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Abstract 19 

Image-based cell classification has become a common tool to identify phenotypic changes in cells. 20 

To date, these approaches are limited to model organisms with species-specific reagents available 21 

for cell phenotype identification, clustering and neural network training. Here we present Image3C 22 

(Image-Cytometry Cell Classification), a tool that enables cell clustering based on their intrinsic 23 

phenotypic features, combining image-based flowcytometry with cell cluster analysis and neural 24 

network integration. Using Image3C we recapitulated zebrafish hematopoietic cell lineages and 25 

identified cells with specific functions (phagocytes), whose abundance is comparable between 26 

treatments. To test Image3C versatility, we performed the same analyses on hemocytes of the snail 27 

Pomacea canaliculata obtaining results consistent with those collected by classical histochemical 28 

approaches. The convolutional neural network, then, uses Image3C clusters and image-based 29 

flowcytometry data to analyze large experimental datasets in an unsupervised high-throughput 30 

fashion. This tool will allow analysis of cell population composition on any species of interest.  31 

32 
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Main text 33 

Modern technologies used to analyze individual cells and subsequently cluster them based on 34 

morphology, cell surface protein expression or transcriptome similarities are powerful methods for 35 

high-throughput analyses of biological processes at single cell-resolution. Recent advances in 36 

image-based cell profiling and single cell RNA-Seq (scRNA-Seq) allow quantification of 37 

phenotypic differences in cell populations and comparisons of cell type composition between 38 

samples1. While studies that use traditional research organisms (e.g. mouse, rat, human or fruit fly) 39 

benefit from these methods due to the availability of mature genomic platforms and established 40 

antibody libraries, the lack of such resources in less traditional organisms prevents extensive use 41 

of single-cell based methods to interrogate their biology. In these cases, classical histochemical 42 

methods are often used to identify and characterize specific cells, but the quantification analysis 43 

of specific cell types can be affected by both observer bias2 and a dearth of quantitative frameworks 44 

for making determination of cell classes.  45 

Automated classification of cells using neural networks has become a promising approach for 46 

high-throughput cell analysis3-7. Critical for such analysis is the definition of the phenotype that is 47 

used to cluster cells. To date, automated clustering and classification techniques required existing 48 

knowledge about the organisms or cell type of interest, the availability of cell specific reagents 49 

(such as antibodies) or extremely sophisticated equipment not broadly distributed (e.g. single cell 50 

sequencing technology)3-8. To extend cellular composition analysis to any research organisms 51 

without the need for previous knowledge about the cell population of interest or for species-52 

specific reagents at any step of the study, we developed Image3C. Our method analyzes, visualizes 53 

and quantifies the composition of cell populations by using cell-intrinsic features and generic, non-54 

species-specific fluorescent probes (e.g., Draq5 or other vital dyes), thus eliminating observer bias 55 
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and increasing the analyzed sample size. Image3C is an extremely versatile method that is virtually 56 

applicable to any research organism from which dissociated cells can be obtained. By taking 57 

advantage of morphology and/or function-related fluorescent probes, Image3C can analyze single 58 

cell suspensions derived from any experimental design and identify different constituent cell 59 

populations. In addition, we employed a convolutional neural network that uses Image3C defined 60 

clusters as training sets and image-based flow cytometry data for unsupervised analysis of cellular 61 

composition in large experimental datasets. In summary, Image3C combines modern high-62 

throughput data acquisition through image-based flow cytometry, advanced clustering analysis, 63 

statistics to compare the cell composition between different samples and can be used in 64 

combination with a neural network component to finely determine changes in the composition of 65 

cell population across multiple samples.  66 

The general workflow of Image3C is presented in Fig. 1 using hematopoietic tissue from the 67 

zebrafish, Danio rerio. We tested whether Image3C can identify homogeneous and biologically 68 

meaningful clusters of hematopoietic cells by analyzing only intrinsic morphological and 69 

fluorescent features, such as cell and nuclear size, shape, darkfield signal (side scatter, SSC) and 70 

texture. Each sample obtained from adult fish was stained and run on the ImageStream®X Mark II 71 

(Amnis Millipore Sigma) and individual cell images were collected (Fig. 1a) at a speed of 1,000 72 

images/sec. Feature intensities from both morphological and fluorescent features, such as cell size 73 

and nuclear size, were extracted from the cell images using IDEAS software (Amnis Millipore) 74 

(Fig. 1a, Table S1 for feature description, Supplemental Methods). The Spearman’s correlation 75 

values for each pair of features were calculated using all cell events (i.e. cell images) of a 76 

representative sample and used to trim redundant features1 (Fig. 1a). The Spearman’s correlation 77 

of the mean values of remaining features were then used to identify outliers among sample 78 
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replicates (Fig. 1a). While morphological features do not require any normalization, fluorescence 79 

intensity features often must be transformed using a ‘logicle’ transformation (R flowCore 80 

package)9-11 to improve homoscedasticity (homogeneity of variance) of distributions. Then, prior 81 

to clustering, fluorescent intensity features derived from DNA staining were normalized using the 82 

gaussNorm function from the flowStats R package10-12 to align all 2N and 4N peak positions (Fig. 83 

1a). These feature processing steps must be done independently for each research organism 84 

because of the high variability between data and distributions. A final set of feature intensities was 85 

used for clustering the events using X-Shift algorithm13. Dimensionality reduction and 86 

visualization of resultant clusters and events were achieved by generating force directed layout 87 

graphs (FDL, Fig. 1b) using a combination of Vortex clustering environment13 and custom R 88 

scripts, respectively (Supplemental Methods). Visualization of the cell images by cluster was done 89 

using FCS Express (version 6 Plus) and its integrated R Add Parameters Transformation feature 90 

(Fig. 1b, Supplemental Methods). Additionally, cluster feature averages (i.e. the mean value of 91 

each feature for each cluster) provide a deeper understanding about the morphological features 92 

that differ between cells belonging to separate clusters and the cluster distribution can be used to 93 
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derive the most significant contribution to cluster variance from the feature set (Fig. 1b). Finally, 94 

statistical analysis to compare cell counts per cluster between potential different treatments is 95 

integrated in Image3C and is done using negative binomial regression (Supplemental Methods). 96 

As seen in Fig. 1b, Image3C can distinguish between the major classes of hematopoietic cells in 97 

Fig. 1 │ Schematic representation of Image3C using hematopoietic tissue from zebrafish as an example for cell
clustering based on morphological features. (a) (i) Hematopoietic tissue (or any single suspension of cells of interest)
obtained from zebrafish (or any research organism) is prepared for image-based flowcytometric analyses (ii) and run 
on the ImageStream®X Mark II (n=8). (iii) Standard gating of nucleated events and manual out-gating of most 
erythrocytes using IDEAS software is followed by (iv) the extraction of intensities for intrinsic morphological and 
fluorescent features, normalization and quality controls. (b) (i) Cell images are clustered based on the intrinsic feature
intensities and visualized as a force directed layout (FDL) graph. (ii) R integration in FCS Express software allows the 
visualization of all the cell images belonging to a specific cluster to evaluate the homogeneity of the cluster and
determine phenotype/function of the cells. (iii) In addition to data visualization, Image3C provides a variety of options 
for integrated data plotting, such as the Spearman’s correlation plot of feature intensities per cluster for identification of 
similarities and differences between cells in different clusters (Table S1 for details).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 29, 2019. ; https://doi.org/10.1101/603035doi: bioRxiv preprint 

https://doi.org/10.1101/603035


 7

zebrafish (see Data File 1 and 2) that were described using standard flow cytometry sorting and 98 

morphological staining approaches14. It is noteworthy that this method can clearly identify dead 99 

cells and debris (Fig. 1b). The possibility to identify and separate these events from the intact and 100 

alive cells allows to optimize experimental conditions and cell treatment protocols in order to 101 

minimize cell death and run the subsequent analysis only on the remaining events. In addition, 102 

Image3C can identify cells with outstanding morphological features, such as neutrophils from 103 

other myelomonocytes (see Fig. 1b).  104 

Next, we sought to determine whether Image3C can be used to detect clusters whose relative 105 

abundance significantly changes after specific experimental treatments. We performed a standard 106 

phagocytosis assay using hematopoietic cells from zebrafish, which were stained with Draq5 and 107 

incubated with CellTrace Violet labeled Staphylococcus aureus (CTV-S. aureus) and 108 

dihydrorhodamine-123 (DHR), a reactive oxygen species that becomes fluorescent if oxidized 109 

(Supplemental Methods). The DHR was used as a proxy for cell activation to report oxidative 110 

bursting as a consequence of phagocytosis. As control, we inhibited phagocytosis through 111 

cytoskeletal impairment by CCB incubation or through incubation at lower temperature (i.e. on 112 

ice). Events collected on the ImageStream®X Mark II (Amnis Millipore Sigma) were analyzed 113 

with our pipeline and clustered in 26 distinct clusters using intensities of morphological and 114 

fluorescent features (see Table S1), such as nuclear staining, S. aureus phagocytosis and DHR 115 

positivity (Fig. 2a). Professional phagocytes were defined by their ability to take up CTV-S. aureus 116 

and induce a reactive oxygen species (ROS) response (DHR positive)15. To compare between 117 

samples incubated with CTV-S. aureus and the respective control samples we used the statistical 118 

analysis pipeline from Image3C, which is based on a negative binomial regression model (Fig. 119 

2b). In zebrafish, professional phagocytes are mainly granulocytes and monocytic cells and can be 120 
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discriminated from each other based on morphological differences (i.e. cell size, granularity and 121 

nuclear shape)16. By combining the statistical analyses, the visual inspection of the cell galleries 122 

(Data File S3) and the intensity of morphological and fluorescent intensities (Data File S2), we 123 

identified 4 clusters of professional phagocytes: granulocytes within cluster Dr4, Dr12 and Dr13 124 

and monocytic cells in cluster Dr21 (Fig. 2a, 2b). The morphology of cells in cluster Dr12 is 125 

characteristic of phagocytic neutrophils (Fig. 2a) that become adhesive and produce extracellular 126 

traps upon recognition of bacterial antigens17. Overall relative abundance of professional 127 

phagocytes is 5-10% (Fig. 2c), which is in line with previous studies that estimated the number of 128 

Fig. 2 | Identification of phagocytes in D. rerio hematopoietic cells using Image3C based on intrinsic feature intensities. 
(a) FDL graph of cluster data, where each color represents a unique cell cluster. Galleries of cluster containing
professional phagocytes are shown. Merge represents overlay of DHR, CTV and Draq5 channels. (b) Volcano Plot 
illustrating comparison between treatment sample (hematopoietic cells + CTV-S. aureus) and CCB control sample 
(hematopoietic cells + CTV-S. aureus + 0.08 mg/mL CCB). The log fold change (logFC) is plotted in relation to the FDR 
corrected p-value (-log10) of each individual cluster calculated with negative binomial regression model. Clusters
containing professional phagocytes are highlighted in the respective color as presented in (a). (c) Box plot of relative 
abundances of cells within cluster containing professional phagocytes in treatment sample (hematopoietic cells + CTV-
S. aureus), CCB control sample (hematopoietic cells + CTV-S. aureus + 0.08 mg/mL CCB) and ice control sample 
(hematopoietic cells + CTV-S. aureus incubated on ice). Statistically significant differences are calculated using the 
negative binomial regression model between the treatment and the control samples (Supplemental Methods). ** 
indicates p ≤ 0.01 and # indicates not significantly different after FDR (n=6). 
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professional phagocytes in hematopoietic tissue of adult zebrafish using classical morphological 129 

approaches16. 130 

It is interesting to note that CCB selectively affects cell viability based on cell identity (Fig. 2b). 131 

We found all erythrocyte containing clusters had a significantly higher cell count in the CTV-S. 132 

aureus samples when compared to the CTV-S. aureus + CCB controls (Fig. 2b). Cluster analysis 133 

revealed that erythrocytes are almost absent in samples incubated with CCB (Data File S2), while 134 

there is a significant increase of dead and apoptotic cells (Fig. 2b, Table S2). Both outcomes are 135 

likely due to reduced cell viability of erythrocytes upon CCB incubation. Moreover, we excluded 136 

the possibility of higher cell death in the professional phagocytes upon CCB incubation, since we 137 

found here pseudo-phagocytes (phagocytes with DHR response but no internalized CTV-S. 138 

aureus) to be significantly more abundant (Fig. 2b, Table S2).  139 

Next, we inhibited phagocytosis by incubating the hematopoietic cells on ice (Supplemental 140 

Methods) and compared the effectiveness of inhibition with the CCB control (Fig. 2c, Table S3). 141 

We found that temperature inhibition of phagocytosis only affects adhesive neutrophils (cluster 142 

Dr12), probably through the inhibition of adhesion, while CCB effectively blocks phagocytosis in 143 

all professional phagocytes in zebrafish hematopoietic tissue (Fig. 2c). 144 

To test the versality of Image3C, we repeated the experiments using hemolymph samples from 145 

the emerging invertebrate model Pomacea canaliculata18. For morphological examination of the 146 

cellular composition of the hemolymph, we stained the tissue with Draq5 (DNA dye) and run on 147 

the ImageStream®X Mark II (Amnis Millipore Sigma) (Supplemental Methods). From the cell 148 

images, Image3C analyzed 15 morphological and 10 fluorescent features and identified 9 cell 149 

clusters (Fig. 3a). Two of these clusters are constituted by cell doublets, debris and dead cells 150 

(clusters Pc5 and Pc8). (Fig. 3c). Concerning the other clusters, we grouped them into 2 main 151 
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categories based on both cell images and previous data18 (Data File S4). The first category includes 152 

small blast-like cells (cluster Pc4) and intermediate cells (clusters Pc2 and Pc3) with high nuclear-153 

cytoplasmic ratio. These cells morphologically resemble the Group I hemocytes previously 154 

described using a classical morphological approach 18. The second category is constituted by larger 155 

cells with lower nuclear-cytoplasmic ratio and abundant membrane protrusions (clusters Pc1, Pc6, 156 

Pc7 and Pc9). Likely, these cells correspond to the previously described Group II hemocytes that 157 

include both granular and agranular cells18. To identify which of these clusters are enriched with 158 

granular cells, the intensities of the morphological features related to cytoplasm texture provided 159 

by Image3C were compared between the clusters of this category (Fig. 3b, Data File S4). Cluster 160 

Pc6 was identified as the one containing the granular hemocytes. The clusters obtained by 161 

Image3C, not only were homogeneous and biologically meaningful, but were also consistent with 162 

published P. canaliculata hemocyte classification obtained by classical morphological methods18. 163 

Such remarkable consistency has been observed in terms of identified cell morphologies and their 164 

relative abundance in the population of circulating hemocytes (Fig. 3c, Data File S4). For example, 165 

the relative abundance of the previously reported small blast-like cell is 14.0% a value almost 166 

identical to the corresponding cluster Pc4 of 13.8%. Similarly, the category of larger hemocytes, 167 

or Group II hemocytes represents 80.4% of the circulating cells as measured by traditional 168 

morphological methods18, while clusters Pc1, Pc6, Pc7 and Pc9 represent 72.4% of the events 169 

analyzed with Image3C. A sub-set of these cells are the granular cells (cluster Pc6), which 170 

correspond to 7.7% of all hemocytes by classical histological methods18 and 8.9% by Image3C. 171 

The intermediate cells (clusters Pc2 and Pc3) are less well represented in both approaches, with a 172 
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relative difference in abundance of 5.6% versus 10.6% of the manually and Image3C analyzed 173 

events, respectively. However, such difference is likely best explained by the remarkable 174 

difference in both, the number of cells and number of features considered for the analyses. Only a 175 

few hundred hemocytes were ocularly analyzed based on cell diameter and nuclear-cytoplasmic 176 

ratio using traditional histological methods18, while the automated pipeline used in this study 177 

Fig. 3 │ Analysis of P. canaliculata hemocyte population using the Image3C pipeline based only on intrinsic
morphological features of the cells. (a) FDL graph is used to visualize the 9 identified clusters. Each color 
represents a unique cell cluster and representative images (galleries) of the cells included in each cluster are
shown. Merge represents the overlay of brightfield (BF), side scatter signal (SSC) and Draq5 signal. (b) The 
Spearman’s correlation plot of morphological feature intensities per cluster allows the comparison of specific 
morphological aspects, such as granularity, between cells belonging to different clusters (Table S1 for details). 
(c) Box plot of relative abundance of events within each cluster following the same color-code used in Fig. 2a. 
Clusters Pc5 and Pc8, constituted by duplets and dead cells, are those with the lowest number of events,
validating the protocol used to prepare these samples (n=5).  
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analyzed 10,000 nucleated events for each sample considering 25 cell intrinsic features for each 178 

cell. Hence, Image3C represents an unprecedented increase in the accuracy of hemocyte type 179 

identification over traditional histological methods.  180 

In addition, we performed the same phagocytosis experiment, already done for hematopoietic 181 

cells from zebrafish, with hemocytes from P. canaliculata (Data File S2, S5, Table S4, S5). Here, 182 

we inhibited phagocytosis using either EDTA treatment or low temperature (i.e. incubation on 183 

ice). We identified two professional phagocyte clusters (cluster 27430 and 27442, Data File S5), 184 

both constituted by large hemocytes (Group II), but with a different DHR signal intensity (ROS 185 

response) upon bacteria exposure (cluster 27430 high DHR signal, cluster 27442 low DHR signal, 186 

Data File S2 and S5). Similar to the CCB inhibition control in the zebrafish phagocytosis 187 

experiment, EDTA is more effective in inhibiting phagocytosis than low temperature since both 188 

professional phagocytic clusters (cluster 27430 and 27442) contain significantly higher numbers 189 

of cells in the phagocytosis treatment compared to the EDTA control (Table S4). In the ice control 190 

sample, however, only cluster 27442 has a significantly higher relative abundance of professional 191 

phagocytes compared to the phagocytosis treatment sample (Table S5). 192 

The data analysis with Image3C clearly highlighted that the classical phagocytic inhibitors, 193 

CCB or EDTA, commonly used in controls for phagocytosis experiments, result in a drastic change 194 

of cell morphology, a consequence not easily detectable by other methods and often overlooked. 195 

In the present work, these changes significantly modified the overall cell cluster number and 196 

distribution, and this must be taken into consideration in any study of morphological features of 197 

cells with phagocytosis properties. Furthermore, when determining differences between 198 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 29, 2019. ; https://doi.org/10.1101/603035doi: bioRxiv preprint 

https://doi.org/10.1101/603035


 13

experimental treatments, Image3C necessarily combines images and data from all the treatments 199 

and re-clusters the cells (Supplemental Methods). Therefore, experiments meant to classify and 200 

analyze only innate cell morphologies present in a tissue should be carried out separately from 201 

experiments where one or more treatments are likely to significantly affect cell morphology in an 202 

Fig. 4 │ The combination of 
convolutional neural network with 
Image3C enables the unsupervised 
analysis of large experimental datasets. 
(a) Cluster structure from P. 
canaliculata as determined by Image3C 
was simplified to correct for over 
clustering (Supplemental Information 
for details) by combining strongly 
overlapping clusters (Pc1 and Pc9 
combined to Pc1CT; Pc5 and Pc8 
combined to Pc5CT). (b) Cell images 
from within resulting clusters were used 
for neural network training and (c) loss 
calculation for 25,000 iterations. (d) 
The true match probability (probability 
that trained classifier-assigned cluster 
matches original Image3C cluster) is 
given for each cell from the original 
dataset. The detailed precision score 
for each cluster together with the 
weighted average (correcting for 
support) is given below. (e) Distribution 
of snail phagocytes among the clusters 
of hemocytes defined by morphological 
features. (f) Comparison of the 
composition of the hemocyte 
population between female and male.  
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unanticipated manner (e.g. CCB or EDTA incubation). This would prevent treatment effects being 203 

conflated with innate morphology differences among unperturbed cell types.  204 

To overcome this potential confounding factor for large scale experiments and allow a direct 205 

comparison between same clusters over multiple samples, we designed a convolutional neural 206 

network19 based on the architecture of DenseNet20 that is able to use Imagestream image files and 207 

Image3C cluster information to objectively assign cells to clusters that were previously defined 208 

through the Image3C pipeline (Fig. 4). Here, we used the clusters of naïve P. canaliculata 209 

hemocytes generated by Image3C (Fig. 3a) for setting up the neural network and the first step was 210 

to combine Image3C cluster that strongly overlap with one another (Fig. 4a) to correct for 211 

clustering and for increase accuracy of the classifier. We used 80% of the cells obtained in the 212 

original P. canaliculata dataset together with the classifier cluster information to train the classifier 213 

with 25,000 iterations (Fig. 4b, c, Supplemental Information for details). After each iteration, 10% 214 

of the cells of the original P. canaliculata dataset was used to test the classifier (Fig. 4b, c). The 215 

relative accuracy for training and testing were determined by scoring numbers of cells whose 216 

cluster ID assigned by the classifier matched the cluster ID of the original dataset in relation to the 217 

overall cell number used for training and testing, respectively. The network loss was defined by 218 

the softmax of the cross entropy21 between the final output and the one-hot-encoded image labels. 219 

Training was performed using the Adam Optimizer22 with a decaying learning rate starting at 0.001 220 

and decreasing by 1% each step (Fig. 4b, c). To avoid the network memorizing the training set, L2 221 

regularization was applied to the weights. The remaining 10% of the original dataset was used to 222 

calculate the precision of the trained classifier (Fig 4d). While clusters with higher support 223 

numbers obtained higher precision scores, the weighted average precision score (precision average 224 

score across clusters controlling for support numbers) of 0.74 is relatively high considering the 225 
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complexity of the phenotype (BF, darkfield and Draq5 images) and comparable to other studies 226 

using machine learning for cell classification5. The true probability match for each cell (probability 227 

for each presented cell given from classifier to match the original Image3C cluster) demonstrates 228 

that lower true probability matches occur where cluster strongly overlap (Fig. 4d) potentially 229 

giving us information about cell phenotypes that are intermediate between clusters. 230 

To test the efficiency of this pipeline, we extracted the images of the phagocytes obtained with 231 

the previous phagocytosis experiment performed on snail hemolymph and determined to which 232 

clusters these hemocytes belong through the neural network. We found that 49%, 12% and 6% of 233 

the phagocytes belong to cluster Pc1CT, Pc6CT and Pc7CT, respectively (Fig. 4e). These results 234 

confirmed the previously published data where the hemocytes able to phagocytize were manually 235 

assigned to Group II hemocytes through classical morphological stainings18. Only 2% of the 236 

phagocytes were clustered in the Group I hemocytes, here represented by cluster Pc2CT, Pc3CT 237 

and Pc4CT, while the remaining 31% were assigned by the neural network to the cluster Pc5CT, 238 

constituted by doublets and dead cells (Fig. 4e). This data can be explained by the fact that in-vitro 239 

phagocytosis triggers microaggregate formation (hemocyte – hemocyte adhesion) in invertebrate 240 

hemocytes that resemble the nodule formation observed in-vivo23.  241 

In an additional test to determine the adaptability of the trained neural network to new datasets, 242 

we collected hemocytes from male snails. We stained the cells with Draq5 and recorded BF, SSC 243 

and nuclei images from 10,000 cells on the ImageStream®X Mark II (Amnis Millipore Sigma) as 244 

described before. We extracted the images of the cells and we used our neural network to determine 245 

the relative abundance of hemocytes from males in the 7 clusters used for the training (see Fig 4a). 246 

The comparison between female and male hemocyte composition revealed that the only clusters 247 

significantly different in terms of relative abundance are Pc2CT and Pc3CT, defined as Group I 248 
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intermediate hemocytes and Pc5CT (Fig. 4f). The latter one, comprehending dead cells and 249 

doublets, might be explained by the sample preparation and data collection variability, while more 250 

interesting is the difference observed in the other two clusters. In the previously published data, 251 

no differences were detected through manual classification and counting between females and 252 

males hemocytes composition using a classical morphological approach18. The unsupervised and 253 

high-throughput analysis presented here, instead, allowed us to determine that both subpopulations 254 

of intermediate cells defined by the Image3C tool are significantly less represented in the male 255 

animals (Pc2CT: 5% and 1% in female and male, respectively; Pc3CT: 6% and 1%, respectively) 256 

(Fig. 4f). While the biological meaning of this difference is not going to be further investigated in 257 

this paper, we would like to highlight the power of our tool compared to a more classical approach 258 

to determine and analyze the composition of cell population.   259 

These experiments demonstrate that our new tool Image3C in combination with the presented 260 

convolutional classifier is capable of analyzing large experimental datasets and identifying 261 

significances with small effect sizes independently from observer biases and previous knowledge 262 

about the effect of the treatment on the cell morphology. 263 

In summary, we have developed a powerful new method to analyze the composition of any cell 264 

population obtained from any research organism of interest at single cell resolution without the 265 

need for species-specific reagents such as fluorescently tagged antibodies (multicolor 266 

immunophenotyping). We showed how Image3C can cluster cell populations based on 267 

morphology and/or function and highlight changes in the cell population composition due to 268 

experimental treatments. Furthermore, in combination with the convolutional neural network 269 

trained on Image3C clusters, we are capable of unsupervised, bias-free and high-throughput 270 

analysis of large experimental datasets with a precise comparison of relative abundance of cells in 271 
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the same cluster across different samples. This tool is extremely versatile and can be applied to 272 

any cell population of interest and included in any experimental design. In addition, given the 273 

recent advancement in image-based flow cytometry that enables image capturing together with 274 

cell sorting24, a scRNA-Seq approach in combination with the Image3C pipeline would enable the 275 

simultaneous analysis of both phenotypic and genetic properties of a cell population at single cell 276 

resolution. Image3C is freely available from the Github repository25.  277 
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Online Supplemental Methods  362 

Collection of zebrafish whole kidney marrow (WKM) 363 

Twelve-month-old, wild type, female, adult zebrafish were euthanized with cold 500 mg/L MS-364 

222 solution for 5 min. Kidneys were dissected as previously described1 and then transferred to 40 365 

µm cell strainer with 1 mL of L-15 media containing 10% water, 10 mM HEPES and 20 U/mL 366 

Heparin (L-90). Cells were gently forced through the cell strainer with the plunger of a 3 mL 367 

disposable syringe. The strainer was washed once with 1 mL of L-90 and the resulting single cell 368 

solution was centrifuged at 500 rcf at 4 ºC for 5 min. The supernatant was discarded, and the cells 369 

were resuspended in 1 mL of L-15 media containing 5 % fetal calf serum (FCS), 4 mM L-370 

Glutamine, and 10,000 U of both Penicillin and Streptomycin (L-90 media). The cells were 371 

counted after a 1:20 dilution on the EC-800 flow cytometer (Sony) using scatter properties. 372 

 373 

Collection of apple snail hemocytes 374 

Specimens of the apple snail Pomacea canaliculata (Mollusca, Gastropoda, Ampullariidae) 375 

were maintained and bred in captivity, in a water recirculation system filled with artificial 376 

freshwater (2.7 mM CaCl2, 0.8 mM MgSO4, 1.8 mM NaHCO3, 1:5000 Remineralize Balanced 377 

Minerals in Liquid Form [Brightwell Aquatics]). The snails were fed twice a week and kept in a 378 

10:14 light:dark cycle. Wild type adult snails, 7-9 months old and with a shell size of 45-60 mm 379 

were starved for 5 days before the hemolymph collection2. If not differently specified, female 380 

snails were used for the experiments. The withdrawal was performed applying a pressure on the 381 

operculum and dropping the hemolymph directly into an ice-cold tube. The hemolymph was not 382 

pooled but the cells collected from each animal were individually analyzed. The hemolymph was 383 

immediately diluted 1:4 in Bge medium + 10% fetal bovine serum (FBS) and then centrifuged at 384 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 29, 2019. ; https://doi.org/10.1101/603035doi: bioRxiv preprint 

https://doi.org/10.1101/603035


500 rcf for 5 min. The pellet of cells was resuspended in 100 µl of Bge medium + 10% FBS. The 385 

Bge medium (also known as Biomphalaria glabrata embryonic cell line medium) is constituted 386 

by 22% (v/v) Schneiders’s Drosophila Medium, 4.5 g/L Lactalbumin hydrolysate, 1.3 g/L 387 

Galactose, 0.02 g/L Gentamycin in MilliQ water, pH 7.0. 388 

 389 

Morphology Assay  390 

The P. canaliculata hemocytes were stained with 5 µM Draq5 (Thermo Fisher Scientific) for 391 

10 min, moved to ice and subsequently run one by one on the ImageStream®X Mark II (Amnis 392 

Millipore Sigma), where 10,000 nucleated and focused events were recorded for each sample.  393 

D. rerio hematopoietic cells obtained from 8 animals were plated at 4 x 105 cells/well in a 96-394 

well plate in 200 µL of medium and incubated for 3 h at room temperature. Cells were stained 395 

with 5 µM Draq5 (Thermo Fisher Scientific) for 10 min and subsequently run on the 396 

ImageStream®X Mark II (Amnis Millipore Sigma), where 10,000 nucleated and focused events 397 

were recorded for each sample. For Image3C analysis, erythrocytes were out-gated to increase 398 

number of immune relevant cells and to prevent over clustering. The latter is due to the fact that 399 

erythrocytes from fish are nucleated and their biconcave shape result in different morphological 400 

feature intensities only depending on their orientation during image acquisition.  401 

 402 

Phagocytosis assay 403 

For both animals, cells from a single cell suspension were plated in a 96-well plate at a 404 

concentration of 4 x 105 cells/well in 200 µL of medium and incubated with 2 x 107 CTV-coupled 405 

Staphylococcus aureus/well (Thermo Fisher Scientific) for 3 h at room temperature. As control for 406 

phagocytosis the cells were either incubated with CTV-S. aureus on ice or with CTV-S. aureus in 407 
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the presence of 0.08 mg/mL cytochalasin B (CCB) for zebrafish cells or 30 mM EDTA and 10 408 

mM HEPES for apple snail cells3. After 2 h and 30 min we added 5 µM dihydrorhodamine-123 409 

(DHR) (Thermo Fisher Scientific) to the cell suspension to stain cells positive for reactive oxygen 410 

species (ROS) production. To control for this treatment with DHR, we incubated the cells with 10 411 

ng/mL phorbol 12-myristate 13-acetate (PMA) to artificially induce ROS production. At 2 h and 412 

50 min since the beginning of incubation with CTV-S. aureus, all the samples were stained with 5 413 

µM Draq5 for 10 min. After 3 h incubation with bacteria, cells were moved and stored on ice and 414 

subsequently run on the ImageStream®X Mark II (Amnis Millipore Sigma), where 10,000 415 

nucleated and focused events were recorded for each sample.  416 

 417 

Data collection on ImageStream®X Mark II 418 

Following cell preparation, data were acquired from each sample on the ImageStream®X Mark 419 

II (Amnis Millipore Sigma) at 60x magnification, slow flow speed, using 633, 488 and 405 nm 420 

laser excitation. Bright field was acquired on channels 1 and 9. DHR (488 nm excitation) was 421 

collected on channel 2, CTV-S. aureus (405 nm excitation) on channel 7 and Draq5 (633 nm 422 

excitation) on channel 11. SSC was acquired on channel 6. 423 

 424 

Data analysis 425 

Raw image data from the ImageStream®X Mark II system was compensated, background was 426 

subtracted, and features were calculated using IDEAS 6.2 software (Amnis/Millipore). Feature 427 

intensities for all cells and samples were then exported from IDEAS into FCS files for processing 428 

in R. See github repository and Table S1 for a full list of features used for each organism and a 429 

more detailed description of processing steps. Briefly, exported FCS files were processed in R4 to 430 
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trim redundant features with high correlation values, fluorescence intensity features were 431 

transformed using the estimateLogicle() and transform() functions from the flowCore package5,6, 432 

and DNA intensity features were normalized to remove intensity drift between samples using the 433 

gaussNorm function from flowStats7. The processed data was exported from R4 using 434 

writeflowSet() function in flowCore package5,6. 435 

Data and clustering results were then imported into the Vortex clustering environment for X-436 

shift k-nearest-neighbor clustering8. During the import into Vortex, all features were scaled to 1SD 437 

to equalize the contribution of features towards clustering. Clustering was performed in Vortex 438 

with a range of k values, typically from 5 to 150, and a final k value chosen using the ‘find elbow 439 

point for cluster number’ function in Vortex and with visual confirmation of the result that over or 440 

under-clustering did not occur. Force directed graphs of a subset of cells in each experiment’s file 441 

set were also generated in Vortex and cell coordinates in the resultant 2d space were exported 442 

along with graphml representation of the force directed graph. After clustering and generation of 443 

force directed graphs, tabular data was exported from Vortex that included a master table of every 444 

cell event and its cluster assignment and original sample ID, as well as a table of the average 445 

feature intensities for each cluster and counts of cells per cluster and per sample. 446 

Clustering results were further analyzed and plotted in R4 by merging all cell events and feature 447 

intensities with cluster assignments, and force directed graph X/Y coordinates. Using this merged 448 

data and the graphml file exported from Vortex, new force directed graphs were created per 449 

treatment condition using the igraph package9 in R, statistical analysis of differences in cell counts 450 

per cluster by condition were performed using negative binomial regression of cell counts per 451 

cluster, plots of statistics results and other results generated (see github repository for details), and 452 

csv files containing cell and sample ID, feature intensities, X/Y coordinates in force directed and 453 
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minimum spanning tree plots were exported for each sample in the experiment set for merging 454 

results into daf files in FCS Express Plus version 6 (DeNovo software), which allowed 455 

visualization of cell images by cluster and by sub setting of regions within the force directed 456 

graphs. 457 

Analysis of daf files was performed in FCS Express by opening daf files and using the “R add 458 

parameters” transformation feature to merge the csv files generated above with the daf file feature 459 

intensity and image sets. This allowed the generation of image galleries of cells within each cluster 460 

and additional analysis in the style of traditional flow cytometry (i.e., gating on 2d plots of features 461 

of interest) to explore the clustering results and identify candidate clusters and populations of 462 

interest. 463 

The full complement of R packages used includes flowCore5,6, flowStats7, igraph9, ggcyto10, 464 

ggridges11, ggplot212, stringr13, hmisc14 and caret15. 465 

 466 

Classifier Setup 467 
 468 
We used a convolutional neural network16 based on the architecture of DenseNet17 for image 469 

classification. Because images from the ImageStream have non-uniform sizes, each image was 470 

cropped or padded to 32x32 pixels. The neural network consists of three dense blocks that 471 

transition from input three-channel images of 32x32x3 to a final size of 4x4x87 with 87 feature 472 

maps. A dense block includes three convolution layers, each followed by leaky relu activation. 473 

The output of the dense block is a 2D convolution with a stride of 2 to provide down sampling. 474 

The final dense convolutional layer is flattened and fully connected to the output layer that is a 1d 475 

vector with a length of the number of classes for prediction. The neural network was implemented 476 

in Python using the TensorFlow platform18 and the SciPy ecosystem19-21. 477 
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Statistics 478 

Negative binomial regression was performed on tables of cell counts per cluster, per sample and 479 

plots were generated using R4 with the edgeR22 package, which was developed for RNAseq 480 

analysis, but includes generally applicable and user-friendly wrappers for regression and modeling 481 

analysis and plotting of results. When comparing females and males in Figure 4f to find differences 482 

in relative cell abundance in different cluster, a one-way ANOVA was used with subsequent FDR 483 

(Benjamini-Hochberg).  484 

 485 
Animal experiment statement 486 

Research and animal care were approved by the Institutional Animal Care and Use Committee 487 

(IACUC) of the Stowers Institute for Medical Research. 488 

 489 
 490 
  491 
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Supplemental Tables  

 

Table S1: Features used for Clustering. (a) Features used for morphology-based analysis. (b) 
Features used for functional and morphology-based analysis in phagocytosis experiment.  

Table S1 (a) 

Feat
ure 
ID 

Feature 
Name_ImageMask_Ch

annel 

Cell Intrinsic (CI) 
/ Cell Function 

(CF) Feature description 

1 
Area_AdaptiveErode_B

F CI Cell size 

2 Area_Intensity_SSC CI Areas of SSC signal above 
background 

3 Area_Morphology_Draq
5 CI Area of DNA signal (nuclear staining) 

4 Aspect.Ratio_AdaptiveE
rode_BF CI Aspect ratio of total cell area 

5 
Bright.Detail.Intensity.R
3_AdaptiveErode_BF_B

F 
CI Intensity of brightest staining areas 

6 
Bright.Detail.Intensity.R
3_AdaptiveErode_BF_S

SC 
CI Intensity of brightest signal areas 

7 
Bright.Detail.Intensity.R
3_AdaptiveErode_BF_D

raq5 
CI Intensity of brightest staining areas 

8 Circularity_AdaptiveEro
de_BF CI Circularity of whole cell shape 

9 Circularity_Morphology_
Draq5 CI Circularity of nucleus 

10 Contrast_AdaptiveErod
e_BF_BF CI Detects large changes in pixel values - 

can be measure of granularity of signal 

11 Contrast_AdaptiveErod
e_BF_SSC CI Detects large changes in pixel values - 

can be measure of granularity of signal 

12 Diameter_AdaptiveErod
e_BF CI Diameter of whole cell shape 

13 Diameter_Morphology_
Draq5 CI Diameter of nucleus 

14 H.Energy.Mean_Adaptiv
eErode_BF_BF CI Measure of intensity concentration - 

texture feature 

15 H.Energy.Mean_Morph
ology_Draq5_Draq5 CI Measure of intensity concentration - 

texture feature 

16 H.Entropy.Mean_Adapti
veErode_BF_BF CI Measure of intensity concentration and 

randomness of signal - texture feature 

17 H.Entropy.Mean_Morph
ology_Draq5_Draq5 CI Measure of intensity concentration and 

randomness of signal - texture feature 

18 Intensity_AdaptiveErode
_BF_SSC CI Integrated intensity of signal within 

whole cell mask - Cell granularity 
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19 Intensity_AdaptiveErode
_BF_Draq5 CI Integrated intensity of signal within 

whole cell mask 

20 Lobe.Count_Morpholog
y_Draq5 CI Number of lobes of nucleus 

21 Max.Pixel_Intensity_SS
C CI 

Maximum pixel intensity of stated 
channel within a whole cell mask - Cell 

granularity 

22 Max.Pixel_Morphology_
Draq5 CI Maximum pixel intensity of stated 

channel within a whole cell mask 

23 Mean.Pixel_Morphology
_Draq5 CI Mean pixel intensity of stated channel 

within a whole cell mask 

24 Shape.Ratio_AdaptiveE
rode_BF CI Minimum thickness divided by length - 

measure of cell shape characterisic 

25 Std.Dev_AdaptiveErode
_BF CI 

Standard deviation of BF signal - 
measure of granularity and variance in 

BF 
 

Table S1 (b) 

Feat
ure 
ID 

Feature 
Name_ImageMask_Ch

annel 

Cell Intrinsic (CI) 
/ Cell Function 

(CF) Feature description 
1 Area_AdaptiveErode_B

F CI Cell size 

2 Area_Intensity_DHR CF Area of DHR staining above 
background 

3 Area_Intensity_Bac CF Area of CTV staining above 
background 

4 Area_Intensity_SSC CI Areas of SSC signal above 
background 

5 Area_Morphology_DNA CI Area of DNA signal (nuclear staining) 

6 Aspect.Ratio_AdaptiveE
rode_BF CI Aspect ratio of total cell area 

7 
Bright.Detail.Intensity.R
3_AdaptiveErode_BF_B

ac 
CF Intensity of brightest staining areas 

8 
Bright.Detail.Intensity.R
3_AdaptiveErode_BF_B

F 
CI Intensity of brightest staining areas 

9 
Bright.Detail.Intensity.R
3_AdaptiveErode_BF_D

HR 
CF Intensity of brightest staining areas 

10 
Bright.Detail.Intensity.R
3_AdaptiveErode_BF_D

raq5 
CI Intensity of brightest staining areas 

11 
Bright.Detail.Intensity.R
3_AdaptiveErode_BF_S

SC 
CI Intensity of brightest signal areas 

12 Circularity_AdaptiveEro
de_BF CI Circularity of whole cell shape 
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13 Circularity_Morphology_
DNA CI Circularity of nucleus 

14 Contrast_AdaptiveErod
e_BF_BF CI Detects large changes in pixel values - 

can be measure of granularity of signal 

15 Contrast_AdaptiveErod
e_BF_SSC CI Detects large changes in pixel values - 

can be measure of granularity of signal 

16 Diameter_AdaptiveErod
e_BF CI Diameter of whole cell shape 

17 Diameter_Morphology_
Draq5 CI Diameter of nucleus 

18 H.Energy.Mean_Adaptiv
eErode_BF_BF CI Measure of intensity concentration - 

texture feature 

19 H.Energy.Mean_Intensit
y_DHR_DHR CF Measure of intensity concentration - 

texture feature 

20 H.Energy.Mean_Intensit
y_Bac_Bac CF Measure of intensity concentration - 

texture feature 

21 H.Energy.Mean_Morph
ology_Draq5_Draq5 CI Measure of intensity concentration - 

texture feature 

22 H.Entropy.Mean_Adapti
veErode_BF_BF CI Measure of intensity concentration and 

randomness of signal - texture feature 

23 H.Entropy.Mean_Intensi
ty_DHR_DHR CF Measure of intensity concentration and 

randomness of signal - texture feature 

24 H.Entropy.Mean_Intensi
ty_Bac_Bac CF Measure of intensity concentration and 

randomness of signal - texture feature 

25 H.Entropy.Mean_Morph
ology_DNA_Draq5 CI Measure of intensity concentration and 

randomness of signal - texture feature 

26 Intensity_AdaptiveErode
_BF_Bac CF Integrated intensity of signal within 

whole cell mask 

27 Intensity_AdaptiveErode
_BF_DHR CF Integrated intensity of signal within 

whole cell mask 

28 Intensity_AdaptiveErode
_BF_Draq5 CI Integrated intensity of signal within 

whole cell mask 

29 Intensity_AdaptiveErode
_BF_SSC CI Integrated intensity of signal within 

whole cell mask - Cell granularity 

30 Lobe.Count_Morpholog
y_Draq5 CI Number of lobes of nucleus 

31 Max.Pixel_Intensity_Ba
c CF Maximum pixel intensity of stated 

channel within a whole cell mask 

32 Max.Pixel_Intensity_SS
C CF 

Maximum pixel intensity of stated 
channel within a whole cell mask - Cell 

granularity 

33 Max.Pixel_Morphology_
Draq5 CI Maximum pixel intensity of stated 

channel within a whole cell mask 

34 Mean.Pixel_Morphology
_Draq5 CI Mean pixel intensity of stated channel 

within a whole cell mask 

35 Shape.Ratio_AdaptiveE
rode_BF CI Minimum thickness divided by length - 

measure of cell shape characterisic 

36 Std.Dev_AdaptiveErode
_BF CI 

Standard deviation of BF signal - 
measure of granularity and variance in 

BF 
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Table S2: Results of negative binomial regression analysis comparing clusters from 
zebrafish phagocytosis (Cells + CTV S. aureus) with CCB inhibition control (Cells + CTV S. 
aureus + CCB) 

Cluster 
ID logFC logCPM LR PValue FDR 

Dr1 -2.48673 14.76127 24.65067 6.87E-07 1.19E-06 
Dr2 -3.8209 15.11433 30.32912 3.65E-08 7.03E-08 
Dr3 -2.63248 15.10065 30.25504 3.79E-08 7.03E-08 
Dr5 -2.7606 14.21908 33.0875 8.81E-09 1.91E-08 
Dr6 -2.70177 13.37119 36.16033 1.82E-09 4.73E-09 
Dr7 -2.72126 14.24771 34.08437 5.28E-09 1.25E-08 
Dr8 4.482713 14.88169 82.05466 1.32E-19 4.92E-19 

Dr10 -3.45902 14.60211 24.35992 7.99E-07 1.30E-06 
Dr11 6.904763 13.9128 84.08534 4.74E-20 2.05E-19 
Dr12 1.087279 12.83107 11.29997 0.000775 0.001061 
Dr13 1.514425 12.94985 11.48213 0.000703 0.001015 
Dr14 -2.99602 11.50543 42.88105 5.82E-11 1.68E-10 
Dr15 -2.38678 12.70026 21.12804 4.30E-06 6.57E-06 
Dr16 5.663379 14.13744 143.1863 5.35E-33 1.39E-31 
Dr17 5.715121 14.80998 122.2704 2.01E-28 2.62E-27 
Dr19 4.077533 14.85917 93.86068 3.39E-22 1.76E-21 
Dr20 3.847921 13.05544 49.27037 2.23E-12 7.25E-12 
Dr21 1.571314 11.87021 9.421178 0.002145 0.002788 
Dr23 4.375929 16.67274 99.99839 1.53E-23 9.91E-23 
Dr25 5.769772 13.99753 119.3218 8.90E-28 7.72E-27 

 

Table S3: Results of negative binomial regression analysis comparing clusters from 
zebrafish phagocytosis (Cells + CTV S. aureus) with ice inhibition control (Cells + CTV S. 
aureus + ice) 

Cluster 
ID logFC logCPM LR PValue FDR 

Dr1 -2.57222 14.76127 26.21074 3.06E-07 2.65E-06 
Dr3 -1.47929 15.10065 10.27905 0.001345 0.004998 
Dr5 1.235565 14.21908 6.9584 0.008343 0.023708 
Dr6 -1.96681 13.37119 19.93869 8.00E-06 5.20E-05 
Dr7 -1.93868 14.24771 18.19453 1.99E-05 0.000104 
Dr9 4.340935 11.68675 36.21393 1.77E-09 4.60E-08 

Dr12 0.836382 12.83107 6.799505 0.009118 0.023708 
Dr14 -2.35912 11.50543 26.47869 2.66E-07 2.65E-06 
Dr15 -1.67916 12.70026 10.80552 0.001012 0.004385 
Dr24 1.081904 16.03192 8.340688 0.003877 0.012599 
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Table S4: Results of negative binomial regression analysis comparing clusters from apple 
snail phagocytosis (Cells + CTV S. aureus) with EDTA inhibition control (Cells + CTV S. 
aureus + EDTA) 

Cluster 
ID logFC logCPM LR PValue FDR 

27426 1.219719 16.42389 23.86393 1.03E-06 4.14E-06 
27427 1.521304 16.31424 23.42745 1.30E-06 4.32E-06 
27430 3.506921 11.96025 19.19534 1.18E-05 2.62E-05 
27431 2.000616 13.66811 21.45211 3.63E-06 9.07E-06 
27432 1.178448 15.71918 15.65951 7.58E-05 0.000152 
27433 0.912203 14.51336 5.608834 0.01787 0.023827 
27434 1.919568 14.24789 21.7377 3.13E-06 8.93E-06 
27435 -0.95771 16.55159 15.15146 9.92E-05 0.00018 
27436 -2.21453 17.04466 66.60728 3.31E-16 6.63E-15 
27437 1.920223 13.48376 27.01612 2.02E-07 1.01E-06 
27438 1.155857 13.78276 11.69042 0.000628 0.000967 
27439 1.742058 17.721 51.24411 8.16E-13 5.44E-12 
27441 1.645859 13.23961 10.80603 0.001012 0.001445 
27442 3.134689 13.98527 55.58824 8.94E-14 8.94E-13 
27445 -0.82885 16.67206 12.56812 0.000392 0.000654 

 

 

Table S5: Results of negative binomial regression analysis comparing clusters from apple 
snail phagocytosis (Cells + CTV S. aureus) with ice inhibition control (Cells + CTV S. aureus 
+ ice) 

Cluster 
ID logFC logCPM LR PValue FDR 

27442 2.500366 13.98527 37.29469 
1.02E-

09 
2.03E-

08 
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