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Abstract 
 
Multi-step enzyme reactions offer considerable cost and productivity benefits.  Process 
models offer a route to understanding the complexity of these reactions, and allow for their 
optimization.  Despite the increasing prevalence of multi-step biotransformations, there are 
few examples of process models for enzyme reactions.  From a toolbox of characterized 
enzyme parts, we demonstrate the construction of a process model for a seven enzyme, 
three step biotransformation using isolated enzymes.  Enzymes for cofactor regeneration 
were employed to make this in vitro reaction economical.  Good modelling practice was 
critical in evaluating the impact of approximations and experimental error.  We show that 
the use and validation of process models was instrumental in realizing and removing 
process bottlenecks, identifying divergent behavior, and for the optimization of the entire 
reaction using a genetic algorithm. We validated the optimized reaction to demonstrate 
that complex multi-step reactions with cofactor recycling involving at least seven enzymes 
can be reliably modelled and optimized. 
 
 
Significance statement 
 
This study examines the challenge of modeling and optimizing multi-enzyme cascades. We 
detail the development, testing and optimization of a deterministic model of a three 
enzyme cascade with four cofactor regeneration enzymes. Significantly, the model could be 
easily used to predict the optimal concentrations of each enzyme in order to get maximum 
flux through the cascade. This prediction was strongly validated experimentally. The success 
of our model demonstrates that robust models of systems of at least seven enzymes are 
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readily achievable. We highlight the importance of following good modeling practice to 
evaluate model quality and limitations. Examining deviations from expected behavior 
provided additional insight into the model and enzymes. This work provides a template for 
developing larger deterministic models of enzyme cascades. 
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Introduction 
Multi-step biocatalysis 
Biocatalysis, the use of isolated enzymes or whole cells to perform chemical reactions, is 
increasingly the route of choice in the chemical and particularly the pharmaceutical 
industries (1). There is increasing interest in developing one-pot reactions, where multiple 
catalysts work together to complete chemical pathways.  Multi-step pathways offer 
excellent cost and productivity benefits (2), driving reversible processes to completion 
without the need to isolate substrates or products at each step (3).  Enzymes are well suited 
to these reactions, operating in similar aqueous conditions at low temperatures and 
pressures.  In contrast, the use of several chemical steps together will often have differing 
operational requirements (4). Using isolated enzymes in biotransformations offers 
advantages (5) including reduced complexity and cost in downstream processing (6), fewer 
side reactions (7) and the removal of rate limiting diffusion across cellular membranes (8).  
Most attractively, parameters such as enzyme or substrate concentration, co-solvents, pH or 
temperature, can  easily be manipulated (9). Furthermore, a mathematical model can be 
built and validated so that new pathways or components can be rapidly engineered and 
tested in silico. 
 
The carboxylic acid reductases (CARs) are enzymes that have increasing interest as 
biocatalysts (10,11).  CARs catalyze the reduction of carboxylic acids to aldehydes in mild 
conditions, and can connect many types of enzyme reaction allowing the construction of 
novel multi-enzyme pathways (Figure 1A) (12–14).  Previously, we have shown CARs to be a 
fairly promiscuous enzyme class, catalyzing the reduction of both aliphatic and aromatic 
carboxylic acids.  Electron rich acids are favored as the first step in the CAR reaction 

mechanism since attack by the carboxylate on the -phosphate of ATP, is limiting (15). CARs 
have been shown to be useful in the construction of pathways for in vivo use. Some 
examples include the production of the flavor vanillin by yeast (16) and a synthetic pathway 
for the production of propane in Escherichia coli (17).  The use of CARs as an isolated 
enzyme in a multistep reaction, however, has not been explored.  Possibly this is due to the 
challenging and costly requirements for both ATP and NADPH regeneration (18), or the 
buildup of product inhibition by pyrophosphate (PPI) (15,19).     
 

Cofactor regeneration 
Many oxidoreductases require cofactors, most commonly the comparatively expensive 
NAD(P)H. For biocatalysis to be an economically viable process in vitro, cofactor 
regeneration is essential.  Many enzyme systems have been developed for the regeneration 
of NAD(P)H (20). One such system is the phosphite dehydrogenase (PTDH) enzyme from 
Pseudomonas stutzeri.  The wild-type enzyme regenerates NADH via the nearly irreversible 
oxidation of phosphite to phosphate. The enzyme has been engineered to regenerate 
NADPH and improve its thermostability (21,22), making it more attractive when 
regeneration of both NADH and NADPH is required. 
 
Techniques for the regeneration of ATP are less well developed. Enzymes such as pyruvate 
kinase (PK), creatine kinase (CK), adenylate kinase (AK) and polyphosphate kinase (PPK) 
have been used (23).  Of these, polyphosphate kinase makes use of the cheapest and most 
stable substrate, polyphosphate. Polyphosphate is also a substrate for polyphosphate-AMP 
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phosphotransferase (PAP), which allows the regeneration of ADP from AMP (24). The 
combination of PAP and PPK therefore allowed complete regeneration of ATP from AMP 
(25).  In an alternative approach, adenylate kinase (which catalyzes the reversible 
phosphorylation of AMP by ATP) was used in place of PPK.  Coupling of this enzyme with 
PAP pushes the equilibrium towards ATP regeneration (Figure 1B) (26). 
 

The application of process modelling  
Synthetic biology has long promised the use of well-characterized parts for the rational 
design of new metabolic pathways (27–29).  However the use of modelling to optimize 
these in vivo reactions is yet to be fully realized (30).  In contrast, modelling of enzymes in 
vitro can be fairly robust and offers solutions for reaction engineering (31).  This could allow 
the combination of enzymes, for which validated mathematical models exist, to be rapidly 
engineered and tested in silico (2).  
 
Indeed, in developing new biocatalytic processes the use of kinetic modelling is widely 
advocated, yet often not used in process development (32,33).  The development of a 
kinetic model early on in the development process can be invaluable in cost/benefit or 
feasibility analysis (33). It permits evidence-based decision-making (34), and critically allows 
for the identification of bottlenecks and the quantification of process problems (e.g. 
feedback inhibition or inhibition by side-products) (6). Mechanistic models, which seek to 
describe enzyme mechanisms as accurately as possible, seek to understand a system as well 
as to predict it. These offer opportunities to develop substantial improvements or insights 
into the development process (31).   A classic example is the use of Michaelis-Menten 
equations (35). Such integrated kinetic models of multi-enzyme processes are challenging 
because of the large number of kinetic parameters involved (34). Deterministic models for 
enzyme processes with two steps (plus cofactor regeneration) have been explored (34,36); 
alternative models have fitted kinetic parameters based on product concentrations (37,38). 
The most ambitious of these fitted parameters is for up to fifteen enzymes (39).  
 
To demonstrate the use of CARs in multi-step cascade reactions, and investigate their use in 
vitro, we designed a reaction made up of an esterase, a CAR and an alcohol dehydrogenase 
(ADH) to hydrolyze and then reduce an ester to its corresponding alcohol.  Methyl 4-toluate 
was chosen as a trial substrate. Whilst not directly industrially relevant, it acts as a good 
model for many industrially relevant compounds. The three step reaction models chemically 
simple reactions to supply an acid to the CAR, and to utilize the aldehyde product. Enzymes 
for cofactor regeneration and removal of an inhibitory by-product were added to provide an 
efficient reaction with sub-stoichiometric cofactor concentrations. We demonstrate that 
this results in an effective three step cascade for the ester to alcohol transformation 
incorporating seven enzymes over eight biochemical steps.  
 
To highlight the modular nature of the enzyme toolbox for designing multistep reactions, 
we characterized each enzyme individually and established a mathematical model for the 
entire pathway. In constructing and testing the model for each step in the reaction we 
demonstrate the value of building a model in identifying process problems. Specifically, we 
were able to predict the need for PPI removal, and a non-enzymatic reaction of an 
intermediate with a component of the reaction. We then performed optimization of the 
trial batch reaction, and achieved the target 90% yield with the minimal concentration of 
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the enzymes. Our results demonstrate that a deterministic model can be robust for enzyme 
cascades with cofactor recycling involving at least seven enzymes. We further demonstrate 
that these models have great potential to quickly assemble novel enzyme catalyst networks 
(40). 
 

Results 
Expression and purification of enzymes 
All of the enzymes used in this study were recombinantly prepared from E. coli, as fusions 
with a polyhistidine-tag.  All of the proteins were purified by nickel affinity chromatography 
followed by size exclusion chromatography. Each enzyme was purified to >90% purity 
(Supplementary Figure 1 to Supplementary Figure 8).  
 

Designing a synthetic multi-step pathway 
Enzymes with the correct substrate specificity to catalyze the esterase, CAR and ADH steps 
were identified from the literature. Where possible, thermostable enzymes were chosen to 
provide maximum operational stability. In the case of the CAR step, only moderate 
thermostability was possible due to the limited number of organisms that use these 
enzymes.  An esterase from the hyperthermophile Archaeoglobus fulgidus (afEst2), a CAR 
from the moderate thermophile Mycobacterium phlei (mpCAR), and an ADH from the 
hyperthermophile Aeropyrum pernix (apADH) were chosen (Figure 1B) (41,42).  The catalytic 
constants of these enzymes against the relevant substrates in the test pathway were 
determined (Supplementary Figure 19 to Supplementary Figure 38) or taken from relevant 
literature (references shown in Table 3).  
 
To allow cofactor regeneration, a thermostable mutant of PTDH, capable of regenerating 
both NADH and NADPH, was chosen given the need for both of these cofactors in the 
pathway.  For ADP regeneration from AMP, we identified a PAP enzyme from the 
thermophile Thermodesulfobium narugense (tnPAP) with 33 % identity to the previously 
characterized PAP from Acinetobacter johnsonii (43).    
 
A thermostable PPT enzyme from Thermosynechococcus elongatus that had previously been 
characterized (44) was initially chosen to regenerate ATP from ADP. However, in our hands 
this enzyme gave very low activity.  In its place, a thermostable AK enzyme from 
Thermotoga neapolitana (tnAK) was used, which had previously been characterized with 
high activity (45). We had previously identified that PPI is a significant inhibitor of CARs (15). 
We therefore also determined the activity of a thermostable PPiase from Thermus 
thermophilus (ttPPiase; Supplementary Figure 33). 
 

Identifying an operational window 
Thermostability and activity at different pHs were determined for each enzyme to define an 
operational window for the reaction (Supplementary Figure 39).  Data for afEst2(42), 
mpCAR(15), apADH(46) and tnAK (45) were adapted from previous work.  The effects of pH 
and temperature on the remaining enzyme activities were characterized (Supplementary 
Figures 11 to 14).   A pH of 7.5 was chosen as a compromise for all enzymes, and ADH 
activity in the (undesired) oxidative direction was minimized at this pH.  As we expected, the 
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operational window for temperature is primarily limited by the mpCAR enzyme, as this has 
only moderate thermostability.  A reaction temperature of 30 °C was chosen to ensure 
maximum activity of this enzyme.   
 

Reaction modelling 
Mathematical models utilizing kinetics based on the steady state approximation were 
developed in isolation for each section of the multi-step reaction and validated before being 
combined into a multi-step process. These models were developed using Python scripts 
(Supplementary File 1), with equations appropriate for each enzyme. The rate equations are 
summarized in Table 1, which were used to construct differential equations for each 
reaction to be tested (Table 2). Each rate equation is based upon the steady-state 
approximation, and represents a unidirectional reaction (47). Where reactions are 
reversible, equations for both directions were included. The rationale for each equation 
used is detailed below. Kinetic parameters were either identified from the available 
literature or determined experimentally.  An uncertainty analysis was carried out for each 
model, where possible, using bounds equal to the 95 % confidence intervals of each 
parameter (Table 3).  In some cases where uncertainty was judged to be large due to 
incomplete knowledge, bounds of ± 50 % of the parameter were used.  Starting 
concentrations were given bounds of ± 5 %, except in the case of polyphosphate where the 
length of the polyphosphate chain is unknown.  In this case ± 25 % was used with the upper 
bound equal to the absolute concentration of phosphate units.  Model predictions were 
tested by running small scale reactions in a thermomixer, with samples taken every 30 
minutes and quenched with acetonitrile for analysis by HPLC. 
 

Esterase reaction 
The afEst2 has been recently characterized and kinetic parameters for the hydrolysis of 
methyl 4-toluate at 30 °C reported (42) (Table 3).  As this characterization was carried out at 
pH 8.2, a medium level of ± 25 % uncertainty was associated with these parameters. 
Hydrolysis reactions are typically modelled using the irreversible, one substrate Michaelis-
Menten equation.  This model was tested against a small scale batch reaction (Figure 2A), 

which it was able to make a reasonable prediction.  A reduced 2 statistic was used to assess 
the model (48). A model fitted directly to the experimental data would be expected to 

achieve a 2 of one; we interpreted models as strong where 2 was less than fifteen, and 

less than a quadratic or simple linear model fitted to the experimental data. Here, 2=2.9 
(c.f. 6.3 and 32 for the alternative models), and so was interpreted as a good fit. 
 
However, on examination of the data, it is noticeable that the reaction proceeds faster than 
modelled, and that the reaction did not appear to go to completion. The characterization of 
this enzyme was performed in 2.5 mM buffer (necessarily as the assay detects a change in 
pH) (42), whilst all of our reactions used 100 mM buffer. We tested the effect of changing 
the buffer concentration on afEst2, and found that the enzyme is 55 % faster in 100 mM 
buffer (Supplementary Figure 15).  To reflect this the kcat-Fwd was increased by 55 % to 9.3 
min-1, with ± 50 % uncertainty.  While an irreversible reaction was initially assumed due to 
an excess of water, we calculated the Keq for this reaction as 22, consistent with a noticeable 
reverse reaction.  We therefore incorporated the reverse direction into our model (Table 1), 
with estimated parameters with large uncertainty bounds (Table 3) (49–51). The updated 
model predicted the batch reaction well, albeit with a larger degree of uncertainty (Figure 
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2B).  A sensitivity analysis was carried out to look at the sources of uncertainty in this new 

model (Supplementary Figure 16). The revised model showed 2=0.81, highlighting the 
improvement of the model. 
 

CAR reaction 
The CAR enzymes have three substrates: ATP, NADPH and a carboxylic acid. The reaction 
proceeds in an ordered fashion, with the ATP activating the acid and an enzyme-acid 
conjugate being formed before NADPH binds (52).  This reaction was therefore modelled 
using a three substrate rate equation, analogous to that of an aminoacyl tRNA synthetase in 
which a ternary complex must form before the third substrate can bind (53).  Parameters 
were determined experimentally (Supplementary Figures 21 and 22). 
 
A reaction to test the CAR model was set up, predicting a fast turnover of the acid into its 
derivative aldehyde (shown in grey, Figure 3A).  Instead, after an initial burst, activity slowed 

considerably and the reaction was not complete even after four hours (2 = 200). We 
investigated the possibility of product inhibition and found that all of the products of the 
CAR reaction (PPI, AMP and NADP+) act as inhibitors (discussed in more detail in (15)). While 
AMP and NADP+ both act as competitive inhibitors which may be overcome by increasing 
the substrate concentration, PPI acts as a mixed model inhibitor with respect to ATP, causing 
a large decrease in the apparent kcat.  When the inhibition by these products was taken into 

account the model fitted the data quite well (Figure 3A; 2 = 3.1). We noted that modelling 
the inhibition resulted in a large level of uncertainty. 
 

ttPPiase removes CAR inhibition by PPI 
In order to alleviate inhibition by PPI on the CAR enzyme, an inorganic pyrophosphatase 
from T. thermophilus (ttPPiase) was added to the reaction. This enzyme shows exceptional 
thermostability and retained over 90 % activity after a 30 minute incubation at 95 °C 
(Supplementary Figure 39).  Pyrophosphatase activity was measured at a saturating 
concentration of PPI (5 mM) and the rate taken to be the kcat.  The enzyme was modelled 
using the one substrate Michaelis-Menten equation, and using the KM determined in a 
recent study on this enzyme (54). The addition of the ttPPiase alleviated the majority of the 
inhibitory effects seen previously and the CAR reaction went to completion within one hour 
(Figure 3B). 
 

Aldehyde side reaction 
Once the CAR reaction was complete, aldehyde concentration decreased over time (Figure 
3B).  Aldehydes can react with free amines; and benzaldehyde in particular has a 
documented specific reaction with Tris (Supplementary Figure 17) (55,56). We verified that 
4-methylbenzaldehyde reacts in a similar manner with Tris, and validated the product by 
mass spectrometry (Supplementary Figure 18).  As we validated this side reaction after 
completing all other experiments, we accounted for this reaction using a one phase decay 
equation. This was fitted to the decrease in aldehyde concentration, and an equation for the 
rate of aldehyde side reaction constructed (Table 1 and Table 3). This resulted in a very good 

fit of the aldehyde concentration to the data (2 = 2.4). 
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NAD(P)H regeneration using PTDH 
The regeneration of NADPH using PTDH was then added to the CAR step. Although PTDH 
shows sequential ordered kinetics with NAD+ binding before phosphite, the effect of 
phosphite concentration was not modelled as all experiments were performed at saturating 
phosphite concentrations.  The one substrate Michaelis-Menten equation was therefore 
used for reactions with either NAD+ or NADP+ as the substrate. NAD+ and NADP+ act as 
competitive inhibitors of each other with KI values equal to their respective KM values, and 
this inhibition was added to the model (Table 1).  Kinetic parameters for NAD+, NADP+ were 
determined at assay conditions by following the generation of NADH or NADPH at 340 nm 
(Table 3; Supplementary Figures 31 and 32). 
 

The NADPH regeneration was tested by attempting reduction of 4000 M 4-toluate by CAR 

with only 500 M or 50 M NADPH, together with the PTDH regeneration system.  Both 
reactions went to completion with far less than stoichiometric NADPH. The reaction 

containing 500 M NADPH fitted the model predictions reasonably well (Figure 3C; 2 = 160, 

in this case driven by a single anomalous data point).  When only 50 M NADPH was used, a 
much slower reaction was predicted by the model.  However, only a small difference was 

observed experimentally compared to the use of 500 M NADPH (Figure 3D; 2 = 1,200).  
We considered that some form of substrate channeling (57,58) may be taking place 
between the CAR and PTDH resulting in a lower apparent KM for NADP+ by PTDH.   
 

ATP regeneration using tnPAP and tnAK. 
tnPAP showed good PAP activity, and kinetic parameters for polyphosphate and AMP were 
determined experimentally (Supplementary Figures 35 to 37), and a bi-substrate equation 
constructed. An adenylate kinase from Thermotoga neapolitana has been reported to 
possess excellent thermostability, with kinetic parameters similar to those of the 
characterized E. coli adenylate kinase.  These parameters were used to model the adenylate 
kinase. However, testing of this enzyme in a CAR coupled reaction revealed a significantly 
lower turnover number (Supplementary Figure 40).  Furthermore, the magnesium 
concentration has been shown to be instrumental in controlling the equilibrium catalyzed 
by AK.  Since the free magnesium concentration is not known due to chelation by 
polyphosphate and other compounds, this effect was not taken into account.  For this 
reason, the AK reaction is difficult to model accurately in the context of the multistep 
pathway. Therefore, a simple bi-substrate equation was used to describe it.  Large 
uncertainty bounds were used for all the parameters in the AK reaction as a consequence.  
With all the cofactor regeneration systems in place, the reaction proceeded almost to 
completion with far less than stoichiometric cofactors, and fitted well to the model (Figure 

3E; 2 = 11). 
 

ADH reaction 
The kinetic parameters for both the forward and reverse directions of the apADH catalyzed 
reactions were determined experimentally. The KM for 4-tolyl alcohol (for the reverse 
oxidative reaction) could not be accurately determined, as the reaction is not saturated at 
the highest concentrations that the substrate is soluble at (Supplementary Figures 29 and 
30). An estimated KM of 100 mM was used (Table 3).  Consequently, kcat-Rev was also difficult 
to determine and a value similar to kcat-Fwd was assumed.  A two substrate steady state 
sequential rate equation was used to describe both the forward and reverse reactions 
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separately, using an estimated parameter for the KI for NAD+ and NADH based on their 
determined KM values. 
 
Reactions featuring only apADH as well as with PTDH for NADH regeneration (using far less 
than stoichiometric NADH) were used to validate the model, which predicted the rate of 

reduction well in both cases (Figure 4; 2 = 7.0).  A sensitivity analysis of the final alcohol 
concentration in both these reactions showed the KI for NAD+ and NADH, and kcat-Rev to have 
little effect (Supplementary Figure 42). 
 

Building a multi-step enzyme cascade 
Once the models for each of the esterase, CAR and ADH steps were independently validated 
with cofactor regeneration, multi-step reactions were constructed.  The CAR step was 

tested in combination with first the esterase, and then ADH (Figure 5A, B; 2 = 10, 4.8 
respectively). 
 
In each case the model performed well in predicting the productivity of the reaction. 
However, the hydrolysis reaction catalyzed by afEst2 proceeded faster than was expected 
(Figure 5A and 5C).  We considered that one or more reagents for other reactions might 
increase the afEst2 activity. Addition of all of the final reaction reactants caused a 30% 
increase in rate, compared to the rate in 100 mM Tris (Supplementary Figure 15). Further 
experiments showed that no individual component accounted for this, implying a salting-in 
effect (Supplementary Figure 15). To accommodate this increase and the uncertainty 
surrounding it in to the modelling, we increased the esterase kcat to two times the 
parameter value for the combined reactions, and increased the uncertainty to 50% of this 
value.  Higher levels of uncertainty in the afEst2 step predictions are therefore observed 
(Figure 5A and 5C). 
 

Optimization of enzyme concentrations by a genetic algorithm 
For most industrial processes, the cost of components is one critical factor in determining 
the economic feasibility of an approach. We therefore aimed to demonstrate that this 
multistep cascade could be optimized. We aimed to increase the overall yield of alcohol, 
whilst minimizing the overall concentration of enzymes used. We custom built a genetic 
algorithm (Supplementary Figure 43) to perform this optimization. Our algorithm generates 
random solutions for the concentration of each enzyme, and scores the quality of the 
solution against targets of 90% yield of alcohol, with the lowest total enzyme concentration. 
The highest scoring solutions are retained, and used to generate a new population of 
solutions. 25 cycles of this process were sufficient for the population to achieve a stable 

solution. Enzyme concentrations of 9.65 M afEst2, 0.73 M CAR, 24.75 M ADH, 0.07 M 

PPiase, 0.43 M PTDH 0.15 M AK and 0.57 M PAP were identified as the lowest enzyme 
concentration pathway capable of achieving 90 % yield in four hours. This achieved a more 
than two-fold increase in yield, whilst reducing the concentration of six of the seven 
enzymes used.  
 
To test the optimized pathway, reactions were performed at the reagent concentrations 

proposed by the optimization algorithm (Figure 6).  The model fitted the data well (2 = 9.5). 
The final yield of alcohol was slightly lower than expected reaching a final yield of only 3,000 
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M as opposed to the 3,500 M predicted by the model.  However, the optimized pathway 
performed significantly better in productivity compared to the non-optimized pathway. 
 

Sensitivity analysis comparison of the optimized vs non-optimized pathways 
As well as delivering optimal performance at lowest cost, it is important that industrial 
processes are robust, and not easily affected by issues with a single reagent. Therefore, a 
Sobol sensitivity analysis was carried out on the model for the optimized reaction to 
determine the main sources of the large uncertainty in the final alcohol concentration (59) 
(Figure 7).  This revealed that the final alcohol yield was most sensitive to the parameters 
for tnAK in this optimized reaction (>30% of total uncertainty associated with these). Other 
parameters with a substantial contribution included polyphosphate concentration, CAR 
inhibition by PPI, and the rate of aldehyde degradation. These parameters were very 
different from those observed in the non-optimized reaction (Figure 7). This indicated that, 
whilst the optimization had been highly successful in delivering greater productivity at lower 
cost, this came at the cost of increased sensitivity to some parameters related to individual 
enzymes (resulting in a 3.5 fold increase in the 95% CIs of the final yield). 
 

Discussion 
Multi-step in vitro biocatalysis 
Among several other advantages, the use of isolated enzymes allows reactions to be easily 
controlled and subsequently optimized quickly and easily.  We have demonstrated the use 
of CARs for multi-step in vitro biocatalysis, making use of mechanistic modelling to 
understand the dynamics of multiple enzymes working in concert.  The modular nature of 
constructing models for each enzyme allows a systems biology approach to be taken for the 
creation of new cascades, with the effects of enzyme module addition or removal being 
predictable in silico. Furthermore, establishing a mathematical model for this seven enzyme 
in vitro cascade facilitates its understanding.  Key advantages include the ability to exploit 
the model for the evaluation of different process options, identification of bottlenecks and 
optimization of the reaction. 
 
Modelling drives hypothesis generation 
Most importantly, modelling was critical in identifying the inhibition of CAR by PPI (Figure 2). 
This has since been independently shown by Kunjapur et al. (19). This demonstrates one 
benefit of mechanistic modelling over a purely data driven approach. Upon observing the 
slower rate of the CAR reaction compared to the model expectations, we were able to focus 
efforts on determining the cause of this (15). We were then able to test the addition of the 
PPiase enzyme in silico before committing to the process of preparing this enzyme for 
inclusion in the cascade. It is possible that other enzymes might have unidentified inhibitors 
or activators in the cascade. However, our modeling showed no evidence of these, and so 
provides a data-led rationale for avoiding the costly testing of all possible pairwise 
interactions. 
 
Testing our observations against model predictions revealed some other interesting 
phenomena.  The inclusion of PTDH allowed the CAR reaction to proceed more effectively 
than the model predicted at low NAPDH concentrations (Figure 3D).  More detailed 
modelling would be required to fully understand this. However, this observation might be a 
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result of substrate shuttling or channeling between PTDH and the reductase domain of the 
CAR enzyme (60).  It could be expected that the local concentration of NADP+ around the 
CAR enzyme might be higher, and that here PTDH would work more efficiently providing a 
larger local supply of NADPH (61).  Possibly PTDH could even localize near the CAR for this 
reason.    
 
The use of CARs in vitro 
CARs have previously been used in whole-cell biocatalysis where ATP and NADPH can be 
regenerated by the host metabolism (62).  Using CARs as isolated enzymes allows the design 
of an efficient process, and the inclusion of cofactor regeneration makes this an 
economically competitive alternative to whole-cell biocatalysis.   
 
PTDH accepts two substrates, NAD+ and NADP+, which compete for the enzyme’s active site.  

In our optimized reaction both NAD+ and NADP+ were set to 500 M and only PTDH 
concentration was optimized.  In this situation NAD+ is regenerated more effectively as 
PTDH has a lower KM and higher kcat for this substrate.  Possibly the PTDH reaction could be 
optimized further by allowing the ratio of NAD+ : NADP+ to be altered in the optimization 
procedure, to balance NADH and NADPH regeneration to the requirements of the reaction.  
The evidence for substrate shuttling in these reactions also offers the possibility to further 
reduce the concentrations of expensive cofactors. 
 

The ATP regeneration system is challenging to model 
The reaction catalyzed by AK is critically regulated by magnesium (63).  While AK has been 
shown to follow a random Bi Bi mechanism (64),  knowledge of the free and bound 
magnesium concentrations is required to implement this mechanism as a rate equation.  As 
this is impractical, we were forced to only approximate the AK reaction using a bi-substrate 
equation (Table 1), with high levels of uncertainty associated with each parameter. The 
uncertainty analysis performed easily captures the potential positions of equilibrium that 
would be modelled using a more complex but accurate rate equation, facilitating the use of 
the approximation (63).  Future iterations of the model could seek to more accurately 
model the free and bound magnesium concentrations (65).   
 
The reaction catalyzed by PAP is also difficult to model.  Polyphosphate cannot be added at 
a saturating concentration due to chelation of magnesium, and the chain lengths and 
concentrations of the various polyphosphate species are difficult to determine.  Since both 
polyphosphate chain length and concentration affect reaction kinetics, the reaction was 
again approximated using a bisubstrate equation with high levels of uncertainty associated 
with the polyphosphate concentration (Table 1).   
 

Reaction optimization 
Optimization of the batch reaction, used to validate the model, demonstrates its potential 
for exploring new process options.  Optimization of the reaction resulted in just enough 
afEst2 to hydrolyze all of the methyl 4-toluate in the time available, and just enough ApADH 
to achieve 90 % of the theoretical maximum of 4-tolyl alcohol at 4 hours (Figure 6).  In 
contrast, 4-toluic acid and 4-tolualdehyde concentrations were maintained at a low but 
steady concentration allowing maximum productivity by all enzymes for the entire reaction.  
Enzyme concentrations were minimized and productivity maximized successfully.     
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In comparing the uncertainty in the pre-optimization (Figure 5C) and optimized (Figure 6) 
complete reactions, it is clear that uncertainty in the optimized reaction has increased 
significantly (Figure 7).  Minimizing the concentration of all enzymes so that they are each 
close to being rate limiting has likely increased the uncertainty, as changes in a greater 
number of parameters can impact on the rates.   
 
The pre-optimization reaction did show uncertainty in 4-toluic acid and 4-tolualdehyde 
concentrations, yet this does not translate to a high degree of uncertainty in the 4-tolyl 
alcohol concentration.  When 4-tolualdehyde concentration is high enough above its KM for 
ApADH, the main driver for 4-tolyl alcohol concentration uncertainty is the rate of the 
ApADH reaction (principally the adh_kcat_fwd parameter; Figure 7A).  However when 4-
tolualdehyde is maintained at the lower concentrations in the optimized reaction, this 
concentration has a greater impact on the rate of 4-tolyl alcohol production.  Many of the 
parameters causing uncertainty in 4-tolualdehyde concentration are then responsible for 
the larger degree of uncertainty in 4-tolyl alcohol production (Figure 7B).  This suggests that 
the sensitivity of product 4-tolyl alcohol production could be kept low by optimizing the 4-
tolualdehyde concentrations to be maintained above the ApADH KM for this intermediate. 
Future optimization could include an additional objective for the minimization of 
uncertainty in the final 4-tolyl alcohol concentration.  This would allow costs to be 
minimized whilst also minimizing the uncertainty in the final yield.  However the inclusion of 
two competing objective functions would make the optimization process more complex, 
likely requiring the generation and manual evaluation of a set of Pareto optimal solutions 
(66). 
 
We estimate the cost of our optimized reaction (Figure 6), as approximately $0.0014 (for a 

500 L reaction; or $6 per gram of a 150 Da product; Supplementary Data), when 
performed at a scale to benefit from bulk prices (67). Further reductions in the cost would 
likely be achieved at high scales. Re-use of the enzymes (e.g. by enzyme immobilization) 
would significantly reduce enzyme costs; and cofactor costs could be minimized using the 
cheaper spent cofactors as the starting material. This would make the cascade competitive 
for the production of fine chemicals (e.g. perfumes or pharmaceuticals).  
 
Uncertainty and sensitivity analysis facilitate the use of approximations 
The use of uncertainty analysis to incorporate error or approximations into the modelling 
was critical in its implementation.  For example, large uncertainty bounds covering an 
extensive range of feasible parameter values for the reverse direction of the esterase 
reaction were modelled.  Despite the high levels of uncertainty for these parameters, the 

model is still able to make a good predictions, giving low 2 values compared to simple 
models. This is particularly so for the complete reaction where error in these parameters 
have little impact on the prediction for the final alcohol concentration (Figures 5C, 6 and 7).   
 
Furthermore, a number of approximations were necessary while modelling the ATP 
regeneration for the CAR step, resulting in a large uncertainty in the CAR reaction (Figure 
3E).  However high uncertainty in the CAR step did not necessarily result in high uncertainty 
in the complete reaction (Figure 5C and Figure 7), although some parameters had a larger 
effect once enzyme concentrations were minimized in the optimized reaction (Figure 6 and 
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Figure 7).  Sensitivity analysis suggests a more accurate characterization of the inhibition by 
PPI on the CAR enzyme, as well as a better characterization of the AK reaction, would be 
good targets for reducing the uncertainty in the optimized reaction in future experiments. 
 

Conclusions 
Multi-enzyme cascades, many of which are made possible via CAR enzymes, offer the 
opportunity to make an extended range of biocatalytic transformations economically viable. 
Here we show that thorough characterization of every component of a multi-enzyme 
cascade allows the development of a deterministic cascade model. This deterministic model 

robustly predicts the behavior of the cascade in vitro (2 = 3.0), demonstrating that such 
models are readily tractable for cascades of at least seven enzymes, a considerable advance 
on the most complex cascade previously described. We further demonstrate the utility of 
this model in understanding the reaction and for rapidly identifying steps in the catalysis 
that do not perform as expected. Finally, we exploited the model to optimize the 
transformation for maximum pathway flux with minimal enzyme usage. Our findings 
validate the use of deterministic models for in vitro biocatalysis, and strongly suggest that 
these should be used more widely in process development to increase the economic 
efficiency of enzyme cascades. 
 
  
 
 
 
 
 
 

Methods 
 

Materials and plasmids 
All chemicals were purchased from Sigma-Aldrich (Gillingham, UK), and were of the highest 
purity available.  Plasmid files are available as supplementary file 2.  pNIC28-Bsa4 (68) is 
available through Addgene.  Other pET vectors used in this study are available from 
Novagen.  All reactions were performed in aqueous solutions.  Methyl 4-toluate (#259667), 
4-toluic acid (#T36803), 4-tolualdehyde (#35602) and 4-tolylalcohol (#127809) were each 
prepared at stock concentration of 500 mM in DMSO.  

Enzyme preparation 
Genes for the expression of mpCAR, PTDH, tnAK, tnPAP, and ttPPiase were cloned into the 
NcoI and HindIII sites of pNIC28-Bsa4(68).  The native apADH gene sequence was cloned 
previously into pET-30 Xa/LIC (69).  The gene for mpCAR was obtained by PCR from genomic 
DNA. All other genes were codon optimized for E. coli and gene synthesized by IDT.  All 
contained a N-terminal 6x histidine tag (68) (sequences available in Supplementary 
Information).  Vectors were transformed into BL21 (DE3) E. coli for expression.  mpCAR was 
co-transformed with a pCDF-Duet1 vector containing a phosphopantetheine transferase 
from Bacillus subtilis.  A pET24-d plasmid containing afEst2 transformed into the E. coli 
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strain BL21-CodonPlus (DE3)-RIPL (Agilent) has been described previously (42).  Expression 

was carried out in LB media with the addition of 50 g/ml of appropriate antibiotics.   
 
Cells were grown to approximately 0.6 OD600nm at 37 °C with shaking at 225 rpm, at which 

point IPTG was added to a concentration of 100 M. Cells were then incubated overnight at 
20 °C, except for afEst2 which was incubated overnight at 30 °C.  Cells were harvested by 
centrifugation at 4,750 g and re-suspended in 25 mM Tris-HCl pH 8.0, 0.5 M NaCl2.  
 
Cell lysate was prepared by sonication on ice followed by centrifugation at 20,000 g to 
remove the insoluble fraction.  Enzymes were purified from the cell lysate using a 1 ml His-
Trap FF crude column (GE Healthcare) using an elution gradient from 10 to 250 mM 
imidazole in 25 mM Tris-HCl pH 8.0, 0.5 M NaCl.  The purified sample was then applied to a 
Superdex 200 HiLoad 16/60 gel filtration column (GE Healthcare) and eluted in 25 mM 
HEPES, pH 7.5, 0.1 M NaCl at 1.0 ml/min.  Eluted fractions were analyzed by SDS-PAGE 
before being pooled and concentrated to between 1 and 8 mg/ml.  To calculate protein 
concentration from OD280nm, an extinction coefficient and molecular weight for each 
enzyme was calculated using the ExPaSy ProtParam tool (70).  Single use aliquots of protein 
were stored at -80 °C. 
 

Enzyme assays 
Unless otherwise stated, all reactions were performed in triplicate in a 96-well microtiter 
plate using a Tecan M200 Infinite plate reader.  All assays were carried out in a standard 
reaction buffer consisting of 100 mM Tris-HCl at pH 7.5, titrated to the correct pH whilst at 
30 °C. All experiments used three experimental replicates, defined as experiments set up 
and run independently for each condition tested. Triplicate samples were sufficient to 
determine the necessary constants, whilst permitting sufficient throughput in single 
experiments. 
 

Buffers for pH vs activity assays 
Buffers to measure activity across a range of pH values were prepared at 0.2 pH unit 
intervals at assay temperature.  Buffers used were: 50 mM citrate between pH 4.0 and 5.8, 
50 mM MES between pH 5.8 and 6.6, 50 mM PIPES between pH 6.4 and 7.4, 50 mM MOPS 
between pH 6.8 and 7.8, 50 mM HEPES between pH 7.0 and 8.0, 50 mM Tris between pH 7.8 
and 9.0, and 50 mM boric acid between pH 8.8 and 10.  10 M and 1 M HCl or NaOH was 
used to titrate the buffers to the correct pH as appropriate.     
 

Thermostability assays 
Thermostability was measured by heating enzyme samples for 30 min using the 
temperature gradient of a Bio-Rad thermocycler between 30 and 90 °C (or less where 
appropriate) before cooling on ice.  Activity was then measured using specific enzyme 
assays (below) relative to a control sample kept on ice.  Where appropriate, data were 
adapted from previous work as indicated in the relevant sections. 
 

CAR assays 
To determine the two substrate kinetics of mpCAR with ATP and 4-toluic acid, reactions 

were set up containing 11 g / ml mpCAR enzyme, 0.25 mM NADPH, 10 mM MgCl2, with a 
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range of ATP and 4-toluic acid concentrations.  The oxidation of NADPH was used to monitor 
reactions by measuring absorbance of NADPH at OD340 nm.  Reactions were carried out for 10 
minutes after a 5 minute pre-incubation at 30 °C.  The appropriate equation was 
determined by fitting the initial rates of reaction at eight ATP concentrations around the 
expected KM including a blank, each at five 4-toluic acid concentrations around its expected 
KM.  Data were fitted by least squares non-linear regression using GraphPad Prism 5.0, and 
possible reaction mechanisms compared for goodness of fit.  A KM for NADPH was 

determined by setting up reactions containing 10 g / ml mpCAR enzyme, 10 mM MgCl2, 1 
mM ATP, 10 mM 4-toluic acid and a range of eight NADPH concentrations around its 
expected KM, after confirming NADPH concentration at OD340 nm.  Other characterization was 
performed previously (15). 
 

ADH assays 
To determine kinetic parameters for apADH, assays were carried out in sealed PCR tubes 
using a Bio-Rad thermocycler.  After 15 to 30 minutes reactions were quenched by transfer 
into a 96-well microtiter plate containing 5 mM NaOH.  Increase or decrease in NADH 
concentration was measured at OD340nm to determine activity, relative to a blank reaction.  
Reactions to measure activity in the reductive direction were set up containing either 0.5 
mM NADH or 10 mM 4-tolualdehyde.  Reactions to measure activity in the oxidative 
direction were set up containing either 2.5 mM NAD+ or 100 mM 4-tolyl alcohol.  In each 
case a range of concentrations were used for the other respective substrate around its 
expected KM, including a blank.  4-tolylaldehyde kinetics were carried out at 30 °C in 

standard reaction buffer using 166.7 g / ml apADH enzyme.  NAD+, NADH and 4-tolyl 
alcohol kinetics were carried out at 70 °C in 100 mM Tris-HCl titrated to pH 7.5 at 70 °C, 

using 40 g / ml apADH enzyme.  Only KM constants were taken from data at 70 °C.  Data 
were fitted by least squares non-linear regression using GraphPad Prism 5.0.  Data for the 
effects of pH and temperature were adapted from previous work (46).     
 

PTDH assays 
To determine kinetic parameters for PTDH, assays were set up containing 20 mM Na2HPO3, 

2.8 g / ml PTDH enzyme, and a range of NAD+ or NADP+ concentrations around the 
expected KM.  The production of NADH or NADPH was monitored at OD340nm and data were 
fitted by least squares non-linear regression using GraphPad Prism 5.0.  The thermostability 

of a sample containing 18 g / ml PTDH was measured as described above.  Activity at 
various pH values was determined using a range of buffers described previously, in place of 
the standard reaction buffer. 
 

PPIase 
PPiase activity was measured using the production of phosphomolybdate to measure 
phosphate content, as described (71).  Using a standard curve, the rate of phosphate 

production by ttPPiase at 0.22 g / ml was determined using a high (5 mM) concentration of 
PPI in the presence of 10 mM MgCl2, in standard reaction buffer.  Five measurements were 
taken in triplicate over 20 minutes.  A conservative KM was estimated from the BRENDA 
database (72) and the rate of PPI hydrolysis used to calculate kcat.   
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Activity at pH was determined using the same phosphomolybdate method with reaction 
buffers covering a range of pH values, detailed above.  The thermostability of a sample 

containing 0.44 g / ml ttPPiase was measured using the assay described previously, with 
readings taken at time points 0 and 20 minutes.  10 mM MgCl2 was included in the heated 
sample. 
 

PAP assays 
ADP formation was measured using an ADP-Glo kinase assay kit from Promega in a 384-well 
solid white microtiter plate, following the manufacturer’s instructions.  Assays were carried 
out in standard reaction buffer containing 20 or 40 mM MgCl2, 12.5 mM polyphosphate, 

3.25 mM AMP, 12.5 g / ml or 125 g / ml of tnPAP enzyme (as indicated in SI).  
Polyphosphate was calculated as concentration of Na.PO3 units, with a molecular weight of 
102. Reactions were carried out for 15 minutes before quenching with the ADP-Glo kit.  A 
range of polyphosphate, AMP and MgCl2 concentrations around an expected KM were 
assayed in turn.  ADP production was calculated from a standard curve, and the data fitted 
by least squares non-linear regression using GraphPad Prism 5.0.  Specific assay conditions 
are shown in Supplementary Figures 35 to 38.  Activity at different pH values was measured 
using a range of buffers described above in place of the standard reaction buffer.  
Thermostability was determined as described above, using the ADP-Glo assay to measure 
residual relative activity. 
 

Mathematical modelling 
Mathematical modelling was carried out in Python 3.4 using the SciPy (73) and SALib (74) 
modules.  A python package (https://github.com/willfinnigan/kinetics) was developed 
during the course of this work.  Outputs were exported to GraphPad Prism 5.0 for plotting.  
The integrate.odeint function in SciPy was used to solve ordinary differential equations.   
 
Uncertainty analysis was carried out making use of the SALib module (74).  Input bounds for 
each parameter were defined as either the calculated 95 % confidence intervals or where 
uncertainty was judged to be high 25 or 50 % of the parameter value.  Sampling of the 
possible inputs within these bounds was carried out by Latin hypercube sampling of 1,000 
samples, with the model for each sample run.  At each time point the mean, 5th and 95th 
percentile of each substrate concentration was plotted to represent the uncertainty of the 
model. 
 
Reduced chi-squared values were calculated using the formula (48): 
 

𝜒𝑟𝑒𝑑
2 =  

1

𝐾
 ∑ (

|𝑦𝑛| − 𝑓(𝑥𝑛)

|𝑦𝑛|
𝑁  ∑

𝜎𝑚

|𝑦𝑚|
𝑀
𝑚=1

)

2
𝑁

𝑛=1

 

Where K is the number of degrees of freedom; N is the total number of experimental points 
determined; M is the total number of experimental points determined for each 
substrate/intermediate/product; |ym/n| is the mean experimental value at each point 
determined; f(xn) is the model derived value for y at time x; and sn is the standard deviation 
in each experimental value. The reduced chi-squared formula was modified here to take the 
mean fractional standard deviation for each chemical: this approach was taken to mitigate 
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the effect of (random) tightly determined triplicate points dominating the calculation. Three 
models were used for each dataset: the median deterministic model described above; a 
quadratic equation of the form y = ax2 + bx + c fitted to the experimental data; and a linear 
equation of the form y = ax + c fitted to the experimental data. 
 
The method of Sobol (75) was used for sensitivity analysis as part of the SALib module (74), 
although numerus methods are available.  Second order effects were not calculated, and 
the total sensitivity indices plotted to show the sensitivity of each parameter.  The sample 
number was set at 1,000 (chosen for consistency with past studies; this was sufficient to 
obtain a good sampling rate whilst not overloading computing resources).  For more 
information on the use of uncertainty and sensitivity analysis in process modelling please 
see the following references (76,77). 
 

Optimization using a genetic algorithm 
A custom built, single objective genetic algorithm was used to minimize enzyme cost, on the 
condition over 90 % alcohol yield was reached.  A general outline of the algorithm is shown 
in Supplementary Figure 44. 
 

Model validation reactions 
Standard curves of methyl 4-toluate, 4-toluic acid, 4-tolylaldehyde and 4-tolyl alcohol were 

prepared and analyzed by HPLC.  500 l reactions were set up in triplicate in 1.5 ml 
microcentrifuge tubes, and incubated in a thermoshaker (EpMotion T5075t thermal module, 

Eppendorf) at 30 °C with 500 rpm shaking.  50 l samples were taken every 30 minutes, 

mixed with 50 l acetonitrile, and centrifuged for 10 minutes.  Supernatant was removed 
and stored at 4 °C before being analyzed by HPLC. 
 

HPLC 

An Eclipse Plus C18 column (Agilent) with a particle size of 3.5 m, measuring 4.6 x 100 mm, 
was used.  The column was run at 60 °C on the following method using two buffers: buffer 
A: 95 % H2O, 5 % (v/v) acetonitrile, 0.1 % (v/v) trifluoroacetic acid; buffer B: 5 % H20, 95 % 

(v/v) acetonitrile, 0.1 % (v/v) trifluoroacetic acid.  3 l of sample was injected and eluted on 
a gradient from 0 to 100 % buffer B over 10 minutes.  Buffer B was maintained at 100 % for 
a further 2 minutes before the column was re-equilibrated with buffer A for 2 minutes. 
 

Mass spectrometry 
Low and high resolution mass spectra were obtained by staff at the University of Manchester. 
Electrospray (ES) spectra were recorded on a Waters Platform II with an SQ Detector 2. High 
resolution mass spectra (HRMS) were recorded on a Thermo Finnigan MAT95XP and are 
accurate to ± 0.001 Da. 
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Figure legends 
 
Figure 1 – Utilizing CARs in multi-step enzyme reactions 

A. CARs join many industrially relevant enzyme reactions, making them useful for the construction of 
novel multi-step enzyme reactions.  Cofactors and additional substrates are not shown for enzymes other 
than CAR for clarity.  ADH: alcohol dehydrogenase, ATA: amino transferase, IRED: imine reductase, 
AmDH: amine dehydrogenase, CAR: carboxylic acid reductase.  R: R-group, limited by enzyme substrate 
specificity. B. A schematic of the seven enzyme reaction. The hydrolysis of methyl 4-toluate to 4-toluic 
acid, followed by reduction to 4-tolualdehyde and further to 4-tolylalcohol is shown.  The use or 
production of water is not shown.  afEst2: Esterase enzyme from Archaeoglobus fulgidus, mpCAR: 
Carboxylic acid reductase from Mycobacterium phlei, apADH: Alcohol dehydrogenase from Aeropyrum 
pernix, PTDH: Engineered phosphite dehydrogenase from Pseudomonas stutzeri, ttPPiase: Inorganic 
pyrophosphatase from Thermus thermophilus, tnPAP: Polyphosphate AMP phosphotransferase from 
Thermodesulfobium narugense, tnAK: Adenylate kinase from Thermotoga neapolitana. PolyPn: A 
polyphosphate molecule with a chain length of n phosphates.    
 
Figure 2 - Validation of the esterase model. 

A reaction containing 10 M afEst2 and 2,800 M methyl 4-toluate (ester) was used to validate the 
model for afEst2.  Ester and acid concentrations, measured every 30 minutes by HPLC, are shown as 
red circles and blue squares respectively.  The model prediction is shown as the solid line in the same 

colors. 2 = 2.9, 6.3, 32 for the deterministic, quadratic and linear models respectively; when the 

reverse reaction is included in the deterministic model, 2 reduces to 0.82.  Dashed lines represent 
the 5th and 95th percentile of the uncertainty analysis. Data show three experimental replicates for 
each point. 

A. Esterase reaction modelled as an irreversible, one substrate reaction 
B. Esterase reaction modelled as a reversible bi-bi reaction, with estimated parameters for the 

reverse direction.  
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Figure 3 - Validation of mpCAR and related enzyme models. 
Reactions were performed to validate the model for mpCAR, and the addition of cofactor regenerating 
and PPi removing enzymes.  Acid and aldehyde concentrations measured every 30 minutes by HPLC are 
shown as blue squares and green upwards facing triangles respectively.  The model prediction is shown 
as the solid line in the same colors.  Dashed lines represent the 5th and 95th percentile of the uncertainty 
analysis. Data show three experimental replicates for each point. 

A. mpCAR alone.  Reactions were initiated with 1 M mpCAR, 8,000 M ATP, 5,000 M NADPH, 

20,000 M MgCl2, 4,000 M 4-toluic acid.  The initial model prediction, which did not take in to 
account any product inhibition, is shown in grey. 

B. mpCAR-ttPpiase.  Reactions were initiated with 1 M mpCAR, 1 M ttPpiase, 8,000 M ATP, 

5,000 M NADPH, 20,000 M MgCl2, 4,000 M 4-toluic acid. 

C. mpCAR-ttPpiase-PTDH.  Reactions were initiated with 1 M mpCAR, 1 M ttPpiase, 1 M PTDH,  

8,000 M ATP, 500 M NADPH, 20,000 M MgCl2, 20,000 M PO3, 4,000 M 4-toluic acid. 

D. mpCAR-ttPpiase-PTDH (low NADPH).  Reactions were initiated with 1 M mpCAR, 1 M ttPpiase, 

1 M PTDH,  8,000 M ATP, 50 M NADPH, 20,000 M MgCl2, 20,000 M PO3, 4,000 M 4-toluic 
acid. 

E. mpCAR-ttPpiase-PTDH-tnPAP-tnAK.  Reactions were initiated with 0.4 M mpCAR, 1 M 

ttPpiase, 1 M PTDH, 3 M tnPAP, 1 M tnAK, 1,250 M ATP, 500 M NADPH, 20,000 M MgCl2, 

20,000 M PO3, 6,000 M polyphosphate, 4,000 M 4-toluic acid. 

Observed reduced 2 values (for deterministic, fitted quadratic and fitted linear models): A: 3.1, 2.3, 21; 
B: 2.4, 220, 780; C: 160, 1300, 1400; D: 1200, 10, 1100; E: 11, 30, 210. 

 
Figure 4 - Validation of ADH and ADH-PTDH models  
Reactions used to validate the model for apADH, and cofactor regeneration by PTDH. Aldehyde and 
alcohol concentrations measured every 30 minutes are shown as green upwards facing triangles and 
orange downward facing triangles respectively.  The model prediction is shown as the solid line in the 
same colors.  Dashed lines represent the 5th and 95th percentile of the uncertainty analysis. Data show 
three experimental replicates for each point. 

A. apADH only. Reactions were initiated with 10 M apADH, 5,000 M NADH, 3,500 M 4-
tolualdehyde. 

B. apADH-PTDH. Reactions were initiated with 10 M apADH, 1 M PTDH, 20,000 M PO3, 500 M 

NADH, 3,500 M 4-tolualdehyde. 

Observed reduced 2 values (for deterministic, fitted quadratic and fitted linear models): A: 13, 7.9, 45; B: 
7.0, 3.9, 35. 

 
Figure 5 - Validations of combinations of the esterase, CAR and ADH reactions. 

Reactions combining the CAR step with the esterase, ADH or both were constructed to test the 
model for these multi-step reactions.  Ester, acid, aldehyde and alcohol concentrations measured 
every 30 minutes are shown as red circles, blue squares, green upwards facing triangles and orange 
downward facing triangles respectively.  The model prediction is shown as the solid line in the same 
colors.  Dashed lines represent the 5th and 95th percentile of the uncertainty analysis. Data show 
three experimental replicates for each point. 

 

A. afEst2-mpCAR-ttPpiase-PTDH-tnPAP-tnAK. Reactions were initiated with 10 M afEst2, 0.4 M 

mpCAR, 1 M ttPPiase, 1 M PTDH, 3 M tnPAP, 1 M tnAK, 5,000 M methyl 4-toluate, 500 M 

NADPH, 1,250 M ATP, 20,000 M phosphite, 6,000 M polyphosphate, 20,000 MgCl2. 

B. mpCAR-ttPpiase-PTDH-tnPAP-tnAK-apADH. Reactions were initiated with 0.4 M mpCAR, 1 M 

ttPPiase, 1 M PTDH, 3 M tnPAP, 1 M tnAK, 10 M apADH, 4,500 M 4-toluic acid, 500 M 

NADPH, 500 M NADH, 1,250 M ATP, 20,000 M phosphite, 6,000 M polyphosphate, 20,000 
MgCl2. 

C. afEst2-mpCAR-ttPpiase-PTDH-tnPAP-tnAK-apADH. Reactions were initiated with 10 M afEst2, 

0.4 M mpCAR, 1 M ttPPiase, 1 M PTDH, 3 M tnPAP, 1 M tnAK, 10 M apADH, 5,000 M 
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methyl 4-toluate, 500 M NADPH, 500 M NADH, 1,250 M ATP, 20,000 M phosphite, 6,000 

M polyphosphate, 20,000 MgCl2. 

Observed reduced 2 values (for deterministic, fitted quadratic and fitted linear models): A: 7.8, 150, 
5200; B: 4.8, 8.9, 47; C: 5.4, 7.5, 24.  

 
Figure 6 - Validations of the optimized complete reaction 
A reaction using enzyme concentrations predicted by a genetic algorithm to give the lowest cost reaction, 
whilst hitting a target of 90 % alcohol yield, was performed.  Ester, acid, aldehyde and alcohol 
concentrations measured every 30 minutes are shown as red circles, blue squares, green upwards facing 
triangles and orange downward facing triangles respectively.  The model prediction is shown as the solid 
line in the same colors. Dashed lines represent the 5th and 95th percentile of the uncertainty analysis.  

Data show three biological replicates for each point. The reactions were initiated with 9.65 M afEst2, 

0.73 M mpCAR, 0.07 M ttPPiase, 0.43 M PTDH, 0.57 M tnPAP, 0.15 M tnAK, 24.7 M apADH, 4,000 

M methyl 4-toluate, 500 M NADPH, 500 M NADH, 1,250 M ATP, 20,000 M phosphite, 6,000 M 

polyphosphate, 20,000 M MgCl2. Observed reduced 2 values (for original deterministic, modified 
deterministic, fitted quadratic and fitted linear models): 9,5, 31, 79. 

 
Figure 7 - Sensitivity analysis of the modelled pre- and post-optimization batch reaction 
The total sensitivity indices (ST) are shown which take into account 1st order and all other interactions. 
Total of all STs for a reaction sum to 1. Sensitivity is in reference to the uncertainty in the final 4-tolyl 
alcohol concentration.    Error bars show the 95 % confidence intervals.  The sum of all sensitivity indices’ 
should equal 1.  Parameters with a ST of less than 0.001 are not shown.  A:  Sensitivity analysis of the pre-
optimization complete reaction, shown in figure 5C.  B:  Sensitivity analysis of the optimized complete 
reaction, shown in figure 6. 
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Table 1 – Kinetic equations 
The rationale for the kinetic equations chosen for each enzyme and interacting partner are discussed in 
detail below. Aldehyde degradation was modelled as a first order process. 

afEst2 

𝑟1 = 𝑐𝐸𝑠𝑡 ∙ 𝑘𝑐𝑎𝑡
𝐸𝑠𝑡 ∙

𝑐𝐸𝑠𝑡𝑒𝑟 ∙ 𝑐𝐻2𝑂

(𝐾𝑀
𝐻2𝑂 ∙ 𝑐𝐸𝑠𝑡𝑒𝑟) + (𝐾𝑀

𝐸𝑠𝑡𝑒𝑟 ∙ 𝑐𝐻2𝑂) + (𝑐𝐸𝑠𝑡𝑒𝑟 ∙ 𝑐𝐻2𝑂)
 

𝑟2 = 𝑐𝐸𝑠𝑡 ∙ 𝑘𝑐𝑎𝑡
𝐸𝑠𝑡 ∙

𝑐𝐴𝑐𝑖𝑑 ∙ 𝑐𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙

(𝐾𝑀
𝑀𝑒𝑂𝐻 ∙ 𝑐𝐴𝑐𝑖𝑑) + (𝐾𝑀

𝐴𝑐𝑖𝑑 ∙ 𝑐𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙) + (𝑐𝐴𝑐𝑖𝑑 ∙ 𝑐𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙)
 

mpCAR 

𝐾𝑀
𝐴𝑇𝑃 = 𝐾𝑀

𝐴𝑇𝑃 ∙
1+

𝑐𝑃𝑃𝑖

𝐾𝐼
𝑃𝑃𝐼−𝐴𝑐𝑖𝑑

1+
𝑐𝑃𝑃𝑖

𝛼𝑃𝑃𝐼∙𝐾𝐼
𝑃𝑃𝐼−𝐴𝑐𝑖𝑑

∙ (1 +
𝑐𝐴𝑀𝑃

𝐾𝐼
𝐴𝑀𝑃) ∙ (1 +

𝑐𝐴𝐷𝑃

𝐾𝐼
𝐴𝐷𝑃)   

𝐾𝑀
𝑁𝐴𝐷𝑃𝐻 = 𝐾𝑀

𝑁𝐴𝐷𝑃𝐻 ∙ (1 +
𝑐𝑁𝐴𝐷𝑃+

𝐾𝐼
𝑁𝐴𝐷𝑃+)  

𝐾𝑀
𝐴𝑐𝑖𝑑 = 𝐾𝑀

𝐴𝑐𝑖𝑑 ∙ (1 +
𝑐𝑃𝑃𝑖

𝐾𝐼
𝑃𝑃𝑖−𝐴𝑐𝑖𝑑

) 

𝑘𝑐𝑎𝑡
𝐶𝐴𝑅 =

𝑘𝑐𝑎𝑡
𝐶𝐴𝑅

1+
𝑐𝑃𝑃𝑖

𝛼𝑃𝑃𝐼∙𝐾𝐼
𝑃𝑃𝐼−𝐴𝑐𝑖𝑑

  

𝑟3 = 𝑐𝐶𝐴𝑅 ∙ 𝑘𝑐𝑎𝑡
𝐶𝐴𝑅 ∙

𝑐𝐴𝑐𝑖𝑑∙𝑐𝐴𝑇𝑃∙𝑐𝑁𝐴𝐷𝑃𝐻

(𝐾𝐼
𝐴𝑇𝑃∙𝐾𝑀

𝐴𝑐𝑖𝑑)+(𝐾𝑀
𝑁𝐴𝐷𝑃𝐻∙𝑐𝐴𝑇𝑃∙𝑐𝐴𝑐𝑖𝑑)+(𝐾𝑀

𝐴𝑐𝑖𝑑∙𝑐𝐴𝑇𝑃∙𝑐𝑁𝐴𝐷𝑃𝐻)+(𝐾𝑀
𝐴𝑇𝑃∙𝑐𝐴𝑐𝑖𝑑∙𝑐𝑁𝐴𝐷𝑃𝐻)+(𝑐𝐴𝑇𝑃∙𝑐𝐴𝑐𝑖𝑑∙𝑐𝑁𝐴𝐷𝑃𝐻)

  

apADH 

𝑟4 =  𝑐𝐴𝐷𝐻 ∙ 𝑘𝑐𝑎𝑡
𝐴𝐷𝐻𝐹𝑤𝑑 ∙

𝑐𝐴𝑙𝑑𝑒ℎ𝑦𝑑𝑒∙𝑐𝑁𝐴𝐷𝐻

(𝐾𝐼
𝑁𝐴𝐷𝐻∙𝐾𝑀

𝐴𝑙𝑑𝑒ℎ𝑦𝑑𝑒
)+(𝐾𝑀

𝐴𝑙𝑑𝑒ℎ𝑦𝑑𝑒
∙𝑐𝑁𝐴𝐷𝐻)+(𝐾𝑀

𝑁𝐴𝐷𝐻∙𝑐𝐴𝑙𝑑𝑒ℎ𝑦𝑑𝑒)+(𝑐𝑁𝐴𝐷𝐻∙𝑐𝐴𝑙𝑑𝑒ℎ𝑦𝑑𝑒)
  

𝑟5 =  𝑐𝐴𝐷𝐻 ∙ 𝑘𝑐𝑎𝑡
𝐴𝐷𝐻𝑅𝑒𝑣 ∙

𝑐𝐴𝑙𝑐𝑜ℎ𝑜𝑙∙𝑐𝑁𝐴𝐷+

(𝐾𝐼
𝑁𝐴𝐷+∙𝐾𝑀

𝐴𝑙𝑐𝑜ℎ𝑜𝑙)+(𝐾𝑀
𝐴𝑙𝑐𝑜ℎ𝑜𝑙∙𝑐𝑁𝐴𝐷+)+(𝐾𝑀

𝑁𝐴𝐷+∙𝑐𝐴𝑙𝑐𝑜ℎ𝑜𝑙)+(𝑐𝑁𝐴𝐷+∙𝑐𝐴𝑙𝑐𝑜ℎ𝑜𝑙)
  

PTDH 

𝐾𝑀
𝑁𝐴𝐷+ =  𝐾𝑀

𝑁𝐴𝐷+ ∙ (1 +
𝑐𝑁𝐴𝐷𝑃+

𝐾𝐼
𝑁𝐴𝐷𝑃+)  
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𝐾𝑀
𝑁𝐴𝐷𝑃+ =  𝐾𝑀

𝑁𝐴𝐷𝑃+ ∙ (1 +
𝑐𝑁𝐴𝐷+

𝐾𝐼
𝑁𝐴𝐷+)  

𝑟6 =  𝑐𝑃𝑇𝐷𝐻 ∙ 𝑘𝑐𝑎𝑡
𝑃𝑇𝐷𝐻−𝑁𝐴𝐷+ ∙

𝑐𝑁𝐴𝐷+

𝑐𝑁𝐴𝐷++𝐾𝑀
𝑁𝐴𝐷+  

𝑟7 =  𝑐𝑃𝑇𝐷𝐻 ∙ 𝑘𝑐𝑎𝑡
𝑃𝑇𝐷𝐻−𝑁𝐴𝐷𝑃+ ∙

𝑐𝑁𝐴𝐷𝑃+

𝑐𝑁𝐴𝐷𝑃++𝐾𝑀
𝑁𝐴𝐷𝑃+  

 

PPiase 

𝑟8 = 𝑐𝑃𝑃𝑖𝑎𝑠𝑒 ∙ 𝑘𝑐𝑎𝑡
𝑃𝑃𝑖𝑎𝑠𝑒 ∙

𝑐𝑃𝑃𝑖

𝑐𝑃𝑃𝑖+𝐾𝑀
𝑃𝑝𝑖  

PAP 

𝑟9 =  𝑐𝑃𝑃𝑇 ∙ 𝑘𝑐𝑎𝑡
𝑃𝑃𝑇𝐹𝑤𝑑 ∙

𝑐𝑃𝑜𝑙𝑦𝑃

𝑐𝑃𝑜𝑙𝑦𝑃+𝐾𝑀
𝑃𝑜𝑙𝑦𝑃 ∙

𝑐𝐴𝑀𝑃

𝑐𝐴𝑀𝑃+𝐾𝑀
𝐴𝑀𝑃  

𝑟10 =  𝑐𝑃𝑃𝑇 ∙ 𝑘𝑐𝑎𝑡
𝑃𝑃𝑇𝑅𝑒𝑣 ∙

𝑐𝐴𝐷𝑃

𝑐𝐴𝐷𝑃 + 𝐾𝑀
𝐴𝐷𝑃 

AK 

𝑟11 =  𝑐𝐴𝐾 ∙ 𝑘𝑐𝑎𝑡
𝐴𝐾−𝐹𝑤𝑑 ∙

𝑐𝐴𝐷𝑃

𝑐𝐴𝐷𝑃+𝐾𝑀
𝐴𝐷𝑃 ∙

𝑐𝐴𝐷𝑃

𝑐𝐴𝐷𝑃+𝐾𝑀
𝐴𝐷𝑃  

𝑟12 =  𝑐𝐴𝐾 ∙ 𝑘𝑐𝑎𝑡
𝐴𝐾−𝑅𝑒𝑣 ∙

𝑐𝐴𝑀𝑃

𝑐𝐴𝑀𝑃+𝐾𝑀
𝐴𝑀𝑃 ∙

𝑐𝐴𝑇𝑃

𝑐𝐴𝑇𝑃+𝐾𝑀
𝐴𝑇𝑃  

Aldehyde degradation 
𝑟13 = 𝑘𝑎𝑑 ∙ 𝑐𝐴𝑙𝑑𝑒ℎ𝑦𝑑𝑒  
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Table 2 – Differential Equations 
Differential equations used to model changing substrate concentrations over time.  r1 – r13 refer to the 
rate equations in Table 1.   
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Table 3 – Kinetic parameters. 
Parameters were determined experimentally or obtained from the 
literature.  Errors represent 95% confidence intervals where these 
could be experimentally determined or obtained from the literature. 
Where these could not be experimentally determined, errors of 50 % 
of the parameter value were conservatively assigned.  In (a few) cases 
a reasonable estimate had to be made, marked with *.  Where 
parameters were completely unknown, large uncertainty bounds 
were used, marked with **.  *** For the esterase alone, and in the 
complete reaction respectively, reflecting data in Supplementary 
Figure 16. 

afEst2 (42) 

kcat-Fwd (42) *** 9.3 ± 4.65 or 12 ± 6 min-1  

KM-Ester (42) 1,500 ± 375 M 

KM-H2O ** 1,000 – 100,000 M 

kcat-Rev ** 1 – 50 min-1 

KM-MeOH ** 1,000 – 100,000 M 

KM-Acid ** 100 – 100,000 M 

mpCAR (15) 

kcat 200 ± 20 min-1 

KM-Acid 1,500 ± 320 M 

KM-ATP 100 ± 28 M 

KI-ATP 40 ± 34 M 

KM-NADPH  30 ± 8 M 

KI-AMP (15) 10,000 ± 1,800M 

KI-ADP 11,000 ± 4,000M 

KI-NADP+ (15) 143 ± 16M 

KI-PPi-Acid (15) 340 ± 80 M 

KI-PPi-ATP (15) 220 ± 100 M 

-PPi-ATP (15) 2.6 ± 2.8 

apADH 

kcat-Fwd 1.7 ± 0.2 min-1 

kcat-Rev* 1.7 ± 0.85 min-1 

KM-NADH 180 ± 60 M 

KM-NAD+ 190 ± 40 M 

KI-NAD+* 185 ± 92.5 M 

KI-NADH* 185 ± 92.5 M 

KM-Aldehyde 350 ± 120 M 

KM-Alcohol 10,000 ± 5,000 M 

ttPpiase (72) 

kcat 4,400 ± 2,200 min-1 

KM-PPi (72) 500 ± 250 M 

PTDH  

kcat-NAD+ 637 ± 16 min-1 

kcat-NADP+ 342 ± 16 min-1 

KM-NAD+ 85 ± 5 M 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 9, 2019. ; https://doi.org/10.1101/603795doi: bioRxiv preprint 

https://doi.org/10.1101/603795
http://creativecommons.org/licenses/by/4.0/


KM-NADP+ 220 ± 40 M 

tnPAP 

kcatFwd 250 ± 125 min-1 

KM-AMP 280 ± 240 M 

KM-PolyP 4,000 ± 2,000 M 

kcatRev (78) 3.4 ± 1.7 min-1 

KM-ADP   (78) 8,300 ± 4,150 M 

tnAK (45,79) 

kcat-ADP (45) 2,340 ± 1,170 min-1 

kcat-AMP-ATP (45) 3,950 ± 1,975 min-1 

KM-ADP (79)  91 ± 45.5 M 

KM-AMP(79) 38 ± 19 M 

KM-ATP(79) 51 ± 25.5 M 

Aldehyde side reaction 

k 0.00279 ± 0.001395 min-1 
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