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Abstract 

Cancer neoantigens have attracted great interest in immunotherapy due to their 

ability to elicit antitumoral immune responses. These antigens are formed due to 

somatic mutations in the cancer genome that result in alterations of the original 

protein. Although current technological advances in neoantigen identification, 

it remains a challenging and a large number of false-positive continue to exist. In the 

current work, we present neoANT-HILL, an automatized user-friendly tool that 

integrates several immunogenomic analysis to improve neoantigens detection from 

NGS data. The program input can be a file with somatic mutations called and/or 

RNA-seq data. Our tool was applied on somatic mutations of melanoma dataset from 

TCGA and found that neoANT-HILL was able to predicted potential neoantigens. The 

software is available on github at https://github.com/neoanthill/neoANT-HILL. 
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1 Introduction 

Recent studies have demonstrated that T cells can recognize tumor-specific antigens 

that bound to the human leukocyte antigens (HLA) molecules at the surface of tumor 

cells (Efremova et al., 2017; Kato et al., 2018). During tumor progression, 

accumulating somatic mutations in the tumor genome can affect protein-coding 

genes and result in mutated peptides (Efremova et al., 2017). These mutated 

peptides, which are present in the malignant cells but not in the normal cells, may act 

as neoantigens and trigger T-cell responses due to the lack of thymic elimination of 
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autoreactive T-cells (central tolerance) (Snyder et al., 2014; Bailey et al., 2016; Riaz 

et al., 2016). As result, these neoantigens appear to represent ideal targets attracting 

great interest for cancer immunotherapeutic strategies, including therapeutic 

vaccines and engineered T cells (Lu; Robbins, 2016; Efremova et al., 2017).  

In the last years, advances in next-generation sequencing have provided an 

accessible way to generate patient-specific data, which allows the prediction of tumor 

neoantigens in a rapid and comprehensive manner (Liu; Mardis, 2017). Several 

approaches have been developed, such as pVAC-Seq (Hundal et al., 2016), MuPeXI 

(Bjerregaard et al., 2017), TIminer (Tappeiner et al., 2017) and TSNAD (Zhou et al., 

2017), which performs prediction of potential neoantigens produced by non-

synonymous mutations. However, none of these proposed tools considers tumor 

transcriptome sequencing data (RNA-seq) for identifying somatic mutations. 

Moreover, only one of these tools provides quantification of the fraction of tumor-

infiltrating immune cells types. 

Here we are presenting a versatile tool with a graphical user interface (GUI), called 

neoANT-HILL, designed to identify potential neoantigens arising from cancer somatic 

missense mutations, frameshift and small indels. neoANT-HILL integrates several 

complementary features to prioritizing mutant peptides based on predicted binding 

affinity and mRNA expression level levels. We used datasets from GEUVADIS RNA 

sequencing project (Lappalainen et al., 2013) to demonstrate that RNA-seq is also a 

potential source of mutation detection. Finally, we applied our pipeline on a large 

melanoma cohort from The Cancer Genome Atlas (Weinstein et al., 2013) to 

demonstrate its utility in predicting and suggesting potential neoantigens.  

2 Material and Methods 

RNA-seq data processing  

We obtained RNA-seq samples (n=15) from the GEUVADIS RNA sequencing project 

to identifying frameshift, indels and point mutations. Raw RNA-seq reads were 

mapped with STAR aligner (version 2.6.0) (Dobin, et al., 2013) in two-pass mapping 

protocol against the human reference genome version GRCh37. Mapped reads were 

processed according to GATK best practices (DePristo et al., 2011; Van der 

Auwera et al., 2013). Mutect2 (Cibulskis et al., 2013) was used to identifies 
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frameshift, missense mutations and small indels. We limited our analysis to variants 

that presented a read depth (DP) >= 10 and were supported by at least five reads. 

Our results were validated by comparing the corresponding genotype provided by 

1000 Genomes Project Consortium (1KG) (1000 Genomes Project Consortium et al., 

2015). Bcftools isec was used to determine the intersection between the variant sets. 

Melanoma dataset 

We applied neoANT-HILL on a large melanoma cohort (SKCM, n = 466) obtained 

from The Genome Cancer Atlas (TCGA) to identifying potential neoantigens. 

Expression levels (FPKM) from corresponding samples were also obtained. All 

missense mutations, frameshift and small indels were extracted. The mutant 

sequences were inferred and reported with its corresponding wild-type sequence. 

Our analysis was limited to HLA class I molecules. We used a set of HLA molecules 

that were within the most frequent alleles collected in the 1KG Project, including HLA-

A*02:01, HLA-A*11:01, HLA-A*24:02, HLA-B*07:02, HLA-B*15:01, HLA-C*06:02 and 

HLA-C*07:02. The binding affinity prediction was run using ANN algorithm (v. 4.0 aka 

NetMHC) provided by IEDB for lengths 8-, 9-, 10- and 11-mer. We selected mutant 

peptides which its matched normal peptide showed a predicted binding affinity >= 

500 nM. We also consider only the mutant peptides with the lowest predicted IC50 

per HLA allele to avoid overlapping candidates differing by the length. 

3 Results  

neoANT-HILL overview and availability 

neoANT-HILL is a user-friendly integrated tool for the identification of potential 

neoantigens that could be used in personalized immunotherapy (Figure 1). Our 

pipeline relies on VCF file (single- or multisample) or tumor transcriptome sequence 

data (RNA-seq) in which somatic mutation calling will be performed following GATK 

best practices with Mutect2. In the current implementation, neoANT-HILL supports 

VCF files generated using the human genome version GRCh37. Other human 

genome version must be converted to version GRCh37. A list of HLA alleles should 

also be provided. At first, the variants are properly annotated by snpEff (Cingolani et 

al., 2012). The next step is identifying non-synonymous mutations (missense 

mutations, frameshift and indels) and infers the resulting mutant sequence. The 
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protein sequence changes are inferred from the NCBI Reference Sequence 

database (RefSeq) (O'Leary et al., 2016). For frameshift mutations, the mutant 

sequence is inferred by translating the cDNA sequence. Each alteration is translated 

into a 21-mer sequence where the altered point is at the center. If the mutation is at 

the beginning or the end of the transcript, the mutant sequence is built by taking the 

20 succeeding or preceding amino acids, respectively. The translated mutant 

sequences and its wild-type corresponding sequence are stored in a FASTA file.  

The subsequent step is binding affinity prediction between the peptides and HLA 

alleles. neoANT-HILL supports seven HLA class I molecules algorithms provided by 

Immune Epitope Database (IEDB) (VITA et al., 2015), including NetMHC (v. 4.0) 

(Andreatta; Nielsen, 2016; Nielsen et al., 2003), NetMHCpan (v. 4.0) (Jurtz et al., 

2017), NetMHCcons (Karosiene et al., 2012), NetMHCstabpan (Rasmussen et al., 

2016), PickPocket (Zhang; Lund; Nielsen, 2009), SMM (Peters; Sette, 2005) and 

SMMPMBEC (Kim et al., 2009) and MHCflurry (O'Donnell et al., 2018).  Each peptide 

sequence is parsed with a sliding window metric. The algorithm also allows the 

prediction of binding affinity for HLA class II through four IEDB-algorithms 

NetMHCIIpan (v. 3.1) (Karosiene et. al, 2013), NN-align (Nielsen; Lund, 2009), SMM-

align (Nielsen; Lundgaard; Lund, 2007) and Sturniolo (Sturniolo et al., 1999). It can 

be executed on parallel single or multi-sample using parallelization with the custom 

configured parameters. The binding affinities are predicted to both mutated and 

normal peptides. The differential agretopicity index (DAI) (Ghorani et al., 2018 ) is 

also reported, which represent the fold change between normal and mutated 

peptides binding affinities. 

Moreover, if raw RNA-seq data is available (in FASTQ format), neoANT-HILL pipeline 

can perform complementary analyses. Our algorithm uses Optitype (Szolek et al., 

2014) to infers class-I HLA molecules. The data can also be used to estimate gene 

and transcript level expression, which is reported in transcripts per million (TPM), 

using Kallisto (Bray et al., 2016). Genes are considered to be expressed if they show 

an abundance level of at least 1 TPM. In addition, neoANT-HILL also offers the 

possibility of estimating quantitatively, via deconvolution, the relative fractions of 

tumor-infiltrating immune cell types through the use of quanTIseq (Finotello et al., 

2017). 
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Our software was developed under a pre-built Docker image. The required 

dependencies are packaged up which simplifying the installation process and  avoid 

possible incompatibilities between versions. It can be installed on Unix/Linux, Mac 

OS, and Windows operating systems. neoANT-HILL was designed through a user 

graphical interface (Figure 2) implemented on Flask framework. As previously 

described, several analyses are supported and each one relies on different tools. 

Several scripts were implemented on Python (v. 2.7) to complete automating the 

execution of these single tools and data integration. The results of each analysis are 

stored in separate tabs on the sample-specific folder. They are shown in tabular or 

graphical forms that let the user manage the data based on their own selection 

criteria.  

Non-synonymous mutations identification on RNA-seq   

We evaluate the utility of RNA-seq for identifying frameshift, indels and point 

mutations. We used samples from the GEUVADIS project since for those samples a 

reference genome was available through the 1K Genome project. Although these 

samples are not derived from tumor cells, the goal of these analysis was to 

benchmark the efficiency of our pipeline to detect somatic mutations from RNA-Seq 

data. Mutect2 was performed on tumor-only mode without distinction between 

somatic and germline variants. The overall called variants were then compared to the 

corresponding genotypes. We found that on average 72% of variants in coding 

regions detected by RNA-seq were confirmed by the genome sequencing 

(concordant calls) (Supplementary Table1). Variants in genes that are not expressed  

cannot be detected by RNA-seq. Mapping mismatches and RNA editing sites could 

partially explain discordant calls. 

Predicted potential neoantigens on melanoma 

We found approximately 198,000 records of predicted mutant peptides in the SKCM 

dataset from the TCGA project. It is important to note that the large amount of mutant 

peptides is due to the high mutational burden of melanoma and the set of HLA alleles 

that was used to run the binding prediction. Moreover, these mutant peptides were 

classified as strong (IC50 < 50 nM), intermediate (IC50 >= 50 nM and  < 250 nM) and 

weak binder (IC50 >= 250 nM and < 500 nM) (Supplementary Table 2). We decided 
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to focus on expressed mutant peptides classified as strong binders to further 

evaluation as potential neoantigens. 

We observed that the distribution of the majority of strong binders mutant peptides 

are private and unique, which demonstrates the intratumor heterogeneity. However, 

we observed that frequent mutations may be likely to generate recurrent mutant 

peptides (Table 1). For instance, a potential neoantigen (FSGEYIPTV), which was 

predicted to form a complex with HLA-A*02:01 allele, was found to be shared among 

17 samples (3.65%). It was generated from the P29S mutation in gene RAC1. 

Another mutation (P29L) in the same gene was also related to form a recurrent 

potential neoantigen (FLGEYIPTV) that was found in 5 samples (1.07%). As another 

example, we can also highlight another potential shared neoantigen (LSMIVLLPNK) 

related to mutation E250K in the SERPINB3 gene (Figure 3B).  It was found in 6 

samples (1.29%) and it was likely to form a complex with the HLA-A*11:01 allele. 

Table 1. Top 20 potential shared neoantigens. 

Gene Mutation Altered Peptide HLA Allele Frequency 

RAC1 P29S FSGEYIPTV HLA-A*02:01 17/466 

KLHDC7A E635K HTATVRAKK HLA-A*11:01 12/466 

INMT S212F YMVGKREFFCV HLA-A*02:01 9/466 

CDH6 S524L FLFSLAPEAA HLA-A*02:01 8/466 

ZBED2 E157K GTMALWASQRK HLA-A*11:01 8/466 

CRNKL1 S128F LQVPLPVPRF HLA-B*15:01 7/466 

IL37 S202L FLFQPVCKA HLA-A*02:01 7/466 

SERPINB3 E250K LSMIVLLPNK HLA-A*11:01 6/466 

DNAJC5B E22K STTGEALYK HLA-A*11:01 6/466 

MYO7B E512K MSIISLLDK HLA-A*11:01 6/466 

MORC1 E878K IQNTYMVQYK HLA-A*11:01 6/466 

SCN7A S445F IEMKKRSPIF HLA-B*15:01 6/466 

PSG9 E404K KISKSMTVK HLA-A*11:01 6/466 

RAC1 P29L FLGEYIPTV HLA-A*02:01 5/466 

RAC1 P29L FLGEYIPTVF HLA-B*15:01 5/466 

NUTF2 Q20K SSFIQHYYK HLA-B*11:01 5/466 

KCNB2 S118L MMEEMCALL HLA-B*02:01 5/466 

TRPC5 E156K MLAAHTNNYK HLA-A*11:01 5/466 

ST6GAL H90Y RAHPAGSFY HLA-A*15:01 5/466 
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We also observed that overlapping sequences of different lengths have shown more 

stable binding to different alleles (Supplementary Table 3). For instance, the previous 

mentioned peptide FLGEYIPTV, related to P29L RAC1, was likely to strongly bind to 

HLA-A*02:01. While the decameter peptide FLGEYIPTVF, which is also related to 

the same mutation, have been show to respond to HLA-A*11:01 (Figure 3A). 

Similarly,  the peptide AQIEASLSV, from R414Q HHATL, have been shown to 

strongly respond to HLA-A*02:01, while LAQIEASLSV bound to HLA-A*15:01. 

4 Discussion  

Cancer immunotherapy is rapidly advancing due to the progress in the understanding 

of the interaction between cancer and immune cells. Neoantigens are attractive 

candidates because these peptides can be used to design a personalized, efficient 

and safer cancer immunotherapy option (Guo et al., 2018). However, accurate 

prediction of neoantigens remains a challenge due to multiple factors such as antigen 

processing, HLA binding affinity, amino acid composition and expression level of the 

mutant peptide that must be considered (Ghorani et al. 2017). Here we presented 

neoANT-HILL which covers and integrates many of these specific sub-tasks. Our tool 

also has the ability to explore the versatility of RNA sequencing including variant 

calling, in abscence of DNA sequencing data, gene expression level, inferencing of 

HLA type and profiling tumor-infiltrating immune cells.  

Although calling variants from RNA-Seq data has been shown to be more 

challenging, it is a interesting alternative for genome sequencing and a large amount 

of tumor RNA-seq samples do not have normal matched data (Piskol; Ramaswami; 

Li, 2013; Coudray et al., 2018). We applied the variant calling pipeline on RNA-seq 

data from GEUVADIS and we demonstrated the feasibility of variants detection with 

remarkable precision. In addition, another complementary step,  which is explored by 

neoANT-HILL, is quantifying tumor-infiltrating immune cells from RNA-seq data. It 

has been demonstrated that the evaluation of tumor-infiltrating lymphocytes (TILs) 

provides prognostic value and potential predictive information of response to 

immunotherapy (Gooden et al., 2011; Althobiti et al., 2018). In comparison to the 

previously proposed tools, they usually considers RNA-seq data to estimate gene 

expression level or HLA typing. Only TIminer provides the option of quantifying the 

tumor-infiltrating immune cells through gene set enrichment analysis (GSEA). 
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We have also used melanoma dataset from TCGA to demonstrate the utility of 

neoANT-HILL in identifying potential neoantigens. We found several predicted patient 

specific and shared neoantigen candidates. The use of non-patient specific HLA 

alleles in this analysis may have generated false positive potential neoantigens. We 

observed that recurrent mutations in RAC1 and SERPINB3 genes are likely to form 

potential neoantigens. RAC1 P29S have been described as a candidate biomarker 

for treatment with anti-PD1 or anti-PD-L1 antibodies (Vu et al., 2015). Mutations in 

SERPINB3 have also been related to response to immunotherapy (Riaz et al. 2016). 

Therefore, our results suggests that screening these neoantigens can be used as 

predictive biomarkers for immune responses and potential targets for 

immunotherapies. 

Our tool provides completely integrated analyses to predicting potential neoantigens 

candidates. neoANT-HILL is available through a user-friendly graphical interface 

which enables its usage by users without an advanced programming background. 

However, neoANT-HILL still lacks some features that must be taken into 

consideration in future updates such as detection of mutations that arise from gene 

fusion, inference of HLA-class II and evaluation of similarity to known epitopes.   

Software availability 

neoANT-HILL is hosted publicly on GitHub at https://github.com/neoanthill/neoANT-

HILL and the user documentation is also available on this page. 

Data availability 

The RNA-Seq dataset from Geuvadis RNA sequencing project were downloaded  

from the ArrayExpress database (http://www.ebi.ac.uk/arrayexpress/) and this data 

can be accessed under the accession number E-GEUV-1. We used the individuals 

named NA12812, NA12749, NA20510, NA19119, NA19204, NA18498, NA12489, 

NA20752, NA18517, NA11992, NA19144, NA20759, NA19137, NA19257 and 

NA12006. The corresponding genotyping data (Phase I) were downloaded from the 

data portal of the 1KG Project (http://www.internationalgenome.org/). The melanoma 

TCGA mutation and expression data were obtained from cBIO portal by using the 

CGDS-R package. 
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FIGURES 

 

 

Figure 1. Overall workflow of neoANT-HILL. 

 

Figure 1. Screenshots of neoANT-HILL interface. (A) Main page of neoANT-HILL. (B) Processing tab 

for parameters selection to run binding prediction affinity. (C) Binding prediction results tab.  

 

Figure 3. Distribution of recurrent missense mutations that generated potential shared neoantigens. 

(A)  P29S and RAC1 gene generated recurrent strong binders mutant peptides to HLA-A*02:01 and 

P29L generated strong binders that could respond to HLA-A*02:01 or HLA-A*11:01, depending on 

peptide length (B) E250K in SERPINB3 gene generate a recurrent potential neoantigen that binds to 

HLA-A*11:01. 
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