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Exploring dimension-reduced embeddings with Sleepwalk

Abstract — Dimension-reduction methods, such as t-SNE or UMAP, are widely used when
exploring high-dimensional data describing many entities, e.g., RNA-seq data for many
single cells. However, dimension reduction is commonly prone to introducing artefacts,
and we hence need means to see where a dimension-reduced embedding is a faithful
representation of the local neighbourhood and where it is not.

We present Sleepwalk, a simple but powerful tool that allows the user to interactively
explore an embedding, using colour to depict original or any other distances from all
points to the cell under the mouse cursor. We show how this approach not only highlights
distortions, but also reveals otherwise hidden characteristics of the data, and how Sleep-
walk’s comparative modes help integrate multi-sample data and understand differences
between embedding and preprocessing methods. Sleepwalk is a versatile and intuitive
tool that unlocks the full power of dimension reduction and will be of value not only in

single-cell RNA-seq but also in any other area with matrix-shaped big data.

Introduction

Whenever one is presented with large amounts of data,
producing a suitable plot to get an overview is an
important first step. So-called dimension reduction
methods are commonly used. For example, in high-
throughput transcriptomics projects using expression
microarrays or RNA-seq, it is common practice, espe-
cially when working with many samples, to perform
principal component analysis (PCA) on a suitably nor-
malized and transformed expression matrix and then
plot the samples’ first two principal components as a
scatter plot. Of course, PCA has more uses than just
providing such an overview plot (See Ringnér (2008) for
a primer.), but nevertheless, the user’s expectation is of-
ten simply that samples with similar expression profile
should appear close together (“cluster together”), while
samples with strong differences should appear farther
apart. PCA’s popularity in biology notwithstanding,
the literature offers many methods designed specifi-
cally with this goal in mind, with the best-known clas-
sic example perhaps being classical multidimensional
scaling (classical MDS, also known as principal coor-
dinate analysis, PCoA), Kruskall’s non-metric multidi-
mensional scaling (Kruskal 1964) and Kohonen'’s self-
organizing maps (SOM) (Kohonen 1982).

The recent rapid progress of single-cell RNA-seq
methods, now enabling the measurement of expression
profiles of thousands of individual cells in a sample,
has renewed biologists’ interest in dimension reduction
methods. Here, t-distributed stochastic neighbour em-
bedding (t-SNE, van der Maaten and Hinton (2008),

Figure 1) has become a de-facto standard, with Uni-
form Manifold Approximation and Projection (UMAP,
Mclnnes et al. (2018)) currently gaining popularity as
an alternative. Other dimension reduction methods,
developed specifically for single-cell RNA-Seq include
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Figure 1: Example of a t-SNE plot: These are cord-blood
mononuclear cells studied by Stoeckius et al. (2017). The em-
bedding and the assignment of cell types have been taken
from the Seurat (Butler et al. 2018) tutorial that uses this data
set as example (Satija Lab 2018).
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Destiny (Angerer et al. 2016) (an method based on dif-
fusion maps (Coifman and Lafon 2006)), the Monocle
methods (Trapnell et al. 2014; Qiu et al. 2017), DDRTree
(Mao et al. 2015) and more. (See Nguyen and Holmes
(2019) for a recent review.)

These varied methods have been developed with dif-
ferent design goals: for example, some methods strive
to primarily preserve neighbourhood, others to rep-
resent the overall structure or larger-scale relations.
Nevertheless, when using any of them in the field of
single-cell transcriptomics, practitioner’s primary ex-
pectation is usually that cells depicted close to each
other or within the same apparent structure or cluster
have more or less similar expression profiles, while cells
depicted in different regions of the plot or in different
structures are more different. In other words, it is the
preservation of neighbourhood relationships that is of
importance. The term “neighbourhood” should here be
understood as follows: We consider a high-dimensional
space, the so-called feature space, in which each dimen-
sion corresponds to one gene and each cell is repre-
sented by a point, whose coordinates along the many
dimensions are given by the expression strength of the
corresponding gene. Two cells with similar expression
profile will hence have similar coordinates and thus
will be close to each other in feature space. Around each
cell, we can imagine a hypersphere of nearby points,
and consider all cells with the hypersphere as neigh-
bours.

Any attempt to provide a two dimensional repre-
sentation of the neighbourhood relations in this high-
dimensional space will have to face what van der
Maaten and Hinton (2008) called the “crowding prob-
lem”. The volume of a high-dimensional sphere is ex-
ponentially larger than the area of a two-dimensional
circle, and therefore, a cell can easily have many more
close neighbours in feature-space than cells can be
drawn within a sufficiently small circle around the
point representing the cell in two dimensional space.

This is, of course, not the only obstacle in achiev-
ing a faithful two dimensional representation of feature
space, and the many possible kinds of distortions have
been widely discussed in the literature. (See e.g. Au-
petit (2007)) and Kaski et al. (2003).) In single-cell se-
quencing, it is, however, of particular relevance: given
a dimension-reduced representation such as a t-SNE or
UMAP embedding, how can we know for a specific cell
of interest how far its neighbourhood reaches? Know-
ing this is of paramount importance to correctly inter-
pret an embedding.

Results

The Sleepwalk app

Here, we present “Sleepwalk”, an interactive tool that
provides an intuitive solution to the task just outlined.

It works as follows: The user provides an embed-
ding, i.e., the two-dimensional coordinates output by
a dimension-reducing method, as well as information
on the distances between cells in feature space in some
suitable metric or their coordinates in a appropriately
transformed feature space. Whenever the user moves
the mouse cursor over a cell, all cells are coloured ac-
cording to their distance to this cell in feature space,
thus indicating the cell’s closest neighbours with the
strongest colour (Figure 2A-C). By moving the mouse
over all the cells in the plot, the user can hence quickly
obtain an intuitive overview over how neighbourhood
may have been rendered differently in different regions
of the plot. Buttons are provided to adjust the colour
scale so that the user can chose which feature-space dis-
tance should be considered as “close neighbourhood”
and hence given the strong (dark, green) colours.

We invite the reader to pause here and try Sleepwalk
himself or herself. At https://anders-biostat.github.io/
sleepwalk/supplementary/ (and also in this paper’s
supplemental HTML), live interactive Sleepwalk rendi-
tions of Figure 2 (and also of all the subsequent figures
discussed below) are given. The Sleepwalk app runs
in any Javascript-enabled web browser, i.e., it suffices
to open the page or file in a browser, without need to
install anything.

Exploring an embedding

Sleepwalk makes aspects visible that are not apparent
from a dimension reduction alone. For example, the
two large clusters under the cursor in Figure 2A and
Figure 2B have quite different characteristic. In the T
cell cluster (Figure 2A), most of the cells are very close
to each other: the cluster shows up as a large green
cloud no matter where one points the mouse. The
monocyte cluster (Figure 2B), however, spreads over
larger distances: only a part shows up in green, which
“follows” the mouse. In a static t-SNE plot (such as Fig-
ure 1), this cannot be seen.

We can also check the cluster borders and discover,
for instance (Figure 2C), that some cells in the monocyte
cluster are more similar to those in the T cell cluster than
to those in their own cluster. They may have been as-
signed the wrong cell type, or might be doublets. Thus,
the Sleepwalk exploration can alert the analyst to the
need for further investigation of possibly misleading
features of a dimension-reduced embedding.

In 2A-C, the colour scale was left at the automati-
cally chosen range of only very small distances. When
switching the colour scale to a wider distance range,
we can also see here how relationships between clusters
(Figure 2D) appear in the supplied distance values: we
see which clusters are more and which are less similar
to each other — an information that a static t-SNE does
not show, due to the method’s design focus on faithful
representation only of neighbourhoods. Care is needed
here, however: once the considered distances exceed
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Figure 2: The “Sleepwalk” app, being used to explore the t-SNE rendition of the cord-blood data set from Figure 1. The plots
here are snapshots of a running “Sleepwalk” app; a live version can be found at https://anders-biostat.github.io/sleepwalk/
supplementary/. The red arrow shows the current mouse position. (A) By moving the mouse cursor through the embedding,
we find, e.g., that the CD4+ T cell cluster is very tight and homogeneous, as can be seen from the fact that all cells show a
colour indicating that they are all close to each other. (B) The monocyte cluster, in contrast shows much more heterogeneity,
when comparing the colouring at the same colour scale: now only few monocytes are coloured green and are hence as similar
to the cell under the mouse cursor as most of the T cells were in (B). (C) Placing the mouse on this small tip of the monocyte
cluster reveals that the cells there are more similar to the T cells than to the other monocytes, indicating that the cluster boundary
might be inaccurate in both the t-SNE rendition and the SNN clustering on which the Seurat workflow’s cell-type assignment is
based. (D) With the colour scale set to a wider distance range, we can assess similarities between clusters: As expected, B cells are
somewhat similar to T cells, less so to NK cells and monocytes, and distant to erythrocytes and the spiked-in mouse cells.
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what one might consider as “close neighbourhood”, the
choice of distance metric used will strongly influence
interpretability of the visualization, as we discuss be-
low.

Feature-space distances

The colours in Sleepwalk are meant to indicate similar-
ity or dissimilarity between the cells” expression pro-
files, quantified as distances. There are multiple sug-
gestions for useful distance measures in the literature,
and the users can provide whichever they prefer. To
produce the t-SNE embedding in Figure 1, we followed
the Seurat workflow (Satija Lab 2018), which calculates
distances in a specific manner (Methods), and these are
then also used by the t-SNE routine. We have also used
these same distances to colour the points in the Sleep-
walk rendition (Figure 2); thus allowing us to see di-
rectly where t-SNE succeeded and where it failed in its
design goal of preserving the neighbourhood relation
in its input data.

t-SNE uses a flexible approach to define the distance
scale over which cells are considered neighbours: it ad-
justs the distance scale for each cell such that all cells
have approximately the same number of neighbours
(the so-called perplexity). Sleepwalk, in contrast, uses
a fixed distance scale. This is on purpose: it allows us
to note where the neighbourhood has longer or shorter
range (as shown in the comparison of Figures 2A and
2B). The app offers two buttons to increase or decrease
the scale of the distance-to-colour mapping, allowing
the user to manually chose what distance should be
considered as close.

Comparing embeddings

With the availability of choice in dimension reduction
methods, the question arises which one to use. Bench-
mark comparisons may address this question in gen-
eral; see for example Becht et al. (2019) for a compari-
son of UMAP with t-SNE and related methods. When
working on a specific dataset, however, simply calcu-
lating multiple embeddings and comparing them side
by side might be even more helpful. We demonstrate
this here using data from a study of the development of
the mouse cerebellum (Carter et al. 2018). In Figure 3,
we show cells from development time point E13.5, first
visualized with t-SNE (Figure 3A), then with UMAP
(Figure 3B). The live apps in the supplemental HTML
show, in addition to this, also the same comparison for
the cord-blood data of Figures 1 and 2.

To compare the two embedding, we need, at mini-
mum, a way to see which points in the two plots corre-
spond to the same cells. A classical approach is “brush-
ing” (Becker and Cleveland 1987): selecting with the
mouse a group of adjacently depicted cells in one plot
causes them to be highlighted in the other one, too.
Sleepwalk adapts this idea, but instead of the usual

brush, we simply use in all embeddings the same colour
for points corresponding to the same cell. Moving the
mouse over points in one plot then highlights the neigh-
bourhood structure induced by the feature-space dis-
tance chosen for that embedding not only there but also
in all displayed embeddings and so links them. This al-
lows us to see for a structure in one embedding whether
there are corresponding structures in the other embed-
dings.

In the example shown in Figure 3, we see a clear cor-
respondence between the major structures generated
by t-SNE and by UMAP. Even the arrangement of cells
within these structures is the same, which one can fol-
low in the life version of the app. There are, however,
also differences: The cells at the mouse position in Fig-
ure 3 are part of the connecting “filament” in the t-SNE
embedding, but lie in an external “protrusion” in the
UMAP. Further exploration in the live version of Fig-
ure 3 can suggest that UMAP forced the two branches
to intersect while still trying to repel cells of different
lineages away from each other (note the gap between
the highlighted branch in Figure 3B). This is another ex-
ample of the dimensionality reduction artefacts that are
hard to notice from a static image, but can be uncovered
with “Sleepwalk”.

Comparing samples

Until recently, most single-cell RNA-seq studies anal-
ysed only a single sample comprising many cells. Yet,
the full value of the technique might become apparent
only when it is used to compare between many sam-
ples. One currently popular approach to do so visu-
ally is to simply combine the data from the cells of all
samples into one large expression matrix and perform
t-SNE or UMAP on this. Often, global differences be-
tween samples, typically due to technical effects (Tung
et al. 2017), will prevent similar cells from different
samples to appear in the same cluster or structure in the
dimension-reduced embedding. Methods to automat-
ically remove such sample-to-sample differences (e.g.,
the CCA-based method in Butler et al. (2018) and the
MNN method in Haghverdi et al. (2018)) address this
issue, but will not work always and may risk also re-
moving biological signal.

An visual alternative is to produce a dimension-
reduced embedding separately for each sample, and
then try to find correspondences between the features
in these. In Figure 4, we show how Sleepwalk allows
to perform such an exploration comparing UMAP ren-
derings for the two E13.5 and one of the E14.5 samples
of the mouse cerebellum data set. Exploring the data
with the mouse shows the two replicas of E13.5 sam-
ples (Figures 4A and 4B) are almost identical. The two
branches (GABAergic and glutamatergic neurons) can
be easily followed from the early progenitor cells up to
the most differentiated ones. Comparing between the
two E13.5 replicates reveals which aspects of the pecu-
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Figure 3: Sleepwalk being used to compare two embeddings of the same single-cell data of a developing murine cerebellum at
embryonal time point E13.5 (Carter et al. 2018): t-SNE on the left and UMAP on the right. The user can explore one embedding
in the same ways as in Figure 2, while all other embeddings that are displayed concurrently, are “slaved” to the one under the
mouse cursor: each cell has the same colour in all embeddings. The red arrow shows the current mouse position. A live version
(for this data and for the cord-blood data) can be found in the supplemental HTML file.

liar two-pronged shape of the glutamatergic branch is
simply due to random variation and what seems repro-
ducible. In the later E14.5 sample, the branches have
disconnected from the progenitor cells, but Sleepwalk
allows us to still identify corresponding cells. Sleep-
walk can show that the GABAergic lineage is differ-
entiated further in the E14.5 than in E13.5 samples, as
the endpoint of the branch in E14.5 corresponds to an
intermediate point in E13.5. Sleepwalk allows one to
discover such details immediately, with minimal effort.
Of course, such a visual exploration cannot replace a
tailored detailed analysis but it does provide a starting
point and a first overview.

Crucially, using Sleepwalk’s multi-sample compar-
ison mode does not require any removal of global
sample-to-sample differences with batch-effect correc-
tion methods. If the user selects a cell with the mouse
in one sample, the cells that are similar to it will be high-
lighted, both in the same sample as well as in all other
samples. This works even if the cells in the other sam-
ples seem more distant, due to the additional sample-
to-sample distance; we only might need to increase the
scale of the distance-to-colour mapping for the cross-
sample comparisons.

Comparing distance metrics

In the examples discussed so far, we have always
coloured cells according to the default distance calcu-
lated by the Seurat workflow, namely the Euclidean dis-
tance in the space spanned by the first few principal
components according to a PCA performed after cer-
tain preprocessing. The reason for this was not that
this specific distance metric should be considered more
correct or more “true” than any of the alternatives dis-
cussed in the literature, but simply because it is the dis-
tance metric that has been used as input to t-SNE and
UMAP when calculating the discussed embeddings.

While this specific distance metric is popular due it
appearing in standard workflows such as Seurat’s, this
is of course no reason to consider as more correct or
“true” than possible alternatives or modifications. For
instance, we may either choose to use all genes in the
distance calculation, or only some genes, which may
either be chosen for having high expression or high
signal-to-noise ratio, or perhaps chosen, via manual
curation, as especially informative with respect to cell
type or state. We may use the genes as they are or
aggregate them before into meta- or eigen-genes, e.g.,
by a principal component analysis (as done in the Seu-
rat workflow). The way how the expression data has
been transformed, normalized or preprocessed can be
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Figure 4: Sleepwalk in multi-sample mode, comparing three samples of a developing murine cerebellum: two samples of two
different mice embryos at time point E13.5 (A, B) and the third (C) from E14.5. The red arrow shows the current mouse position.
The dashed grey lines roughly indicate two different lineages and their common progenitor cells (expression of the marker
genes that we used to draw the boundaries is shown in the Supplemental Figure S1). By following the GABAergic branch one
can notice that its very tip in the E13.5 samples corresponds to cells in the middle of the branch in E14.5, indicating that the cells

have differentiated further during the elapsed day.

understood as part of the choice of distance metric. The
last, but not the least choice is, of course, the metric it-
self. There are numerous ways how to calculate dis-
tances from the selected and possibly preprocessed set
of features. Besides Euclidean, one can calculate angu-
lar (“cosine”) or correlation distance or use kernel func-
tions (Phillips and Venkatasubramanian 2011) as it has
been done, for instance in Wang et al. (2017). Metrics
can even be learned to suit the specific task researcher
has in mind (Yang and Jin 2006). Dimensionality re-
duction techniques are typically based on the assump-
tion that in feature space cells are located on the sur-
face of a smooth manifold. The methods attempt to
learn the manifold and then to replace the original dis-
tance with the geodesic one (i.e., distance within the
manifold) (Cayton 2005; Moon et al. 2018). Diffusion
distances (Coifman and Lafon 2006) are popular way
of obtaining a manifold-following distance in a simple
and efficient manner.

Some of these metrics may yield similar results, oth-
ers can drastically change cell-to-cell distances. In or-
der to impact of the choice of metric, Sleepwalk offers
a variant to the mode for comparing embeddings de-
scribed above, in which points that correspond to the
same cell will get different colours in different panels of
the app, each showing the same embedding but having
a different distance matrix assigned to it. By hovering
the mouse over a cell, the user can see how the cells
neighbourhoods differ between the distance metrics.

Figure 5 shows Sleepwalk in the distance compari-
son mode. The live version of this figure can be found
in the supplement to the paper. Once again, we use
the murine cerebellum dataset (specifically, stage E13.5,
visualized with UMAP) as an example. As before, we

used the 2131 genes chosen by the Seurat workflow as
“variable”, and then calculated distance matrices using
four metrics: (i) Euclidean distance based directly on
the normalized and logarithmised expressions of these
genes, (ii) Euclidean distance in the space spanned by
the first 50 principal components of a PCA performed
using the variable genes, (iii) diffusion distance based
on directly on the genes” expression or (iv) on the first
50 principal components. As expected, Euclidean dis-
tance calculated on all variable genes (i) is almost use-
less when applied to so many dimensions. Most of the
distances are condensed around some median value,
making it almost impossible to distinguish any patterns
in the data. However, all other distances are already
good enough to see the two developmental branches,
with perhaps the diffusion distance separating them
most clearly.

In the live version in the supplemental HTML file, we
also demonstrate a metric comparison using the cord-
blood dataset. There, the difference in the metrics does
not lie in the details of its calculation but stems from
using different input data, as each cell has been as-
sessed in two modalities, and distances are calculated
either from the single-cell RNA-Seq or from the single-
cell proteomics (CITE-Seq epitome) aspect of the data.

One should keep in mind that, in the example of Fig-
ure 5, we are comparing the four metrics not just to
each other, but also to the fifth one: The distance that
was used to generate the embedding. UMAP is one
of the manifold learning dimensionality reduction tech-
niques, and as such it might be more similar to diffusion
distances than to the Euclidean metric, even though
the Euclidean distance in PCA space (distance (ii)) was
used as input for the UMAP process. Taking this to-
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Figure 5: Metric comparison using Sleepwalk. All four panels now show the same embedding: A UMAP visualization of the
E13.5 sample of murine cerebellum. The cells are now coloured based on four different metrics: Euclidean distance based directly
on the normalized and logarithmised genes’ expressions (A); Euclidean distance in the space spanned by the first 50 principal
components of a PCA performed using the variable genes (B); diffusion distance based on directly on the genes’ expression (C)
or on the first 50 principal components (D). The red arrow shows the current mouse position, which is on the intersection of
GABAergic and glutamatergic lineages. Colour scales were adjusted so that roughly stretch along the entire selected branch.
The spread of colouring onto the other developmental branch shows how good is the metric in separating the two lineages.
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gether, one might expect the combination of diffusion
distance and PCA to correspond especially well with
the embedding. Which of the four metrics, however,
should be considered “best”, is a completely different
question, as the suitability of metric will depend on the
task at hand. While a metric can be effective in sepa-
rating specific cell types, it might at the same time fail
to arrange cells by their cell cycle stage (Buettner et al.
2015), and this can be considered a good or a bad thing,
depending on whether differences due to cell cycle are
considered a nuisance or a topic of interest in one’s ex-
periment. We therefore do not wish to provide opin-
ions or guidance on this question in the present paper.
What Sleepwalk does offer here is a means to explore
differences between metrics and embeddings and un-
derstand them, not necessarily to perform benchmarks.
Once a researcher is aware of such differences, it is up
to him or her to decide if they affect data interpretation.

Beyond single-cell transcriptomics

In all the examples discussed so far, the points cor-
respond to individual cells in samples assessed with
single-cell transcriptomics. Another important use case
for dimension-reduction methods are large-scale stud-
ies comprising dozens or even hundreds of samples.
Brawand et al. (2011), for example, describe a collec-
tion of 131 bulk RNA-seq data sets comparing organ
samples from several species and provide an overview
PCA plot as their Figure 1, Dietrich et al. (2018) use a
t-SNE plot to illustrate similarities and differences be-
tween their 246 blood cancer samples. Clearly, Sleep-
walk can also be useful to explore dimension-reduced
embeddings arising in such applications.

Research on dimension reduction originated in the
machine learning field, with the original applications
being the study of training data for machine learning
applications. Of course, in this area, as well as in other
applications of dimension reduction, Sleepwalk should
also prove useful.

Usage

Sleepwalk is provided as a package for the statistical
programming language R (R Core Team 2019). The
main function of the package is also called “sleepwalk”.
The user provides it with the 2D coordinates for each
object (cell) in the embedding and a square matrix of
cell-to-cell distances, or, alternative to the latter, a data
matrix from which sleepwalk can calculate Euclidean
or angular distances. For both these parameters, the
user can also supply multiple matrices in order to dis-
play multiple embeddings concurrently for compari-
son. This can be done either such that each embedding
represents the same objects (as in Figure 3), or that each
embedding represents a different set of objects but dis-
tances are given also between objects in different em-
beddings (as in Figure 4).

Sleepwalk can easily be used in combination with
other single-cell analysis frameworks. Visualizing, for
example, a Seurat data object can be done with one line
of code, as explained on the documentation web page.

By default, the sleepwalk function displays the visu-
alization app in a web browser. Alternatively, it can also
write it into an HTML file, which can then be opened
with any web browser without the need of having R or
the Sleepwalk package running or even installed. This
is useful when an analyst wishes to share a Sleepwalk
visualization with colleagues or provide it on a web
page or in a paper supplement.

For a description of further options of the function,
please see the documentation.

The app offers a “lasso” functionality: The user can
encircle a group of points with the mouse, and the in-
dices of these points are then reported back to the R ses-
sion, where they can be queried with a callback func-
tion. This is helpful if the analyst spots an interesting
set of cells while exploring an embedding and wishes
to perform further analysis on them.

We also mention the “slw_snapshot” function, which
produces static plots, like the figures in this paper.

Discussion and Conclusion

Dimension-reduced embedding such as those provided
by t-SNE and UMAP have become a core tool in single-
cell transcriptomics. They provide an overview of a
study, help to check for expected and unexpected fea-
tures in the data, allow researchers to form new hy-
potheses and to plan and organise the subsequent anal-
ysis. As they generally contain artefacts, a common
concern is that these plots may be over-interpreted.

Dimension reduction is a research area with a rich
history, long predating the use of these techniques for
single-cell biology. The issue with distortions has been
long discussed, with the possible distortions being clas-
sified (e.g., Aupetit (2007)) and quantified (e.g., Kaski
et al. (2003)), and advice on careful interpretation de-
rived from these (e.g., Wattenberg et al. (2016)). To
visually alert the viewer to distortions, some authors
have suggested to colour each point by its so-called
stress, i.e., the deviation of the point’s on-screen dis-
tance to the other points from the distances in feature
space (Seifert et al. 2010) and others to colour the area
around the points according to the amount of compres-
sion or stretching that the manifold underwent locally
due to projection (Lespinats and Aupetit 2011).

Such visualizations are useful tools for developing
and improving dimension reducing methods. Our ap-
proach, however, offers a novel aspect that is cru-
cial: rather than merely alerting the user to distortions,
Sleepwalk allows the user to directly see the underly-
ing “truth” for the selected cell. This is possible due
to our use of interactivity: by allowing the user to
rapidly move focus from cell to cell, and the app in-
stantly following in redrawing the colours, we are effec-
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tively escaping the confines of a two-dimensional repre-
sentation (or, three-dimensional, if we also count static
colouring as a dimension).

We have shown how this novel approach gives in-
sights into dimension-reduced embeddings that would
otherwise stay hidden and thus solves a core problem
in the practical use of dimension reduction methods.
We envision that Sleepwalk will be used in two man-
ners: first as a tool of exploratory data analysis, helping
researchers to better understand their data, but also sec-
ond as a reporting and communication tool, allowing
researchers to present their results in a more transpar-
ent way. For this latter application, Sleepwalk’s ability
to produce stand-alone HTML pages is crucial, as these
pages can then be used, e.g., as supplements to publi-
cations, where they allow readers to check embeddings
themselves, without the need to install any software.

We should be clear that a visual, interactive data ex-
ploration with Sleepwalk does not replace formal infer-
ence but complements or typically precedes it. Once
one has formed a hypothesis about one’s data using
Sleepwalk, one should employ suitable formal analy-
sis methods, such as statistical hypotheses tests, to con-
firm them. That analysis will then typically be done on
the full, high-dimensional data. Dimension reduction
methods are data reduction methods: this sacrifice of
data is done to allow for visual inspection, but is a hin-
drance for any numerical analysis.

The principle of Sleepwalk is useful not only for in-
spection of a single data set but also lends itself for
generalization to comparative tasks. We have shown
several possible modes of comparison: between differ-
ent embeddings of the same data, between embeddings
from several samples, and between different ways of
preprocessing the data and obtaining distances. The
comparison between samples will find direct applica-
tion in any study working with multiple samples, the
other two are useful in method selection and in method
development, as they allow for comparison of data pro-
cessing pipelines.

We therefore expect that Sleepwalk will find broad
use not only in single-cell transcriptomics, but essen-
tially all instances of big data where experimental units
(cells, samples, or the like) are described in a high-
dimensional feature space.

Methods

Sleepwalk implementation

Sleepwalk is written in JavaScript, using the D3js
data visualization framework (Bostock et al. 2011).
JavaScript was chosen because it is available on all com-
mon platforms, usually without need to install any-
thing, thus enabling the standalone HTML feature, be-
cause writing the app with D3,js was convenient, and
because the JavaScript engines of most web browsers
offer very good performance, enabling smooth render-

ing of the colour changes and thus the instant interac-
tive feed-back that is required to provide an intuitive
user experience.

A thin wrapper of R code around the JavaScript code
turns Sleepwalk into an R package, allowing for con-
venient integration into currently popular workflows
for single-cell analysis like Seurat. We use the httpuv
R package (Cheng et al. 2019) to bridge between the R
session and the web browser. It sets up a simple local
server to serve the app to the browser and then uses its
implementation of the WebSocket protocol (Fette and
Melnikov 2011) to keep open a communication channel
between R session and web browser. This allows the
app to report back to the R session when the user has
selected points using the lasso feature or to make snap-
shots and change the state of the app from an R session.

The colour scheme used to depict distances is the
“cubehelix” palette, a colour map originally developed
for astronomy and optimized for good visual sepa-
ration between levels throughout its dynamic range
(Green 2011).

Example data
Cord-blood data set

The cord-blood data from Stoeckius et al. (2017) are
available at Gene Expression Omnibus (GEO) via acces-
sion GSE100866. The raw UMI counts were processed
following the Seurat workflow proposed for exactly
this data set (Satija Lab 2018). Data were normalized
and log transformed. 976 variable genes were detected
with y.cutoff = 0.5. These genes were scaled and used
for principle components analysis. For further analy-
sis, the first 13 principal components were used, which
explain around 23% of the total variance. The t-SNE
(Figures 1, 2, supplemental HTML file) and UMAP (Fig-
ure 2, supplemental HTML) embeddings were calcu-
lated using the default functions from the Seurat pack-
age. The assignments of cell types to clusters was taken,
too, from the Seurat tutorial workflow (Satija Lab 2018).
Normalized and log-transformed epitome data were
used to calculate Euclidean distances for the distance
comparison (all the scripts are available on GitHub).
The resulting Seurat object can be downloaded from
Figshare (doi:10.6084/m9.figshare.7908059).

Murine cerebellum data set

The raw sequence data from Carter et al. (2018) were
downloaded from the European Nucleotide Archive
under the accession number PRJEB23051. The reads
were aligned and counted using the Cell Ranger (10x
Genomics 2019) software (output files are accessible
from Figshare, doi:10.6084 /m9.figshare.7910483). Some
genes and droplets were filtered out following the
Methods section of Carter et al. (2018). We removed
all the cells with more than 10% of all UMIs com-
ing from mitochondrial genes. We then removed
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all ribosomal and mitochondrial genes. Finally, only
cells that contain from 3500 to 15000 UMIs were kept.
Lastly, we omitted all genes with zero expression in
all the cells. The filtered raw data were then used
to create Seurat objects that can be found at Figshare,
doi:10.6084 /m9.figshare.7910483), or on GitHub https:
//github.com/anders-biostat/sleepwalk/tree /paper in
the “data” folder. We used Seurat to normalise and
log-transform raw counts and find variable genes. The
irlba R package (Baglama et al. 2019; Baglama and Re-
ichel 2005) was used to generate a PCA embedding of
the data (each sample separately, only variable genes).
The first 50 principal components were used for further
analysis. To render a t-SNE embedding we used the
Rtsne package by Krijthe (2015), a wrapper around the
code by van der Maaten (2014). The uwot package by
Melville (2019) was used for UMAP embeddings. To
calculate distances between cells from different sam-
ples (Figure 4), we used the variable genes shared be-
tween all the samples and produces a PCA embedding
for all the cells. Euclidean distances in the space defined
by the first 50 principal components are used to colour
the points. To distinguish early progenitors form fur-
ther differentiated cells of glutamatergic and GABAer-
gic we used the following marker genes: Msx3 for early
progenitors, Meis2 for the glutamatergic lineage, adn
Lhx5 for the GABAergic lineage (Supplemental Figure
S1). Countours in Figure 4 are drawn to include around
90% of cells that express each of the markers above a
certain threshold using the “geom_mark_ellipse” func-
tion of the ggforce package (Pedersen 2019).

Calculation of diffusion distance in Figure 5 is based
on the destiny package by Angerer et al. (2016). We
used internal functions of the package to find nearest
neighbours, to calculate local diffusion scale parame-
ters “sigma” and to get initial transition probabilities.
Then we manually propagated the diffusion with 16
time steps and calculated resulting distances.

Data and Software Availability

All data sets used in this paper where taken
from published works and can be downloaded
from the cited references (Stoeckius et al. 2017;
Carter et al. 2018).  While processing the data
we also stored intermediate steps that are now
available at doi:10.6084/m9.figshare.7908059.v1 (Cite-
Seq data), doi:10.6084/m9.figshare.7910483.v1 (three
single-cell samples of developing murine cerebellum)
and doi:10.6084/m9.figshare.7910504.v2 (some of the
2D embeddings calculated for the Sleepwalk exam-
ples). Scripts to generate these files, all the figures in
the paper, and interactive apps are available on GitHub
at https://github.com/anders-biostat/sleepwalk /tree/
paper.

Demonstration HTML file is available in the
supplement and at https://anders-biostat.github.io/
sleepwalk/supplementary /.
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The “sleepwalk” R package is available on the Com-
prehensive R Archive Network (CRAN) at https://cran.
r-project.org/package=sleepwalk, released as open-
source software under the GNU General Public Li-
cense v3 (or later). Documentation, installation instruc-
tions and examples for Sleepwalk can be found on the
project web page at https://anders-biostat.github.io/
sleepwalk/. The source code is available on GitHub
(https://github.com/anders-biostat/sleepwalk).
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Supplemental Figure S1. Markers used to identify lineages in developing murine cerebellum. Expression of three
marker genes was used to identify GABAergic (Lhx5, bottom row) and glutamatergic (Meis2, middle row) lineages
as well as early progenitor cells (Msx3, top row).
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