological and fluorescent features, such as cell size and nuclear size, were extracted from the 63 

cell images using IDEAS software (Amnis Millipore) (Fig. 1a, Table S1 for feature description, 64 

Supplemental Methods). The Spearman’s correlation values for each pair of features were 65 

calculated using all cell events (i.e. cell images) of a representative sample and used to trim 66 

redundant features2 (Fig. 1a). The Spearman’s correlation of the mean values of remaining features 67 

were then used to identify outliers among sample replicates (Fig. 1a). While morphological 68 

features do not require any normalization, fluorescence intensity features often must be 69 

transformed using a ‘logicle’ transformation (R flowCore package)4 to improve homoscedasticity 70 

(homogeneity of variance) of distributions. Then, prior to clustering, fluorescent intensity features 71 

derived from DNA staining were normalized using the gaussNorm function from the flowStats R 72 

package5 to align all 2N and 4N peak positions (Fig. 1a). These feature processing steps must be 73 

done independently for each research organism because of the high variability between data and 74 

distributions. A final set of feature intensities was used for clustering the events using X-Shift 75 

algorithm1. Dimensionality reduction and visualization of resultant clusters and events were 76 

achieved by generating force directed layout graphs (FDL, Fig. 1b) using a combination of Vortex 77 

clustering environment1 and custom R scripts, respectively (Supplemental Methods). Visualization 78 

of the cell images by cluster was done using FCS Express (version 6 Plus) and its integrated R 79 
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Add Parameters Transformation feature (Fig. 1b, Supplemental Methods). Additionally, cluster 80 

feature averages (i.e. the mean value of each feature for each cluster) provide a deeper 81 

understanding about the morphological features that differ between cells belonging to separate 82 

clusters and the cluster distribution can be used to derive the most significant contribution to cluster 83 

variance from the feature set (Fig. 1b). Finally, statistical analysis to compare cell counts per 84 

cluster between potential treatments is integrated in Image3C and is done using negative binomial 85 

regression (Supplemental Methods). As seen in Fig. 1b, Image3C can distinguish between the 86 

major classes of hematopoietic cells in zebrafish (see Data File 1 and 2) that were described using 87 

standard flow cytometry sorting and morphological staining approaches6. It is noteworthy that this 88 

method can clearly identify dead cells and debris (Fig. 1b). The possibility to identify and separate 89 

these events from the intact and alive cells allows to optimize experimental conditions and cell 90 

treatment protocols in order to minimize cell death and run the subsequent analysis only on the 91 

remaining events. In addition, Image3C can identify cells with outstanding morphological features, 92 

such as neutrophils or erythrocytes (see Fig. 1b).  93 
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   94 

Fig. 1 │ Schematic representation of Image3C using hematopoietic tissue from zebrafish as an example for cell 95 
clustering based on morphological features. (a) (i) Hematopoietic tissue from 8 fish (or any single suspension of cells 96 
of interest) obtained from zebrafish (or any research organism) is prepared for image-based flowcytometric analyses 97 
(ii) and run on the ImageStream®X Mark II. (iii) Standard gating of nucleated events and manual out-gating of most 98 
erythrocytes using IDEAS software is followed by (iv) the extraction of intensities for intrinsic morphological and 99 
fluorescent features, normalization and quality controls. (b) (i) Using X-shift clustering1 in the Vortex environment cell 100 
images are clustered based on the intrinsic feature intensities and visualized as a force directed layout (FDL) graph. 101 
(ii) R integration7 in FCS Express software allows the visualization of all the cell images belonging to a specific cluster 102 
to evaluate the homogeneity of the cluster and determine phenotype/function of the cells. (iii) In addition to data 103 
visualization, Image3C provides a variety of options for integrated data plotting, such as the Spearman’s correlation 104 
plot of feature intensities per cluster for identification of similarities and differences between cells in different clusters 105 
(see Table S1 for details).  106 

Next, we sought to determine whether Image3C can be used to detect clusters whose relative 107 

abundance significantly changes after specific experimental treatments. We performed a standard 108 

phagocytosis assay using hematopoietic cells from zebrafish, which were stained with Draq5 and 109 

incubated with CellTrace Violet labeled Staphylococcus aureus (CTV-S. aureus) and 110 

dihydrorhodamine-123 (DHR), a reactive oxygen species that becomes fluorescent if oxidized 111 
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(Supplemental Methods). The DHR was used as a proxy for cell activation to report oxidative 112 

bursting as a consequence of phagocytosis. As control, we inhibited phagocytosis through 113 

cytoskeletal impairment by CCB incubation or through incubation at lower temperature (i.e. on 114 

ice). 115 

Events collected on the ImageStream®X Mark II (Amnis Millipore Sigma) were analyzed with 116 

our pipeline and clustered in 26 distinct clusters using intensities of morphological and fluorescent 117 

features (see Table S1), such as nuclear staining, S. aureus phagocytosis and DHR positivity (Fig. 118 

2a). Professional phagocytes were defined by their ability to take up CTV-S. aureus and induce a 119 

reactive oxygen species (ROS) response (DHR positive)8. To compare between samples incubated 120 

with CTV-S. aureus and the respective control samples we used the statistical analysis pipeline 121 

from Image3C, which is based on a negative binomial regression model (Fig. 2b). In zebrafish, 122 

professional phagocytes are mainly granulocytes and monocytic cells and can be discriminated 123 

from each other based on morphological differences (i.e. cell size, granularity and nuclear shape)9. 124 

By combining the statistical analyses and the visual inspection of the cell galleries (Data File S3) 125 

and intensity of morphological and fluorescent intensities (Data File S2), we identified 4 clusters 126 

of professional phagocytes: granulocytes within cluster Dr4, Dr12 and Dr13 and monocytic cells 127 

in cluster Dr21 (Fig. 2a, 2b). The morphology of cells in cluster Dr12 is characteristic of 128 

phagocytic neutrophils (Fig. 2a) that become adhesive and produce extracellular traps upon 129 

recognition of bacterial antigens10. Overall relative abundance of professional phagocytes is 5-130 
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10% (Fig. 2c), which is in line with previous studies that estimated the number of professional 131 

phagocytes in hematopoietic tissue of adult zebrafish using classical morphological approaches9. 132 

It is interesting to note that CCB selectively affects cell viability based on cell identity (Fig. 2b). 133 

We found all erythrocyte containing clusters had a significantly higher count in the CTV-S. aureus 134 

samples when compared to the CTV-S. aureus + CCB controls (Fig. 2b). Cluster analysis revealed 135 

that erythrocytes are almost absent in samples incubated with CCB (Data File S2), while there is 136 

a significant increase of dead and apoptotic cells (Fig. 2b, Table S2). Both outcomes are likely due 137 

to reduced cell viability of erythrocytes upon CCB incubation. Moreover, we excluded the 138 

possibility of higher cell death in the professional phagocytes upon CCB incubation, since we 139 

Fig. 2 | Identification of phagocytes in D. rerio hematopoietic cells using Image3C based on intrinsic feature intensities. 
(a) FDL graph of cluster data using X-shift1. Each color represents a unique cell cluster. Galleries of cluster containing 
professional phagocytes are shown. Merge represents overlay of DHR, CTV and Draq5 channels. (b) Volcano Plot 
illustrating comparison between treatment sample (hematopoietic cells + CTV-S. aureus) and CCB control sample 
(hematopoietic cells + CTV-S. aureus + 0.08 mg/mL CCB). Plotted is the log fold change (logFC) in relation to the FDR 
corrected p-value (-log10) of each individual cluster calculated with negative binomial regression model. Clusters 
containing professional phagocytes are highlighted in the respective color as presented in (a). (c) Box plot of relative 
abundances of cells within cluster containing professional phagocytes in treatment sample (hematopoietic cells + CTV-
S. aureus), CCB control sample (hematopoietic cells + CTV-S. aureus + 0.08 mg/mL CCB) and ice control sample 
(hematopoietic cells + CTV-S. aureus incubated on ice). Statistically significant differences are calculated using the 
negative binomial regression model between the treatment and control sample (Supplemental Methods). ** indicates p 
≤ 0.01 and # indicates not significantly different after FDR. 
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found here pseudo-phagocytes (phagocytes with DHR response but no internalized CTV-S. 140 

aureus) to be significantly more abundant (Fig. 2b, Table S2).  141 

Next, we inhibited phagocytosis by incubating the hematopoietic cells on ice (Supplemental 142 

Methods) and compared the effectiveness of inhibition with the CCB control (Fig. 2c, Table S3). 143 

We found that temperature inhibition of phagocytosis only affects adhesive neutrophils (cluster 144 

Dr12), probably through the inhibition of adhesion, while CCB effectively blocks phagocytosis in 145 

all professional phagocytes in zebrafish hematopoietic tissue (Fig. 2c). 146 

To test the versality of HIFlo-CC, we repeated the experiments using hemolymph samples from 147 

the emerging invertebrate model Pomacea canaliculata. For morphological examination of the 148 

cellular composition of the hemolymph, respective tissue from five adult animals were stained 149 

with Draq5 (DNA dye) and run on the ImageStream®X Mark II (Amnis Millipore Sigma) 150 

(Supplemental Methods). From the cell images, Image3C analyzed 15 morphological and 10 151 

fluorescent features and identified 9 cell clusters (Fig. 3a). Two of these clusters are constituted 152 

by cell doublets, debris and dead cells (clusters Pc5 and Pc8). (Fig. 3c). Concerning the other 153 

clusters, we grouped them into 2 main categories based on both cell images and previous data11 154 

(Data File S4). The first category includes small blast-like cells (cluster Pc4) and intermediate 155 

cells (clusters Pc2 and Pc3) with high nuclear-cytoplasmic ratio. These cells morphologically 156 

resemble the Group I hemocytes previously described using a classical morphological approach 157 

11. The second category is constituted by larger cells with lower nuclear-cytoplasmic ratio and 158 

abundant membrane protrusions (clusters Pc1, Pc6, Pc7 and Pc9). Likely, these cells correspond 159 

to the previously described Group II hemocytes that include both granular and agranular cells11. 160 

To identify which of these clusters are enriched with granular cells, the intensities of the 161 

morphological features related to cytoplasm texture provided by Image3C were compared between 162 
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the clusters of this category (Fig. 3b, Data File S4). Cluster Pc6 was identified as the one containing 163 

the granular hemocytes. The clusters obtained by Image3C, not only were homogeneous and 164 

biologically meaningful, but were also consistent with published P. canaliculata hemocyte 165 

classification obtained by classical morphological methods11. Such remarkable consistency has 166 

been observed in terms of identified cell morphologies and their relative abundance in the 167 

population of circulating hemocytes (Fig. 3c, Data File S4). For example, the relative abundance 168 

of the previously reported small blast-like cell is 14.0% a value indistinguishable from the  169 

corresponding cluster Pc4 of 13.8%. Similarly, the category of larger hemocytes, or Group II 170 

hemocytes represents 80.4% of the circulating cells as measured by traditional morphological 171 

methods11, while clusters Pc1, Pc6, Pc7 and Pc9 represent 72.4% of the events analyzed with 172 

Image3C. A sub-set of these cells are the granular cells (cluster Pc6), which correspond to 7.7% 173 

of all hemocytes by classical histological methods11 and 8.9% Image3C. The intermediate cells 174 

(clusters Pc2 and Pc3) are less well represented in both approaches, with a relative difference in 175 

abundance of 5.6% versus 10.6% of the manually and Image3C analyzed events, respectively. 176 

However, such difference is likely best explained by the remarkable difference in both, the number 177 

of cells and number of features considered for the analyses. Only a few hundred hemocytes were 178 

ocularly analyzed based on cell diameter and nuclear-cytoplasmic ratio using traditional 179 

histological methods11, while the automated pipeline used in this study analyzed 10,000 nucleated 180 

events with 25 cell intrinsic features each cell for a single sample. Hence, Image3C represents an 181 

unprecedented increase in the accuracy of hemocyte type identification over traditional 182 

histological methods. 183 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 9, 2019. ; https://doi.org/10.1101/603035doi: bioRxiv preprint 

https://doi.org/10.1101/603035


 11 

 184 

Fig. 3 │ Analysis of P. canaliculata hemocyte population using the Image3C pipeline based only on intrinsic 185 
morphological features of the cells. (a) FDL graph is used to visualize the 9 identified clusters. Each color represents a 186 
unique cell cluster and representative images (galleries) of the cells included in each cluster are shown. Merge 187 
represents the overlay of brightfield (BF), side scatter signal (SSC) and Draq5 signal. (b) The Spearman’s correlation 188 
plot of morphological feature intensities per cluster allows the comparison of specific morphological aspects, such as 189 
granularity, between cells belonging to different clusters (see Table S1 for details). (c) Box plot of event relative 190 
abundance within each cluster following the same color-code used in Fig. 2a. Clusters Pc5 and Pc8, constituted by 191 
duplets and dead cells, are those with the lowest number of events, validating the protocol used to prepare these 192 
samples.  193 

In addition, we performed the same phagocytosis experiment with hemocytes from P. 194 

canaliculata as done for hematopoietic cells from zebrafish (Data File S2, S5, Table S4, S5). Here, 195 

we inhibited phagocytosis using either an EDTA treatment or incubation on ice. We identified two 196 

professional phagocyte clusters (cluster 27430 and 27442) (Data File S5), both constituted by large 197 
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hemocytes (Group II), but with a different DHR signal intensity (ROS response) upon bacteria 198 

exposure (cluster 27430 high DHR signal, cluster 27442 low DHR signal, see Data File S2 and 199 

S5). Similar to the CCB inhibition control in the zebrafish phagocytosis experiment, EDTA is 200 

more effective in inhibiting phagocytosis than temperature since both professional phagocytic 201 

clusters (cluster 27430 and 27442) contain significantly higher numbers of cells in the 202 

phagocytosis treatment compared to the EDTA control (Table S4). In the phagocytosis treatment 203 

compared to the ice control, however, only cluster 27442 has a significantly higher relative 204 

abundance of professional phagocytes (Table S5). 205 

The data analysis with Image3C clearly highlighted that the classical phagocytic inhibitors, 206 

CCB or EDTA, commonly used in controls for phagocytosis experiments, result in a drastic change 207 

of cell morphology, a consequence not easily detectable by other methods and often overlooked. 208 

In the present work, these changes significantly modified the overall cell cluster number and 209 

distribution, and it must be taken into consideration in any study of morphological features of cells 210 

with phagocytosing properties. Furthermore, when determining differences between experimental 211 

treatments, Image3C necessarily combines images and data from all the treatments for clustering 212 

(Supplemental Methods). Therefore, experiments meant to classify and analyze only innate cell 213 

morphologies present in a tissue should be carried out separately from experiments where one or 214 

more treatments are likely to significantly affect cell morphology in an unanticipated manner (e.g. 215 

CCB or EDTA incubation). This would prevent treatment effects being conflated with innate 216 

morphology differences among unperturbed cell types.  217 

In summary, we have developed a powerful new method to analyze the composition of any cell 218 

population obtained from any research organism of interest at single cell resolution without the 219 

need for species-specific reagents such as fluorescently tagged antibodies (multicolor 220 
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immunophenotyping) or a draft genome (scRNA-Seq). We showed how Image3C can cluster cell 221 

populations based on morphology and/or function and highlight changes in the cell population 222 

composition due to experimental treatments. This tool is extremely versatile and can be applied to 223 

any cell population of interest and included in any experimental design. In addition, given the 224 

recent advancement in image-based flow cytometry that enables image capturing together with 225 

cell sorting12, a scRNA-Seq approach in combination with the Image3C pipeline would enable the 226 

simultaneous analysis of both phenotypic and genetic properties of a cell population at single cell 227 

resolution. Image3C is freely available from the Github repository13.  228 
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Online Supplemental Methods  

Collection of zebrafish whole kidney marrow (WKM) 

Twelve-month-old, wild type, female, adult zebrafish were euthanized with cold 500 mg/L MS-

222 solution for 5 min. Kidneys were dissected as previously described6 and then transferred to 40 

µm cell strainer with 1 mL of L-15 media containing 10% water, 10 mM HEPES and 20 U/mL 

Heparin (L-90). Cells were gently forced through the cell strainer with the plunger of a 3 mL 

disposable syringe. The strainer was washed once with 1 mL of L-90 and the resulting single cell 

solution was centrifuged at 500 rcf at 4 ºC for 5 min. The supernatant was discarded, and the cells 

were resuspended in 1 mL of L-15 media containing 5 % fetal calf serum (FCS), 4 mM L-

Glutamine, and 10,000 U of both Penicillin and Streptomycin (L-90 media). The cells were 

counted after a 1:20 dilution on the EC-800 flow cytometer (Sony) using scatter properties. 

 

Collection of apple snail hemocytes 

Specimens of the apple snail Pomacea canaliculata (Mollusca, Gastropoda, Ampullariidae) 

were maintained and bred in captivity, in a water recirculation system filled with artificial 

freshwater (2.7 mM CaCl2, 0.8 mM MgSO4, 1.8 mM NaHCO3, 1:5000 Remineralize Balanced 

Minerals in Liquid Form [Brightwell Aquatics]). The snails were fed twice a week and kept in a 

10:14 light:dark cycle. Seven wild type adult snails, 7-9 months old and with a shell size of 45-60 

mm were starved for 5 days before the hemolymph collection11. The withdrawal was performed 

applying a pressure on the operculum and dropping the hemolymph directly into an ice-cold tube. 

The hemolymph was not pooled but the cells collected from each animal were individually 

analyzed. The hemolymph was immediately diluted 1:4 in Bge medium + 10% fetal bovine serum 

(FBS) and then centrifuged at 500 rcf for 5 min. The pellet of cells was resuspended in 100 µl of 
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Bge medium + 10% FBS. The Bge medium (also known as Biomphalaria glabrata embryonic cell 

line medium) is constituted by 22% (v/v) Schneiders’s Drosophila Medium, 4.5 g/L Lactalbumin 

hydrolysate, 1.3 g/L Galactose, 0.02 g/L Gentamycin in MilliQ water, pH 7.0. 

 

Morphology Assay  

The P. canaliculata hemocytes were stained with 5 µM Draq5 (Thermo Fisher Scientific) for 

10 min, moved to ice and subsequently run one by one on the ImageStream®X Mark II (Amnis 

Millipore Sigma), where 10,000 nucleated and focused events were recorded for each sample.  

D. rerio hematopoietic cells obtained from 8 animals were plated at 4 x 105 cells/well in a 96-

well plate in 200 µL of medium and incubated for 3 h at room temperature. Cells were stained 

with 5 µM Draq5 (Thermo Fisher Scientific) for 10 min and subsequently run on the 

ImageStream®X Mark II (Amnis Millipore Sigma), where 10,000 nucleated and focused events 

were recorded for each sample. For HIFlo-CC analysis, erythrocytes were out-gated to increase 

number of immune relevant cells and to prevent over clustering. The latter is due to the fact that 

erythrocytes from fish are nucleated and their biconcave shape result in different morphological 

feature intensities only depending on their orientation during image acquisition.  

 

Phagocytosis assay 

For both animals, cells from a single cell suspension were plated in a 96-well plate at a 

concentration of 4 x 105 cells/well in 200 µL of medium and incubated with 2 x 107 CTV-coupled 

Staphylococcus aureus/well (Thermo Fisher Scientific) for 3 h at room temperature. As control for 

phagocytosis the cells were either incubated with CTV-S. aureus on ice or with CTV-S. aureus in 

the presence of 0.08 mg/mL cytochalasin B (CCB) for zebrafish cells or 30 mM EDTA and 10 
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mM HEPES for apple snail cells14. After 2 h and 30 min we added 5 µM dihydrorhodamine-123 

(DHR) (Thermo Fisher Scientific) to the cell suspension to stain cells positive for reactive oxygen 

species (ROS) production. To control for this treatment with DHR, we incubated the cells with 10 

ng/mL phorbol 12-myristate 13-acetate (PMA) to artificially induce ROS production. At 2 h and 

50 min since the beginning of incubation with CTV-S. aureus, all the samples were stained with 5 

µM Draq5 for 10 min. After 3 h incubation with bacteria, cells were moved and stored on ice and 

subsequently run on the ImageStream®X Mark II (Amnis Millipore Sigma), where 10,000 

nucleated and focused events were recorded for each sample.  

 

Data collection on ImageStream®X Mark II 

Following cell preparation, data were acquired from each sample on the ImageStream®X Mark 

II (Amnis Millipore Sigma) at 60x magnification, slow flow speed, using 633, 488 and 405 nm 

laser excitation. Bright field was acquired on channels 1 and 9. DHR (488 nm excitation) was 

collected on channel 2, CTV-S. aureus (405 nm excitation) on channel 7 and Draq5 (633 nm 

excitation) on channel 11. SSC was acquired on channel 6. 

 

Data analysis 

Raw image data from the ImageStream®X Mark II system was compensated, background was 

subtracted, and features were calculated using IDEAS 6.2 software (Amnis/Millipore). Feature 

intensities for all cells and samples were then exported from IDEAS into FCS files for processing 

in R. See github repository and Table S1 for a full list of features used for each organism and a 

more detailed description of processing steps. Briefly, exported FCS files were processed in R7 to 

trim redundant features with high correlation values, fluorescence intensity features were 
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transformed using the estimateLogicle() and transform() functions from the flowCore package4,15, 

and DNA intensity features were normalized to remove intensity drift between samples using the 

gaussNorm function from flowStats16. The processed data was exported from R7 using 

writeflowSet() function in flowCore package4,15. 

Data and clustering results were then imported into the Vortex clustering environment for X-

shift k-nearest-neighbor clustering1. During the import into Vortex, all features were scaled to 1SD 

to equalize the contribution of features towards clustering. Clustering was performed in Vortex 

with a range of k values, typically from 5 to 150, and a final k value chosen using the ‘find elbow 

point for cluster number’ function in Vortex and with visual confirmation of the result that over or 

under-clustering did not occur. Force directed graphs of a subset of cells in each experiment’s file 

set were also generated in Vortex and cell coordinates in the resultant 2d space were exported 

along with graphml representation of the force directed graph. After clustering and generation of 

force directed graphs, tabular data was exported from Vortex that included a master table of every 

cell event and its cluster assignment and original sample ID, as well as a table of the average 

feature intensities for each cluster and counts of cells per cluster and per sample. 

Clustering results were further analyzed and plotted in R7 by merging all cell events and feature 

intensities with cluster assignments, and force directed graph X/Y coordinates. Using this merged 

data and the graphml file exported from Vortex, new force directed graphs were created per 

treatment condition using the igraph package17 in R, statistical analysis of differences in cell counts 

per cluster by condition were performed using negative binomial regression of cell counts per 

cluster, plots of statistics results and other results generated (see github repository for details), and 

csv files containing cell and sample ID, feature intensities, X/Y coordinates in force directed and 

minimum spanning tree plots were exported for each sample in the experiment set for merging 
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results into daf files in FCS Express Plus version 6 (DeNovo software), which allowed 

visualization of cell images by cluster and by sub setting of regions within the force directed 

graphs. 

Analysis of daf files was performed in FCS Express by opening daf files and using the “R add 

parameters” transformation feature to merge the csv files generated above with the daf file feature 

intensity and image sets. This allowed the generation of image galleries of cells within each cluster 

and additional analysis in the style of traditional flow cytometry (i.e., gating on 2d plots of features 

of interest) to explore the clustering results and identify candidate clusters and populations of 

interest. 

The full complement of R packages used includes flowCore4,15, flowStats16, igraph17, ggcyto18, 

ggridges19, ggplot220, stringr21, hmisc22 and caret23. 

 

Statistic 

Negative binomial regression was performed on tables of cell counts per cluster, per sample and 

plots were generated using the edgeR package, which was developed for RNAseq analysis, but 

includes generally applicable and user-friendly wrappers for regression and modeling analysis and 

plotting of results.  
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Supplemental Tables  

 

Table S1: Features used for Clustering. (a) Features used for morphology-based analysis. (b) 
Features used for functional and morphology-based analysis in phagocytosis experiment.  

Table S1 (a) 

Feat
ure 
ID 

Feature 
Name_ImageMask_Ch

annel 

Cell Intrinsic (CI) 
/ Cell Function 

(CF) Feature description 

1 
Area_AdaptiveErode_B

F CI Cell size 

2 Area_Intensity_SSC CI Areas of SSC signal above 
background 

3 Area_Morphology_Draq
5 CI Area of DNA signal (nuclear staining) 

4 Aspect.Ratio_AdaptiveE
rode_BF CI Aspect ratio of total cell area 

5 
Bright.Detail.Intensity.R
3_AdaptiveErode_BF_B

F 
CI Intensity of brightest staining areas 

6 
Bright.Detail.Intensity.R
3_AdaptiveErode_BF_S

SC 
CI Intensity of brightest signal areas 

7 
Bright.Detail.Intensity.R
3_AdaptiveErode_BF_D

raq5 
CI Intensity of brightest staining areas 

8 Circularity_AdaptiveEro
de_BF CI Circularity of whole cell shape 

9 Circularity_Morphology_
Draq5 CI Circularity of nucleus 

10 Contrast_AdaptiveErod
e_BF_BF CI Detects large changes in pixel values - 

can be measure of granularity of signal 

11 Contrast_AdaptiveErod
e_BF_SSC CI Detects large changes in pixel values - 

can be measure of granularity of signal 

12 Diameter_AdaptiveErod
e_BF CI Diameter of whole cell shape 

13 Diameter_Morphology_
Draq5 CI Diameter of nucleus 

14 H.Energy.Mean_Adaptiv
eErode_BF_BF CI Measure of intensity concentration - 

texture feature 

15 H.Energy.Mean_Morph
ology_Draq5_Draq5 CI Measure of intensity concentration - 

texture feature 

16 H.Entropy.Mean_Adapti
veErode_BF_BF CI Measure of intensity concentration and 

randomness of signal - texture feature 

17 H.Entropy.Mean_Morph
ology_Draq5_Draq5 CI Measure of intensity concentration and 

randomness of signal - texture feature 

18 Intensity_AdaptiveErode
_BF_SSC CI Integrated intensity of signal within 

whole cell mask - Cell granularity 
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19 Intensity_AdaptiveErode
_BF_Draq5 CI Integrated intensity of signal within 

whole cell mask 

20 Lobe.Count_Morpholog
y_Draq5 CI Number of lobes of nucleus 

21 Max.Pixel_Intensity_SS
C CI 

Maximum pixel intensity of stated 
channel within a whole cell mask - Cell 

granularity 

22 Max.Pixel_Morphology_
Draq5 CI Maximum pixel intensity of stated 

channel within a whole cell mask 

23 Mean.Pixel_Morphology
_Draq5 CI Mean pixel intensity of stated channel 

within a whole cell mask 

24 Shape.Ratio_AdaptiveE
rode_BF CI Minimum thickness divided by length - 

measure of cell shape characterisic 

25 Std.Dev_AdaptiveErode
_BF CI 

Standard deviation of BF signal - 
measure of granularity and variance in 

BF 
 

Table S1 (b) 

Feat
ure 
ID 

Feature 
Name_ImageMask_Ch

annel 

Cell Intrinsic (CI) 
/ Cell Function 

(CF) Feature description 
1 Area_AdaptiveErode_B

F CI Cell size 

2 Area_Intensity_DHR CF Area of DHR staining above 
background 

3 Area_Intensity_Bac CF Area of CTV staining above 
background 

4 Area_Intensity_SSC CI Areas of SSC signal above 
background 

5 Area_Morphology_DNA CI Area of DNA signal (nuclear staining) 

6 Aspect.Ratio_AdaptiveE
rode_BF CI Aspect ratio of total cell area 

7 
Bright.Detail.Intensity.R
3_AdaptiveErode_BF_B

ac 
CF Intensity of brightest staining areas 

8 
Bright.Detail.Intensity.R
3_AdaptiveErode_BF_B

F 
CI Intensity of brightest staining areas 

9 
Bright.Detail.Intensity.R
3_AdaptiveErode_BF_D

HR 
CF Intensity of brightest staining areas 

10 
Bright.Detail.Intensity.R
3_AdaptiveErode_BF_D

raq5 
CI Intensity of brightest staining areas 

11 
Bright.Detail.Intensity.R
3_AdaptiveErode_BF_S

SC 
CI Intensity of brightest signal areas 

12 Circularity_AdaptiveEro
de_BF CI Circularity of whole cell shape 
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13 Circularity_Morphology_
DNA CI Circularity of nucleus 

14 Contrast_AdaptiveErod
e_BF_BF CI Detects large changes in pixel values - 

can be measure of granularity of signal 

15 Contrast_AdaptiveErod
e_BF_SSC CI Detects large changes in pixel values - 

can be measure of granularity of signal 

16 Diameter_AdaptiveErod
e_BF CI Diameter of whole cell shape 

17 Diameter_Morphology_
Draq5 CI Diameter of nucleus 

18 H.Energy.Mean_Adaptiv
eErode_BF_BF CI Measure of intensity concentration - 

texture feature 

19 H.Energy.Mean_Intensit
y_DHR_DHR CF Measure of intensity concentration - 

texture feature 

20 H.Energy.Mean_Intensit
y_Bac_Bac CF Measure of intensity concentration - 

texture feature 

21 H.Energy.Mean_Morph
ology_Draq5_Draq5 CI Measure of intensity concentration - 

texture feature 

22 H.Entropy.Mean_Adapti
veErode_BF_BF CI Measure of intensity concentration and 

randomness of signal - texture feature 

23 H.Entropy.Mean_Intensi
ty_DHR_DHR CF Measure of intensity concentration and 

randomness of signal - texture feature 

24 H.Entropy.Mean_Intensi
ty_Bac_Bac CF Measure of intensity concentration and 

randomness of signal - texture feature 

25 H.Entropy.Mean_Morph
ology_DNA_Draq5 CI Measure of intensity concentration and 

randomness of signal - texture feature 

26 Intensity_AdaptiveErode
_BF_Bac CF Integrated intensity of signal within 

whole cell mask 

27 Intensity_AdaptiveErode
_BF_DHR CF Integrated intensity of signal within 

whole cell mask 

28 Intensity_AdaptiveErode
_BF_Draq5 CI Integrated intensity of signal within 

whole cell mask 

29 Intensity_AdaptiveErode
_BF_SSC CI Integrated intensity of signal within 

whole cell mask - Cell granularity 

30 Lobe.Count_Morpholog
y_Draq5 CI Number of lobes of nucleus 

31 Max.Pixel_Intensity_Ba
c CF Maximum pixel intensity of stated 

channel within a whole cell mask 

32 Max.Pixel_Intensity_SS
C CF 

Maximum pixel intensity of stated 
channel within a whole cell mask - Cell 

granularity 

33 Max.Pixel_Morphology_
Draq5 CI Maximum pixel intensity of stated 

channel within a whole cell mask 

34 Mean.Pixel_Morphology
_Draq5 CI Mean pixel intensity of stated channel 

within a whole cell mask 

35 Shape.Ratio_AdaptiveE
rode_BF CI Minimum thickness divided by length - 

measure of cell shape characterisic 

36 Std.Dev_AdaptiveErode
_BF CI 

Standard deviation of BF signal - 
measure of granularity and variance in 

BF 
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Table S2: Results of negative binomial regression analysis comparing clusters from 
zebrafish phagocytosis (Cells + CTV S. aureus) with CCB inhibition control (Cells + CTV S. 
aureus + CCB) 

Cluster 
ID logFC logCPM LR PValue FDR 

Dr1 -2.48673 14.76127 24.65067 6.87E-07 1.19E-06 
Dr2 -3.8209 15.11433 30.32912 3.65E-08 7.03E-08 
Dr3 -2.63248 15.10065 30.25504 3.79E-08 7.03E-08 
Dr5 -2.7606 14.21908 33.0875 8.81E-09 1.91E-08 
Dr6 -2.70177 13.37119 36.16033 1.82E-09 4.73E-09 
Dr7 -2.72126 14.24771 34.08437 5.28E-09 1.25E-08 
Dr8 4.482713 14.88169 82.05466 1.32E-19 4.92E-19 

Dr10 -3.45902 14.60211 24.35992 7.99E-07 1.30E-06 
Dr11 6.904763 13.9128 84.08534 4.74E-20 2.05E-19 
Dr12 1.087279 12.83107 11.29997 0.000775 0.001061 
Dr13 1.514425 12.94985 11.48213 0.000703 0.001015 
Dr14 -2.99602 11.50543 42.88105 5.82E-11 1.68E-10 
Dr15 -2.38678 12.70026 21.12804 4.30E-06 6.57E-06 
Dr16 5.663379 14.13744 143.1863 5.35E-33 1.39E-31 
Dr17 5.715121 14.80998 122.2704 2.01E-28 2.62E-27 
Dr19 4.077533 14.85917 93.86068 3.39E-22 1.76E-21 
Dr20 3.847921 13.05544 49.27037 2.23E-12 7.25E-12 
Dr21 1.571314 11.87021 9.421178 0.002145 0.002788 
Dr23 4.375929 16.67274 99.99839 1.53E-23 9.91E-23 
Dr25 5.769772 13.99753 119.3218 8.90E-28 7.72E-27 

 

Table S3: Results of negative binomial regression analysis comparing clusters from 
zebrafish phagocytosis (Cells + CTV S. aureus) with ice inhibition control (Cells + CTV S. 
aureus + ice) 

Cluster 
ID logFC logCPM LR PValue FDR 

Dr1 -2.57222 14.76127 26.21074 3.06E-07 2.65E-06 
Dr3 -1.47929 15.10065 10.27905 0.001345 0.004998 
Dr5 1.235565 14.21908 6.9584 0.008343 0.023708 
Dr6 -1.96681 13.37119 19.93869 8.00E-06 5.20E-05 
Dr7 -1.93868 14.24771 18.19453 1.99E-05 0.000104 
Dr9 4.340935 11.68675 36.21393 1.77E-09 4.60E-08 

Dr12 0.836382 12.83107 6.799505 0.009118 0.023708 
Dr14 -2.35912 11.50543 26.47869 2.66E-07 2.65E-06 
Dr15 -1.67916 12.70026 10.80552 0.001012 0.004385 
Dr24 1.081904 16.03192 8.340688 0.003877 0.012599 
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Table S4: Results of negative binomial regression analysis comparing clusters from apple 
snail phagocytosis (Cells + CTV S. aureus) with EDTA inhibition control (Cells + CTV S. 
aureus + EDTA) 

Cluster 
ID logFC logCPM LR PValue FDR 

27426 1.219719 16.42389 23.86393 1.03E-06 4.14E-06 
27427 1.521304 16.31424 23.42745 1.30E-06 4.32E-06 
27430 3.506921 11.96025 19.19534 1.18E-05 2.62E-05 
27431 2.000616 13.66811 21.45211 3.63E-06 9.07E-06 
27432 1.178448 15.71918 15.65951 7.58E-05 0.000152 
27433 0.912203 14.51336 5.608834 0.01787 0.023827 
27434 1.919568 14.24789 21.7377 3.13E-06 8.93E-06 
27435 -0.95771 16.55159 15.15146 9.92E-05 0.00018 
27436 -2.21453 17.04466 66.60728 3.31E-16 6.63E-15 
27437 1.920223 13.48376 27.01612 2.02E-07 1.01E-06 
27438 1.155857 13.78276 11.69042 0.000628 0.000967 
27439 1.742058 17.721 51.24411 8.16E-13 5.44E-12 
27441 1.645859 13.23961 10.80603 0.001012 0.001445 
27442 3.134689 13.98527 55.58824 8.94E-14 8.94E-13 
27445 -0.82885 16.67206 12.56812 0.000392 0.000654 

 

 

Table S5: Results of negative binomial regression analysis comparing clusters from apple 
snail phagocytosis (Cells + CTV S. aureus) with ice inhibition control (Cells + CTV S. aureus 
+ ice) 

Cluster 
ID logFC logCPM LR PValue FDR 

27442 2.500366 13.98527 37.29469 
1.02E-

09 
2.03E-

08 
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