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One sentence summary 50 
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responses in computational models, and shed light on the mechanisms of transcriptional 52 
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Abbreviations 76 

CIS-BP Catalog of inferred sequence binding preferences 77 

CNS  Conserved non-coding sequence 78 

DAP-seq DNA affinity purification sequencing 79 

Fe / -Fe Iron / Iron deficiency 80 

FeS  Iron-Sulfur 81 

FET  Fisher’s exact test 82 

FIT  FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR 83 

freq-pCRE Frequent pCRE 84 

GO  (Biological process) Gene ontology 85 

GS  Gold standard 86 

IDE  Iron Deficiency-responsive Element 87 

log2FC log2 fold-change 88 

MA  Mugineic acid 89 

min-pCRE Minimum set pCRE 90 

PCC  Pearson’s correlation coefficient 91 

pCRE  Putative cis-regulatory element 92 

PWM  Position weight matrix 93 

RF  Random Forest 94 

TF  Transcription factor 95 

TFBM  Transcription factor binding motif 96 

TSS  Transcription start site 97 

TTS  Transcription termination site 98 

Zn  Zinc 99 
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Abstract 111 

Iron (Fe) is a key cofactor in many cellular redox processes, including respiration and 112 

photosynthesis. Plant Fe deficiency (-Fe) activates a complex regulatory network which 113 

coordinates root Fe uptake and distribution to sink tissues, while avoiding over-accumulation 114 

of Fe and other metals to toxic levels. In Arabidopsis (Arabidopsis thaliana), FIT (FER-LIKE 115 

FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR), a bHLH transcription factor (TF), is 116 

required for up-regulation of root Fe acquisition genes. However, other root and shoot -Fe-117 

induced genes involved in Fe allocation and signaling are FIT-independent. The cis-regulatory 118 

code, i.e. the cis-regulatory elements (CREs) and their combinations that regulate plant -Fe-119 

responses, remains largely elusive. Using Arabidopsis genome and transcriptome data, we 120 

identified over 100 putative CREs (pCREs) that were predictive of -Fe-induced up-regulation 121 

of genes in root tissue. We used large-scale in vitro TF binding data, association with FIT-122 

dependent or FIT-independent co-expression clusters, positional bias, and evolutionary 123 

conservation to assess pCRE properties and possible functions. In addition to bHLH and MYB 124 

TFs, also B3, NAC, bZIP, and TCP TFs might be important regulators for -Fe responses. Our 125 

approach uncovered IDE1 (Iron Deficiency-responsive Element 1), a -Fe response CRE in 126 

grass species, to be conserved in regulating genes for biosynthesis of Fe-chelating 127 

compounds also in Arabidopsis. Our findings provide a comprehensive source of cis-regulatory 128 

information for -Fe-responsive genes, that advances our mechanistic understanding and 129 

informs future efforts in engineering plants with more efficient Fe uptake or transport systems. 130 

 131 

Introduction 132 

The micronutrient iron (Fe) is crucial for survival of all organisms. Plants encounter Fe 133 

deficiency (-Fe) on calcareous and alkaline soils or during developmental phases with 134 

increased sink demands. As a central component of heme and Fe-sulfur (FeS) clusters, Fe 135 

acts in redox processes in plants in basically all important metabolic processes, such as the 136 

respiratory and photosynthetic electron transport chains, chlorophyll biosynthesis, DNA 137 

replication and repair, and nitrogen and sulfur assimilation. Consequently, plants react to -Fe 138 

with a range of molecular, physiological and morphological adjustments, which is reflected in 139 

transcriptional alterations of more than 1000 genes in Arabidopsis (Arabidopsis thaliana) 140 

(Dinneny et al., 2008; Rodríguez-Celma et al., 2013; Mai et al., 2016). In the shoots, the 141 

photosynthetic machinery is remodeled, leading to visible leaf chlorosis symptoms, and 142 

essential Fe-requiring processes are prioritized, which can be achieved through break-down 143 

of dispensable Fe-bound proteins and Fe redistribution between organelles (Blaby-Haas and 144 

Merchant, 2013; Balk and Schaedler, 2014; Hantzis et al., 2018). In the roots, genes controlling 145 

soil Fe uptake and detoxification of other transition metal ions acquired along with Fe are up-146 
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regulated. Additionally, Fe is mobilized from internal storages and distributed to Fe sinks. -Fe 147 

also leads to changes in root architecture and root hair morphology (Brumbarova et al., 2015; 148 

Curie and Mari, 2017; Jeong et al., 2017; Li and Lan, 2017).  149 

To acquire soil Fe, grasses secrete mugineic acid (MA) family phytosiderophores and 150 

import Fe3+-MA complexes into the root (“Strategy II”). In contrast, non-grass monocots and 151 

dicots, such as Arabidopsis, acquire Fe via a reduction-based mechanism, in which soil Fe3+ 152 

is solubilized by lowering the local pH through proton extrusion, followed by reduction to plant-153 

accessible Fe2+ at the root epidermis and Fe2+ uptake (“Strategy I”) (Marschner and Römheld, 154 

1994). In Strategy I, secreted chelators (mainly phenylpropanoid-derived coumarins or 155 

riboflavin derivatives) aid efficient Fe3+ solubilization and reduction (Fourcroy et al., 2014; 156 

Schmid et al., 2014). Thus, Fe chelation is important during acquisition in both strategies.  157 

Transcriptional control plays an important role in -Fe responses. A regulatory cascade 158 

ultimately controls a set of -Fe response genes. In both, Strategy I and II, the current cascade 159 

model involves related subgroups of basic helix-loop-helix (bHLH) transcription factors (TFs). 160 

When rice and Arabidopsis plants experience -Fe, subgroup IVc bHLH proteins activate 161 

subgroup Ib and IVb BHLH genes (Zhang et al., 2015; Liang et al., 2017). Downstream from 162 

IVc bHLH TFs (ILR3/bHLH34/bHLH104/bHLH115 in Arabidopsis, PRI1 in rice), subgroup Ib 163 

bHLH TFs (bHLH38/39/100/101 in Arabidopsis, IRO2 in rice) and subgroup IVb bHLH TFs 164 

(PYE in Arabidopsis, IRO3 in rice) regulate responses further downstream (Ogo et al., 2007; 165 

Yuan et al., 2008; Long et al., 2010; Zheng et al., 2010). In addition, IVc bHLH protein levels 166 

are controlled by Fe-regulated E3 ligases (Selote et al., 2015; Zhang et al., 2017). 167 

Despite these conserved regulatory and functional interactions of subgroup IVc, Ib, and 168 

IVb bHLH TFs between grass and non-grass species, it remains unclear if other regulatory 169 

components between Strategy I and II are conserved. For example, in grasses, IDEF1 (IRON 170 

DEFICIENCY-RESPONSIVE ELEMENT BINDING FACTOR1, ABI3VP1 subfamily of B3 TF) 171 

and IDEF2 (NAC TF) coordinate -Fe responses through binding to IDE1 (Iron Deficiency-172 

responsive Element 1) and IDE2 (Kobayashi et al., 2007; Ogo et al., 2008). IDE1 has been 173 

connected to induction of genes involved in Strategy II MA biosynthesis and Fe-MA uptake 174 

(Kobayashi et al., 2005; Ogo et al., 2007). However, while barley IDE1 can drive reporter gene 175 

expression in tobacco in a -Fe-dependent manner and IDE1-like motifs are present in several 176 

Arabidopsis -Fe response genes, a function for IDE1 has not been shown in Strategy I plants 177 

(Kobayashi et al., 2003; Kobayashi et al., 2005; Kobayashi et al., 2007; Murgia et al., 2011). 178 

Strategy I Fe acquisition requires the bHLH TF FIT (FER-LIKE IRON DEFICIENCY-INDUCED 179 

TRANSCRIPTION FACTOR) that is absent in rice (Colangelo and Guerinot, 2004; Jakoby et 180 

al., 2004), and is activated upon -Fe mainly through interaction with subgroup Ib TFs (Yuan et 181 

al., 2008; Sivitz et al., 2012; Wang et al., 2013). FIT is essential for up-regulation of Fe3+ 182 
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reduction, Fe2+ uptake, and chelator biosynthesis and export (Colangelo and Guerinot, 2004; 183 

Jakoby et al., 2004; Sivitz et al., 2012; Schmid et al., 2014; Mai et al., 2016).  184 

A co-expression network built with -Fe-responsive genes gives insight into the complex 185 

-Fe regulatory system in Arabidopsis (Ivanov et al., 2012). Among co-expression clusters, one 186 

contains root-specific and FIT-dependent genes involved in Fe acquisition, while another one 187 

is composed of root- and shoot-expressed FIT-independent genes. In this work, we refer to 188 

robust (i.e. consistently identified in different studies) FIT-dependent and FIT-independent 189 

genes as the “gold standard” (GS) -Fe-induced genes. The concept to discriminate FIT-190 

dependent and FIT-independent co-expression clusters has proven very informative for 191 

interpreting mutant phenotypes and to place novel regulators into the -Fe response cascade 192 

(e.g. Zhang et al., 2015; Liang et al., 2017; Gratz et al., 2019). FIT-independent network genes 193 

mostly act in sub-cellular and long-distance transport and distribution of Fe and in Fe signaling 194 

and they include subgroup Ib BHLH genes and PYE (Ivanov et al., 2012). Only few upstream 195 

regulators for FIT-independent gene expression have been identified yet, namely bHLH IVc 196 

TFs, controlling Ib BHLH and PYE,  and PYE controlling NAS4, ZIF1 and FRO3 of the same 197 

co-expression regulon (Long et al., 2010).   198 

For most -Fe-responsive genes, including reliable marker genes (Ivanov et al., 2012; 199 

Mai et al., 2016), the specific cis-regulatory elements (CREs) which coordinate their expression 200 

are unknown. Computational approaches uncover regulatory connections on a genome-wide 201 

scale, such as through elucidating the cis-regulatory code, i.e. the collection of CREs and the 202 

genes they regulate in a given regulatory context (Yáñez-Cuna et al., 2013). Putative CREs 203 

(pCREs) could be identified computationally by the over-representation of sequences in the 204 

promoter regions of co-regulated genes. Combining with data for TF binding motifs (TFBMs) 205 

in Arabidopsis (Weirauch et al., 2014; O'Malley et al., 2016), regulatory connections can be 206 

made between TFs, binding sequences, and target genes. To further improve the confidence 207 

of computationally derived cis-regulatory code, machine learning algorithms (reviewed in Ma 208 

et al., 2014) can be applied to build models with pCREs to predict gene expression or 209 

transcriptional responses. These models can be evaluated by making predictions on 210 

expression of genes that are not part of the model training. Most importantly, a good model 211 

indicates that the pCREs used are most likely important for regulating the expression/response 212 

of interest. Previous work has demonstrated the suitability of machine learning for elucidating 213 

the cis-regulatory code of environmental stress responses in Arabidopsis (Zou et al., 2011; 214 

Uygun et al., 2017). 215 

To get a deeper understanding of -Fe response regulation, we elucidate the underlying 216 

cis-regulatory code. Because some TFs have well established roles in -Fe response, we can 217 

use these to validate our findings. We combined genome, transcriptome, and in vitro protein-218 

DNA interaction data to uncover links between pCREs controlling -Fe responses and their 219 
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upstream TFs. With pCREs over-represented in promoters of co-expressed genes we modeled 220 

-Fe-induced up-regulation and identified over 100 informative pCREs of -Fe-responsive 221 

processes.  222 

 223 

Results and Discussion 224 

Overview of approach and functions of -Fe-responsive genes 225 

To identify root -Fe-associated CREs at a genome-wide scale, we defined root -Fe 226 

response co-expression clusters, then we identified k-mers enriched in the promoter regions 227 

of those genes, and finally we modeled -Fe response on the basis of the enriched promoter k-228 

mers. An overview of our complete workflow including functional analysis of the identified 229 

pCREs is shown in Figure 1A. Because many factors, such as the choice of data set or the 230 

measure used to define expression similarity, impact the discovery of functional connections 231 

between genes (Uygun et al., 2016), we used multiple expression data combinations and 232 

algorithms with varying parameters (see Methods).  233 

-Fe-responsive genes (log2 fold-change (log2FC) >1 or <-1, q<0.05) were identified 234 

using transcriptomic data available for six time points after an -Fe treatment in Arabidopsis 235 

seedling roots (Dinneny et al., 2008). Enrichment analysis (Fisher’s exact test (FET), q<0.05) 236 

of biological process gene ontologies (GOs) showed that, next to Fe-related GOs (e.g. Fe 237 

transport, homeostasis and FeS cluster assembly), responses to several hormones, including 238 

auxin, ethylene, abscisic acid and jasmonic acid, were over-represented (Figure 1B). This is 239 

consistent with the roles of hormones in -Fe response (Brumbarova et al., 2015) and in root 240 

and root hair morphology and development (Schmidt et al., 2000), which were also enriched 241 

GOs. -Fe affects the photosynthetic machinery and often correlates with oxidative stress 242 

responses (Rodríguez-Celma et al., 2013), which is reflected in enrichment of GOs regarding 243 

oxidative stress, photosynthesis, and primary metabolism even in roots (Figure 1B; 244 

Supplemental Figure S1). 245 

Using multiple expression data sets to define -Fe co-expression clusters 246 

We next grouped differentially regulated -Fe response genes into co-expression 247 

clusters using two approaches: k-means clustering and correlation to gold standard. K-means 248 

clustering was based on the transcriptional responses to -Fe alone and combined with different 249 

responses to other stress and developmental conditions (Figure 1C) (Schmid et al., 2005; 250 

Kilian et al., 2007; Dinneny et al., 2008; Goda et al., 2008). Correlation-based clusters were 251 

generated for each gene in our curated list of gold standard (GS) -Fe response genes (see 252 

Methods; Supplemental Table S1), by selecting the differentially regulated -Fe response 253 

genes with a significantly similar (Pearson’s Correlation Coefficient (PCC); see Methods) 254 

expression pattern to the GS gene, also using the different combinations of transcriptional data 255 
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(Figure 1C). To identify co-expression clusters with similar biological functions, we grouped 256 

them according to their enriched GOs (FET, q<0.05) into “superclusters” (Figure 2A; 257 

Supplemental Figure S2A; see Methods), which were defined as groups of at least 20 258 

clusters with significantly higher similarity to each other than the average similarity of all 259 

clusters (all Mann-Whitney U, p<2.2e-16; Supplemental Figure S2B, C). While k-means 260 

supercluster C was enriched in an Fe-related GO (cellular response to Fe, GO shared by ≥75% 261 

of co-expression clusters within each supercluster), k-means superclusters A and B shared 262 

GOs related to different stress responses.  263 

Because the current TAIR GO annotation for -Fe response-related processes does not 264 

contain all -Fe-responsive genes of interest (e.g. MYB10, UGT72E1, AT3G07720, FEP3 or 265 

NAS4, (Ivanov et al., 2012)), we also determined if k-means-generated co-expression clusters 266 

were enriched for GS genes (“GS-enriched”; FET, q<0.05; right, Figure 2A). While many of 267 

these clusters were part of the Fe-related GO supercluster A, the GS approach allowed us to 268 

identify an additional 23 Fe-related co-expression clusters that would have been overlooked 269 

by conventional GO enrichment analysis. In total, 7% of the k-means-generated clusters were 270 

GS-enriched (Figure 2B). Applying this same analysis to the correlation-based clusters 271 

(Figure 2A; Supplemental Figure S2A), we found higher levels of similarity between 272 

correlation-based clusters compared to k-means clusters (Mann-Whitney U, p<2.2e-16; 273 

Supplemental Figure S2D), because we pre-condition their identification on GS genes, some 274 

of which are tightly co-regulated (Ivanov et al., 2012). Accordingly, we found that 93% were 275 

GS-enriched (right, Figure 2B). 276 

GS genes are either FIT target (“FIT-dependent”) or FIT-independent Fe homeostasis 277 

(“FIT-independent”) genes, which we found reflected in our GS-enriched clusters: 71% of the 278 

GS-enriched clusters were more specifically enriched for FIT-dependent (39%) and/or FIT-279 

independent genes (32%) (FET, q<0.05; bottom, Figure 2B). The remaining GS-enriched 280 

clusters were enriched for both (“mixed”). Interestingly, clusters based on combined 281 

expression data (i.e. data combinations (dc) 2, 3, 5a/b, 6) were more often enriched for FIT-282 

dependent or FIT-independent genes, while -Fe time course data alone (dc1) produced mainly 283 

mixed category clusters (Figure 2C). The utility of including spatial or developmental data (dc2, 284 

6) to define co-expression clusters reflects that -Fe-responsive genes act at different time 285 

points and in different tissues and organs (Dinneny et al., 2008; Ivanov et al., 2012; Jeong et 286 

al., 2017). Finally, genes in clusters not enriched for GS-genes (“non-enriched”) tended to 287 

respond to particular abiotic stresses, for example cold (Supplemental Figure S8; e.g. 288 

clusters 937, 973) or salt (e.g. clusters 900, 915, 936, 987), whereas gene expression for GS-289 

enriched cluster genes tended to randomly oscillate under different abiotic stresses (e.g. 290 

clusters 818, 835, 858, 889), which might indicate different regulatory networks and highlight 291 
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the usefulness of incorporating additional abiotic stress data (as in dc3, 5, 6) when defining co-292 

expression clusters that are likely co-regulated. 293 

In summary, by using different expression data sets and clustering methods we defined 294 

1,959 -Fe co-expression clusters, many of which were enriched for FIT-dependent and/or FIT-295 

independent GS genes. These represent possibly co-regulated functional units in Fe 296 

acquisition and Fe homeostasis processes, well-suited to identify pCREs which can 297 

explain -Fe-induced up-regulation. Genes in co-expression clusters that were enriched in -Fe-298 

responsive genes but not GS genes (non-enriched clusters) are presumably regulated by 299 

mechanisms different from GS-enriched clusters.  300 

A machine learning approach to model regulation of -Fe responsive co-expression 301 

clusters 302 

The machine learning algorithm Random Forest (RF) has been successfully used to 303 

model stress transcriptional response using cis-regulatory sequences in plants (Zou et al., 304 

2011; Deng et al., 2017; Uygun et al., 2017). Here, for each co-expression cluster, we used 305 

pCREs (enriched k-mers in putative promoter sequences; see Methods) to build a RF model 306 

that classifies genes as belonging to the cluster in question or as a non-responsive gene (see 307 

Methods). The pCREs from models performing above a defined threshold (F1≥0.7; see 308 

Methods) were then considered further. Out of 1,959 co-expression clusters, 28% of the 309 

models passed the performance threshold, 60% performed poorly, and for 12% no model could 310 

be built due to small size (median size=2 genes; Supplemental Figure S3A, B). Poor 311 

performing models (median F1=0.62) were mostly for small clusters (median size=12) 312 

(Supplemental Figure S3B; Supplemental Table S2) likely due to the lack of training data. 313 

Nonetheless, 66 large clusters (>100 genes, median size=135) also performed poorly (median 314 

F1=0.64) – this is likely because these large clusters are too heterogeneous containing genes 315 

with multiple regulatory codes (Uygun et al., 2016; Uygun et al., 2017), and/or are co-regulated 316 

but not at the transcriptional level (e.g. post-translationally controlled). Interestingly, of the 28% 317 

of clusters with models above the threshold, only 36% were GS-enriched clusters 318 

(Supplemental Figure S3A). Nonetheless, models built for GS-enriched clusters (median 319 

F1=0.68) tended to perform better than models built for non-enriched clusters (median 320 

F1=0.65; Mann-Whitney U, p<2.358e-09; Figure 3A-C).  321 

Good model performance indicates that genes in a cluster are more likely co-regulated, 322 

and, because pCREs were used to build the model, these pCREs are likely the regulatory 323 

sequences contributing to the co-regulation. Taken together, we identified 5,639 pCREs 324 

enriched in promoters of -Fe-responsive genes that may be predictive of -Fe-induced up- or 325 

down-regulation. To further evaluate the biological relevance of pCREs, in the following 326 

sections, we assess pCREs based on their association with GS-enriched or non-enriched 327 

clusters, importance for model performance, and similarity to known TF binding sites. Known 328 
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-Fe CREs from Arabidopsis and also from grasses, for example E-/G-boxes (bHLH TF binding 329 

sites) and IDE1, will serve as positive controls. 330 

Identifying common pCREs across co-expression clusters 331 

We expect true -Fe response CREs to be: (i) important for building models with good 332 

performance in predicting -Fe response, and (ii) reliably identified in co-expression clusters 333 

with similar gene content. Therefore, for each pCRE we calculated the proportion of clusters 334 

enriched for the pCRE and its average importance rank across those clusters (Supplemental 335 

Table S3). The importance rank of a pCRE was derived from an importance score for the 336 

pCRE in question from the trained RF models that reflects how useful a pCRE was for 337 

predicting -Fe response genes in a cluster. This allowed us to get a snapshot of pattern of 338 

presence and absence of important pCREs for genes correctly predicted (true positives (TP)) 339 

in co-expression clusters with good (Figure 3D, E) and poor (Figure 3F) performance. The 340 

pCREs were enriched in between 1 (0.6%) and 56 (35%) GS-enriched clusters and in between 341 

1 (0.3%) and 54 (15%) non-enriched clusters, with 173 pCREs considered frequent pCREs 342 

(freq-pCREs, enriched in >5% of GS-enriched or non-enriched clusters) (Supplemental Table 343 

S3). Across GS-enriched clusters, pCREs tended to have higher proportions with higher 344 

importance ranks than across clusters that were not GS-enriched (Mann-Whitney U, p<2.2e-345 

16; Figure 4A, B; Supplemental Figure S4A, B). The higher proportion of GS-enriched 346 

cluster pCREs can be explained partly by the fact that those clusters are more homogenous 347 

in terms of gene contents than non-enriched clusters (Mann-Whitney U, p<2.2e-16; 348 

Supplemental Figure S3C).  349 

We next determined whether GS-enriched clusters are regulated by a different set of 350 

pCREs than non-enriched clusters. Out of the 5,639 pCREs, 15% (n=860) were unique to GS-351 

enriched clusters, while 73% (n=4109) were unique to non-enriched clusters and 12% (n=670) 352 

were found in both GS-enriched and non-enriched clusters (inset, Figure 4A). This indicates 353 

that GS-enriched clusters and non-enriched clusters are regulated partly by different pCREs, 354 

but also by a fraction of shared pCREs. However, 43% (n=286) of the 670 shared pCREs were 355 

predominant to GS-enriched clusters (i.e. having only low proportion and low importance rank 356 

in non-enriched clusters; top, Supplemental Figure S4C). This indicates that pCREs that 357 

were categorized as shared might not be equally important for regulating both GS-enriched 358 

and non-enriched clusters. Interestingly, unique GS-enriched freq-pCREs represented 59% 359 

(n=102) of the 173 freq-pCREs, while 35.5% (n=58) were unique non-enriched, and only 7.5% 360 

(n=13) freq-pCREs were shared between GS-enriched and non-enriched clusters, indicating 361 

that pCREs with high proportion are also the ones which seem to regulate almost exclusively 362 

either GS-enriched or non-enriched cluster functions, but not both (inset; Figure 4A; bottom, 363 

Supplemental Figure S4C). Furthermore, freq-pCREs tended to have higher importance 364 

ranks than non-frequent pCREs (Mann-Whitney U, p<1.924e-14; Supplemental Figure S5D). 365 
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Together, this suggests that freq-pCREs could be particularly relevant for regulation of -Fe 366 

response mechanisms.  367 

To characterize the freq-pCREs, we grouped them according to sequence similarity 368 

using pair-wise PCC distances of pCRE position weight matrices (PWM; see Methods).  62% 369 

(n=107) of all freq-pCREs could be placed into one of eight pCRE groups (Figure 4C, D; 370 

Supplemental Figure S4E). Freq-pCREs of the same group tended to be predictors of the 371 

same cluster category (GS-enriched/non-enriched).  372 

In summary, we identified more than 100 -Fe pCREs that were reliably associated 373 

either exclusively to GS-enriched or non-enriched co-expression clusters or with high 374 

preference for one of the categories. Those pCREs were also ranked as important for machine 375 

learning models and might therefore be candidates for functionally relevant motifs to different 376 

responses to -Fe.  377 

Similarity of -Fe pCREs to known TFBMs 378 

CREs are recognized by TFs to modulate gene expression. To identify what types of 379 

TFs may bind to the identified pCREs, we examined the similarities between the -Fe pCREs 380 

and known TF binding motifs (TFBMs) from two sources (see Methods). Based on threshold 381 

similarities, we were able to match a specific TF and/or a specific TF family to each of the 173 382 

freq-pCREs (see Methods; Figure 5A; Supplemental Figure S5). To gain an overview which 383 

TF families might be associated with GS-enriched clusters and how specific these TF families 384 

are, we asked which families contained over-represented numbers of TFs that likely bound 385 

pCREs from GS-enriched and non-enriched cluster categories. We found that most TF families 386 

were found with higher proportion in either GS-enriched clusters (14 TF families) or non-387 

enriched clusters (12), while only four were similarly distributed between both categories 388 

(Figure 5B).  389 

Most known -Fe regulators in Arabidopsis are bHLH TFs (FIT, subgroup Ib and IVc 390 

bHLH proteins, PYE, e.g. (Jakoby et al., 2004; Wang et al., 2007; Long et al., 2010; Palmer et 391 

al., 2013; Zhang et al., 2015)). bHLH and MYB TF families were identified, and even with 392 

higher proportion in GS-enriched clusters than in non-enriched clusters, which is indeed 393 

consistent with their role in -Fe response regulation. Other matching TF families over-394 

represented in GS-enriched clusters were bZIP (FET, q<0.05), B3, TCP and NAC. Although a 395 

B3 TF (ABI3VP1 subfamily; IDEF1) and a NAC TF (IDEF2) are important regulators of Strategy 396 

II Fe acquisition in grasses (Kobayashi et al., 2007; Ogo et al., 2008), the role for these TF 397 

families in Strategy I non-grass plant species has not yet been described. In contrast, ARID, 398 

WRKY (both FET, q<0.05), Homeobox, and CAMTA TF families were matched more in non-399 

enriched than GS-enriched clusters, pointing towards roles during -Fe stress other than Fe 400 

uptake or homeostasis, in which GS genes are mostly involved.  401 
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Next, freq-pCRE-TFBM matches from GS-enriched clusters served to infer specific 402 

upstream regulators of -Fe-responsive modules. More than 50% freq-pCREs (60 out of 115) 403 

matched TFBMs of a specific TF (Figure 5A). Of those, 29 freq-pCREs shared perfect 404 

sequence similarity (PCC=1) to the TFBM, which were then of particular interest. From these 405 

perfect matches, 23 pCREs were unique for GS-enriched clusters. Example TF candidates for 406 

these 23 cases were FUS3 (an ABI3VP1/B3 TF), bHLH104, bZIP3, 16 and 42, TCP13 (PTF1), 407 

and FAR1 (Supplemental Table S4A). While the DAP-seq and CIS-BP TFBM databases 408 

contain binding information for many TFs, they are far from exhaustive. For example, out of 409 

162 known Arabidopsis bHLHs (Bailey et al., 2003), only 46 were available to be included in 410 

the analysis. Therefore, some TF families were likely under-represented in our analysis and 411 

some top match TFBMs may not accurately reflect the binding partner for certain pCREs. 412 

Consequently, some important pCRE-TFBM matches might not be detectable at this time. 413 

However, as new experimental TF binding data is collected, we might gain more biological 414 

insight into our -Fe pCREs.  415 

Inferring upstream regulators of the -Fe response 416 

Because we believe our genome-wide approach for identifying regulatory elements 417 

may shed light on areas of -Fe response that are less well understood, we next put our findings 418 

in context with open questions in the field. For example, the ABI3VP1/B3-type TF IDEF1, a 419 

key regulatory factor of -Fe responses in rice and barley roots, recognizes the CATGC core of 420 

IDE1 (Kobayashi et al., 2003; Kobayashi et al., 2005; Kobayashi et al., 2007; Kobayashi et al., 421 

2009; Kobayashi et al., 2010). With ten of our freq-pCREs having an IDE1 CATGC (or GCATG) 422 

core and matching ABI3VP1/B3 family TFBMs, IDE1-likes were fairly dominant among the 423 

freq-pCREs and unique to GS-enriched clusters (Supplemental Table S3). This strongly 424 

suggests an important function for IDE1-like motifs in Arabidopsis. Arabidopsis AFLs (B3 family 425 

TFs ABI3/FUS3/LEC2), are the closest homologs of the rice IDEF1, and may bind to the IDE1-426 

likes. In fact, ABI3 and FUS3 bind to RY-like elements (CATGCA), regulating FeS cluster 427 

subunit formation during seed maturation (Roschzttardtz et al., 2009). However, ABI3 or FUS3 428 

functions during later developmental stages, particularly in the root during -Fe response, 429 

remain to be elucidated. Since the FUS3 TFBM matched our top most abundant IDE1-like 430 

(CATGCC; Supplemental Table S4A), and because FUS3 is expressed in the root epidermis 431 

and in lateral root primordia during later developmental stages (Boulard et al., 2017; Tang et 432 

al., 2017), FUS3 might be an IDEF1 homolog in Strategy I plants.  433 

Another -Fe response-related TF in rice and barley, IDEF2, belongs to the NAC family 434 

and binds to the CA(A/C)G(T/C)(T/C/A)(T/C/A) core in IDE2 (Ogo et al., 2008). Although we 435 

did not have a perfect (PCC=1) pCRE-NAC TFBM match, we found matched NAC TFBMs 436 

slightly over-represented in GS-enriched clusters (Figure 5B). Furthermore, two of the top ten 437 

most abundant freq-pCREs unique to GS-enriched clusters matched NAC TFBMs (PCC>0.9), 438 
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with one freq-pCRE being highly similar to the IDE2 core (CACGCC). This indicates that IDE2-439 

like motifs might also play a role during Arabidopsis -Fe responses.  440 

One freq-pCRE (CGTGCC) perfectly matched to a bHLH104 TFBM (Supplemental 441 

Table S4A). bHLH104 binds to the promoters of subgroup Ib BHLH genes 442 

BHLH38/39/100/101 (Zhang et al., 2015; Li et al., 2016), positively regulating Fe uptake. 443 

Consistently, we found CGTGCC in clusters containing BHLH101 (AT5G04150; 444 

Supplemental Table S2). 445 

Other freq-pCREs matched to known TFBMs from TFs with unknown roles in -Fe 446 

response. For example, bZIP TFBMs were significantly over-represented in GS-enriched 447 

clusters, but have no known direct roles in -Fe response. However, bZIP TFs are known 448 

regulators of the Zn deficiency response, which, together with the fact that one GS gene, ZIP9, 449 

is also responsive to Zn deficiency, could indicate an interdependency of Zn and Fe 450 

homeostasis (Assunção et al., 2010; Sinclair et al., 2018). Furthermore, two matched TFs, 451 

bZIP3 and bZIP16, are involved in ABA signaling, which is connected to -Fe response amongst 452 

others by modulating root growth (Séguéla et al., 2008; Matiolli et al., 2011; Hsieh et al., 2012). 453 

Possible functions of bZIP TFs in response to -Fe stress should be explored in the future.  454 

TCP13 (PTF1) and FAR1 TFBMs are two more examples for perfect freq-pCRE 455 

matches with yet unknown specific roles of the TFs during -Fe, although their specificity to GS-456 

enriched clusters points towards important roles in regulating GS genes. TCPs are involved in 457 

plant development, but also act in signaling of hormones that influence -Fe responses (Davière 458 

et al., 2014; Brumbarova et al., 2015; Resentini et al., 2015; Nicolas and Cubas, 2016). For 459 

example, TCP20 was reported to bind to the BHLH39 promoter (Andriankaja et al., 2014), 460 

indicating a possible connection of TCPs and -Fe responses during plant development. TCP13 461 

is involved in regulating responses to light shade signals through PHYTOCHROME 462 

INTERACTING FACTORS (PIFs) (Zhou et al., 2018). Interestingly, FAR1 and its homolog 463 

FHY3 also act in phytochrome-PIF signaling (Wang and Wang, 2015). Together, this suggests 464 

a connection of light perception and -Fe responses mediated through these TFs, which is 465 

consistent with the known diurnal influence on Fe uptake (Vert et al., 2003; Santi and Schmidt, 466 

2009; Hong et al., 2013; Salomé et al., 2013). In addition, FAR1/FHY3 act in the regulation of 467 

phosphate starvation response, together with ethylene regulator EIN3 (Liu et al., 2017), which 468 

also binds FIT to promote Fe uptake (Lingam et al., 2011). Therefore, FAR1 might also regulate 469 

Fe acquisition via the ethylene pathway. 470 

Finally, a perfect freq-pCRE-WRKY11 match indicates that WRKY TFs, although 471 

significantly over-represented in non-enriched clusters, are also important for regulating GS-472 

enriched clusters. WRKY11 is involved in abiotic stress tolerance in Arabidopsis (Ali et al., 473 

2018), with no specific role known during -Fe response yet. However, WRKYs in general have 474 

already been connected to -Fe, for example as putative regulators of the coumarin transporter 475 
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gene PDR9 (Ito and Gray, 2006) and of PYE (Koryachko et al., 2015). Furthermore, WRKY46 476 

negatively regulates the vacuolar Fe importer gene VTL1/VITL1 (Gollhofer et al., 2011; 477 

Gollhofer et al., 2014; Yan et al., 2016). We found a WRKY TFBM (GTCAAC) in several non-478 

enriched clusters containing down-regulated Fe-responsive genes, including the VTL1 479 

homolog VTL5 (AT3G25190; Supplemental Table S2), indicating that some of the TFs 480 

matching non-enriched cluster pCREs might act as repressors of Fe excess genes.  481 

In summary, many pCREs commonly found among GS-enriched clusters shared 482 

significant sequence similarity with known -Fe CREs, such as IDE1, or with binding sites of 483 

known -Fe-associated TF families, such as ABI3VP1/B3, NAC, MYB and bHLH. Notably, we 484 

found evidence for IDE1-like motifs being relevant not only in Strategy II plants, but also in the 485 

Strategy I plant Arabidopsis. Our results also suggest novel associations, such as the role of 486 

bZIPs or TCPs in -Fe responses. We assessed in the next paragraph in which specific -Fe 487 

response processes pCREs of particular interest, such as IDE1-likes, might be involved in. 488 

Associating important pCREs with FIT-dependent or FIT-independent functions 489 

After identifying novel potential regulators in the -Fe response, we pinpointed some of 490 

those which could best explain models of -Fe-responsive up-regulation and explored their 491 

potential functions.  492 

More than 1,500 pCREs were identified in total in GS-enriched clusters, raising the 493 

question of a core set of important pCREs needed to robustly predict -Fe response in each 494 

cluster. Using pCRE abundance (freq-pCREs) among GS-enriched clusters as the only criteria 495 

for selecting informative motifs for those clusters could result in missing motifs simply due to 496 

the fact that some co-expression clusters were more unique than others. This is supported by 497 

the fact that rare pCREs still can have a high importance rank (Figure 4A), meaning that those 498 

pCREs were not included in the set of freq-pCREs although they seem to be important for 499 

regulating individual GS-enriched clusters. We identified the most important pCREs (defined 500 

as the minimum set of pCREs; min-pCREs) by building RF models iteratively with successively 501 

deleting the least important pCREs in each round (Supplemental Figure S6). Applying this 502 

approach to the 159 GS-enriched clusters resulted in a collective set of 615 min-pCREs. They 503 

were part of the minimum sets of between 1 (0.6%) and 48 (30%) GS-enriched clusters, with 504 

the IDE1-like CATGCC being the top most abundant min-pCRE. Together with CATGCC, two 505 

more IDE1-like motifs, TCATGC and CCATGC, were among the top ten most abundant min-506 

pCREs (Supplemental Table S3). This supports a previous computational analysis of rice 507 

promoters, in which IDE1-like was among the top scoring motifs (Kakei et al., 2013). Together 508 

with our previous finding typing IDE1-like ABI3VP1/B3 TFBMs to GS-enriched clusters, it 509 

suggests an important, yet unknown, function of IDE1-like motifs in Arabidopsis -Fe response 510 

regulation. Min-pCREs matching a bHLH (CGTGAC), a MYB (TAACTA), and the IDE2-like 511 

NAC TFBM (CACGCC; all Supplemental Table S4A) were also among the top ten most 512 
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abundant min-pCREs (Supplemental Table S3), further demonstrating the utility of our 513 

approach.  514 

To determine in which processes min-pCREs might function during -Fe, we tested if 515 

min-pCREs were more likely to be found in FIT-dependent or FIT-independent co-expression 516 

clusters. More than 60% of the 159 GS-enriched clusters were classified as either FIT-517 

dependent with a likely function in root iron acquisition (35% out of 159) or FIT-independent 518 

with either a function in internal Fe homeostasis in shoots and roots or in -Fe response 519 

regulation (28% out of 159; Figure 6A). We then calculated the proportion of min-pCREs 520 

(present in ≥5 GS-enriched clusters) in each cluster category (Supplemental Table S5). 521 

Interestingly, the two IDE1-like motifs, CATGCC, CCATGC and the related ABI3VP1/B3 TFBM 522 

matched ATGCAT, were predominantly identified in FIT-dependent clusters, but IDE2-like 523 

CACGCC had no preference for either FIT-dependent or FIT-independent clusters (Figure 524 

6B). This suggests that the IDE1-like pCREs tend to be more important for FIT-dependent root 525 

Fe acquisition rather than FIT-independent Fe sensing, signaling and distribution. This is also 526 

consistent with the role of grass IDE1 in Fe uptake (Kobayashi et al., 2003; Kobayashi et al., 527 

2005). Two ARF TFBM matched min-pCREs (AACGTA/ARF16, GTCGGA/ARF2) were also 528 

preferentially found in FIT-dependent clusters. ARFs are involved in auxin signaling, thereby 529 

controlling - among other functions - root hair elongation (Pitts et al., 1998; Mangano et al., 530 

2017; Choi et al., 2018). Different studies reported that -Fe responses can be accompanied by 531 

an increase of root hair number, elongation of root hairs, deformed or short root hairs (Schmidt 532 

et al., 2000; Müller and Schmidt, 2004; Dinneny et al., 2008). ARF2 and ARF16 TFs are root 533 

hair growth repressors (Choi et al., 2018), which would be consistent with a short root hair 534 

phenotype and down-regulation of respective GO terms under -Fe (Dinneny et al., 2008) 535 

(Supplemental Figure S1). During -Fe, several root hair-acting genes are co-expressed in a 536 

regulon which also contains IRT2 (Ivanov et al., 2012), indicating a possible connection of ARF 537 

TFBM matched min-pCREs with these root hair processes.  538 

In contrast, three bZIP TFBM matched min-pCREs, GTGGCA, CACGTC and CACTAC, 539 

were predominantly identified in FIT-independent clusters. As described in the previous 540 

section, bZIPs are involved in ABA signaling. ABA negatively regulates FIT-dependent Fe3+ 541 

reductase gene FRO2 and Fe2+ importer gene IRT1 (Séguéla et al., 2008). However, ABA 542 

signaling also leads to enhanced apoplastic and vacuolar Fe utilization and root to shoot 543 

transport under -Fe (Séguéla et al., 2008; Lei et al., 2014). (Lei et al., 2014) propose that ABA-544 

responsive gene regulation and Fe remobilization and transport are connected through bZIPs, 545 

which is consistent with our results that bZIP TFBMs are preferentially found in FIT-546 

independent co-expression clusters of genes involved in Fe mobilization and translocation. 547 

Similarly, two TCP TFBMs, GACCAC and ACCCAC, were identified almost exclusively in FIT-548 

independent clusters, which is in agreement with TCP20 regulating BHLH39 in a FIT-549 
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independent manner (Andriankaja et al., 2014). Finally, bHLH TFBMs were identified in all 550 

cluster categories with a preference for mixed clusters. This matches the ubiquitous nature of 551 

bHLH target motifs (E-/G-boxes), which act at many levels in the -Fe bHLH cascade. In 552 

summary, we can propose plausible roles for pCREs as TFBMs in FIT-dependent and FIT-553 

independent processes. 554 

Distribution and conservation of min-pCREs in co-expression cluster gene promoters 555 

Next, to explore if min-pCREs displayed significant positional bias in the promoter 556 

regions of co-expressed genes, we compared the observed min-pCRE frequencies in 100 bp 557 

bins of -1000 to +500 bp and of -500 to +1000 bp flanking regions adjacent to the transcription 558 

start site (TSS) and transcription termination site (TTS), respectively, with the expected 559 

frequencies from shuffled pCRE sequences (according to Uygun et al., 2017) for all 615 min-560 

pCREs (Supplemental Figure S9). Furthermore, we examined the non-coding as well as the 561 

coding sequences of the transcribed regions. Overall, the distributions of min-pCREs revealed 562 

a slight positional bias in the promoter regions (top, Figure 6C). We investigated the 563 

distribution plots separately for ten selected min-pCREs: FIT-dependent ABI3VP1/B3 TFBM-564 

matched min-pCREs (containing the two IDE1-likes), the IDE2-like (NAC TFBM match), FIT-565 

independent bZIP TFBM matches, and bHLH TFBM matches (Figure 6C). These min-pCREs 566 

had significant location bias in the putative promoters up to 1000 bp upstream of the TSS. 567 

Because known CREs often exhibit positional bias (Zou et al., 2011; Heyndrickx et al., 2014; 568 

Yu et al., 2016), this provides additional support for these pCREs having regulatory functions 569 

in Fe uptake and homeostasis. Interestingly, some of the pCREs common to mixed clusters 570 

did not show position bias in any of the genomic regions tested (e.g. ABI3VP1/CTTATA and 571 

MYB/TAACTA; bottom, Figure 6C), indicating that genes of such clusters are less likely to be 572 

transcriptionally co-regulated.  573 

Next, we sought to pinpoint the specific processes of Fe homeostasis, which these ten 574 

min-pCREs might regulate. To assess this, we determined the genes containing the respective 575 

min-pCRE and counted the number of incidents in which these genes were likely regulated by 576 

the min-pCRE (Figure 6D; Supplemental Table S6A). For example, CATGCC was found in 577 

48 GS-enriched clusters, and 36 of those clusters (75%) included the min-pCRE-containing 578 

gene MYB10, while only four of those clusters (8%) included MAPKKK16 (second row right, 579 

Figure 6D). We inferred that CATGCC might be regulating predominantly processes in which 580 

MYB10 is required. As an additional line of evidence for pCRE functionality, we determined if 581 

min-pCREs overlapped with conserved noncoding sequences (CNS) of the Brassicaceae 582 

family (Haudry et al., 2013)  (Supplemental Table S6B). As expected, bHLH TFBM matched 583 

min-pCREs were identified in many gene promoters, including BHLH39/BHLH101 (direct 584 

targets of bHLH IVc TFs, (Zhang et al., 2015)), NAS4 (direct PYE target, (Long et al., 2010)), 585 

and IRT1, AT3G07720 and GRF11 (FIT targets; Figure 6D; (Sivitz et al., 2012; Yang et al., 586 
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2013)). In BHLH39/BHLH101, IRT1, and GRF11, the respective min-pCREs overlapped with 587 

CNS, further supporting the importance of these motifs. Interestingly, bHLH matched min-588 

pCREs were also located in CNS of BTS and BTSL1, two genes that negatively regulate Fe 589 

uptake by marking positive regulators (e.g. bHLH IVc TFs) for degradation (Selote et al., 2015). 590 

If BTS were to be regulated by bHLH proteins from the same regulatory cascade, this may 591 

indicate a negative feedback loop.  592 

FIT-dependent IDE1-likes CATGCC and CCATGC were located in the IRT1 promoter, 593 

overlapping with CNS (second row, Figure 6D). Interestingly, both IDE1-likes were found in 594 

several genes encoding enzymes and TFs involved in coumarin biosynthesis (CYP82C4, S8H, 595 

F6’H1, MYB72/MYB10; (Kai et al., 2008; Murgia et al., 2011; Fourcroy et al., 2014; Schmid et 596 

al., 2014; Zamioudis et al., 2014; Rajniak et al., 2018; Siwinska et al., 2018)). We propose that 597 

IDE1 is important for synthesis of Fe chelators in response to low Fe conditions in both 598 

monocots and dicots (see Kobayashi et al., 2003; Kobayashi et al., 2005). The IDE2-like min-599 

pCRE was located amongst others in BTSL1 (within a CNS), BHLH39, ORG1, and a number 600 

of uncharacterized genes. While the role of IDE2 in the Strategy II Fe response has not been 601 

comprehensively explored, it is known to regulate expression of OsYSL2, a phloem Fe2+-602 

nicotianamine transporter (Kobayashi et al., 2003; Ogo et al., 2008). This putative involvement 603 

in phloem translocation of Fe suggests that the IDE2-like might preferably associate with FIT-604 

independent gene functions. However, we could not assess the relationship between IDE2 and 605 

YSLs in this analysis because YSL1/2/3 were not expressed above the log2FC>1 threshold.  606 

Next, we explored the bZIP TFBM-matched min-pCREs, since they had the strongest 607 

FIT-independent preference. These min-pCREs were located in a number of genes involved 608 

in translocation of Fe/Fe chelates or the synthesis of Fe chelators (e.g. NRAMP4, ZIF1, OPT3 609 

(Lanquar et al., 2005; Haydon et al., 2012; Mendoza-Cózatl et al., 2014; Zhai et al., 2014)) or 610 

in Fe sensing and signaling (e.g. OPT3, BTS, (Mendoza-Cózatl et al., 2014; Zhai et al., 2014; 611 

Selote et al., 2015; Khan et al., 2018)). Furthermore, GTGGCA (matched to bZIP TFBM) 612 

overlapped with a CNS of CGLD27 (third row, Figure 6D), which has been associated with 613 

photoprotection in leaves during -Fe (Ruiz-Sola and Rodríguez-Concepción, 2012; Rodríguez-614 

Celma et al., 2013). However its function in roots remains elusive. Taken together, our findings 615 

suggest diverse roles for bZIP TFBMs, including Fe transport and adjustment of the plastid 616 

proteome.  617 

In summary, we identified more than 100 -Fe pCREs which, in addition to sharing 618 

significant sequence similarity to known TFBMs, were also part of the core sets of pCREs 619 

needed for robust prediction of -Fe responses of GS-enriched clusters (min-pCREs). 620 

Furthermore, they were preferentially located in promoter regions upstream of the TSS, and 621 

even in CNS’ of some genes. Together, these findings indicate that these pCREs might be 622 

authentic -Fe CREs. From the biological context of the genes which are likely regulated by 623 
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some of the pCREs, we were able to greatly improve our understanding of -Fe response 624 

regulation in Arabidopsis. For example, our work highlighted that in addition to the bHLH 625 

TFBMs, IDE1-like motifs and bZIP TFBMs are likely involved in different responses to -Fe and 626 

should be considered of high interest for future work. 627 

 628 

Conclusion 629 

We identified 5,639 pCREs enriched in promoters of co-expressed -Fe-responsive 630 

genes that were used as features to predict -Fe-responsive regulation of root-expressed genes 631 

on a genome-wide scale. Of those, 173 reliably predicted -Fe response genes of >5% of our 632 

defined co-expression clusters (freq-pCREs). Because most of those pCREs were either 633 

unique to co-expression clusters enriched for our gold standard Fe acquisition and 634 

homeostasis genes, or unique to co-expression clusters lacking those genes, we conclude that 635 

our approach had captured motifs specifically regulating different responses during -Fe. To 636 

take advantage of the publicly available in vitro TF binding information, we compared the freq-637 

pCREs to TFBMs from two studies (Weirauch et al., 2014; O'Malley et al., 2016), and found 638 

that our approach had captured known Strategy I -Fe recognition motifs for bHLH and MYB 639 

proteins. Our approach also led to novel regulatory connections of bZIP, B3, NAC, and TCP 640 

families to Strategy I -Fe response regulation. While bZIP and bHLH TF families are also 641 

associated with high salinity stress response (Uygun et al., 2017), other high salinity stress 642 

response associated TF families (e.g. WRKY and AP2) were not common among our -Fe 643 

pCREs regulating GS-enriched co-expression clusters, highlighting the usefulness of this 644 

approach to pinpoint regulators specific to a stress condition.  645 

We inferred possible functions of pCREs which were most important for modeling -Fe 646 

responses (min-pCREs) from their enrichment in FIT-dependent or FIT-independent co-647 

expression clusters and their location bias in promoters of particular -Fe-responsive genes 648 

(Figure 6B, D). Our results provide evidence that B3 TFBM pCREs containing the IDE1 core 649 

motif CATGC are linked to coumarin synthesis, indicating that the function of IDE1-like motifs 650 

to ensure supply of Fe-chelating compounds for Fe acquisition could be an evolutionarily 651 

conserved function at least among flowering plants. While our results highlight the importance 652 

of IDE1-like motifs for Fe acquisition, it was not the only prominent -Fe pCRE. This is in contrast 653 

to Zn deficiency, where ZDRE seems to be singularly associated with multiple Zn deficiency 654 

responses (Assunção et al., 2010), and indicates that despite of overlaps of Zn and Fe 655 

homeostasis control (Briat et al., 2015), their transcriptional regulation must follow different 656 

mechanisms.  657 

Our results support a concept in which -Fe is not regulated by only one or few regulatory 658 

elements. Of the many important pCREs for -Fe response, many share significant similarity 659 

with TFBMs of TF families known to undergo hetero-dimerization and protein interaction across 660 
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families, such as bHLH, MYB, bZIP, TCP, and ABI3VP1 (Bemer et al., 2017). A combinatorial 661 

mechanism would dramatically increase the flexibility of transcriptional responses driven by a 662 

set of few TFs. It might be that some pCREs not as important in our prediction models, would 663 

become informative in combination, as suggested for high salinity stress response (Zou et al., 664 

2011; Uygun et al., 2017). A next step would therefore be to build -Fe prediction models that 665 

explicitly account for interactions between pCREs. A limitation of our approach is that our co-666 

expression clusters were based on ATH1 chip microarray data, the only comprehensive -Fe 667 

time course transcriptome set available to date. Some important -Fe marker genes (e.g. FRO2) 668 

are not represented on the chip and others might not have passed our significance threshold 669 

because of sensitivity issues with the microarray technology. Additionally, we restricted our 670 

analysis to the promoter region 1000 bp upstream of the TSS. While this is expected to cover 671 

most important cis-acting elements and reduce the occurrence of promoters overlapping with 672 

adjacent genes, introns as well as more distal promoter regions are known to harbor cis-acting 673 

elements (Rose et al., 2008; Rose et al., 2016). 674 

The large number of TFs known to be involved in -Fe-induced up-regulation points 675 

towards the importance of transcriptional regulation. However -Fe responses are also heavily 676 

controlled at the post-transcriptional and post-translational level (Lingam et al., 2011; Meiser 677 

et al., 2011; Sivitz et al., 2011; Selote et al., 2015; Zhang et al., 2015; Gratz et al., 2019). 678 

Naturally, our approach cannot cover such regulatory aspects. However, it allows us to predict 679 

TF families, that may act upstream of the known -Fe-responsive genes. We suggest TFs of 680 

the bZIP, ABI3VP1/B3, NAC, and TCP families as upstream regulators of -Fe response in the 681 

root. Because major Fe sinks are located in the shoot, a systemic shoot-to-root signal must 682 

exist for proper Fe supply (Vert et al., 2003; Garcia et al., 2013). Integrating shoot 683 

transcriptomic data would expand our knowledge on how responses to -Fe stress are 684 

coordinated at the whole-plant level. 685 

In conclusion, we demonstrate that our machine learning-based approach can identify 686 

pCREs for -Fe-induced gene up-regulation. This strategy can be applied to various stresses 687 

and developmental conditions to elucidate regulatory mechanisms, especially when cis- and/or 688 

trans-acting elements were previously elusive (Zou et al., 2011; Uygun et al., 2017). We 689 

provide a comprehensive source of potential -Fe response cis-regulators for a wide range 690 

of -Fe-responsive genes. Because the identified pCREs are potentially involved in enhancing 691 

Fe uptake and translocation, they generate potential for future applications in engineering 692 

plants with improved plant performance traits, e.g. higher nutritional value because of better 693 

Fe allocation and coping with unfavorable soil conditions. 694 

 695 
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Methods 696 

Expression data processing and generation of multiple expression data combinations 697 

Expression data (Affymetrix ATH1) from an -Fe treatment time course experiment with 698 

six time points and of four -Fe treated root zones (both Dinneny et al., 2008) were downloaded 699 

from Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/, GSE10502, 700 

GSE10497) in CEL format, preprocessed, normalized and contrasted as described below. 701 

AtGenExpress expression data (Affymetrix ATH1) of abiotic stresses ((Kilian et al., 2007), 702 

GSE5620-5628 or TAIR-ME00325-330, only data of root samples were used), hormone 703 

treatment ((Goda et al., 2008), GSE39384 or TAIR-ME00333-340, ME00343-344, ME00350-704 

352, ME00356) and plant development ((Schmid et al., 2005), GSE5629-5634 or TAIR-705 

ME00319) were downloaded from The Arabidopsis Information Resource (TAIR; 706 

https://www.arabidopsis.org/portals/expression/microarray/ATGenExpress.jsp) preprocessed, 707 

normalized and contrasted by S. Uygun (Uygun et al., 2016) as described below. Background 708 

correction and quantile normalization of CEL files were performed with Robust Multi-Array 709 

Average expression measure (RMA) using the Bioconductor affy package (Gautier et al., 710 

2004). The log2 fold-change (log2FC) in expression was calculated for all data sets except 711 

developmental data by pairwise comparison of treatment and control experiments for each 712 

treatment and time point. Contrast matrices and linear model fits were created using R and the 713 

Bioconductor LIMMA package (Ritchie et al., 2015; Phipson et al., 2016). Because 714 

developmental stages have no control treatment, absolute normalized fluorescence intensity 715 

values were used. The p-values for log2FC or fluorescence intensities were corrected for 716 

multiple testing (adjusted p-values=q) using the BH method (Benjamini and Hochberg, 1995). 717 

Genes were regarded as -Fe responsive if abs(log2FC)≥1, and q<0.05 at least at one -Fe 718 

treatment time point or in at least one -Fe treated root zone. -Fe deficiency time course data 719 

was combined with -Fe root zone expression data or ATGenExpress datasets in different 720 

combinations (Figure 1C) either including only genes up-regulated (“up”) or all genes up- or 721 

down- regulated (“up & down”) in ≥1 -Fe time point or root zone. This resulted in 12 different 722 

expression data combinations. 723 

Co-expression clustering using k-means  724 

To cluster genes with similar expression pattern, k-means clustering (Hartigan and 725 

Wong, 1979) was applied using the Euclidean distance as the similarity measure. Because k-726 

means returns a local optimum solution depending on the number of clusters (k) created and 727 

the random selection of genes as initial “means”, the outcome varies with run (i.e. non-728 

deterministic). Therefore, different k (25, 30, 35, 40, 50, 70, 80, 100) were tested and the 729 

clustering was repeated up to four times. We build machine learning models (see below) with 730 

all clusters generated from expression data combinations (DC) 1, 2, 3 and 5 (Figure 1C). To 731 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 11, 2019. ; https://doi.org/10.1101/603290doi: bioRxiv preprint 

https://doi.org/10.1101/603290
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

prevent confusion, we point out that the total number of k-means-generated clusters used to 732 

build models represents several repeated clustering events of always the same two sets of -733 

Fe-responsive genes (up; up & down, see above). The clustering events differ in the DC which 734 

was used and in the k. Two DC were excluded from the analysis: DC 4 produced identical 735 

clusters as DC 1, which were therefore not considered. DC 6 contained different measuring 736 

units (log2FC and absolute normalized fluorescence intensity), and could not be handled by 737 

the k-means algorithm.  738 

Co-expression clustering by correlation with GS genes  739 

To generate co-expression clusters based on gold standard (GS) genes 740 

(Supplemental Table S1), each GS gene was used as a query to identify genes with similar 741 

expression patterns. Briefly,  for each expression data combination (DC; Figure 1C), the PCC 742 

was calculated between the query gene and each gene in DC using SciPy 743 

(http://www.scipy.org, (Jones et al., 2001)). Similar to (Uygun et al., 2016), a random 744 

background PCC was calculated representing the null distribution of expression correlation by 745 

calculating the PCC of 10,000 randomly selected gene pairs in DC and the 95th percentile of 746 

PCCs was tried as the threshold for classifying a pair of genes as significantly correlated. For 747 

some DC (mostly those containing only up-regulated -Fe responsive genes), we allowed a 748 

significance threshold below 90% down to 45%, because the PCC between random Fe 749 

responsive genes was already very high. On the other hand, when >50 genes were considered 750 

significantly correlated, the threshold was raised above 95% to 99% to hone in on genes most 751 

likely to be co-regulated. In addition, we generated a second version of clusters with >50 752 

genes, containing only the 10 genes with highest PCC. We build machine learning models 753 

(see below) with both versions and further used the results from the better performing version 754 

only. Percentiles used for each PCC-generated cluster are given in Supplemental Table S2. 755 

Two DC were excluded from the analysis: DC 4 (up), because the resulting clusters were 756 

identical to those generated from DC 1 (up), and DC 6 (up & down), because developmental 757 

data seemed to have a disproportional influence on the PCC with the result that even -Fe up- 758 

and down-regulated gene pairs were identified as strongly correlating. As in the k-means 759 

clustering, the total number of PCC-generated clusters used for modeling represents repeated 760 

clustering events of the same two sets of -Fe-responsive genes (as described above). 761 

The co-expression clusters: GO and GS/FIT-dependent/FIT-independent gene 762 

enrichment and GO/gene content similarity 763 

Gene ontology (GO) associations for A. thaliana were downloaded from TAIR  764 

(ftp://ftp.arabidopsis.org/home/tair/Ontologies/Gene_Ontology/ (Berardini et al., 2004)). 765 

Biological process (BP) GO annotations were downloaded from GO 766 

(http://purl.obolibrary.org/obo/go.obo) and parsed for BP information. Enrichment of GO terms 767 
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in genes that were significantly differentially regulated (q<0.05, abs(log2FC)≥1) in the -Fe time 768 

course data set was determined with a Fisher’s exact test (FET, http://www.scipy.org, (Jones 769 

et al., 2001)), and p-values were corrected for multiple testing (=q) using the “qvalue” function 770 

in R (Storey, 2002) (Supplemental Table S7). 771 

All co-expression clusters were tested for enrichment of GO terms as described above. 772 

The similarity of enriched GOs between co-expression clusters was assessed using the 773 

Jaccard Index (JI), or the intersection of GOs divided by the union of the GOs, where JI=1 if 774 

the exact same GOs were enriched in both co-expression clusters. Co-expression clusters 775 

were grouped by hierarchical clustering using the JI with the UPGMA method in the R cluster 776 

package (Maechler et al., 2017). Groups containing >20 co-expression clusters and having a 777 

within-mean JI that was significantly higher than the mean JI of all clusters were defined as 778 

“superclusters”. Biological functions of superclusters were defined through GOs shared by 779 

≥75% (k-means clustering) or ≥90% (GS gene correlation; PCC) of the clusters. Similarly, 780 

FET with p-value correction for multiple testing was used to identify co-expression clusters 781 

enriched for (A) -Fe GS genes, (B) FIT-dependent genes, and/or (C) FIT-independent genes. 782 

K-mer enrichment and identification of pCREs predictive of -Fe response using Random 783 

Forest (pCRE identification pipeline) 784 

Promoter sequences 1 kb upstream from the transcription start site (TSS) were 785 

downloaded from TAIR 786 

(ftp://ftp.arabidopsis.org/home/tair/Sequences/blast_datasets/TAIR10_blastsets/upstream_se787 

quences/TAIR10_upstream_1000_20101104). A list of all possible 6-mers of A, T, C, G was 788 

generated with the Python itertools function and the Biopython Bio.Seq module 789 

(http://biopython.org/ wiki/Biopython, (Cock et al., 2009)). Only one 6-mer for each reverse 790 

complement pair was kept (resulting in 2,080 6-mers). Genes were considered -Fe non-791 

responsive if they were not significantly differentially expressed (abs(log2 FC) <0.4) during any 792 

time point during the -Fe time course experiment or in any -Fe treated root zone or in four 793 

additional -Fe treatment experiments ((Li and Schmidt, 2010): GSE16964, (Long et al., 2010): 794 

GSE21443, (Schuler et al., 2011): GSE24348, (Sivitz et al., 2012): GSE40076). The four 795 

additional data sets were downloaded in CEL format from GEO and processed as described 796 

in the first section of the Methods part.  797 

Potentially meaningful cis-regulatory elements for -Fe response were identified in two 798 

steps, where we first looked for enriched k-mers in the promoters of -Fe responsive genes and 799 

then determined how well the enriched k-mers predicted -Fe response using machine learning. 800 

The code for this analysis is available on GitHub (https://github.com/ShiuLab/MotifDiscovery, 801 

https://github.com/ShiuLab/ML_Pipeline). For the first step, the promoter sequences of the 802 

genes in co-expression clusters (positive set) were searched for enriched 6-mers in 803 

comparison to promoter sequences of non-responsive genes (negative set). These enriched 804 
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6-mers were elongated by one base and tested again for enrichment. This process was 805 

repeated until no longer k-mer was more enriched than the shorter k-mer. Enrichment was 806 

calculated using a one-sided FET (p<0.01).  807 

For the second step, to determine which sets of enriched k-mers were predictive of -Fe 808 

response, we generated features based on presence or absence of each enriched k-mer and 809 

used these features to build machine learning models using the Random Forest (RF) algorithm 810 

(Pedregosa et al., 2011). To avoid building biased models, 50 models were generated for each 811 

co-expression cluster by randomly drawing from the negative set to generate balanced (i.e. 812 

size positive set equals size of negative set) input datasets. A 10-fold cross-validation 813 

approach was used to train and test the models. Briefly, the balanced datasets were divided 814 

randomly into ten even groups with a 1:1 ratio of positive to negative class genes. The model 815 

was trained on the 1-9 folds and applied to the 10th (and successively trained on 1-8+10 and 816 

applied to the 9th, etc.). This cross-validation scheme was repeated ten times. Each RF model 817 

was made up of 500 decision trees, each trained on a random subset of enriched k-mers and 818 

of training set genes. The final model performance is represented by the mean F1 score (i.e. 819 

F-measure) across all 50 balanced models. The F1 score is the harmonic mean of precision 820 

(P=TP/(FP+TP)) and recall (R=TP/(FN+TP)), where TP=true positive, FP=false positive, and 821 

FN=false negative. Only co-expression clusters for which the enriched k-mers were deemed 822 

as good predictors (F1≥0.7) were used in the downstream analysis. 823 

Predictive k-mers (then referred to as putative cis-regulatory elements, pCREs) were 824 

ranked by importance. The importance score is based on the Gini Index, which is a measure 825 

of node purity, where important pCREs separate positive from negative class genes well and 826 

low ranked pCREs are less informative. To determine how well the models predicted specific 827 

-Fe responsive genes, we calculated the percent of times each gene was correctly predicted 828 

(TP) out of the 50 balanced replicates. 829 

pCRE sequence similarity 830 

To assess sequence similarities between the 173 pCREs that were frequently identified 831 

(in >5%; freq-pCREs) in GS-enriched or non-enriched co-expression clusters with good model 832 

performance (F1≥0.7), sequence dissimilarity of pCRE position weight matrices (PWMs) was 833 

calculated by pair-wise PCC distance and a distance matrix was generated using the TAMO 834 

package (Gordon et al., 2005). Freq-pCREs were grouped by hierarchical clustering of the 835 

PCC distance matrix using the UPGMA method in the R cluster package (Maechler et al., 836 

2017), and visualized in a dendrogram (Supplemental Figure S4E). Due to group-wise 837 

averaging of PCC distances during hierarchical clustering, the algorithm produced skewed 838 

PCC distances of some similar pCRE pairs. Therefore, freq-pCRE clusters were additionally 839 

visualized as a network, in which freq-pCREs with PCC distance=0 (identical freq-pCREs or 840 

subsets of each other) were connected with black bold edges and freq-pCREs with PCC 841 
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distance≤0.22 were connected with light gray edges (Figure 4C). Highly interconnected nodes 842 

were arranged in groups. The network was created using the Cytoscape software (Shannon 843 

et al., 2003). To show a consensus of freq-pCREs within a network group, freq-pCRE 844 

sequences were aligned using ClustalX (Larkin et al., 2007) with default parameters and a 845 

sequence logo was created with weblogo (https://weblogo.berkeley.edu/logo.cgi).  846 

Identification of most informative pCREs (min-pCREs) by non-linear regression 847 

The most informative pCREs of a co-expression cluster were defined as the minimum 848 

set of pCREs (min-pCREs) needed for RF models without sacrificing performance. To identify 849 

min-pCREs, for each GS-enriched co-expression cluster, the pCREs used as features were 850 

step-wise reduced, with the least important pCREs deleted at each step. First, for pCREs that 851 

were subsets of each other (PCC distance=0), the lower ranked one was removed. Then, from 852 

this list of pCREs and for successively shorter lists of pCREs (n=40, 30, 25, 20, 15, 12, 10, 8, 853 

6, 5, 4, 3, 2, 1), 10 replicates of RF models were trained on balanced datasets. F1 scores were 854 

plotted against the number of pCREs (x) and a non-linear regression curve was fitted to the 855 

data points. An exponential recovery function  856 

𝐹1(𝑥) = 𝑎(1 − 𝑒(−𝑛𝑥)) 857 

was found to best describe the data behavior. Starting values for variables a and n were 858 

approximated by fitting a linear model to the logarithmic transformation of the function. The set 859 

of pCREs with the highest F1 closest to the inflection point of the regression curve was defined 860 

as min-pCRE set (example in Supplemental Figure S6). 861 

pCRE similarity to TFBMs 862 

In vitro binding data of Arabidopsis TFs to genomic DNA (DNA Affinity Purification 863 

Sequencing, DAP-seq, (O'Malley et al., 2016)) and TF binding data based on protein-binding 864 

microarray data or the TRANSFAC data base (Catalog of Inferred Sequence Binding 865 

Preferences, CIS-BP, (Weirauch et al., 2014)) were used (Supplemental Table S4B), with 866 

DAP-seq TFBMs used over CIS-BP TFBMs when the TF was present in both databases. 867 

PWMs of pCREs were compared to PWMs of TFBMs using PCC and the pCREs were 868 

classified as similar to (A) a specific TF, (B) a TF family, or (C) to TFs generally, based on the 869 

degree of similarity to their best matching TFBM (Uygun et al., 2017). A pCRE was similar to 870 

a specific TFBM (A) if the PCC between the pCRE and the TFBM was ≥95th percentile of 871 

PCCs between that TFBM and TFBMs from the same TF family. Alternatively a pCRE was 872 

similar to TFBMs from a TF family (B) if the PCC between the pCRE and a TFBM from that 873 

family was ≥95th percentile of PCCs between TFBMs from that family and TFBMs from other 874 

TF families. Finally, a pCRE was similar to TFBMs (C) if the PCC between the pCRE and any 875 

known TFBM was ≥95th percentile of PCCs between TFBMs and randomly generated 6-mers. 876 

For 95th percentile PCC thresholds see Supplemental Table S4C. To determine if pCREs 877 
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similar to specific TF families were enriched in GS-enriched versus non-enriched co-878 

expression clusters, the percentage of pCREs similar to TFBMs (significance level A or B) from 879 

each TF family was calculated for each co-expression cluster category. Then, FET with 880 

multiple testing correction (q≤0.05) was used to determine if GS-enriched co-expression 881 

clusters were enriched for TF families compared to non-GS-enriched co-expression clusters 882 

and vice versa.  883 

Positional distribution of pCREs 884 

To determine the positional distribution of the min-pCREs for each GS-enriched co-885 

expression cluster, min-pCREs were converted to PWMs adjusted to the Arabidopsis 886 

background AT (0.33) and CG (0.17) content using the TAMO package (Gordon et al., 2005) 887 

and mapped to the promoter sequences ranging from 1000 bp upstream to 500 bp downstream 888 

of the transcription start site (1000-TSS-500), using Motility (http://cartwheel. caltech.edu). For 889 

comparison, min-pCRE PWMs were also mapped to exons and introns, respectively, and to 890 

the region 500 bp upstream and 1000 bp downstream of the transcription termination site (500-891 

TTS-1000). Arabidopsis sequences were downloaded from TAIR 892 

(ftp://ftp.arabidopsis.org/Sequences/blast_datasets/TAIR10_blastsets/). Positional 893 

distributions were calculated as described in (Uygun et al., 2017). In brief, min-pCREs were 894 

mapped to 100 bp bins of 1000-TSS-500 and 500-TTS-1000 and to whole exons and introns. 895 

For comparison, min-pCREs were mapped to randomized versions of the sequences. 896 

Randomization was performed within each 100 bp bin and in each exon or intron, respectively, 897 

in order to maintain nucleotide composition and therefore GC content. Positional distribution 898 

was calculated as log2FC of number of observed mappings divided by number of randomly 899 

expected mappings (log2FC(observed/expected)).  900 

pCRE coordinate overlap with CNS coordinates 901 

All 615 min-pCRE PWMs were mapped to the putative promoter region (1 kb upstream 902 

of TSS) of -Fe response genes (described above). The min-pCRE coordinates were then 903 

compared to the coordinates reported as conserved non-coding sequences (CNS) across nine 904 

species in the Brassicaceae family (Haudry et al., 2013) downloaded from the UCSC 905 

Genomics Bioinformatics website 906 

(http://mustang.biol.mcgill.ca:8885/download/A.thaliana/gff/AT_CNS.gff; Supplemental 907 

Table S6B). 908 

 909 

  910 
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Supplemental Material 911 

The following supporting material is available as three supplemental PDF files (1: 912 

Supplemental_Figures_S1-S7_Supplemental_Table_S1_Supplemental_literature; 2: 913 

Supplemental_Figure_S8; 3: Supplemental_Figure_S9), and as supplemental Excel 914 

spreadsheet (Supplemental_Table_S2-S7_spreadsheet). 915 

 916 

Supplemental Figure S1. Complete GO enrichment analysis of -Fe-responsive genes. 917 

Supplemental Figure S2. GO terms and -Fe GS gene enrichments of the defined co-918 

expression clusters containing up-/down-regulated genes, and mean similarity within 919 

designated superclusters of up-regulated and up-/down-regulated genes. 920 

Supplemental Figure S3. Co-expression cluster RF model performance of cluster category 921 

(GS-enriched and non-enriched) and cluster size. 922 

Supplemental Figure S4. Comparison of the pCRE abundance and importance in GS-923 

enriched clusters vs. non-enriched clusters and hierarchical clustering of freq-pCRE 924 

sequences. 925 

Supplemental Figure S5. Significance of sequence similarity for freq-pCRE from non-926 

enriched clusters and the best matching known TFBM. 927 

Supplemental Figure S6. Example of a non-linear regression curve to determine the minimum 928 

set of pCREs for a co-expression cluster. 929 

Supplemental Figure S7. High-resolution image of Figure 6. 930 

Supplemental Figure S8. Expression plots of all well-performing co-expression clusters. 931 

Supplemental Figure S9. Positional distribution plots of all 615 min-pCREs. 932 

Supplemental Table S1. Robust -Fe-responsive GS genes (FIT-dependent/FIT-933 

independent). 934 

Supplemental Table S2. Detailed information of all generated co-expression clusters: input 935 

expression data combinations, algorithm and parameters used for clustering, enrichment of 936 

GS genes, FIT-dependent/FIT-independent/both genes, F1 score, gene content, all identified 937 

pCREs, min-pCREs. 938 

Supplemental Table S3. List of all pCREs (n=5,639) identified in well-performing clusters (GS-939 

enriched and non-enriched). 940 

Supplemental Table S4. A: List of most relevant pCREs (freq-pCREs and min-pCREs) and 941 

their similarity to DAP-seq and CIS-BP TFBMs. B: DAP-seq and CIS-BP TFBMs used in this 942 

study. C: TF family 95th percentiles of within, between and random PCC thresholds determining 943 

the pCRE-TFBM similarity. 944 

Supplemental Table S5. Association of min-pCREs to FIT-dependent, FIT-independent or 945 

both cluster categories. 946 
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Supplemental Table S6. A: List of all 615 min-pCREs with total counts of GS-enriched 947 

clusters and genes having the min-pCRE. B: Overlap of min-pCRE coordinates with 948 

Brassicaceae conserved non-coding sequences (CNS). 949 

Supplemental Table S7. p- and q-values of complete GO enrichment analysis of -Fe-950 

responsive genes (Supplemental Figure S1). 951 
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 963 

Figure Legends 964 

Figure 1. -Fe pCRE identification workflow and transcriptomic data.  965 

A: pCRE identification workflow. B: Heatmap of enrichment (FET, q<0.05) of selected GO 966 

terms in genes that were significantly up- (red) or down-regulated (blue) (q<0.05) at ≥1 of 6 967 

time points in -Fe-treated roots of 6 d-old seedlings (Dinneny et al., 2008). Differential 968 

regulation was defined as log
2
 fold-change (log2FC) >1 or <-1 (treatment vs. control). GOs are 969 

sorted by category, and expression patterns of genes corresponding to Fe-related GOs are 970 

shown below the heatmap. Yellow genes indicate -Fe GS genes. C: Transcriptomic data 971 

combinations which were used for clustering of co-expressed genes. Gray filled boxes in 972 

columns depict (top) expression data used in the combination and (bottom) if up (up-regulated 973 

only) or up & down (up- and down-regulated) genes were included. 1(Dinneny et al., 2008), 974 

2(Kilian et al., 2007), 3(Goda et al., 2008), 4(Schmid et al., 2005), *Tested with (5a) and without 975 

(5b) genotoxic stress data, (5b) input only up-regulated genes. 976 

 977 

Figure 2. Characterization of the defined co-expression clusters by GO terms, -Fe GS 978 

gene content and FIT-dependent/FIT-independent gene content.  979 

A: Heatmap of GO similarity between co-expression clusters from k-means clustering (top, 980 

n=985 clusters) and GS gene correlation (PCC; bottom, n=238), containing up-regulated 981 
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genes (Figure 1C; up- and down-regulated genes: Supplemental Figure S2A). Clusters were 982 

grouped by hierarchical clustering and superclusters (A-F) were defined as groups of >20 983 

clusters that have a within-mean Jaccard Index significantly higher than the mean Jaccard 984 

Index of all clusters. Enriched GO terms shared by ≥75% (k-means) and ≥90% (PCC) of the 985 

clusters in each supercluster are shown (left). Co-expression clusters enriched for -Fe GS 986 

genes are designated (yellow, right). B: Proportions of all k-means (top left) and PCC (top 987 

right) co-expression clusters in which -Fe GS genes are significantly over-represented 988 

(yellow). Of those (bottom), the proportion enriched for FIT-dependent genes (FIT, blue), FIT-989 

independent genes (non-FIT, red) or for both (mixed, gray) was calculated. C: Proportion of 990 

FIT, non-FIT, and mixed clusters found using each expression data combination (as in Figure 991 

1C). 1: -Fe time course, 2: time course + root zones, 3: time course + abiotic stresses, 4: time 992 

course + hormone treatments, 5a: time course + abiotic stresses + hormones, 5b: as 5a, 993 

genotoxic stress deleted, 6: time course + abiotic stresses + developmental data. *PCC 994 

clusters only. All enrichment analyses: FET, q<0.05. 995 

 996 

Figure 3. Performance of -Fe response RF prediction models.  997 

A: F1 scores of all GS-enriched clusters (n=495). Inset: Proportions of well-performing 998 

(F1≥0.7) and poorly performing clusters among the GS-enriched clusters. B: F1 scores of all 999 

non-enriched clusters (n=1,240). Inset: Proportions of well-performing and poorly performing 1000 

clusters among the non-enriched clusters. C: Mean F1 score distributions of all GS-enriched 1001 

clusters (yellow) and non-enriched clusters (gray). Statistical analysis: Mann-Whitney U (**** 1002 

p<2.358e-09). D-F: Example GS-enriched co-expression clusters with good (D, E; cluster IDs: 1003 

493, 823) and bad (F; cluster ID: 1297) model performance. (Left) Expression (log
2
 fold-1004 

change: log2FC) profile of all genes in the co-expression cluster. (Center) Percent of times 1005 

across RF replicates each gene was correctly predicted as -Fe-responsive (true positive (TP); 1006 

black=100%, white=0%). (Right) pCREs sorted by importance rank (top ranked pCRE on the 1007 

left) with heatmap designating when pCRE was present (gray) or absent (white) in a gene’s 1008 

promoter. T: -Fe treatment time course. R: -Fe-treated root zones 1-4. F1 score: harmonic 1009 

mean of precision and recall, with 1=perfect prediction and 0.5=random guessing. Cluster IDs 1010 

and details: Supplemental Table S2. 1011 

 1012 

Figure 4. Analysis of pCREs predictive of -Fe co-expression clusters.  1013 

A: Proportion of GS-enriched (yellow) and non-enriched (gray) clusters in which each pCRE 1014 

(total n=5,639) was identified (y-axis) and mean importance rank (1=most important) of that 1015 

pCRE in those clusters (x-axis). Inset: Numbers of unique and shared pCREs of GS-enriched 1016 

and non-enriched cluster categories. Upper: all 5,639 pCREs. Lower: pCREs identified in >5% 1017 

of GS-enriched or non-enriched clusters (n=173; freq-pCREs). B: Frequency of normalized 1018 
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mean importance ranks across all pCREs in GS-enriched (yellow) and non-enriched (gray) 1019 

clusters. C: Cytoscape network of the 173 freq-pCREs based on sequence similarity, where 1020 

similar pCREs (nodes) are connected by edges representing pair-wise correlation (PCC) 1021 

distance  of freq-pCRE PWMs. Bold black edges: distance=0. Light gray edges: distance 1022 

≤0.22. Highly interconnected freq-pCREs were arranged in groups and numbered. 1023 

Hierarchical clustering representation of PCC distances: Supplemental Figure S5E.  Yellow 1024 

filled: freq-pCRE unique for GS-enriched clusters, gray filled: freq-pCRE unique for non-1025 

enriched clusters, not filled: shared freq-pCRE. D: PWMs of merged freq-pCREs from the 1026 

same group (as in 4C). 1027 

 1028 

Figure 5. Similarity of freq-pCREs to in vitro TFBMs.  1029 

A: Significance of sequence similarity for freq-pCREs from GS-enriched clusters and the best 1030 

matching known TFBM. Bars represent 95th percentile (PCC) significance thresholds for within 1031 

TF family (red, pCRE sequence is more similar to a specific TFBM than other TFBMs from the 1032 

same family), between TF families (light blue, pCRE sequence is more similar to a TFBM in a 1033 

TF family than TFBMs from other TF families), or random (dark blue, pCRE sequence is more 1034 

similar to a TFBM from a family than random 6-mers). Similarity of freq-pCREs from non-1035 

enriched clusters to TFBMs: Supplemental Figure S5. B: Proportion of TF family TFBMs 1036 

(representing freq-pCRE matches meeting at least “between” threshold) in GS-enriched 1037 

clusters (x-axis) and non-enriched clusters (y-axis). TFBM matches significantly over-1038 

represented (FET, q<0.05) in the GS-enriched or non-enriched cluster category are depicted 1039 

in red and marked with “X”. Dashed line marks theoretical position for TF family TFBMs with 1040 

the same proportion in both categories.  1041 

 1042 

Figure 6. Characteristics of the most informative pCREs (min-pCREs).  1043 

A: Proportion of GS-enriched co-expression clusters enriched for FIT-dependent genes (FIT, 1044 

blue), FIT-independent genes (non-FIT, red) or both (mixed, gray). B: Ternary plot including 1045 

min-pCREs identified in >3% (n=5) GS-enriched clusters. Position of the min-pCREs 1046 

corresponds to the normalized proportions of FIT, non-FIT, and mixed clusters in which the 1047 

min-pCRE was identified. Bubble size corresponds to the overall proportion of GS-enriched 1048 

clusters with min-pCRE. Labeled min-pCREs are shown in 6C, D or mentioned in the main 1049 

text. C: Positional bias of all (mean with standard deviation; top) and selected min-pCREs 1050 

(below) in the putative promoter region (1st column), all introns (In) and all exons (Ex) (2nd 1051 

column; mean with standard deviation), and in the putative non-coding region (3rd column). 1052 

1st and 3rd column: position distributions in all co-expression clusters with min-pCRE (gray 1053 

areas) with mean distribution (red line). TFBM matches (PCC) for each min-pCRE are shown 1054 

(4th column) and min-pCREs are sorted by TF family. log2(obs/exp): log2 of the number of 1055 
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observed (obs) min-pCRE occurrences divided by the number of min-pCRE occurrences in 1056 

randomized sequences (expected, exp). D: Genes which might be regulated by the selected 1057 

min-pCREs. Count: number of GS-enriched clusters in which the min-pCRE was identified and 1058 

which included the respective gene having the min-pCRE in its promoter. Dashed line: total 1059 

number of GS-enriched clusters with the min-pCRE. Genes in which the min-pCRE overlaps 1060 

with a CNS are designated with black bars. A high-resolution image is available as 1061 

Supplemental Figure S7. 1062 
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Figure 1. -Fe pCRE identification workflow and transcriptomic data.

A: pCRE identification workflow. B: Heatmap of enrichment (FET, q<0.05) of selected GO terms in genes that were

significantly up- (red) or down-regulated (blue) (q<0.05) at ≥1 of 6 time points in -Fe-treated roots of 6 d-old seedlings

(Dinneny et al., 2008). Differential regulation was defined as log2 fold-change (log2FC) >1 or <-1 (treatment vs. control).

GOs are sorted by category, and expression patterns of genes corresponding to Fe-related GOs are shown below the

heatmap. Yellow genes indicate -Fe GS genes. C: Transcriptomic data combinations which were used for clustering of

co-expressed genes. Gray filled boxes in columns depict (top) expression data used in the combination and (bottom) if

up (up-regulated only) or up & down (up- and down-regulated) genes were included. 1(Dinneny et al., 2008), 2(Kilian et

al., 2007), 3(Goda et al., 2008), 4(Schmid et al., 2005), *Tested with (5a) and without (5b) genotoxic stress data, (5b)

input only up-regulated genes.
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Figure 2

Figure 2. Characterization of the defined co-expression clusters by GO terms, -Fe GS gene content and FIT-

dependent/FIT-independent gene content.

A: Heatmap of GO similarity between co-expression clusters from k-means clustering (top, n=985 clusters) and GS gene

correlation (PCC; bottom, n=238), containing up-regulated genes (Figure 1C; up- and down-regulated genes:

Supplemental Figure S2A). Clusters were grouped by hierarchical clustering and superclusters (A-F) were defined as

groups of >20 clusters that have a within-mean Jaccard Index significantly higher than the mean Jaccard Index of all

clusters. Enriched GO terms shared by ≥75% (k-means) and ≥90% (PCC) of the clusters in each supercluster are

shown (left). Co-expression clusters enriched for -Fe GS genes are designated (yellow, right). B: Proportions of all k-

means (top left) and PCC (top right) co-expression clusters in which -Fe GS genes are significantly over-represented

(yellow). Of those (bottom), the proportion enriched for FIT-dependent genes (FIT, blue), FIT-independent genes (non-

FIT, red) or for both (mixed, gray) was calculated. C: Proportion of enrichment categories FIT, non-FIT, and mixed

clusters found using each expression data combination (as in Figure 1C). 1: -Fe time course, 2: time course + root

zones, 3: time course + abiotic stresses, 4: time course + hormone treatments, 5a: time course + abiotic stresses +

hormones, 5b: as 5a, genotoxic stress deleted, 6: time course + abiotic stresses + developmental data. *PCC clusters

only. All enrichment analyses: FET, q<0.05.
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Figure 3. Performance of -Fe response RF prediction models.

A: F1 scores of all GS-enriched clusters (n=495). Inset: Proportions of well-performing (F1≥0.7) and poorly performing

clusters among the GS-enriched clusters. B: F1 scores of all non-enriched clusters (n=1,240). Inset: Proportions of well-

performing and poorly performing clusters among the non-enriched clusters. C: Mean F1 score distributions of all GS-

enriched clusters (yellow) and non-enriched clusters (gray). Statistical analysis: Mann-Whitney U (**** p<2.358e-09). D-

F: Example GS-enriched co-expression clusters with good (D, E; cluster IDs: 493, 823) and bad (F; cluster ID: 1297)

model performance. (Left) Expression (log2 fold-change: log2FC) profile of all genes in the co-expression cluster.

(Center) Percent of times across RF replicates each gene was correctly predicted as -Fe-responsive (true positive (TP);

black=100%, white=0%). (Right) pCREs sorted by importance rank (top ranked pCRE on the left) with heatmap

designating when pCRE was present (gray) or absent (white) in a gene’s promoter. T: -Fe treatment time course. R: -Fe-

treated root zones 1-4. F1 score: harmonic mean of precision and recall, with 1=perfect prediction and 0.5=random

guessing. Cluster IDs and details: Supplemental Table S2.
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Figure 4. Analysis of pCREs predictive of -Fe co-expression clusters.

A: Proportion of GS-enriched (yellow) and non-enriched (gray) clusters in which each pCRE (total n=5,639) was

identified (y-axis) and mean importance rank (1=most important) of that pCRE in those clusters (x-axis). Inset: Numbers

of unique and shared pCREs of GS-enriched and non-enriched cluster categories. Upper: all 5,639 pCREs. Lower:

pCREs identified in >5% of GS-enriched or non-enriched clusters (n=173; freq-pCREs). B: Frequency of normalized

mean importance ranks across all pCREs in GS-enriched (yellow) and non-enriched (gray) clusters. C: Cytoscape

network of the 173 freq-pCREs based on sequence similarity, where similar pCREs (nodes) are connected by edges

representing pair-wise correlation (PCC) distance of freq-pCRE PWMs. Bold black edges: distance=0. Light gray edges:

distance ≤0.22. Highly interconnected freq-pCREs were arranged in groups and numbered. Hierarchical clustering

representation of PCC distances: Supplemental Figure S5E. Yellow filled: freq-pCRE unique for GS-enriched clusters,

gray filled: freq-pCRE unique for non-enriched clusters, not filled: shared freq-pCRE. D: PWMs of merged freq-pCREs

from the same group (as in 4C).
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Figure 5. Similarity of freq-pCREs to in vitro TFBMs.

A: Significance of sequence similarity for freq-pCREs from GS-enriched clusters and the best matching known TFBM.

Bars represent 95th percentile (PCC) significance thresholds for within TF family (red, pCRE sequence is more similar to

a specific TFBM than other TFBMs from the same family), between TF families (light blue, pCRE sequence is more

similar to a TFBM in a TF family than TFBMs from other TF families), or random (dark blue, pCRE sequence is more

similar to a TFBM from a family than random 6-mers). Similarity of freq-pCREs from non-enriched clusters to TFBMs:

Supplemental Figure S5. B: Proportion of TF family TFBMs (representing freq-pCRE matches meeting at least

“between” threshold) in GS-enriched clusters (x-axis) and non-enriched clusters (y-axis). TFBM matches significantly

over-represented (FET, q<0.05) in the GS-enriched or non-enriched cluster category are depicted in red and marked with

“X”. Dashed line marks theoretical position for TF family TFBMs with the same proportion in both categories.
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Figure 6. Characteristics of the most informative pCREs (min-pCREs).

A: Proportion of GS-enriched co-expression clusters enriched for FIT-dependent genes (FIT, blue), FIT-independent

genes (non-FIT, red) or both (mixed, gray). B: Ternary plot including min-pCREs identified in >3% (n=5) GS-enriched

clusters. Position of the min-pCREs corresponds to the normalized proportions of FIT, non-FIT, and mixed clusters in

which the min-pCRE was identified. Bubble size corresponds to the overall proportion of GS-enriched clusters with min-

pCRE. Labeled min-pCREs are shown in 6C, D or mentioned in the main text. C: Positional bias of all (mean with

standard deviation; top) and selected min-pCREs (below) in the putative promoter region (1st column), all introns (In)

and all exons (Ex) (2nd column; mean with standard deviation), and in the putative non-coding region (3rd column). 1st

and 3rd column: position distributions in all co-expression clusters with min-pCRE (gray areas) with mean distribution (red

line). TFBM matches (PCC) for each min-pCRE are shown (4th column) and min-pCREs are sorted by TF family.

log2(obs/exp): log2 of the number of observed (obs) min-pCRE occurrences divided by the number of min-pCRE

occurrences in randomized sequences (expected, exp). D: Genes which might be regulated by the selected min-pCREs.

Count: number of GS-enriched clusters in which the min-pCRE was identified and which included the respective gene

having the min-pCRE in its promoter. Dashed line: total number of GS-enriched clusters with the min-pCRE. Genes in

which the min-pCRE overlaps with a CNS are designated with black bars. A high-resolution image is available as

Supplemental Figure S7.
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