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Abstract1

The human gut microbiome is a complex ecosystem, in which hundreds of microbial species and2

metabolites coexist, in part due to an extensive network of cross-feeding interactions. However,3

both the large-scale trophic organization of this ecosystem, and its effects on the underlying4

metabolic flow, remain unexplored. Here, using a simplified model, we provide quantitative5

support for a multi-level trophic organization of the human gut microbiome, where microbes6

consume and secrete metabolites in multiple iterative steps. Using a manually-curated set of7

metabolic interactions between microbes, our model suggests about four trophic levels, each8

characterized by a high level-to-level metabolic transfer of byproducts. It also quantitatively9

predicts the typical metabolic environment of the gut (fecal metabolome) in approximate10

agreement with the real data. To understand the consequences of this trophic organization, we11

quantify the metabolic flow and biomass distribution, and explore patterns of microbial and12

metabolic diversity in different levels. The hierarchical trophic organization suggested by our13

model can help mechanistically establish causal links between the abundances of microbes and14

metabolites in the human gut.15

Introduction16

The human gut microbiome is a complex ecosystem with several hundreds of microbial species17

[1, 2] consuming, producing and exchanging hundreds of metabolites [3, 4, 5, 6, 7]. With18

the advent of high-throughput genomics and metabolomics techniques, it is now possible to19

simultaneously measure the levels of individual metabolites (the fecal metabolome), as well as20

the abundances of individual microbial species [8]. Quantitatively connecting these levels with21

each other, requires knowledge of the relationships between microbes and metabolites in their22

shared environment: who produces what, and who consumes what? [9, 10] In recent studies,23

information about these relationships for all of the common species and metabolites in the human24

gut has been gathered using both manual curation from published studies [6] and automated25

genome reconstruction methods [3]. This has laid the foundation for mechanistic models which26

would allow one to relate metabolome composition to microbiome composition [11, 12].27

More generally, the construction of mechanistic models has been hindered by the complexity28

of dynamical processes taking place in the human gut, which in addition to cross-feeding and29
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competition, includes differential spatial distribution and species motility, interactions of microbes30

with host immune system and bacteriophages, changes in activity of metabolic pathways in31

individual species in response to environmental parameters, etc. This complexity can be tackled32

on several distinct levels. For 2-3 species it is possible to construct a detailed dynamical model33

taking into account the spatial organization and flow of microbes and nutrients within the lower34

gut [13, 14], or optimizing the intracellular metabolic flows as well as competition for extracellular35

nutrients using dynamic flux balance analysis (dFBA) models [15, 4].36

For around 10 microbial species, and a comparable number of metabolites, it is possible37

to construct a consumer-resource model (CRM) taking into account microbial competition for38

nutrients [16], the generation of metabolic byproducts [17], and the different tolerance of species39

to various environmental factors like pH [14, 18]. Using the existing experimental data on40

consumption and production kinetics of different metabolites, it is possible to fit some (but not41

all) of around 80 parameters in such a model [19]. These models are also capable of incorporating42

cross-feeding interactions between microbial species, as well as community assembly processes43

[19, 20].44

However, modeling 100s of species and metabolites, typically present in an individual’s gut45

microbiome, requires thousands of parameters, which cannot be estimated from the current46

experimental data. Therefore, any such model must instead resort to a few “global parameters”47

that appropriately coarse-grain the relevant ecosystem dynamics. Here, we propose such a48

coarse-grained model of the human gut microbiome, hierarchically organized into several distinct49

trophic levels. In each level, metabolites are consumed by a subset of microbial species in the50

microbiome, and partially converted to microbial biomass. A remainder of these metabolites is51

excreted as metabolic byproducts, which then form the next level of metabolites. The metabolites52

in this level can then be consumed as nutrients by another subset of microbial species. Our model53

needs two global parameters: (1) the fraction of nutrients converted to metabolic byproducts54

by any microbial species, and (2) the number of trophic levels into which the ecosystem is55

hierarchically organized.56

While previous studies have suggested that such cross-feeding of metabolic byproducts is57

common in the microbiome, the extent to which this ecosystem is hierarchically organized has not58

been quantified. Our model suggests that both, the gut microbiome, and its relevant metabolites,59

are organized into roughly 4 trophic levels, which interconnect these microbes and metabolites60

in quantitative agreement with their experimentally measured levels. We also show that this61

model can predict the flow of biomass and metabolites through these trophic levels, quantify62

the relative contribution of the observed microbes and metabolites to these levels, and thereby63

describe the effective diversity at each level.64

Model and Results65

Multi-level trophic model of the human gut microbiome66

Our model aims to approximate the metabolic flow through the intricate cross-feeding network of67

microbes in the lower intestine (hereafter, “gut”) human individuals (figure 1A). This flow begins68

with metabolites entering the gut, which are subsequently consumed and processed by multiple69

microbial species. We assume that each microbial species grows by converting a certain fraction70

of its metabolic inputs (nutrients) to its biomass and secretes the rest as metabolic byproducts71

(figure 1B). We define the byproduct fraction, f , one of the two key parameters of our model, as72

the fraction of nutrients secreted as byproducts. The complementary biomass fraction, 1− f ,73

is the fraction of nutrient inputs converted to microbial biomass. The metabolic byproducts74
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Figure 1: Overview of the trophic model, its calibration and predictions. (A) Schematic
diagram showing the various steps in the trophic model, which uses fits the gut nutrient intake profile best
approximating the measured metagenome, and outputs a predicted metagenome (microbial abundances)
and metabolome. The experimentally measured metabolome is used to calibrate the number of trophic
levels, N` and byproduct fraction, f of the model. (B) “Zoomed-in” view of the trophic model from (A),
with different microbial species (red) and metabolites (blue) spread across the four trophic levels suggested
by the model. At each level, metabolites are consumed by microbial species, and converted partially
to their biomass, while the remainder is secreted as metabolic byproducts, which are nutrients for the
next trophic level. Metabolites that are left unconsumed across each level are assumed to eventually exit
the gut as part of the fecal metabolome, while the biomass accumulated by each species across all levels
contributes to the metagenome.

produced from the nutrients entering the gut, can be further consumed by some species in the75

microbiome, in turn generating a set of secondary metabolic byproducts. We call each step of76

this process of metabolite consumption and byproduct generation, a trophic level. Due to factors77

such as limited gut motility, and a finite length of the lower gut, we assume that this process only78

continues for a finite number of levels, N`, the second key parameter of our model. At the end of79

this process, metabolites left unconsumed after passing through N` trophic levels are assumed to80

leave the gut as a part of the feces (figure 1B).81

In order to quantitatively describe all the steps of this process, our model requires the82

following information:83

• The metabolic capabilities of different microbial species in the gut, i.e., which microbes can84

consume which metabolites, and secrete which others. For this, we used a manually curated85

database connecting 567 common human gut microbes to 235 gut-relevant metabolites they86

are capable of either consuming or producing as byproducts [6] (see Methods for details).87

• The nutrient intake to the gut, which is the first set of metabolites that are consumed by88

the microbiome. Since the levels of these metabolites in a given individual are generally89

unknown, we first curated a list of 19 metabolites likely to constitute the bulk of this90

nutrient intake, and subsequently fitted their levels to best describe the observed microbial91

abundances in the gut of each individual (see Methods). We collected such microbial92
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abundance data from various sources, in particular: 380 samples from the large-scale whole-93

genome sequencing (WGS) studies of healthy individuals (Human Microbiome Project94

(HMP) [1] and the MetaHIT consortium [2, 21]), 41 samples from a recent 16S rRNA study95

of 10 year old children in Thailand [22].96

• The kinetics of nutrient uptake and byproduct release, i.e., the rates we refer to as λ’s,97

at which different microbial species obtain and secrete different metabolites in the gut98

environment (see Methods for details of how we defined λ’s). Since this information is99

unknown for most of our microbes and metabolites, we made some simplifying assumptions.100

We assumed that, in a given level, when species consume the same metabolite, they101

receive it in proportion to their abundance in the microbiome. When secreting metabolic102

byproducts, we assumed equal splitting, such that every metabolite secreted by a given103

species was released in the same fraction. However, we later verified that the predictions of104

our model was relatively insensitive to the exact values of these parameters, by repeating105

our simulations with randomized values of these parameters (see figure S1).106

Simulating the trophic model107

Our model describes the transit of nutrients from the lower gut to the feces of a specific human108

individual. As the nutrients transit through the gut, the microbial species in the gut consume,109

digest and convert them to microbial biomass and metabolic byproducts. For a specific individual,110

our model comprises multiple iterative steps of metabolite consumption by microbes and the111

subsequent generation of metabolic byproducts, with each step constituting a trophic level. At112

each level, all metabolites produced in the previous level could be consumed by all microbial113

species detected in the specific individual’s gut. Note that at the first level, these metabolites114

were given by the nutrient intake to the gut, as described above. Any metabolite that could be115

consumed by multiple microbial species, was split across those species in proportion to their116

experimentally measured relative abundances (see Methods for details). Those metabolites that117

could not be consumed at any level were assumed to eventually exit the gut, and form part of the118

individual’s fecal metabolome. Upon metabolite consumption in any trophic level, we assumed119

that all microbial species that consumed these metabolites and converted a fraction (1− f) of120

the total consumed metabolites to their biomass. The remaining fraction, f (assumed fixed for121

all species) was converted to byproducts for the next level. Here, we assumed that each of the122

species produced all the byproducts it was capable of in equal amounts. After N` such iterative123

rounds (calibrated separately, see the next section), we assumed that this process ends. We124

added up all the biomass accumulated by each microbial species across all trophic levels as their125

total biomass, and added up all the unconsumed metabolite levels as the total fecal metabolome.126

Finally, we normalized, both the microbial biomass and metabolite amounts separately, to obtain127

the relative microbial abundances and relative metabolome profiles, respectively.128

Calibrating the key parameters of the model129

To calibrate the two key parameters of our model, f and N`, we used data from the 41 individuals130

from a recent 16S rRNA sequencing study of Thai children [22] for which both, 16S rRNA131

metagenomic profiles, as well as quantitative levels of 214 metabolites in the fecal metabolome,132

were available. We used these data specifically because they had simultaneously measured the133

metagenomes and fecal metabolomes with high accuracy, i.e., at the level of individual species and134

metabolites, which we required for calibration. In each individual we fitted the nutrient intakes135
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Figure 2: Calibration of the model. (A) Heatmap of the Pearson correlation between experimentally
measured and predicted metabolomes for different combinations of parameters f and N`. The plotted
value is the correlation coefficient averaged over 41 individuals in Ref. [22] (B) Comparison between the
experimentally observed bacterial abundances in a representative individual (y-axis) and their best fits
from our model (x-axis) with f = 0.9 and N` = 4. (C) Comparison between the experimentally observed
fecal metabolome (y-axis) and the predictions of our model (x-axis) with f = 0.9 and N` = 4 in the same
individual shown in panel (B) (Pearson correlation coefficient 0.68; P -value < 10−5).

of the 19 metabolites to best agree with experimental microbial abundances. A representative136

example comparing the predicted and measured bacterial abundances is shown in figure 2B. The137

Pearson correlation coefficient for data shown in this plot is 0.94, while in individual participants138

it ranged between 0.81± 0.17.139

We carried out these fits of microbial abundances for each of the 41 individuals studied in140

Ref. [22] for a broad range of two parameters of our model - the byproduct fraction f ranging141

between 0.1 and 0.99 and the number of trophic levels N` between 2 and 10. For each individual142

and each pair of parameters f and N` we used our model to predict the fecal metabolome143

profile. This predicted metabolome was subsequently compared to the experimental data of144

Ref. [22] measured in the same individual. Around 19 of our predicted metabolites (variable145

across individuals) were actually among the ones experimentally measured in Ref. [22]. We146

quantified the quality of our predictions using the Pearson correlation coefficient between the147

predicted and experimentally measured metabolomes, and it’s associated P -value. The model148

with parameters f = 0.9 and N` = 4 best agreed with the experimental metabolome data, among149

all the values we tried (Pearson correlation 0.7± 0.2; median P -value 8× 10−4; see figure 2A).150

To account for the fact that we used two adjustable parameters in our model (f and N`, we have151

corrected the P -values appropriately (see Methods for details). We found that even after this152

correction the median P -value ∼ 10−3 is well below the commonly used significance threshold153

of 0.05. To ensure that our calibration was not sensitive to this specific measure of fit quality,154

we also calculated an alternative measure — that of a logarithmic accuracy — which quantifies155

the average order-of-magnitude error in our predicted fecal metabolome, when compared with156

the experimentally measured one (see Methods for details). We found that the best logarithmic157

accuracy was still achieved in a model with f = 0.9 and N` = 4 (the mean error is 0.8 orders158

of magnitude; see figure S4). Hence, we used this combination of parameters in all subsequent159
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simulations of our model.160

An example of the agreement between predicted and experimentally observed fecal metabolome161

in a single individual (the same one as in figure 2B) is shown in figure 2C (Pearson correlation162

coefficient 0.89; the adjusted P -value < 10−6). Note that, while the agreement between the163

experimentally observed and predicted microbial abundances shown in figure 2B is the outcome of164

our fitting the levels of 19 intake metabolites, the fecal metabolome is an independent prediction165

of our model. It naturally emerges from the trophic organization of the metabolic flow and166

agrees well with the experimentally observed metabolome. To test the quality of this independent167

prediction, and to show its dependence on metabolic interactions, we repeated our simulations168

using a randomly shuffled set of microbial metabolic capabilities (i.e., we independently shuffled169

consumption and secretion abilities of individual microbial species; see Methods for details).170

Figure S3 shows the model results generated by this shuffled microbial metabolic capabilities. We171

found that the model now generated a much worse correlation coefficient, and more importantly, a172

non-significant median P -value 0.05 which did not clear the commonly used threshold of P < 0.05173

(for example, the individual in figure 2B–C has Pearson correlation 0.32; P -value = 0.19; see174

figure S3). For all individuals, the Pearson correlation is 0.44 ± 0.2 and the median of their175

corresponded P -value 0.046. Taken together, our simplified model supports the organization of176

the human gut microbiome into roughly four trophic levels with byproduct fraction around 0.9.177

To apply our model to broader, more representative and better-studied samples of the human178

gut microbiome, we carried over the results of this calibration to another dataset. This dataset179

(discussed in the next section) consisted of a cohort of 380 human individuals from the Human180

Microbiome Project (HMP) and the MetaHIT study. We carried over this calibration for three181

reasons: (1) the lack of availability of simultaneous metabolome measurements for the latter182

dataset; (2) the fact that both datasets are derived from the human gut; and (3) the similarity183

in the level of metagenome variability in both datasets.184

Predictions of the multi-level trophic model185

Metabolite and biomass flow through trophic levels186

With a well-calibrated and tested model we are now in a position to apply it to a broader set187

of human microbiome data. To this end we chose data for 380 healthy adult individuals from188

several countries (Europe [2], USA [1], and China [21]). For each individual, we used our model189

to predict its metabolome (that has not been measured experimentally) and quantified the flow190

of nutrients (or metabolic activity) through 4 trophic levels in our model averaged over these191

individuals.192

Figure 3A shows the cascading nature of this flow: metabolites enter the gut as nutrient193

intake shown as the leftmost turquoise bar in figure 3A. Roughly, a fraction 1 − f = 0.1 of194

this nutrient intake is converted into microbial biomass (red bar), while the remaining fraction195

f = 0.9 is excreted as metabolic byproducts. Some fraction of these metabolic byproducts (blue196

bar) cannot be consumed by any of the microbes in individuals microbiome and hence ultimately197

it leaves the individual as part of their fecal metabolome. The metabolic byproducts that can be198

consumed by the microbiome (turquoise bar) serve as the nutrient intake for microbes in the199

next level (i.e., level 3). This scenario repeats itself over the next levels until the level 4, beyond200

which we assume all the byproducts enter the fecal metabolome. Note that, even though some of201

these byproducts can be consumed by gut microbes, our previous calibration (figure 2A) suggests202

that this does not happen. We believe this may be due to the finite time of flow of nutrients203

through the gut. Figure 3B shows the normalized contributions of the nutrient intake to microbial204
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Figure 3: Metabolite and biomass flow through the levels. (A) Cascading nature of nutrient
flow across trophic levels: nutrient intake to the gut (the leftmost turquoise bar) is gradually converted
into microbial biomass (red bars in each level) and metabolic byproducts (turquoise bars in each level).
Some fraction of these byproducts (blue bars in each level) cannot be consumed by the microbiome and
hence remains further unprocessed until it leaves an individual as their fecal metabolome. The metabolic
byproducts of each level (turquoise bars) serve as the nutrient intake for microbes in the next level. The
process ends at level 4 where all byproducts remain unconsumed thereby enter the fecal metabolome. (B)
Normalized contribution of of the nutrient intake to microbial biomass (red) and fecal metabolome (blue)
split across levels 2 to 4. Dashed lines show that consumable metabolites generated at a previous level
serve as metabolic inputs to the next level.

biomass (red) and fecal metabolome (blue) split across trophic levels. We observe a contrasting205

pattern across levels, with the contribution to microbial biomass decreasing along levels, whereas206

the fraction of unused metabolites (contribution to the fecal metabolome) increases. It is also207

worth noting that the same microbial and metabolic species get contributions from multiple208

trophic levels, i.e., the same microbes that consume nutrients and excrete byproducts in earlier209

levels can also grow on metabolites generated in later levels. Thus, even though the dominant210

contribution to a species’ biomass is typically derived from a specific trophic level, species can211

grow by consuming metabolites from multiple levels.212

Quantifying diversity across trophic levels213

The diversity of microbial communities can be separately defined both phylogenetically and214

functionally. Phylogenetic diversity counts the number of abundant microbial species inferred215

from the metagenomic profile. On the other hand, functional diversity quantifies the variety216

of collective metabolic activities of these species, which in our case could be inferred from the217

metabolome profile. Our model allows to quantify both types of diversity on a level-by-level218

basis. Instead of just calculating the presence or absence of microbial species or metabolites at219

each level, we weighed each microbe or metabolite by their relative contribution to the metabolic220

activity at that trophic level. At each level, we calculated the effective α-, β- and γ-diversity,221

separately for microbes and metabolites (see Methods for details).222

Figure 4 shows the effective α-, β- and γ- diversity for microbes (grouped at the species223

and genus levels) and metabolites, averaged over our 380 healthy individuals. The microbes224

first appear in the second trophic level feeding off the nutrient intake metabolites in the first225

level. We found that the α-diversity (the average number of abundant entities weighted by their226

contribution to each level) systematically increases with the level number for both microbes227
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Figure 4: Metabolite and microbial diversity at different levels. Effective (A–C) α-diversity,
(D–F) β-diversity, (G–I) γ-diversity in microbial species (A, D, G), microbial genera (B, E, H), and
metabolites (C, F, I) plotted as a function of trophic level (1–4) and averaged across 380 individuals.

and metabolites. There is no clear trend in the γ-diversity of microbes grouped at the species228

level (the “pan-microbiome” diversity, i.e., the number of abundant species in the combined229

metagenomes of 380 individuals).230

Finally the beta-diversity of microbial species, defined as the ratio between γ− and α-diversity231

is the highest (∼ 4) in the first level, while being considerably lower (∼ 2.5) in the next two232

levels. The β-diversity addresses the following important question: how variable are the abundant233

species between individuals?234

While we found that the β-diversity of microbial species could be as large as 4 (figure 4),235

when we grouped organisms by their genus, β diversity decreased down to ∼ 2 across all levels236

(figure 4E). This drop in β-diversity was the most pronounced in the uppermost trophic level.237

The overall reduction of β-diversity shown in figure 4E relative to figure 4D suggests that the238

chief driver of species variability in the gut microbiome is within-genus competition. Such a239

pattern has previously been explained by a “lottery-like” process of microbial competition within240

the gut [23].241

We also quantified the diversity of metabolites across 4 trophic levels. We found that the β242

diversity of metabolites was the highest in the uppermost level of nutrients (∼ 2) and lower in243

the next three levels (∼ 1). While this declining trend was similar to that observed for microbial244

diversity, surprisingly, the value of β diversity for nutrients was much smaller than for microbes245

(about 2.5 times lower across all levels). This suggests the picture of functional stability — in246

spite of taxonomic variability — in all trophic levels of the human gut microbiome, namely247

that even though the species composition of the microbiome can be quite different for different248

individuals, their metabolic function is quite similar. These results supplement similar findings of249

the HMP project [1] by breaking them up into trophic levels and by using metabolome diversity250

instead of metabolic pathways diversity to quantify the extent of functional similarity.251
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Discussion252

Above we introduced and studied a mechanistic, consumer-resource model of the human gut253

microbiome quantifying the flow of metabolites and the gradual building up of microbial biomass254

across several trophic levels. What distinguishes our model is its ability to simultaneously capture255

the metabolic activities of hundreds of species consuming and producing hundreds of metabolites.256

Using only the metabolic capabilities — who eats what, and makes what — of different species in257

the microbiome, we uncovered roughly four trophic levels in the human gut microbiome. At each258

of these levels, some microbes consume nutrients, and convert them partially to their biomass,259

while the remainder gets secreted as metabolic byproducts. These metabolic byproducts can260

then serve as nutrients for microbes in the next trophic level.261

Understanding such a trophic organization of microbial ecosystems is important because it262

helps identify causal relationships between microbes and metabolites at two consecutive trophic263

levels and helps to separate them from purely correlative connections, either at the same or at264

more distant levels. Thus it extends the previously introduced concept of a “microbial metabolic265

influence network” [6] by highlighting its hierarchical structure in which species/metabolites266

assigned to higher trophic levels could affect a large number of species/metabolites located267

downstream from them.268

The concept of trophic levels has been widely used in macro-ecosystems to make sense of flow269

of nutrients and energy in large food webs [24, 25, 26], but it has only received limited attention270

in microbial ecosystems, one example being ref. [27]. There is no absolute consensus definition271

of a trophic level with several interpretations discussed in Refs. [28, 29, 30]. However, all of272

these definitions agree with each other on the following two criteria that the trophic structure of273

an ecosystem typically satisfies: (1) there is explicit level-to-level conversion and flow of energy274

(and biomass), taking place in several discrete steps; and (2) these steps are temporally staged,275

because the conversion process at every level takes a finite amount of time. Here we define276

a trophic level as a discrete step in the metabolic conversion of nutrients after it enters the277

lower gut. Each such step involves multiple microbial species generating byproducts for the278

next conversion step. Thus, according to our definition, the same species and metabolite can be279

present at more than one trophic level. Furthermore, because of the finite motility in the human280

gut, the metabolic activity at each of our trophic levels would tend to be spatially separated281

with that in level 1 taking place near the entrance to the lower gut and that in level 4, near the282

end of the gut. This definition of trophic levels also results in an imperfect hierarchical structure283

of the food web in which some species or metabolites linking non-consecutive trophic levels (see284

Ref. [29] for similar processes in macroscopic ecosystems). Also note that spatially separated285

microbial compositions, corresponding to the trophic levels in our model, could in principle be286

tested in artificial gut systems (such as in Refs. [31, 32]).287

Further, there are several well-known ecological factors that constrain the number of trophic288

levels in an ecosystem, such as ecological energetics and population dynamics (see ref. [28] for a289

discussion). Our work introduces additional factors that can limit the number of trophic levels290

in the human gut microbiome — namely the limited length and finite motility of the gut.291

The human gut microbiome is notorious for several complex and interlinked metabolic cross-292

feeding interactions between its resident microbial species [6, 33]. Even though we exploit this293

aspect of the gut’s microbial ecology to study its trophic organization, we wish to highlight294

that we do not confine a metabolite or microbial species to participate strictly at one trophic295

level. We can nevertheless tentatively assign metabolites and microbial species to the level to296

which they contribute the most. We find that doing so results in trophic level assignments297

that are consistent with the expectations of the rest of the gut microbial literature [34]; see298
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figure S6 for a representative example of a trophic network. Specifically, we find that various299

polysaccharide-degrading species from the genera Prevotella and Bacteroides tend to be assigned300

to the first microbial layer, leading to the production of acetate [34]. This acetate is, in turn,301

the major substrate for butyrate-producing bacteria such as various species of Eubacterium302

and Roseburia, as well as the well-known Faecalibacterium prausnitzii ; our tentative assignment303

procedure places these species in the subsequent layers of the trophic network. The butyrate and304

valerate secreted by these species consequently end up, and are assigned to, metabolite trophic305

levels 3 and 4. Similarly, various sulfate-reducing species (e.g., Desulfovibrio piger, Bilophila306

wadsworthia) and acetogenic bacteria (e.g., Blautia hansenii), as well as their byproducts, are307

typically assigned to the lower trophic levels by our model. One can also see that, towards the308

lower trophic levels metabolites are either very simple and energy-poor, like CO2, H2, H2S, or are309

those that cannot be consumed by any gut microbial species, such as various amines, short-chain310

fatty acids (SCFAs), and secondary bile acids. We expect these latter set of metabolites to311

therefore be present in an individual’s fecal metabolome.312

By assuming such a fluid multi-level trophic organization, our model is able to independently313

predict the fecal metabolome of individual humans, in quantitative agreement with experimental314

measurements, comparable to or better than the state of the art. For example, Ref. [12] used315

intra-cellular metabolic flux balance analysis (FBA) to achieve a Pearson correlation coefficient316

0.4 between the predicted and a representative experimentally measured fecal metabolome. In317

contrast, our model achieved the Pearson correlation of 0.68 in individualized predictions using318

only two ecologically meaningful parameters. This suggests that incorporating ecological infor-319

mation about the human gut microbiome can generate mechanistically-grounded and internally320

consistent fecal metabolome predictions given information about an individual’s metagenome321

(species abundance profile).322

Our model also allows us to quantify the diversity of both species and metabolites contributing323

to different trophic levels. One conclusion we made was that the functional convergence of the324

microbiome holds roughly equally across all trophic levels. Indeed, at each level we observed325

the microbial diversity across different individuals was considerably higher than their metabolic326

diversity. Our model also provides additional support to the “lottery” scenario described in Ref.327

[23], especially in the first trophic level. According to this scenario, there are multiple species328

nearly equally capable of occupying a certain ecological niche, which in our model corresponds329

to the set of nutrients they consume and secrete as byproducts. The first species to occupy this330

niche prevents equivalent microbes from entering it. This is reflected in a high β-diversity of331

microbial species combined with a low to moderate β-diversity of microbial genera to which they332

belong and low β-diversity of their metabolic byproducts.333

Our model is focused on studying the effects of cross-feeding and competition of different334

microbes for their nutrients. Thereby it ignores a number of important factors known to impact335

the composition of the human gut microbiome. These include interactions with host and its336

immune system [35] as well as with viruses [36], and environmental parameters other than337

nutrients, such as pH [14], spatial organization [37], etc. Instead, our model uses only two338

adjustable parameters: the byproduct fraction f and the number of trophic levels N`, assumed339

to be common to all species. This very small number of parameters has been a conscious choice340

on our part. We are perfectly aware that species differ from each other in their byproduct ratios,341

and that the metabolic flows are not equally split among multiple byproducts. This can be342

easily captured by a variant of our model in which different nutrient inputs and and byproduct343

outputs of a given microbial species are characterized by different kinetic rates. However, this344

would immediately increase the number of parameters from 2 to more than 3, 600. To calibrate a345

model with such a huge number of parameters one needs many more experimental data than346

this material for any purpose without crediting the original authors. 
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt 

The copyright holder has placed this preprint (whichthis version posted August 21, 2019. ; https://doi.org/10.1101/603365doi: bioRxiv preprint 

https://doi.org/10.1101/603365


11

we have access to right now. However, we tested the sensitivity of our model to variation in347

these parameters by repeating our simulations for 100 random sets of nutrient kinetic uptake348

and byproduct release rates (λ’s in our model), and found that this did not qualitatively change349

our central result (i.e., that the human gut microbiome is composed of roughly N` = 4 trophic350

levels with a byproduct fraction f = 0.9). Surprisingly, our metabolome predictions were also351

relatively insensitive with respect to varying these parameters (Figure S1). The exact nature352

of the robustness of these metabolome predictions is beyond the scope of this paper, and the353

subject of future work.354

Methods355

Obtaining data for microbial metabolic capabilities356

For information about the metabolic capabilities of human gut microbes, we adopted a recently357

published manually-curated database, NJS16, which includes such data for 570 common gut358

microbial species and 244 relevant metabolites from Ref. [6]. This database recorded, for each359

microbial species, which metabolites each of the species could consume, and which they secreted360

as byproducts. Since we were interested in those metabolites that could be used for microbial361

growth, we removed metabolites such as ions (e.g., Na+, Ca+) from NJS16. Moreover, we362

constrained our analyses to microbes only, and therefore removed the 3 types of human cells from363

NJS16. This left us with a database with 567 microbes, 235 metabolites and 4,248 interactions364

connecting these microbes with corresponding metabolites (see table S1 for the complete table of365

interactions).366

Obtaining metagenomic and metabolomic data367

To calibrate the key parameters of our model, we used a previously published dataset, namely a368

16S rRNA sequencing study of 41 human individuals from rural and urban areas in Thailand369

[22]. From these data, we collected the reported 16S rRNA OTU abundances as well as their370

corresponding taxonomy. We explicitly removed all OTUs that did not have an assigned species-371

level taxonomy. The remaining OTUs explained roughly 71%(±15%) of the bacterial abundances372

per sample.373

We then mapped these species names to those listed in the NJS16 database. We found an374

exact match for 110 species out of 208 in this table. In order to improve the species coverage from375

the abundance data, we manually mapped the remaining species in the following manner. For376

those genera in NJS16, whose member species had identical metabolic capabilities, we assumed377

that the capabilities of other, unmapped species from these genera were the same as these species.378

For several well-studied bacterial genera, such as Bacteroides, we determined a “core” set of379

metabolic capabilities (i.e., those metabolites that could either be consumed or secreted by all380

species in that genus), and assigned them to all unmapped species in that genus (i.e., those with381

known abundances, but otherwise understudied metabolic capabilities in NJS16). This allowed382

us to map an additional 20 microbial species from the abundance data, and incorporate into our383

model. Note that we did this additional mapping, only for those genera, where species metabolic384

capabilities were identical.385

To quantify the metabolome levels in each individual, we used the available quantitative386

metabolome profiles (obtained via from CE-TOF MS) corresponding to the 41 individuals whose387

metagenomic samples we had. Here, we mapped the reported metabolites to our database of388

metabolic capabilities using KEGG identifiers, which revealed 84 such measured metabolites.389
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To make predictions about metabolic flow and effective diversity from our model, we used390

additional metagenomic datasets, namely those from the Human Microbiome Project (HMP) [1]391

and MetaHIT [2, 21], for which we had microbial abundances, but no fecal metabolome. This392

resulted in an additional 380 human individuals, for which we obtained tables of MetaPhlAn2393

microbial abundances, and mapped species names to those in NJS16 using the same procedure394

described above. Here, out of a total of 532 microbial species detected over these data, we could395

map and incorporate 316 species. Of these, 207 were mapped through an exact taxonomic match,396

and 109 by a genus-capability match. These incorporated species covered, on average, 90% of397

the total microbial abundance in each individual sample.398

Determining the components of the nutrient intake to the gut399

The inputs of our model are the experimentally measured relative abundances of microbial400

species in each individual, which are known (and described above), and the levels of various401

nutrients reaching their lower gut, which we fit using the model. Note that we always used402

the experimentally measured relative microbial abundances, which simplified calculations and403

made the model easy to run. This also removed the model’s dependence on the initial relative404

abundances, and the need for a new set of parameters to represent them. Moreover, this405

assumption is valid and self-consistent; our model’s calculated abundances are very close to the406

experimentally observed abundances (see figure 2B). This is discussed in greater detail in the407

next section. For simplicity, we did not explicitly include the various polysaccharides (dietary408

fibers, starch, etc.) known to constitute the bulk of an individual’s diet. Instead, we chose not to409

include the polysaccharides themselves, but instead use their breakdown products as the direct410

nutrient intake to the gut. The reason for this is our limited quantitative understanding of the411

processes by which these polysachharides are converted to these breakdown products, e.g., the412

levels of extracellular enzymes, variability in their composition (their lability), etc. This curated413

nutrient intake consisted of 19 metabolites, such as arabinose, raffinose, and xylose (see table S2414

for the complete list of metabolites).415

Constructing and validating the trophic model416

Our model incorporates a set of observed microbial species abundances and the known metabolic417

cross-feeding interactions between these species, to calculate and predict both the step-wise418

metabolic flow through the lower gut, and the resulting fecal metabolome. The model does this419

on an individual-to-individual basis. We started simulating the model with the various levels of420

nutrients entering the lower gut, represented by the 19-dimensional vector ~cnut. Each element of421

~cnut, say cnut,i represents the amount of one of the 19 metabolites entering the lower gut of that422

individual. We inferred these amounts through a fitting procedure described in the next section.423

Throughout this description, we use the subscript i to refer to metabolites, and α to refer to424

microbial species.425

In the first trophic level, we calculated how these nutrients entering the gut were consumed426

by the gut microbiome and converted to microbial biomass, ~B and metabolic byproducts, ~clayer.427

For this, we calculated the relative increase in microbial biomass for each species, α, as follows:428

Bα = (1− f) ·Ain · ~cnut, (1)

where (1 − f) represents the fraction of consumed metabolites converted to biomass, and f429

represents the fraction of input nutrients converted to metabolic byproducts. Ain is a matrix430

which represents how each species takes up and consumes the nutrients it is capable of. Each431

this material for any purpose without crediting the original authors. 
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt 

The copyright holder has placed this preprint (whichthis version posted August 21, 2019. ; https://doi.org/10.1101/603365doi: bioRxiv preprint 

https://doi.org/10.1101/603365


13

term of this matrix, (Ain)α,i was set to zero if species α was incapable of consuming metabolite432

i as a nutrient (using the set of microbial metabolic capabilities in table S1). If species α was433

instead capable of consuming metabolite i as a nutrient, then (Ain)α,i was set as follows:434

(Ain)α,i = κiλα,iB
exp
α . (2)

Here, λα,i represents the rate at which species α takes up nutrient i, Bexp
α is the experimentally435

measured abundance of strain α, and κi is a constant to normalize the relative microbial436

abundances of species capable of consuming nutrient i to one. Throughout the manuscript, we437

set λα,i = 1 for all values of α and i; this is because we lacked knowledge of the precise rates438

at which each species takes up different nutrients, and had insufficient data about microbial439

growth to fit them using our model. To verify that this assumption did not significantly affect440

the predictions of our model, we repeated our metabolome predictions 100 times by assigning441

each value of λα,i randomly, chosen from a uniform distribution between 0 and 1 (see figure S1).442

After calculating the contribution of nutrient consumption to microbial biomass, we computed443

the relative levels of the first level of metabolic byproducts produced by them, as follows:444

c1,i = fAoutAin · ~cnut, (3)

where the 1 indicates that we were calculating the first layer of byproducts, and i, each metabolite445

which could be secreted as a byproduct. Aout is matrix which represents which byproduct each446

species could secrete, and in what amount. Each term of this matrix (Aout)i,α was set to zero447

if species α could not secrete metabolite i as a byproduct (using the interactions in NJS16448

described previously; see table S1). If species α was instead capable of secreting metabolite i as449

a byproduct, then (Aout)i,α was set as follows:450

(Aout)i,α =
1

(Nout)α
, (4)

where (Nout)α is the number of byproducts that species α was capable of secreting.451

In the second trophic level (and all subsequent levels), we calculated how the byproducts452

secreted by the microbes in the previous step were consumed by the gut microbiome and453

converted to further biomass and byproducts. After N` such steps, we calculated the final454

microbial abundances, ~B, and the accumulated metabolic byproducts, ~cmetabolome. We would later455

compare these with the individual’s experimentally measured metagenome and fecal metabolome,456

respectively. The final microbial abundances, ~B, were calculated as follows:457

Bα =

N∑̀
`=1

(1− f)` · f `−1 ·Ain · (AoutAin)`−1 · ~cnut. (5)

Here, we chose the appropriate number of trophic levels, N` and the byproduct fraction, f , by458

comparing the model’s predicted fecal metabolome with the individual’s experimentally measured459

metabolome. The number of levels and byproduct fraction that best matched the experimentally460

observed metabolomes, averaged over all individuals, were the ones that were considered to best461

represent their gut microbiome. To measure the best match, we used two different measures:462

(1) the Pearson correlation coefficient between the predicted and experimentally measured463

fecal metabolomes (see figure 2A), and (2) a logarithmic accuracy, i.e., the average difference464

between the log-transformed predicted and observed metabolome levels (see figure S2), i.e.,465

1
19

∑19
i=1 |log10(pi)− log10(mi)|, where mi is the experimentally measured metabolome level of466

metabolite i, and pi is the predicted metabolome level of metabolite i, calculated by summing467
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up the levels of all unused metabolites. Specifically, at each level, we calculated the byproducts468

similar to the first level (see equation (3)), as follows:469

~c` = f `(AoutAin)`−1 · ~cnut. (6)

We split the byproducts at each level, ~c`, into two parts: a consumable part, ~c con
` and an470

unconsumable part, ~c uncon
` . While the consumable part of the byproducts was available to the471

next trophic level of microbial species, the unconsumable part was composed of all the byproducts472

which could not be consumed by any microbial species in the individual’s gut microbiome (i.e.,473

it satisfied Ain~c
uncon
` = ~0). The former, consumable part was obtained by subtracting the474

unconsumable part from the generated byproducts at each level, i.e., ~c con
` = ~c` − ~c uncon

` . Finally,475

we calculated the predicted metabolome, ~M , by adding up the unconsumable byproducts from476

all previous levels with all the byproducts from the final trophic level, as follows:477

~M = ~cN`
+

N`−1∑
`=1

~c uncon
` . (7)

Note that while the Pearson correlation (and its associated P -value) give an indication of the478

similarity in the trends predicted by our model with the experimentally observed metabolome,479

the logarithmic accuracy actually calculates the average error (measured in orders of magnitude)480

between the predicted and experimentally observed metabolomes. In both cases, we used the481

log-transformed values because we were interested in comparing the quality of our predictions482

with the experimental measurements at the level of resolution of an order of magnitude. This483

avoided overfitting in the model. Moreover, note that the nutrient input to the model (which484

we fit; see next section) resulted in a predicted set of microbial abundances, ~B (obtained from485

equation (5)) that were very close to the experimentally observed abundances. This allowed us486

to simplify our calculation; we used the experimentally measured microbial abundances instead487

of a more complicated, step-wise calculation in the sum of equation (5).488

For each metabolome correlation coefficient that we calculated, we also corrected its associated489

P -value, in order to account for the two adjustable parameters in our model. We did this by490

adjusting (1) t-statistic: the adjusted t-statistic is obtained by dividing the original t-statistic491

by
√

n−2−p
n−2 , where n was the number of metabolites (or points) that were used to measure the492

correlation, and p was the number of adjustable model parameters (in our case, p = 2); (2) t-test:493

typically the one-tailed t-test with degree of freedom n− 2 is used to compute of P -value for the494

Pearson correlation coefficient. Here the one-tailed t-test with degree of freedom n− 2− p is495

used to account for adjustable model parameters.496

Fitting and inferring the nutrient intake to the gut497

Simulating the model required us to know the nutrient intake to the gut, for which there are498

no available experimental measurements. Therefore, we inferred the amounts of these 19 intake499

metabolites by fitting the microbial abundances predicted by our model with those measured from500

each individual’s microbiome. We used a nonlinear optimization technique for this (implemented501

as lsqnonlin in MATLAB R2018a, Mathworks Inc.). We initially chose a random set of nutrient502

inputs, each chosen randomly from a uniform distribution between 0 and 1, and normalized so503

that all nutrient inputs summed up to one. For this random set of nutrient inputs, we calculated504

the predicted microbial abundances using equation (5). We then calculated the error in this505

prediction, by using the log-transformed differences between the predicted and experimentally506
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measured microbial abundances, i.e., 1
S

∑S
α=1 |log10(pα)− log10(mα)|, where S is the number507

of microbial species with non-zero abundances in the individual, pα is the predicted relative508

abundance of species α, and mα is the experimentally measured abdunace of species α. We509

then let the nonlinear optimization routine vary and choose that set of nutrient inputs, which510

minimized this error. We assumed that this set of nutrient inputs, which best explained the511

observed microbial abundances, given the microbial cross-feeding interactions, as the nutrient512

intake to the lower gut, or first trophic level, of that individual. Note that this is only step where513

we perform fitting in the model. All other subsequent steps, especially the prediction of the514

fecal metabolome, is an independent prediction from the model. Typically, we fit 19 metabolite515

amounts for each human individual, who had roughly 80 microbial species.516

Shuffling microbial metabolic capabilities to test model predictions517

To test how good our model’s gut metagenome and fecal metabolome predictions were against518

a null, or random, expectation, we repeated our simulations using a randomly shuffled set of519

microbial metabolic capabilities. For each individual microbial species, we picked one metabolite520

that they either could consume randomly, and swapped it with a metabolite that could be521

consumed by another microbial species. We also did this separately and independently with522

metabolites that they could secrete. Such swaps ensured that each microbial species could still523

consume and secrete the same number of metabolites as in the original dataset, but shuffled all524

the ecologically relevant metabolic relationships between species and metabolites. The swapping525

is performed three times as many the number of edges in the network to guarantee enough526

randomness. At the end of several rounds of swapping such relationships, we repeated our model’s527

simulations exactly as described above, except with this shuffled set of microbial metabolic528

capabilities.529

Calculating level-by-level diversity530

To quantify the diversity of microbes and metabolites at each trophic level across the 380
individuals we studied, we used three measures popular in the ecosystems literature: namely
the α-, β- and γ- diversity [38, 39, 40]. For each individual, we calculated the α-diversity of
microbes and metabolites on each of the trophic levels. For this we first quantified the relative
contributions of a given level to microbial abundances, and separately to the fecal metabolome
profile. The contribution of a given trophic level ` to the relative abundance of a species
(microbial or, separately, metabolic) i in a specific individual j is given by pi(`, j) normalized by∑S

i=1 pi(`, j) = 1. The α-diversity

Dα(`) =
1

〈
∑S

i=1 pi(`, j)
2〉j

,

where 〈·〉j represents taking the average across 380 individuals used in our analysis.531

Across all individuals, we calculated the γ-diversity of microbes and metabolites in their gut,532

which quantified the “global” diversity across all individuals, as:533

Dγ(`) =
1∑S

i=1 pi(`)
2
,

where pi(`) = 〈pi(`, j)〉j is the mean relative abundance of species (or metabolite) i at the trophic534

level ` across all individuals used in our analysis.535
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Finally, to quantify the between-individual variability in microbial and metabolite diversity,536

we calculated the overall β-diversity, which is the ratio of the global to local diversity, as:537

Dβ(`) =
Dγ(`)

Dα(`)
.

Code availability538

All computer code and extracted data files used in this study are available at the following URL:539

https://github.com/eltanin4/trophic_gut.540

Supplementary Figures and Tables541

Figure S1 Effect of changing kinetic parameters on model prediction. Scatter plot542

of the measured and predicted metabolome where, instead of considering equal specific nutrient543

uptake and byproduct release rates, λ’s in our model, we take several random sets (in black).544

Error bars (in black) indicate standard deviation in the predicted levels of specific metabolites545

for different sets of λ’s. The solid line represents x = y. Red squares indicate the predicted546

metabolome for the default set of kinetic parameters used, i.e., when all of λ’s were set equal to547

1.548

Table S1 Microbial and metabolite interactions used in the model. Table of all 4,248549

interactions between microbes and metabolites used in the model, from Ref. [6].550

Table S2 Components of the nutrient intake to the gut. List of all 19 metabolites used551

to fit the gut nutrient intake in the model.552

Table S3 Metabolome predictions of the model for 380 individuals from the Human553

Microbiome Project (HMP) and the MetaHIT study. All metabolites in metabolome554

predicted by the model with global parameters f = 0.9 and N` = 4 for all 380 individuals are555

listed.556
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Supplementary Figures

Figure S1: Effect of changing kinetic parameters on model prediction. Scatter plot of the
measured and predicted metabolome where, instead of considering equal specific nutrient uptake and
byproduct release rates, λ’s in our model, we take several random sets (in black). Error bars (in black)
indicate standard deviation in the predicted levels of specific metabolites for different sets of λ’s. The
solid line represents x = y. Red squares indicate the predicted metabolome for the default set of kinetic
parameters used, i.e., when all of λ’s were set equal to 1.
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Figure S2: Calibrating the model parameters using logarithmic accuracy. Heatmap of the
logarithmic accuracy between experimentally measured and predicted fecal metabolomes for different
combinations of parameters f and N`. The logarithmic accuracy quantifies the average order-of-magnitude
error in our predicted fecal metabolome, when compared with the experimentally measured one (see
Methods for details). The plotted value is the logarithmic accuracy averaged over 41 individuals in Ref.
[22]
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Figure S3: Results for model calibration after shuffling microbial metabolic capabilities.
Same as figure 2 from the main text, except that the simulations have been performed after shuffling the
set of microbial metabolic capabilities, to test the dependence of our predictions on metabolic interactions
(see Methods for details). (A) Heatmap of the Pearson correlation between experimentally measured
and predicted metabolomes for different combinations of parameters f and N`. The plotted value is the
correlation coefficient averaged over 41 individuals in Ref. [22]. For this shuffled network, the best average
Pearson correlation coefficient 0.44 is given by f = 0.9 and N` = 2. Panel (B) and (C) are generated by
those global parameters. (B) Comparison between the experimentally observed bacterial abundances in a
representative individual (y-axis) and their best fits from our model (x-axis) with f = 0.9 and N` = 2. (C)
Comparison between the experimentally observed fecal metabolome (y-axis) and the predictions of our
model (x-axis) with f = 0.9 and N` = 2 in the same individual shown in panel (B) (Pearson correlation
0.32; P -value 0.19).

Figure S4: Testing model predictions for byproduct fractions beyond 0.9 Logarithmic accuracy
of the model’s predictions between the metabolomes (see Methods for details) for byproduct fraction, f ,
values 0.95 and 0.99. Higher values on the y-axis means worse predictions. This suggests that at 4 trophic
levels, f = 0.9 gives the best calibration.
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Figure S5: Adjusted P -values for the model predictions Blue nodes correspond to metabolites,
red nodes to the microbes. Blue edges show metabolite consumption, red - production.
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 Gut nutrient intake:
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Figure S6: Layer-wise network for one of the individuals from the calibrated dataset. Blue
nodes correspond to metabolites, red nodes to the microbes as in figure 1B. Blue edges show metabolite
consumption, red - production.
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