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Abstract 

Understanding which biological pathways are specific versus general across diagnostic categories 

and levels of symptom severity is critical to improving nosology and treatment of 

psychopathology. Here, we combine transdiagnostic and dimensional approaches to genetic 

discovery for the first time, conducting a novel multivariate genome-wide association study 

(GWAS) of eight psychiatric symptoms and disorders broadly related to mood disturbance and 

psychosis. We identify two transdiagnostic genetic liabilities that distinguish between common 

forms of mood disturbance (major depressive disorder, bipolar II, and self-reported symptoms of 

depression, mania, and psychosis) versus rarer forms of serious mental illness (bipolar I, 

schizoaffective disorder, and schizophrenia). Biological annotation revealed divergent genetic 

architectures that differentially implicated prenatal neurodevelopment and neuronal function and 

regulation. These findings inform psychiatric nosology and biological models of psychopathology, 

as they suggest the severity of mood and psychotic symptoms present in serious mental illness may 

reflect a difference in kind, rather than merely in degree. 
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Psychiatric disorders are one of the leading causes of global disease burden, affecting more 

than 25% of the world’s population at some point during their lifetime1. Twin- and family-based 

studies have established that a substantial portion of individual differences in liability to 

psychiatric disorders is caused by genetic variation2. Genome-wide association studies (GWASs) 

have identified numerous genetic loci that have replicable associations with severe and debilitating 

psychiatric disorders, including schizophrenia3, bipolar disorder4, and major depressive disorder5. 

GWASs have also identified a substantial degree of genetic overlap across psychiatric 

disorders, finding high genetic covariances and many pleiotropic loci6,7. This genetic overlap 

complicates efforts to identify causes, consequences, and treatments that are specific to any 

individual psychiatric disorder8. In response to these challenges, transdiagnostic approaches to 

psychiatric disease aim to identify biological systems that are perturbed across many forms of 

illness9,10. Transdiagnostic research may yield new therapeutic targets with broad utility, as well 

as inform nosological classification and stratification of at-risk populations.  

Concurrent with the emergence of transdiagnostic research, efforts to identify disorder-

specific genetic loci have turned toward studying self-report measures in the general population11–

13, as case-control study designs require diagnostic schedules that can be slow and costly. If valid, 

this dimensional approach in non-clinical samples has the potential to accelerate genetic discovery 

via dramatic increases in sample size, as self-report survey measures of psychiatric symptoms can 

be administered at-scale to large, genotyped population-based samples, such as UK Biobank14,15. 

However, while this approach may be valid for some common forms of psychopathology16, it is 

unknown whether the biology that influences normative variation in subthreshold symptoms also 

underlies rarer psychiatric conditions, such as those characterized by mania and/or psychosis. 

Here, we combine transdiagnostic and dimensional research approaches to genetic 

discovery by analyzing the genetic relationships among eight psychiatric phenotypes related to 

mood and psychotic disorders: depressive symptoms, manic symptoms, psychotic symptoms, 

major depressive disorder, bipolar II disorder, bipolar I disorder, schizoaffective disorder, and 

schizophrenia. In doing so, we aim to address three main questions. First, what is the genetic basis 

of mood and psychotic symptoms in the general population and how does it compare to the genetic 

basis of psychiatric diagnoses that are characterized by those symptoms? Second, how many 

transdiagnostic dimensions of genetic liability cut across these eight phenotypes? Third, how are 
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dimensions of transdiagnostic liability similar and dissimilar in their genetic architecture, 

underlying biology, and associations with other aspects of human well-being and disease? 

Results 

Novel loci associated with lifetime endorsement of mood and psychotic symptoms 

We used a combination of Bayesian item response theory and linear mixed models to 

conduct univariate GWAS for self-reported measures of lifetime depression, mania, and psychosis 

from 252,252 individuals in the UK Biobank. We observed substantial inflation of the median test 

statistic for all three phenotypes, and the linkage disequilibrium (LD) score regression intercepts 

and attenuation ratios suggest that test statistic inflation is primarily due to polygenic signal rather 

than bias (Figure 1, Table 1). After applying a standard clumping algorithm via FUMA (r2 = .1,  

250kb merge window), we identified 23 independent loci associated with lifetime depressive, 

manic, and/or psychotic symptoms (Supplementary Tables 1-3). Nine of these loci were 

significantly associated with two or more phenotypes, and six loci were associated with all three 

psychiatric phenotypes.  

 
[INSERT TABLE 1] 

 

The identified risk loci span across 12 chromosomes and include variants tagging the major 

histocompatibility complex region on chromosome 6 and a well-known inversion polymorphism 

on chromosome 17 previously associated with several psychiatric phenotypes17. Many of these 

risk loci replicated previous findings from GWASs of psychopathology or were in high LD with 

previous hits for phenotypes including neuroticism18 (e.g., rs7111031, rs10503002, rs4245154), 

broadly defined depression11 (e.g., rs9586, rs191800971, rs7111031), and schizophrenia19 (e.g., 

rs1233494, rs4245154, rs4702). However, several loci contained lead SNPs that were new GWAS 

signals altogether, identifying new regions of the genome that confer risk for psychopathology, 

such as rs4722389, rs7324564, and rs570217967. 

Moreover, our gene-based association analyses performed via MAGMA identified 144 

genes associated with at least one of the psychiatric symptoms (depression, mania, or psychosis), 

39 of which were associated with all three. For all phenotypes, we observed enriched expression 

in brain tissue, as well as an enriched signal for brain-related gene sets. We report detailed 

biological annotation (e.g., gene mapping, gene set enrichment, tissue enrichment) for each of 

these GWASs in Supplementary Tables 4-12. 
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Figure 1. Univariate association results for lifetime measures of mood disturbance and psychosis. a,b,c, 
Manhattan plots and a quantile-quantile plots for (a) depressive, (b) manic, and (c) psychotic symptoms. In the 
Manhattan plots, the x-axis refers to chromosomal position, the y-axis refers to the significance on a -log10 scale, 
the horizontal dashed line denotes genome-wide significance (P = 5e-8), and the horizontal dotted line marks 
suggestive significance (P = 1e-5). In the quantile-quantile plots, the x-axis refers to expected P value, while the 
y-axis refers to the observed P value. For each plot, the nearest gene for the lead SNP in the top five genome-
wide significant loci is labeled. 
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Two transdiagnostic genetic liabilities underlie mood and psychotic psychopathology 

To characterize the genomic relationships among psychiatric symptoms and disorders 

commonly characterized by depression, mania, and/or psychosis4,5,20 (see Table 1 for overview of 

study phenotypes), we first used bivariate LD score regression to estimate genetic correlations 

between all pairs of psychiatric phenotypes. We observed very large positive genetic correlations 

among the three psychiatric symptoms (mean rg = .95, SEM = .02); however, we observed more 

modest genetic correlations for the five psychiatric disorders (mean rg = .55, SEM = .09). We found 

that schizophrenia, schizoaffective disorder, and bipolar I were highly correlated with one another 

(rgSCZ-SZA = .87 [SE = .13], rgSCZ-BD1 = .72 [SE = .03], rgSZA-BD1 = .81 [SE = .12]), but these disorders 

generally had markedly smaller genetic correlations with bipolar II and major depressive disorder 

(rgSCZ-BD2 = .53 [SE = .03], rgSCZ-MDD = .39 [SE = .04], rgSZA-BD2 = .28 [SE = .21], rgSZA-MDD = .06 

[SE = .12], rgBD1-MDD = .33 [SE = .04]); however, bipolar I and bipolar II were highly correlated 

(rgBD1-BD2 = .88 [SE = .11]). Interestingly, we found that bipolar II and major depressive disorder 

were highly correlated with each other (rgBD2-MDD = .69 [SE = .13]), as well as with all psychiatric 

symptoms (rgBD2-DEP = .75 [SE = .11], rgBD2-MAN = .71 [SE = .11], rgBD2-PSY = .70 [SE = .11], rgMDD-

DEP = .85 [SE = .03], rgMDD-MAN = .77 [SE = .03], rgMDD-PSY = .80 [SE = .04]).  

After applying a hierarchical clustering algorithm to the genetic correlation matrix, we 

found two distinct clusters of psychiatric phenotypes (Figure 2a). The first cluster comprised the 

three psychiatric symptoms, major depressive disorder, and bipolar II, and the second cluster 

comprised bipolar I, schizoaffective disorder, and schizophrenia. We then conducted an 

exploratory factor analysis (EFA) of the genetic covariance matrix. EFA results were consistent 

with the groupings suggested by the hierarchical clustering algorithm, identifying a correlated two-

factor model with approximate simple structure. That is, we found that phenotypes principally 

loaded onto one of two latent genetic factors with negligible cross-loadings (Figure 2b). Combined, 

these two correlated latent factors explained 81.3% of the total genetic variance across phenotypes.  

Finally, we formally modeled the genetic covariance matrix via confirmatory factor 

analysis (CFA). We based our model on the EFA results, which consisted of two correlated latent 

factors, F1 and F2. F1 can be conceptualized as capturing common psychopathology related to 

mood disturbance (including self-reported depressive, psychotic, and manic symptoms, as well as 

bipolar II and major depressive disorder), while F2 can be conceptualized as capturing rarer forms 
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of serious mental illness (bipolar I, schizoaffective disorder, and schizophrenia). We did not 

estimate any cross-loadings. Instead, we estimated correlated residuals between bipolar I and 

bipolar II, as inspection of the genetic correlation matrix suggested a unique relationship between 

these disorders. The path diagram for this model is presented in Figure 2c.  

We compared the correlated factor model to a common factor model, where all phenotypes 

are indicators of a single latent factor (i.e., a p factor) (Supplementary Section 1.1). Briefly, we 

found that the common factor model showed suboptimal fit to the data, while the correlated factors 

model with correlated residuals for bipolar I and bipolar II showed excellent fit. Fit indices from 

the CFA indicated that the correlated factors model closely approximated the observed genetic 

covariance matrix (χ2(18) = 496.16, AIC = 532.16, CFI = .99, SRMR = .06). That is, the patterns 

of covariance among the eight psychiatric phenotypes were most parsimoniously represented by 

two transdiagnostic latent factors at the genetic level, which were correlated only modestly (rg = 

.42; SE = .03). This is a notable divergence from the factor structure frequently observed at the 

phenotypic level, including that seen with similar phenotypes in the UK Biobank (Supplementary 

Section 1.1, Supplementary Figures 1-3).  
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Figure 2. Relationships between eight psychiatric symptoms and disorders. a, Matrix of bivariate genetic 
correlation estimates, where the diagonal elements correspond to SNP h2 and the off-diagonal elements 
correspond to genetic correlations. Estimates that are non-significant are crossed out. b, Scatterplot of 
standardized factor loadings from the exploratory factor analysis. c, Path diagram for the final confirmatory 
factor model with standardized parameter estimates. 
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Transdiagnostic factors have markedly divergent genetic architectures 

 We then conducted a multivariate GWAS that estimated SNP associations with the latent 

factors, F1 (!"## = 377,518) and F2 (!"## = 51,276). Multivariate GWAS results are presented in 

Table 1 and Figure 3. We observed substantial inflation of the median test statistic for both F1 (λGC 

= 1.44, mean χ2 = 1.53) and F2 (λGC = 1.46, mean χ2 = 1.61), indicative of a robust polygenic signal 

for both factors (Supplementary Figure 4). The LD Score regression intercepts and attenuation 

ratios for F1 (intercept = 1.05, SE = .01; ratio = .10, SE = .02) and F2 (intercept = 1.02, SE = .01; 

ratio = .04, SE = .02) suggest that test statistic inflation is primarily due to polygenic signal rather 

than bias.  

We applied a standard clumping algorithm and identified 26 and 59 independent loci 

associated with F1 and F2, respectively (Table 2, Supplementary Tables 13-14). Only 5 loci were 

associated with both F1 and F2. While many of these genomic regions have been previously 

identified in either the constituent GWASs or related studies, several contain novel discoveries. 

For example, 4 of the 26 loci associated with F1 contain lead SNPs that have not been previously 

associated with psychopathology: rs13153844 (P = 2.09e-9, nearest gene = PSMC1P5), rs1551765 

(P = 3.89e-8, nearest gene = GRIA1), rs147584788 (P = 1.08e-8, nearest gene = AC003088.1), 

rs8035987 (P = 3.94e-8, nearest gene = SIN3A). Similarly, 10 of the 59 loci associated with F2 

contain lead SNPs that are also novel risk variants for psychopathology: rs2953329 (P = 3.27e-8, 

nearest gene = AKT3), rs10199182 (P = 1.56e-8, nearest gene = AC068490.2), rs9463650 (P = 

3.34e-8, nearest gene = RPS17P5), rs12190758 (P = 1.22e-8, nearest gene = RP1-149C7.1), 

rs13233308 (P = 9.20e-9, nearest gene = ABCB1), rs11603014 (P = 2.32e-8, nearest gene = RP11-

890B15.2), rs11104379 (P = 4.50e-8, nearest gene = RPL23AP68), rs10777957 (P = 1.79e-8, 

nearest gene = ANKS1B), rs11064837 (P = 2.43e-8, nearest gene = RP11-768F21.1), and 

rs11908600 (P = 4.97e-8, nearest gene = STK4). 

 
[INSERT TABLE 2] 

 

Tests of heterogeneity suggested that the majority of observed SNP effects operate via the 

latent factors (i.e., associated SNPs primarily had consistent, pleiotropic effects on the constituent 

phenotypes). Indeed, QSNP tests identified no heterogeneous loci for F1 and only three 

heterogeneous loci for F2 with lead SNPs rs11696888 on chromosome 20 (QSNP P = 2.04e-8; 

nearest gene = STAU1), rs1990042 on chromosome 7 (QSNP P = 2.10e-8, nearest gene = 
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AC004854.1), and rs3764002 on chromosome 12 (QSNP P = 2.70e-8; nearest gene = WSCD2). 

Interestingly, the heterogeneous locus with lead SNP rs11696888 also contains rs200005157, 

which is a four base-pair insertion/deletion that was previously identified as a locus with divergent 

effects on bipolar disorder and schizophrenia20. Fine-mapping conducted by Ruderfer and 

colleagues identified CSE1L as a plausible causal gene with divergent effects for bipolar disorder 

and schizophrenia on chromosome 20. 

 

 

Figure 3. Multivariate association results for the two transdiagnostic latent genetic factors. a,b, Miami 
plots for (a) F1 and (b) F2. The top of each Miami plot corresponds to the significance of SNP effects on each 
latent factor, as traditionally conveyed in a Manhattan plot, while the bottom corresponds to the significance of 
heterogeneity tests for SNP effects (QSNP; i.e., the degree to which SNP effects are not mediated by F1 or F2). 
For each plot, the x-axis refers to chromosomal position, the y-axis refers to the significance on a -log10 scale, 
the horizontal dashed line denotes genome-wide significance (P = 5e-8), and the horizontal dotted line marks 
suggestive significance (P = 1e-5). For each plot, the nearest gene for the lead SNP in the top five genome-wide 
significant loci is labeled. 
 
Transdiagnostic factors are related to different aspects of neurobiology 

To characterize the effects of variants associated with the transdiagnostic factors of 

psychopathology, we used FUMA to conduct a series of gene mapping analyses. Specifically, we 

used positional mapping to align SNPs to genes based on genomic location, expression quantitative 

trait loci (eQTL) mapping to match cis-eQTL SNPs to genes whose expression they affect, and 

chromatin interaction mapping to link SNPs to genes on the basis of three-dimensional DNA-DNA 

interactions. These three methods linked the associated SNPs for F1 and F2 to a combined 287 and 

570 putative risk genes, respectively (Supplementary Tables 15-22). We also used MAGMA to 

conduct gene-based association analyses, which identified 131 and 284 genes associated with F1 

and F2 (Supplementary Tables 23-24). Finally, we used S-MultiXcan to identify 50 and 91 genes 
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associated with differential expression levels in brain tissue for F1 and F2, respectively 

(Supplementary Tables 25-26). Collectively, these five approaches link a total of 344 putative risk 

genes to F1 and 748 putative risk genes to F2. 

When considered as a set, biological annotation of these genes linked genetic risk for 

psychopathology to the central nervous system. Briefly, we found that mapped genes for F1 and 

F2 were both linked to brain-associated eQTLs, enriched for gene sets broadly related to regulatory 

biological processes, and previously identified in myriad GWAS related to psychopathology, 

cognition, and brain morphology and health (see Supplementary Tables 27-28). These results 

provide preliminary evidence for how risk variants for both genetic liabilities are functionally 

related to the brain and related neuropsychiatric phenotypes. Perhaps more importantly, they 

further highlight the relatively modest overlap in shared genetic architecture, as only 17% 

(155/937) of the unique putative risk genes were linked to both F1 and F2. 

As previously noted, F1 and F2 were only modestly correlated with one another (rg = .42, 

SE = .03) implying that the majority of genetic variance in each factor is unique from the other. 

To further characterize the shared and unique genetic architecture of F1 and F2, we used HESS to 

estimate the local genetic covariance for 1,698 contiguous, similarly-sized partitions across the 

genome. We found that approximately 27% of the genome explains 80% of the total genetic 

covariance between F1 and F2, and only 15 genomic partitions share a significant local genetic 

correlation after correcting for multiple comparisons (Figure 4a). Collectively, these results further 

emphasize that these latent genetic factors are largely distinct from one another.  

 Gene-set enrichment and gene property (i.e., tissue expression) analyses further suggest 

that the genetic architectures of F1 and F2 are divergent at more granular levels of analysis, 

converging only at higher levels. While results from gene set enrichment analyses broadly 

implicated neurodevelopmental and neurobiological pathways for both factors, the specific 

molecular functions, cellular components, and biological processes were generally different 

(Figure 4b, Supplementary Tables 29-30). For example, gene sets related to neurons were enriched 

for F1 and F2, but gene sets for specific parts of neurons were differentially enriched (e.g., the 

axon for F1 versus the somatodendritic compartment for F2). Similarly, in the tissue expression 

analysis, we found that the brain was broadly implicated in the pathogenesis of psychopathology, 

as nearly all brain-related tissues were enriched for both F1 and F2 (Supplementary Tables 31-32). 

At the level of brain tissue, the only regions with divergent effects were the substantia nigra and 
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brainstem, which were not significantly enriched for F1 after correction for multiple comparisons. 

However, shortcomings of these analyses include the relatively low spatial resolution of brain-

related gene expression data, and the limited sample size of the underlying data.  

To gain greater insight into potential etiological relationships between psychopathology 

and neurobiology, we estimated genetic correlations between the transdiagnostic factors of 

psychopathology and 101 morphological features of the human brain. Although we generally 

observed negative genetic correlations with cortical and subcortical features (i.e., greater risk for 

psychopathology is associated with smaller volumes across the brain), and positive with 

ventricular features (i.e., greater risk for psychopathology is associated with larger ventricular 

volumes), specific estimates between morphological features and F1 and F2 showed relatively 

little concordance (Figure 4c). After correcting for multiple comparisons, only the genetic 

correlation between F1 and the right middle temporal gyrus remained statistically significant (rg = 

-.15, SE = .04, P = 3.98e-4) (Supplementary Table 33).  

We then used data from the Allen Human Brain Atlas to identify genes with transcriptomic 

profiles that were spatially similar to the neuroimaging genetic correlation maps for F1 and F2 

(Supplementary Tables 35-36). Notably, these transcriptomically-prioritized gene sets for F1 and 

F2 were entirely disjoint from one another, and differentially expressed in pre-and postnatal 

cortical tissue from the Brainspan dataset (Figure 4d). We found that the developmental expression 

profile of the F1 gene set most closely resembled that of postnatal inhibitory neuronal genes, while 

the developmental expression profile of the F2 gene set most closely resembled that of prenatal 

inhibitory neuronal genes21,22 (Supplementary Figure 5). 
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Figure 4. Biological annotation of the two transdiagnostic latent genetic factors. a, Manhattan plots for local 
genetic correlation, covariance, and variance for F1 and F2. Black bars indicate significant local genetic 
correlation. b, Scatterplot of gene set enrichment results illustrating convergence and divergence across the latent 
genetic factors with accompanying histograms for the top 10 gene sets for each factor. c, Scatterplot of 
neuroimaging genetic correlation results with accompanying figures where the -log10 P values are mapped across 
the cortex, as parcellated in the Desikan-Killiany-Tourville atlas. d, Smoothed line plots of gene set expression 
across developmental time in the Brainspan dataset for prioritized genes with transcriptomic profiles that are 
spatially similar to the neuroimaging genetic correlation maps for F1 and F2 (as indexed in the Allen Human 
Brain Atlas). For all plots, the dashed black line corresponds to the Bonferroni-corrected significance threshold 
when applicable. 
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Transdiagnostic factors are differentially associated with human health and well-being  

 To better understand how these transdiagnostic genetic liabilities may manifest above and 

beyond their constituent phenotypes, we conducted a series of genetic correlation and polygenic 

prediction analyses focused on theoretically relevant phenotypes. In the genetic correlation 

analyses, we evaluated the relationships between the latent factors of psychopathology and 92 

phenotypes broadly related to four broad domains of human health and well-being (Figure 5a) 

(Supplementary Table 37). We found that genetic correlation estimates for F1 and F2 were 

moderately correlated across all broad domains (r = .60, P = 2.77e-10), as well as within each of 

the four domains: demography and socioeconomic status (r = .55, P = 1.17e-2), health and disease 

(r = .42, P = 1.17e-2), personality and risky behavior (r = .60, P = 3.05e-3), and psychopathology 

and cognition (r = .63, P = 1.57e-2). Generally, we found that F1 was more consistently correlated 

with phenotypes typically related to psychopathology than F2. This pattern was also observed in 

the partial genetic correlation analyses, where we found strong evidence of divergent genetic 

correlations after accounting for the overlap between F1 and F2 (Figure 5b) (Supplementary Table 

38). Indeed, partial genetic correlation estimates for F1 and F2 were negatively correlated across 

all domains (r = -.43, P = 2.72e-5). 
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Figure 5. Genetic correlation results for the two transdiagnostic latent genetic factors. a, Scatterplot of 
genetic correlations (rg) with marginal histograms. b, Scatterplot of partial genetic correlations (bg) with marginal 
histograms. For both plots, phenotypes are grouped into one of four broad domains: (i) demography and 
socioeconomic status, (ii) health and disease, (iii) personality and risky behavior, and (iv) psychopathology and 
cognition. A line-of-best fit (with 95% confidence interval) is fit for all 92 data points. Points are colored 
burgundy if significant only for F1, violet if significant only for F2, black if significant for both, and faded gray 
if non-significant for both. The standard errors (SE) for point estimates are plotted for both factors.  
 

In the polygenic prediction analyses, we used electronic health records from the Vanderbilt 

University Medical Center biobank (BioVU) to evaluate the penetrance and pleiotropy of genetic 

risk for the transdiagnostic factors of psychopathology across 1,335 disease phenotypes, hereby 

referred to as “phecodes” (Figure 6) (Supplementary Tables 39-40). We found that polygenic 

scores for F1 and F2 were generally associated with all of the constituent phenotypes for both 

factors, but F1 was more strongly associated with mood-related phecodes while F2 was more 

strongly associated with psychosis-related phecodes. Both polygenic scores for F1 and F2 shared 

associations with some forms of psychopathology (e.g., suicidality, posttraumatic stress disorder, 

substance use disorders, and anxiety disorders), but diverged in their associations with others (e.g., 

personality disorders, paranoid disorders). Beyond psychopathology, F1 was more consistently 

associated a variety of medical phecodes, including those related to infectious diseases (e.g., viral 

hepatitis, human immunodeficiency virus disease) and pervasive developmental disorders, as well 

as diseases of the circulatory, digestive, endocrine, genitourinary, musculoskeletal, and respiratory 

systems.  
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Figure 6. Phenome-wide association results for the two transdiagnostic latent genetic factors. Rotated 
Miami plot for (left) F1 and (right) F2, where the y-axis refers to the ICD-10 code category, the x-axis refers to 
the significance on a -log10 scale, the vertical light-red line denotes phenome-wide significance (P = 3.27e-5) 
following Bonferroni correction, and the vertical light-blue line marks nominal significance (P = .05).  The 
direction of the triangle refers to the direction of effect. Phecodes closely resembling Genomic SEM model 
phenotypes are bolded and italicized for emphasis. 
 

Discussion 

By jointly analyzing genome-wide data for eight psychiatric disorders and symptoms in a 

novel multivariate framework, we identified two distinct transdiagnostic factors that distinguished 

common forms of psychopathology related to mood disturbance versus rare forms of serious 

mental illness. Together, these factors explained approximately 80% of the genetic variance in 

mood and psychotic psychopathology, but were themselves only moderately correlated. Extensive 

biological annotation of these two transdiagnostic factors revealed clear differences between their 

factors in their underlying genetic architecture and biology. Further follow-up highlighted 

additional differences between the factors in their associations with human well-being and disease. 

Our results provide four critical insights into the genetic architecture of forms of psychopathology 

characterized by mood disturbance and psychosis.  

First, we built on genomic investigations of the dimensional structure of certain forms of 

psychopathology, such as a large-scale study of the mood-disorder spectrum23, and identified two 

transdiagnostic factors that explain the vast majority of genetic variance in their constituent 

phenotypes. Perhaps surprisingly, variation in self-reported manic and psychotic symptoms is 
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much more closely related to common forms of mood psychopathology (self-reported depressive 

symptoms, major depressive disorder, bipolar II disorder) than to psychiatric disorders 

characterized by severe mood disturbance and/or psychosis. Notably, we also find that the factor 

structure at the genetic level is different than the factor structure that we observe at the phenotypic 

level in the UK Biobank with similar indicators. This finding contrasts with what has been called 

the “phenotypic null hypothesis,” which states that genetic and phenotypic factor structures are 

expected to converge.24 Overall, these results illustrate how diagnostic boundaries, which are 

known to be problematic based on widespread phenotypic comorbidity, become even fuzzier at 

the genetic level of analysis.  

Second, our multivariate association analyses identified 80 approximately independent loci 

associated with one of the transdiagnostic factors. Many of these genome-wide significant loci 

contain novel lead SNPs and map to genes that have not been previously associated with mood or 

psychotic psychopathology, such as SIN3A, which has been reported to be a key transcriptional 

regulator of cortical neurodevelopment, involved in neurogenesis and corticocortical projections 

in the developing mammalian brain25. Moreover, by employing multiple gene mapping techniques, 

we were also able to triangulate on novel genes associated with psychopathology, including 

WDR73, the causal gene in a rare recessive autosomal disorder characterized by severe 

encephalopathy, developmental delay, and neurocognitive impairment26. Associations such as 

these are particularly interesting in light of results suggesting that genes disrupted in Mendelian 

disorders are also dysregulated by non-coding variants in phenotypically-similar traits and 

disorders27. Furthermore, we build on the results of a large GWAS of eight psychiatric disorders28 

by providing novel evidence of factor-specific pleiotropy (i.e., consistent effects across a factor’s 

constituent indicators) via QSNP results, which also identified several novel loci with significantly 

heterogeneous effects for bipolar I disorder, schizoaffective disorder, and schizophrenia. 

Third, our extensive biological annotation revealed a marked divergence in the biology 

associated with the two transdiagnostic factors. While we find that the central nervous system is 

dually implicated at a broad systems-based level (e.g., non-specific enrichment of brain tissues), 

the biology associated with the two factors quickly diverges at more molecular levels of 

investigation. Via our novel approach to gene prioritization based on spatial transcriptomics, we 

identified two sets of factor-specific genes with contrasting developmental expression profiles. 

Specifically, we found that transcriptomically-prioritized genes associated with the factor broadly 
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characterized by common mood disturbance (F1) exhibited lower expression levels during early 

prenatal periods, while transcriptomically-prioritized genes for the factor broadly characterized by 

rarer forms of serious mental illness  (F2) exhibited higher expression levels during early prenatal 

periods. Notably, both of these trajectories identify the prenatal epoch as a critical developmental 

period related to psychopathology, albeit in different ways. These findings coalesce with and build 

upon previous studies that have begun to characterize developmental expression patterns of 

transdiagnostic genetic liabilities29. Here, we found that the two observed trajectories strongly 

resembled those of postnatal and prenatal inhibitory neuronal genes21, which have been implicated 

in the development of mood and psychotic disorders30–32. 

Fourth, we found that the two factors differ substantially in their associations with human 

well-being and disease. Our results expand upon recent phenome-wide association studies of 

genetic risk for major depressive disorder33 and schizophrenia34, expanding the list of complex 

traits and medical phenotypes associated with mood and psychotic psychopathology. We also 

identified an interesting pattern of results in our genetic correlation and phenome-wide association 

analyses, where the factor comprising more common forms of mood disturbance (F1) had broader 

and often stronger negative associations with socioeconomic and health-related outcomes than the 

factor comprising rarer forms of serious mental illness (F2). This runs counter to associations often 

observed at the phenotypic level, where individuals diagnosed with more serious mental illnesses 

tend to face more severe impairments and consequences in these domains35,36.These results raise 

questions the potential ascertainment biases that affect genome-wide association studies. For 

example, clinically-ascertained samples of people with diagnosed psychiatric disorders 

(particularly when those disorders are rare and seriously impairing) are subject to different sources 

of selection, attrition, and non-response than population-based studies that utilize self-report 

surveys. Consider, for instance, that homeless and incarcerated individuals in Western countries 

are drastically more likely than the general population to meet diagnostic criteria for a serious 

mental illness37,38, but these socially-marginalized groups are less likely to have access to adequate 

mental health care or be included in medical research. This selective representation of 

psychopathology may induce collider bias and lead to misleading estimates of genetic 

association39. Indeed, cohort-level studies have already found that educational attainment 

polygenic scores are positively associated with research participation, while psychopathology 

polygenic scores are negatively associated40,41.  
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While we have taken many steps to address potential confounds, these major findings 

should be interpreted in light of several limitations. First, structural equation modeling does not 

reveal a “ground truth” about the nature of the phenotypes included in the analysis. Instead, it is a 

useful statistical framework for representing complex data structures, and latent factors are most 

appropriately considered as convenient statistical entities that explain the (co)variances of their 

indicators. As such, latent genetic factors are most useful as explanatory devices when 

accompanied by extensive biological annotation and follow-up as done in the present study. 

Second, the univariate GWASs are comprised of different samples with different measurement 

approaches and varying levels of power. However, we have made efforts to harmonize each of the 

GWASs used in Genomic SEM analyses (e.g., excluding self-rated measures from diagnostic 

phenotypes and vice-versa), and previous examination of these concerns suggest that the genetic 

factor structure is not biased by sample overlap or sample size differences28,42. Third, the univariate 

GWASs are comprised of different cohorts that may be subject to different sources of bias that 

cannot be fully quantified. Fourth, the current study focuses on forms of psychopathology that 

involve a wide variety of disturbances in mood and reality testing, but does not comprehensively 

sample the full range of psychiatric disorders. These results thus complement other transdiagnostic 

research studies that have illuminated how schizophrenia and bipolar I diverge genetically from 

other clinically-defined disorders, such as compulsive disorders and disorders of childhood28.   

In conclusion, we have conducted a novel multivariate GWAS of multiple symptoms and 

disorders spanning mood and psychotic psychopathology. This analysis identified two 

transdiagnostic genetic liabilities operating quite distinctly from one another. Extensive biological 

annotation revealed contrasting genetic architectures that implicated prenatal neurodevelopment 

and neuronal function and regulation in markedly different ways. Given the degree of divergence 

between these two factors, future research is warranted to investigate the utility and 

appropriateness of even broader spectra of psychopathology (e.g., the p factor43) as explanatory 

devices at the level of molecular genetics. Collectively, our results suggest that the severity of 

mood and psychotic symptoms evident in severe psychiatric disorders might actually reflect a 

difference in kind, rather than merely in degree.  
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Methods 

Genome-wide association analyses 

Phenotype construction. Mplus44 v8 was used to estimate person-specific thetas (i.e., 

factor scores) for three symptom domains: depression, mania, and psychosis. As each psychiatric 

phenotypes was assessed by four items, thetas were estimated via a multidimensional two-

parameter probit model45, which allowed item-level responses across measurement occasions to 

be combined for correlated latent variables simultaneously. Furthermore, a combination of 

multiple imputation and Bayesian estimation with non-informative priors was used to maximally 

leverage all available responses for participants to minimize the impact of missing data. See 

Supplementary Section 1.1 for further description of the phenotypic modeling.  

Univariate association analyses. BOLT-LMM46 v2.3.2 was used to conduct GWASs in 

the UK Biobank for three lifetime measures of psychiatric symptoms: depression, mania, and 

psychosis. This approach used a linear mixed model that included a genetic relationship matrix to 

estimate SNP effects, which offered improved control for population stratification and maximized 

power by accounting for relatedness among individuals. The first 40 principal components of 

ancestry computed with flashPCA2 (Supplementary Section 1.2), sex, birth year, sex-by-birth year 

interactions, and batch were included as covariates. EasyQC47 was used to perform extensive 

quality control on the GWAS summary statistics. The main objective of the quality control was to 

filter out rare and low-frequency SNPs, as well as SNPs that were not imputed well. Three main 

filters were imposed: (i) MAF < .005; (ii) imputation quality score < .9; (iii) unavailable in 

reference panel. Additional quality control procedures and filters are further described in 

Supplementary Section 1.3. The reference panel was a combination of the 1000 Genomes phase 3 

v5 and UK10K, which has been described in a previous study14. 

 Summary statistics for psychiatric disorders. GWAS summary statistics for major 

depressive disorder, bipolar II disorder, bipolar I disorder, schizoaffective disorder, and 

schizophrenia were obtained from the Psychiatric Genomics Consortium. Quality control was 

performed in the original studies, but additional filters were applied as necessary to harmonize 

with the quality control pipeline in the present study. All GWAS samples were restricted to 

European ancestry to minimize the potential influence of population stratification.  

Multivariate association analyses. Genomic SEM42 v0.0.2 was used to conduct 

multivariate GWAS based on eight phenotypes: depressive symptoms, manic symptoms, psychotic 
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symptoms, major depressive disorder, bipolar II disorder, bipolar I disorder, schizoaffective 

disorder, and schizophrenia (see Table 1 for overview). Following identification of the 

confirmatory factor model that best explained the observed genetic covariances among the 

phenotypes, Genomic SEM was used to estimate the individual SNP effects on each latent factor 

in the model. Note that Genomic SEM is unbiased in the presence of varying and unknown sample 

overlap across the contributing GWAS samples, as the cross-trait intercepts estimated via 

multivariable LD score regression are used to estimate (and account for) sample overlap and 

phenotypic correlation.  

Effective sample size (!"##) for each latent factor was estimated as !"## ≈ %
&∑ ()*

+ , where 

, is the number of SNPs in the GWAS, + is the lower MAF threshold for inclusion in the 

calculation (here, 10%), * the upper limit (here, 40%), and () is the effective sample size for SNP 

j, which is calculated as (.)/0))2/3)2. QSNP tests were used to evaluate whether SNP effects on 

the latent factors were driven by heterogenous effects across constituent phenotypes. Further 

description of multivariate association analyses and QSNP tests is provided in Supplementary 

Sections 2.4 and 2.5, respectively. 

Genomic structural equation modeling  

 Genetic correlations among study phenotypes. LD score regression48 v1.0.1 was used to 

estimate genetic correlations between all pairwise combinations of the eight study phenotypes. 

Standard procedures and best practices for LD score regression were followed (e.g., restricting to 

HapMap349 SNPs with a minor allele frequency ≥ .01). Default parameters were used for the three 

new GWASs of psychiatric symptoms. For the existing GWASs of psychiatric disorders, 

parameters (e.g., sample prevalence, population prevalence) were defined as outlined in the 

original studies. A hierarchical clustering algorithm was applied to the final genetic correlation 

matrix to guide factor selection in the exploratory factor analysis. Although the original LD score 

regression software was used for this preliminary analysis, the multivariable version of LD score 

regression employed by Genomic SEM was used for all subsequent analyses. Please note that these 

software produce estimates that are effectively identical.  

Exploratory factor analysis. The stats R package was used to conduct an EFA of the 

genetic correlations among the eight study phenotypes. Specifically, the factanal function was 

used to conduct an EFA with promax rotation on the standardized S matrix derived from the 

multivariable version of LD score regression employed by Genomic SEM. This enabled an 
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empirical assessment of (i) the number of latent factors that best explained the multivariate genetic 

architecture observed among the set of study phenotypes (i.e., the number of transdiagnostic 

liabilities present), and (ii) how constituent phenotypes load onto separable latent factors. As 

suggested by the hierarchical clustering algorithm, two factors were extracted that optimally 

accounted for shared variation among sets of the observed variables. Results from this analysis 

were subsequently used to guide construction of the confirmatory factor models. A brief overview 

of factor analysis is provided in Supplementary Section 2.2.  

 Confirmatory factor analysis.  Genomic SEM was used to test whether a common factor 

model or a correlated factors model best fit the data via CFA, where fit reflects the degree to which 

the specified latent variable structure adequately explains the observed covariances among the set 

of observed variables. Parameter estimates were derived using weighted least squares estimation. 

Model fit was assessed using conventional indices in structural equation modeling: the model χ2 

statistic, the Akaike information criterion (AIC), the comparative fit index (CFI), and the 

standardized root mean square residual (SRMR). All fit indices retain their standard interpretations 

within a Genomic SEM framework. However the model χ2 statistic  is best used as a comparative 

measure of fit to evaluate competing models rather than a measure of statistical significance given 

the sensitivity of model χ2  to sample size, which is comparatively extremely large for GWAS 

samples.  For CFI and SRMR, values greater than .90 and less than .08, respectively, were 

considered reflective of good model fit50. Further description of structural equation modeling and 

confirmatory factor analysis are provided in Supplementary Section 2.3. 

Heritability analyses 

 Heritability for observed and latent phenotypes. LD score regression was used to estimate 

heritabilities for the three novel univariate GWASs, as well as the two novel multivariate GWASs. 

Standard procedures and best practices for LD score regression were followed. As there is no 

phenotypic variance for latent genetic factors modeled in Genomic SEM, heritability is more 

accurately referred to as genetic variance for F1 and F2. Furthermore, as genetic variance estimates 

are influenced by the heritabilities of constituent phenotypes and the metric of the latent genetic 

factor, estimates for F1 and F2 should only be interpreted in the context of the present study.  

 Local heritability and genetic correlations. HESS51 and its bivariate extension, ρ-HESS52, 

were used to estimate local genetic variance, local genetic covariance, and the proportion of the 

genome that contributes to the total genetic covariance for F1 and F2. For each factor, HESS was 
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first used to estimate local genetic variance and covariance across 1,698 approximately LD-

independent contiguous genomic partitions, averaging 1.5 Mb per partition. The European samples 

from the 1000 Genomes Project Phase 3v553 (n = 503) were used as a reference panel for these 

analyses. Independent genomic partitions were then ranked by their absolute genetic covariance, 

and the percentage that accounted for 80% of the total genetic covariance between F1 and F2 was 

used to further quantify genetic overlap between F1 and F254. 

Gene mapping and identification 

The FUMA55 SNP2GENE pipeline was used to apply a standard clumping algorithm that 

identified associated genomic loci, lead SNPs within loci, and all independent significant SNPs 

within loci. The European samples from the 1000 Genomes Project Phase 3v5 (n = 503) were used 

as a reference panel for LD. FUMA was also used to employ an ensemble of methods to identify 

putative risk genes for the univariate and multivariate GWAS phenotypes. Specifically, FUMA 

v1.3.5e was used to conduct positional, eQTL, and chromatin interaction mapping to identify risk-

conferring genes that map to genome-wide significant loci. Default parameters were used for each 

of these analyses. ANNOVAR annotations56 were used for positional mapping, the Genotype-

Tissue Expression (GTEx) v8 brain dataset57 was used as the reference tissue data for eQTL 

mapping, and Hi-C data from adult and fetal human brain samples58 was used to examine enhancer-

promoter and promoter-promoter chromatin interactions. The FUMA GENE2FUNC pipeline was 

used to identify overlap between identified genes and biological gene sets as catalogued by 

MolSigDB v7.0, as well as previous hits in GWAS Catalog (https://www.ebi.ac.uk/gwas/). 

Two additional methods were employed to identify putative risk genes based on genome-

wide summary statistics: and MAGMA59 and S-PrediXcan60. The former was used to identify 

functionally expressed genes via joint analysis of SNP effects and eQTL expression effects, and 

the latter was used to calculate gene-based association statistics. Both methods are described in the 

following section.   

Gene-based association and enrichment analyses 

MAGMA v1.07, a bioinformatics software for gene-based biological annotation, was used 

to conduct gene association, gene set enrichment, and gene property analyses for all novel study 

phenotypes. Default MAGMA parameters were employed and standard procedures were followed 

for gene-based association analyses based on summary statistics. For gene-level association 

analyses, test statistics were computed using a window of 10kb around the gene of interest for all 
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novel GWAS phenotypes. MAGMA was then used to conduct competitive gene-set enrichment 

and gene property analyses based on the gene-level P values produced in the association analyses. 

These analyses tested whether genes within an annotated set are more strongly associated with the 

phenotype of interest than other genes. For gene set enrichment analyses, up to 15,481 gene sets 

catalogued in MolSigDB v7.0 were tested, which corresponded to 7,341 biological processes, 

1,000 cellular components, 1,642 molecular functions, and 5,496 expertly curated gene sets 

broadly related to biological pathways and processes. For the gene property analyses, 54 tissues 

from the GTEx v8 dataset were tested. Bonferroni-corrected thresholds of P ≤ 3.23e-6 and P ≤ 

9.26e-4 were used to determine significance for gene sets and tissues, respectively. 

S-PrediXcan v0.6.2 was used (i) to predict gene expression levels in brain tissues, and (ii) 

to test whether predicted gene expression correlated with either transdiagnostic factor. Tissue 

weights were computed using reference data from the GTEx v8 dataset. GWAS summary statistics 

for F1 and F2, the reference transcriptomic data, and covariance matrices for the SNPs within each 

gene model were included as input data. Thirteen brain tissues were tested: anterior cingulate 

cortex, amygdala, caudate basal ganglia, cerebellar hemisphere, cerebellum, cortex, frontal cortex, 

hippocampus, hypothalamus, nucleus accumbens basal ganglia, putamen basal ganglia, spinal cord 

and substantia nigra. A Bonferonni-corrected threshold of P ≤ 8.97e-7 was established for 

transcriptome-wide significance, which corrected for 55,753 gene-based tests.  

Genetic correlation analyses  

Genomic SEM was used to estimate genetic correlations and partial genetic correlations 

between latent factors of psychopathology and other phenotypes of interest. Specifically, genetic 

correlations were estimated for two broad sets of phenotypes: (i) morphological features of the 

human brain, and (ii) complex traits related to human health and well-being. Summary statistics 

for 101 neuroimaging phenotypes61 (cortical and subcortical gray matter volumes, ventricular 

volumes, and global measures of brain volume) were downloaded from https://github.com/BIG-

S2/GWAS. Summary statistics for 92 phenotypes broadly related to various domains of human 

health and well-being were downloaded from various online sources, using download links from 

GWAS Atlas62 whenever possible. All summary statistics were cleaned and processed using the 

munge function of Genomic SEM, retaining all HapMap3 SNPs outside of the major 

histocompatibility complex regions with an allele frequency ≥  .01. A Bonferroni correction was 
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applied within each family of tests to adjust P values for multiple comparisons (P ≤ 4.95e-4 for 

neuroimaging phenotypes; P ≤ 5.43e-4 for complex traits). 

Spatiotemporal transcriptomic analyses  

Microarray gene expression data from the Allen Human Brain Atlas (AHBA)63 were 

downloaded from https://human.brain-map.org/static/download, and subsequently aligned to the 

Desikan-Killiany-Tourville atlas (N = 62 cortical brain regions)64 for spatial compatibility with the 

cortical neuroimaging phenotypes65. Spatial correlation coefficients (Spearman’s ρ) were 

computed for each of 20,647 genes compared against the -log10 P values from F1 and F2. To 

examine the developmental trajectories of the F1 and F2 gene sets (positive Z-scores of AHBA 

correlation coefficients, P < .05), weighted gene correlation network analysis66 was used to 

estimate eigengene values (i.e., gene set expression) for these gene sets in the Brainspan dataset, 

treating each factor-specific gene set as a module. These expression values were then plotted as 

function of time, using a non-parametric LOESS curve line-of-best-fit to characterize 

developmental expression trajectories for F1 and F2, which indicated that the prioritized gene sets 

for each transdiagnostic factor are differentially expressed in pre- and postnatal cortical tissue. 

Evaluation of cell-type-specific gene sets was performed as above, using available data from a 

recent cell-specific sequencing study in adult human brain tissue21. 

Phenome-wide polygenic prediction 

 PRS-CS67 and PLINK68 v1.9 were used to calculate polygenic scores for the 

transdiagnostic latent genetic factors, F1 and F2. PRS-CS, a Bayesian polygenic prediction 

method, was used to apply a continuous shrinkage prior to SNP effect estimates and infer posterior 

SNP weights using GWAS summary statistics for F1 and F2 and an external reference panel to 

model LD. In the present study, PRS-CS was used to adjust weights for 1,027,871 SNPs typed on 

both the 1000 Genomes Project Phase 3v5 and the HapMap3 reference panels with a minor allele 

frequency ≥ .01. The European samples from the 1000 Genomes Project Phase 3v5 (n = 503) were 

used as a reference panel for LD. PLINK was then used to calculate polygenic scores for each 

individual by summing all included variants weighted by the inferred posterior effect size for the 

effect allele, and converting that value to a Z-score for each participant within the prediction 

sample. 

 The genotyped BioVU sample (N = 66,915) was used to test for associations between 

polygenic scores for F1 and F2 and a wide array of medical phenotypes. Genotyping and quality 
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control for this sample have been described elsewhere. Case-control medical phenotypes, also 

referred to as “phecodes,” were constructed from International Classification of Disease (ICD) 

diagnostic codes in participant electronic health record data. Two instances of an ICD diagnostic 

code were required to be present to be classified as a case for a given phecode, and 50 cases were 

required for a phecode to be analyzed. A total of 1,335 phecodes were included in the phenome-

wide association analyses. The PheWAS R package was used to conduct phenome-wide 

association analyses. A logistic regression model was fit to each of 1,335 case/control phenotypes 

to estimate the odds of each diagnosis given the polygenic scores for F1 and F2. Sex, median age 

of the longitudinal electronic health record measurements, and the top 10 principal components of 

ancestry were included as covariates. A Bonferroni-corrected threshold of at P ≤ 3.74e-5 was 

established for phenome-wide significance. 
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Table 1. Summary of study phenotypes 

Univariate GWAS (abbr.) Source N h2 λGC Mean χ2 Intercept Ratio 

Depressive symptoms (DEP) Present study 252,252 .08 1.31 1.38 1.01 .02 

Manic symptoms (MAN) Present study 252,252 .08 1.31 1.39 1.00 .00 

Psychotic symptoms (PSY) Present study 252,252 .07 1.31 1.33 1.00 .01 

Major depressive D/O (MDD) Wray et al., 20185 138,884 .10 1.19 1.20 1.00 < 0 

Bipolar II D/O (BD2) Stahl et al., 20194 25,576 .10 1.07 1.08 1.03 .42 

Bipolar I D/O (BD1) Stahl et al., 20194 45,871 .22 1.31 1.37 1.04 .09 

Schizoaffective D/O (SZA) Stahl et al., 20194 9,667 .27 1.06 1.06 1.02 .35 

Schizophrenia (SCZ) Ruderfer et al., 201820 65,967 .23 1.49 1.63 1.05 .08 

Multivariate GWAS Source Neff  λGC Mean χ2 Intercept Ratio 

F1 (Mood Disturbance) Present study 377,518  1.44 1.53 1.05 .10 

F2 (Serious Mental Illness) Present study 51,276  1.46 1.61 1.02 .04 

Note: Heritability (h2) was estimated using LD score regression and is reported on the observed scale. λGC refers 

to the median χ2 statistic of the GWAS divided by the expected median of the χ2 distribution with 1 degree of 

freedom. Mean χ2 refers to the average χ2 statistic of the GWAS. Intercept refers to the estimated intercept from 

univariate LD score regression. Ratio refers to  a measure of stratification bias that is defined as (Intercept – 1) / 

(Mean χ2 – 1). To harmonize measurement approaches among psychiatric disorders, summary statistics for MDD 

were obtained for the clinically-ascertained cohorts, excluding 23andMe and UK Biobank. D/O = disorder. Neff 

refers to effective sample size (Method). 
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Table 2. Lead SNPs for the top ten loci per latent factor from multivariate association analyses 

 Gene Mapping via FUMA 

Lead SNP CHR:BP A1 A2 MAF Z P Positional eQTL Chromatin Interaction 

Multivariate GWAS of F1 (depressive symptoms, manic symptoms, psychotic symptoms, major depressive disorder, & bipolar II disorder) 

rs30266 5:103972357 G A .32 -7.83 4.94e-15 N/A N/A N/A 

rs148682985 6:29288001 G A .03 -7.66 1.93e-14 

ZSCAN31, ZKSCAN3, ZSCAN12, 

ZSCAN23, GPX6, GPX5, SCAND3, 

TRIM27, C6orf100, ZNF311, OR2W1, 

OR2B3, OR2J1, OR2J3, OR2J2, 

OR14J1, OR5V1, OR12D3, OR11A1, 

OR10C1, MAS1L 

ZNF391, ZKSCAN8, ZSCAN9, 

ZSCAN31, ZKSCAN3, ZSCAN23, 

SCAND3, TRIM27, C6orf100, 

ZNF311, GABBR1 

HIST1H2BJ, HIST1H2AG, 

HIST1H2BK, HIST1H4I, 

HIST1H2AH, ZNF184, HIST1H2AK, 

HIST1H2BN, HIST1H2AL, 

HIST1H1B, HIST1H3I, HIST1H3J, 

HIST1H2AM, HIST1H2BO, 

ZSCAN16, ZSCAN9, OR2H2 

rs9586 3:49213637 C T .02 7.46 8.80e-14 

QARS, USP19, LAMB2, CCDC71, 

KLHDC8B, C3orf84, CCDC36, 

RP11-3B7.1, C3orf62, USP4, GPX1, 

RHOA, TCTA, AMT, NICN1, DAG1, 

BSN 

ZNF589, TMA7, TREX1, NCKIPSD, 

PRKAR2A, P4HTM, WDR6, 

DALRD3, QRICH1, CCDC71, 

KLHDC8B, RP11-3B7.1, USP4, 

GPX1, AMT, NICN1, BSN, MST1, 

RNF123, GMPPB, HYAL3 

CAMP, ZNF589, NME6, PLXNB1, 

CCDC51, TMA7, ATRIP, SLC26A6, 

CELSR3, NCKIPSD, PRKAR2A, 

ARIH2OS, ARIH2, WDR6, DALRD3, 

NDUFAF3, QRICH1, QARS, USP19, 

LAMB2, CCDC71, KLHDC8B, 

C3orf84, C3orf62, RHOA, TCTA, 

AMT, NICN1, DAG1, BSN, AMIGO3, 

GMPPB, TRAIP, CAMKV, MON1A, 

RBM5, GNAT1, GNAI2, HYAL2, 

TUSC2, RASSF1, TMEM115 

rs28656217 4:42099424 T C .16 7.30 2.85e-13 DCAF4L1, SLC30A9, BEND4 DCAF4L1, SLC30A9, BEND4 N/A 

rs67526282 18:53471187 T C .33 -7.04 1.97e-12 N/A N/A N/A 

rs7934649 11:113372671 C T .36 -6.53 6.50e-11 DRD2 N/A 

PLET1, AP002884.2, TTC12, 

TMPRSS5, ZBTB16 

rs17410557 18:50776391 T C .38 -6.04 1.52e-9 DCC N/A N/A 

rs3807866 7:12250378 G A .40 -6.03 1.69e-9 TMEM106B TMEM106B N/A 

rs184262 3:12134740 A G .15 6.02 1.77e-9 TIMP4 TIMP4 TIMP4, C3orf83 

rs2696673 17:44315803 A C .22 -6.01 1.89e-9 

ARHGAP27, PLEKHM1, CRHR1, 

SPPL2C, MAPT, STH, KANSL1, 

ARL17B, LRRC37A, LRRC37A2, 

ARL17A, NSF, WNT3 

NMT1, FMNL1, ARHGAP27, 

PLEKHM1, CRHR1, SPPL2C, MAPT, 

KANSL1, ARL17B, LRRC37A, 

LRRC37A2, ARL17A, NSF, WNT3, 

EFCAB13 

CCDC43, HIGD1B, EFTUD2, 

CCDC103, FAM187A, HEXIM2, 

FMNL1, SPATA32, MAPT, STH, 

WNT3, WNT9B, MYL4 
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Multivariate GWAS of F2 (bipolar I disorder, schizoaffective disorder, & schizophrenia) 

rs7746199 6:27261324 C T .17 9.34 9.95e-21 POM121L2 BTN3A2, PRSS16 N/A 

rs9834970 3:36856030 T C .49 -7.96 1.67e-15 TRANK1 LRRFIP2 N/A 

rs12764899 10:104635103 G A .23 7.95 1.82e-15 

C10orf32, C10orf32-ASMT, AS3MT, 

NT5C2 ARL3, C10orf32, AS3MT, CNNM2 

ACTR1A, SUFU, ARL3, SFXN2, 

WBP1L, CYP17A1, NT5C2, INA, 

PCGF6, USMG5, PDCD11, 

CALHM2, CALHM1, NEURL1 

rs4298967 12:2408194 A G .34 7.92 2.37e-15 CACNA1C CACNA1C DCP1B, FKBP4, TSPAN9 

rs6461049 7:2017445 C T .44 -7.15 8.80e-13 MAD1L1, AC110781.3 AC110781.3, FTSJ2 TMEM184A, FTSJ2, NUDT1 

rs12902973 15:85105982 G C .28 7.04 1.89e-12 

ADAMTSL3, UBE2Q2L, GOLGA6L4, 

ZSCAN2, WDR73, NMB, SEC11A ADAMTSL3, WDR73, NMB, ALPK3 ZSCAN2, WDR73, SEC11A, ALPK3 

rs4380187 2:185811940 A C .45 6.86 6.95e-12 ZNF804A N/A N/A 

rs2535627 3:52845105 T C .50 6.63 3.36e-11 

STAB1, NT5DC2, SMIM4, PBRM1, 

GNL3, GLT8D1, SPCS1, NEK4, 

ITIH1, ITIH3, ITIH4, RP5-966M1.6, 

MUSTN1, TMEM110-MUSTN1, 

TMEM110 

POC1A, PPM1M, GLYCTK, DNAH1, 

SEMA3G, NT5DC2, GNL3, GLT8D1, 

SPCS1, NEK4, ITIH4, SFMBT1, 

RFT1 

BAP1, PHF7, PBRM1, TMEM110-

MUSTN1, TMEM110 

rs1198588 1:98552832 A T .23 -6.62 3.65e-11 DPYD N/A PTBP2, DPYD, SNX7 

rs11693528 2:200736507 C G .18 -6.60 4.18e-11 FTCDNL1, C2orf69, TYW5, C2orf47 FTCDNL1, TYW5 

C2orf69, TYW5, C2orf47, SPATS2L, 

KCTD18, SGOL2, BZW1, CLK1 

Note: Results for all lead SNPs are presented in Supplementary Tables 15 and 19. Lead SNPs refer to approximately independent lead SNPs identified via FUMA. CHR:BP refers to genomic location of 

the lead SNP, specifically the chromosome and base pair location on that chromosome. A1 and A2 refer to the alleles for that SNP. MAF refers to minor allele frequency. 
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