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13 

Abstract (250 words max) 14 

An increasing number of studies are using landscape genomics to investigate local adaptation in wild and domestic populations. 15 

The implementation of this approach requires the sampling phase to consider the complexity of environmental settings and the 16 

burden of logistic constraints. These important aspects are often underestimated in the literature dedicated to sampling 17 

strategies. 18 

In this study, we computed simulated genomic datasets to run against actual environmental data in order to trial landscape 19 

genomics experiments under distinct sampling strategies. These strategies differed by design approach (to enhance 20 

environmental and/or geographic representativeness at study sites), number of sampling locations and sample sizes. We then 21 

evaluated how these elements affected statistical performances (power and false discoveries) under two antithetical 22 

demographic scenarios.  23 

Our results highlight the importance of selecting an appropriate sample size, which should be modified based on the demographic 24 

characteristics of the studied population. For species with limited dispersal, sample sizes above 200 units are generally sufficient 25 

to detect most adaptive signals, while in random mating populations this threshold should be increased to 400 units. 26 

Furthermore, we describe a design approach that maximizes both environmental and geographical representativeness of 27 

sampling sites and show how it systematically outperforms random or regular sampling schemes. Finally, we show that although 28 

having more sampling locations (between 40 and 50 sites) increase statistical power and reduce false discovery rate, similar 29 

results can be achieved with a moderate number of sites (20 sites). Overall, this study provides valuable guidelines for optimizing 30 

sampling strategies for landscape genomics experiments. 31 
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Introduction 39 

Landscape genomics is a subfield of population genomics, with the aim of identifying genetic variation underlying local adaptation 40 

in natural and managed populations (Balkenhol et al., 2017; Joost et al., 2007; Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 41 

2015). The approach consists of analyzing genomic diversity and environmental variability simultaneously in order to detect 42 

genetic variants associated with a specific landscape composition. Studies of this kind usually incorporate an analysis of 43 

population structure, such that neutral genetic variation can be distinguished from adaptive variation (Rellstab et al., 2015). Over 44 

the last few years, the landscape genomic approach is becoming more widely used (see Tab. 1; Balkenhol et al., 2017; Rellstab et 45 

al., 2015). It is being applied to a range of species, including livestock (Colli et al., 2014; Lv et al., 2014; Pariset, Joost, Marsan, & 46 

Valentini, 2009; Stucki et al., 2017; Vajana et al., 2018), wild animals (Harris & Munshi-South, 2017; Manthey & Moyle, 2015; 47 

Stronen et al., 2015; Wenzel, Douglas, James, Redpath, & Piertney, 2016), insects (Crossley, Chen, Groves, & Schoville, 2017; 48 

Dudaniec, Yong, Lancaster, Svensson, & Hansson, 2018; Theodorou et al., 2018), plants (Abebe, Naz, & Léon, 2015; De Kort et al., 49 

2014; Pluess et al., 2016; Yoder et al., 2014) and aquatic organisms (DiBattista et al., 2017; Hecht, Matala, Hess, & Narum, 2015; 50 

Laporte et al., 2016; Riginos, Crandall, Liggins, Bongaerts, & Treml, 2016a; Vincent, Dionne, Kent, Lien, & Bernatchez, 2013).  51 

Sampling strategy plays a pivotal role in experimental research, and must be theoretically tailored to the aim(s) of a study (Rellstab 52 

et al., 2015; Riginos et al., 2016). In the context of landscape genomics, the sampling design should cover a spatial scale 53 

representative of both the demographic processes and the environmental variability experienced by the study population 54 

(Balkenhol et al., 2017; Leempoel et al., 2017; Manel et al., 2010; Rellstab et al., 2015). This is imperative to be able to properly 55 

account for the confounding effect of population structure, to provide a biologically meaningful contrast between the 56 

environmental variables of interest and to definitely allow the search for actual adaptive variants (Balkenhol et al., 2017; Manel 57 

et al., 2010; Rellstab et al., 2015). Consequently, extensive field sampling is generally required and needs to be coupled with high-58 

throughput genome sequencing to characterize samples at a high number of loci (Balkenhol et al., 2017; Rellstab et al., 2015). 59 

Beyond these theoretical aspects, pragmatic choices need to be made with regards to financial and logistic constraints that are 60 

often imposed (Manel et al., 2010; Rellstab et al., 2015). A sampling strategy is constituted of: i) sampling design (the spatial 61 

arrangement of the sampling locations, D); ii) the number of sampling locations (L); and iii) sample size (the number of individuals 62 

sampled, N; Tab. 1). The care with which these parameters are defined affects the scientific output of an experiment as well as 63 

its costs (Manel et al., 2010; Rellstab et al., 2015).  64 

The landscape genomics community has traditionally focused on formulating theoretical guidelines for collecting individuals 65 

throughout the study area. In this literature, particular emphasis has been placed on how spatial scales and environmental 66 
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variation should be accounted for when selecting sampling sites (Leempoel et al., 2017; Manel et al., 2010; Manel et al., 2012; 67 

Rellstab et al., 2015; Riginos et al., 2016). Theoretical simulations have shown that performing transects along environmental 68 

gradients or sampling pairs from contrasting sites which are spatially close reduced false discovery rates caused by demographic 69 

processes confounding effects (De Mita et al., 2013; Lotterhos & Whitlock, 2015). However, in these studies the environment was 70 

described using a single variable, which oversimplifies the choice of sampling sites. In fact, in a real landscape genomics 71 

application, several variables are usually analyzed in order to explore a variety of possible environmental pressures causing 72 

selection (Balkenhol et al., 2017). The concurrent use of several environmental descriptors also allows to control for the bias 73 

associated with collinear conditions (Rellstab et al., 2015). Furthermore, these studies focused on the comparison of different 74 

statistical methods with the drawback of confronting only a few combinations of the elements determining the sampling strategy 75 

(De Mita et al., 2013; Lotterhos & Whitlock, 2015). Last but not least, the number of samples used in the simulations (between 76 

540 and 1800; Lotterhos & Whitlock, 2015) appear to be unrealistic for use in most of real landscape genomic experiments (Tab.1) 77 

and thus the guidelines proposed are scarcely applicable in practice.  78 

For these reasons, there is a need to identify pragmatic and realistic guidelines such that a sampling strategy is designed to 79 

maximize statistical power, minimize false discoveries, and optimize efforts and money expenses (Balkenhol et al., 2017; Rellstab 80 

et al., 2015). In particular, the fundamental questions that need to be addressed are: i) how to determine the spatial arrangement 81 

of sampling locations; ii) how to organize sampling effort (for instance preferring many samples at few sites, or rather fewer 82 

samples at many sites); and iii) how many samples are required to obtain sufficient statistical power (Rellstab et al., 2015; Riginos 83 

et al., 2016). 84 

In this paper, we investigate how the outcome of landscape genomic analyses is driven by the sampling strategy. We ran 85 

simulations using a fictive genetic dataset encompassing adaptive genotypes shaped by real environmental variables. The 86 

simulations accounted for antithetic demographic scenarios encompassing strong or weak population structure. We proposed 87 

sampling strategies that differed according to three elements: sampling design approach (D), number of sampling locations (L) 88 

and sample size (number of samples, N). For each of these three elements, we measured their relative impacts on the analyses’ 89 

true positive rates (TPR) and false discovery rates (FDR), as well as their impact on the predictive positive value (PPV; Marshall, 90 

1989) of the strongest adaptive signals. 91 

 92 

Material & Methods 93 
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The iterative approach we designed to test the different sampling strategies required that a new genetic dataset encompassing 94 

neutral and adaptive variation was created at every run of the simulations. A simulated genomic dataset can be constructed by 95 

means of software performing coalescent (backward-in-time) or forward-in-time simulations (Carvajal-Rodríguez, 2008). 96 

However, methods using coalescent simulations (for ex. SPLATCHE2; Ray, Currat, Foll, & Excoffier, 2010) did not match our needs 97 

as they cannot compute complex selective scenarios (for instance those involving multiple environmental variables; Carvajal-98 

Rodríguez, 2008). We could not use forward-in-time methods either, as they are slow and therefore not compatible with the 99 

computational requirements of our simulative approach (Carvajal-Rodríguez, 2008). For these reasons, we developed a 100 

customized framework in the R environment (version 3.3.1; R Core Team, 2016) to compute both neutral and adaptive genetic 101 

variation based on gradients of population membership and environmental variations, respectively (Fig. 1). Prior to running the 102 

simulations across the complete dataset (the multivariate environmental landscape of Europe), we tested our approach on a 103 

reduced dataset and compared it to a well-established forward-in-time simulation software (CDPOP, version 1.3; Landguth & 104 

Cushman, 2010). This step allowed us to define the optimal parameters required to simulate two types of demographic scenarios:  105 

panmictic (no dispersal constraints, random mating) and structured (dispersal and mating limited by distance).  106 

We then proceeded with the simulations on the environmental dataset of Europe. At each iteration, a new genetic background 107 

encompassing neutral and adaptive variation was computed (Fig. 1 steps 1 and 2). Subsequently, a sampling strategy was applied 108 

as a combination of sampling design (D), number of sampling locations (L) and sample size (N) (Fig. 1, steps 3, 4 and 5), resulting 109 

in the generation of a genetic dataset that, coupled with environmental data, underwent a landscape genomics analysis (Fig. 1, 110 

step 6). At the end of each iteration, three diagnostic parameters were calculated: true positive rate (TPR, i.e. statistical power) 111 

and false discovery rate (FDR) for the analysis, as well as the predictive positive value (PPV) of the strongest genotype-112 

environment associations (Fig. 1, step 7). 113 

At the end of the simulations, we analyzed how each element of sampling strategy (D, L, N) affected the rates of the three 114 

diagnostic parameters (TPR, FDR, PPV) under the two demographic scenarios (with or without dispersal constraints). All scripts 115 

and data used to perform this analysis are publicly available on Dryad (doi:10.5061/dryad.m16d23c). 116 

 117 

Environmental data 118 

As a base for our simulations, we quantified the environmental settings of Europe (Fig. S1). We retrieved eight climatic variables 119 

from publicly available sources (annual mean temperature, mean diurnal range, temperature seasonality, mean temperature of 120 

wettest quarter , annual precipitation, precipitation seasonality, precipitation of warmest quarter and altitude; Tab S1; Hijmans, 121 
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Cameron, Parra, Jones, & Jarvis, 2005; Ryan et al., 2009). In order to work on a relevant geographical scale (Leempoel et al., 2017) 122 

while maintaining an acceptable computational speed, the landscape was discretized into grid cells of 50x50 km, using QGIS 123 

toolbox (version 2.18.13; QGIS development team, 2009). This resulted in 8,155 landscape sites. Average values of environmental 124 

variables were computed for each cell of the landscape using the QGIS zonal statistics tool. 125 

 126 

Computation of genotypes 127 

For the creation of the genotype matrices, we developed an R-pipeline based on probability functions to compute genotypes 128 

from population membership coefficients and environmental values (Box S1). The theoretical fundaments of this method are 129 

based on the observation that when the population is structured, neutral alleles tend to show similar spatial patterns of 130 

distribution (a feature commonly exploited in Fst outlier tests; Luikart et al., 2003; and principal component analyses of genotype 131 

matrices;  Novembre et al., 2008). Conversely, when a marker is under selection, its genotypic/allelic frequencies correlate with 132 

the environmental variable of interest (this is the basic concept of Landscape Genomics; see Balkenhol et al., 2017). For every 133 

iteration, 1,000 loci are computed: 10 are set to “adaptive”, while the remaining 990 to “neutral”. They are computed as follows: 134 

- Neutral markers (Box S1a): a parameter (m) is set to define the number of population membership gradients used in 135 

the simulations, where higher values of m result in more complex population structures. Every population membership 136 

gradient is simulated by randomly picking one to five landscape locations to represent the center of the gradient. For 137 

each landscape location, the geographical distance to the gradient centers (calculated using the R dist function) 138 

constitutes the membership coefficient. Next, a linear transformation converts this coefficient (Fig. S1) for each 139 

sampling site into the probability of carrying a private allele for the population described (pA|PS). A second parameter 140 

(c, Box. S2) define this transformation, with values between 0.5 (random population structure) and 0 (strong population 141 

structure). The probability of pA|PS is then used to draw (using the R-stat sample function) the bi-allelic genotype for 142 

each individual. This procedure is re-iterated for every neutral locus assigned to a specific population membership 143 

coefficient. Each of the 990 neutral loci is then assigned to one of the m population membership coefficients (probability 144 

of assignment equal to ("#$)
∑ ("#$')(
')*

 ) using the R sample function.   145 

- Adaptive markers (Box S1b): the probability of carrying an adaptive allele (pA|Env) is calculated through a linear 146 

transformation of a specific environmental gradient. This transformation is defined by two parameters. The first 147 

parameter (s1) determines the amplitude of the transformation, and ranges between 0 (strong selective response) and 148 

0.5 (neutral response; Box S2). The second parameter (s2) shifts the baseline for allele frequencies, and ranges between 149 
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-0.2 and 0.2 (weakening and strengthening the selective response, respectively; Box S2). Each of the ten adaptive loci 150 

are randomly associated with one environmental variable. This implies that some environmental conditions can be 151 

associated with several genetic markers, while others with none. For every adaptive locus, the bi-allelic genotype is 152 

drawn (using the R-stat sample function) out of pA|Env.  153 

 154 

Evolutionary scenarios and parametrization 155 

Two distinct demographic scenarios were chosen for this study: one involving a population that is not genetically structured 156 

(hereafter referred to as the “panmictic population scenario”), and one involving a structured population (hereafter referred to 157 

as the “structured population scenario”; see Box S2). In order to define the values of parameters m, c, s1 and s2 that allow the 158 

production of these two demographic scenarios, we ran a comparison of our customized simulation framework against 159 

simulations obtained using a well-established forward-in-time simulation software for landscape genetics called CDPOP (version 160 

1.3; Landguth & Cushman, 2010). 161 

This comparison was performed on a reduced dataset composed of a 10-by-10 cell grid, covered with two dummy environmental 162 

variables extracted from the bioclim collection (Hijmans et al., 2005; Fig. S1a, b). Each cell could host up to 5 individuals, where 163 

each individual was characterized at 200 SNPs. In this set-up, we ran CDPOP using two distinct settings: the first that allowed for 164 

completely random dispersal and mating movements of individuals (i.e. panmictic population scenario), while the second setting 165 

restricted movements to neighboring cells using a dispersal-cost based on distance (i.e. structured population scenario). In both 166 

scenarios, we applied identical mortality constraints related to the two environmental variables, and set for each of them a 167 

genetic variant modulating fitness (Fig. S1c, d). Fitness responses were constructed on an antagonistic pleiotropy model (i.e. 168 

adaptive tradeoffs, Lowry, 2012), using  different intensities to represent moderate (Fig. S1c) and strong selective constraints 169 

(Fig. S1d). The following default CDPOP parameters were employed for the remaining settings: five age classes with no sex-170 

specific mortality, reproduction was sexual and with replacement, no genetic mutations, epistatic effects or infections were 171 

allowed. The simulations ran for 100 generations and ten replicates per demographic scenario were computed.  172 

In parallel, we ran our customized algorithm to compute genotypes, using the same simplified dataset as above. We iteratively 173 

tested all the possible combinations (hereafter referred to as “simulative variants”) of the parameters m (values tested: 1, 5, 10, 174 

15, 20, 25), c (all possible ranges tested between: 0.1, 0.2, 0.3, 0.4, 0.5), s1 (values tested: 0, 0.1, 0.2, 0.3, 0.4, 0.5) and s2 (values 175 

tested: -0.2, -0.1, 0, 0.1, 0.2), and replicated each combination ten times. Following this, we investigated which of the simulative 176 
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variants provided the closest match with the allele frequencies observed in the CDPOP runs. The comparisons were based on 177 

three indicators of neutral structure:  178 

1) Principal component analysis (PCA) of the genotype matrix (Fig. 2a): a PCA of the genotype matrix was performed 179 

using the prcomp R function for each simulation (of both the CDPOP and the present customized method), where 180 

the differential of the variation explained by each principal component was then calculated. When the population 181 

is structured, the first principal component usually shows strong differences in the percentage of explained 182 

variation compared with the other components (Novembre et al., 2008). In contrast, when the population 183 

structure is absent, minor changes in this differential value emerge. The curve describing this differential value 184 

was then used for a pairwise comparison between the ten replicates of each CDPOP scenario and the ten replicates 185 

of each simulative variant (from the customized method). The curves were compared by calculating the root mean 186 

square error (RMSE), then the average RMSE was used to rank simulative variants. 187 

2) F statistic (Fst; Fig. 2b): five areas, which spanned four cells each, were selected to represent subpopulations of 188 

the study area. Four areas located at the four corners of the 10-by-10 cell grid and the fifth located at the center. 189 

For each simulation, we computed the pairwise Fst (Weir & Cockerham, 1984) between these sub-populations 190 

using the hierfstat R package (version 0.04; Goudet, 2005). An Fst close to 0 indicates the absence of a genetic 191 

structure between sub-populations, while under a structured scenario this value tends to raise (Luikart et al., 192 

2003). The distribution of all the Fst values for the ten CDPOP replicates were compared to the distribution of the 193 

Fst of ten replicates of each simulative variant using the Kullback-Leibler Divergence (KLD; Kullback & Leibler, 1951) 194 

analysis implemented in the LaplacesDemon R package (version 16.1.1; Statisticat & LCC, 2018). KLD was then used 195 

to rank simulative variants.  196 

3) Mantel test (Fig. 2c): for each simulation, we computed the genetic and geographic distance between all 197 

individuals of the population applying the R dist function to the genotype matrix and the coordinates, respectively. 198 

Next, we calculated the Mantel correlation (mR; Mantel, 1967) between these two distance matrices using the 199 

mantel.rtest function implemented in  the ade4 R package (version 1.7, Dray & Dufour, 2007). When mR is close 200 

to 0, it indicates the absence of correlation between the genetic and geographical distances, suggesting the 201 

absence of genetic structure (i.e. panmictic population scenario). In contrast, an mR closer to -1 or +1 indicates 202 

that genetic distances match geographic distances, as we would expect in a structured population scenario 203 
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(Mantel, 1967). The average mR was calculated for each simulative variant and compared to the average mR 204 

measured in the two CDPOP scenarios. The resulting difference in mR (∆mR) was used to rank simulative variants.  205 

The three ranking coefficients (RMSE, KLD and ∆mR) were scaled using the scale R function and averaged, and the resulting value 206 

was used to rank simulative variants. In this way, it was possible to find one simulative variant with the best ranking when 207 

compared to the CDPOP panmictic population scenario, and another with the best ranking when compared to the CDPOP 208 

structured population scenario. These two simulative variants provided the values of m and c for the simulations on the complete 209 

dataset.  210 

Subsequently, we focused on the comparison of the values for the parameters defining the adaptive processes: s1 and s2. For 211 

each CDPOP demographic scenario, we searched for the s1 and s2 combination that resulted in a simulative variant that best 212 

matched the allelic frequencies of each of the two genotypes implied in selection (moderate and strong). The environmental 213 

variable of interest was distributed in 20 equal intervals and within each interval the allelic frequencies of the adaptive genotype 214 

were computed. This resulted in the computation of a regression line for each simulation that described the allelic frequency of 215 

the adaptive genotype as a function the environmental variable causing the selective constraint (Fig. 2d-e).  Next, we calculated 216 

the RMSE to compare this regression line between the CDPOP scenarios and the respective simulative variant (i.e. those with the 217 

optimal m and c according to the previous analyses) under different s1 and s2 combinations. For the two demographic scenarios, 218 

the ranges of s1 and s2 were ranked according to RMSE to represent a moderate to strong selection in the simulations for the 219 

complete dataset. 220 

 221 

Sampling design 222 

Four types of sampling design are proposed: three of them differently account for the characteristics of the landscape while one 223 

randomly selects the sampling locations. The first is “geographic” (Fig. 3a) and is defined through a hierarchical classification of 224 

the sites based on their geographic coordinates. The desired number of sampling locations (L) determines the number of clusters 225 

and the geographical center of each cluster is set as a sampling location. The goal of this strategy is to sample sites located as far 226 

apart as possible from each other in the geographical space to guarantee spatial representativeness. 227 

The second design type is “environmental” (Fig. 3b). It is based on the computation of distances depending on the values of 228 

environmental variables. The latter are first processed by a correlation filter: when two variables are found correlated to each 229 

other (R>±0.5), one of them (randomly chosen) is excluded from the dataset. The remaining un-correlated descriptors are scaled 230 

(sd=1) and centered (mean=0) using R scale function. The scaled values are used to perform a hierarchical clustering between the 231 
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landscape sites. Like the previous design, the desired number of sampling locations (L) defines the number of clusters. For each 232 

cluster, the environmental center is defined by an array containing the mean of the scaled environmental values. Then, the 233 

Euclidean distances between this array and the scaled values of each site of the cluster are computed. On this basis, the most 234 

similar sites to each center are selected as sampling locations. This strategy aims to maximize environmental contrast between 235 

sampling locations and thus favors the detection of adaptive signals (Manel et al., 2012; Riginos et al., 2016).  236 

The third design is “hybrid” (Fig. 3c) and is a combination of the first two. It consists of dividing the landscape into k environmental 237 

regions and selecting within each of these regions two or more sampling locations based on geographic position. Initially, the 238 

environmental variables are processed as for the environmental design (correlation-filter and scaling) and used for the 239 

hierarchical classification of the landscape sites. The next step is separating the landscape sites in k environmental regions based 240 

on this classification. The allowed value of k ranges between 2 and half of the desired number of sampling locations (L). We use 241 

the R package NbClust (version 3.0, Charrad, Ghazzali, Boiteau, & Niknafs, 2015) to find the optimal value of k within this range. 242 

The optimal k is then used to determine the k environmental regions. Next, the number of sampling locations (L) is equally divided 243 

across the k environmental regions. If k is not an exact divisor of L, the remainder of L/k is randomly assigned to environmental 244 

regions. The number of sampling locations per environment region (Lki) can therefore be equal among environmental regions or, 245 

at worst, differ by one (for ex. If L=8 and k=4: Lk1=2, Lk2=2, Lk3=2, Lk4=2; if L=10 and k=4: Lk1=3, Lk2=3, Lk3=2, Lk4=2). Sampling 246 

locations within environmental regions are chosen based on geographical position. Geographical clusters within each 247 

environmental region are formed as in the geographic design, setting Lki as the number of clusters.  The landscape site spatially 248 

closer to the center of each geographical cluster is selected as sampling location. In such a way, the procedure allows the 249 

replication of similar environmental conditions at distant sites, being therefore expected to disentangle neutral and adaptive 250 

genetic variation and to promote the detection of variants under selection (Manel et al., 2012; Rellstab et al., 2015; Riginos et al., 251 

2016).   252 

The fourth type of design is “random”: the sampling locations (L) are randomly selected across all the available landscape sites.  253 

In our simulations, we tested each type of sampling design with numbers comparable to the ones used in real experiments (see 254 

Tab. 1). We used 5 levels of sampling locations L (5, 10, 20, 40 and 50 locations) and 6 of sample sizes N (50, 100, 200, 400, 800 255 

and 1600 individuals). In iterations for which the sample size is not an exact multiple of the number of sites (for ex., 20 sites and 256 

50 individuals), the total number of individuals was changed to the closest multiple (here 40 individuals). The scripts including 257 

these procedures were written in R using the functions embedded within the stats package (R Core Team, 2016).  258 

 259 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2019. ; https://doi.org/10.1101/603829doi: bioRxiv preprint 

https://doi.org/10.1101/603829
http://creativecommons.org/licenses/by-nc/4.0/


11 
 

Landscape genomics analysis 260 

We computed association models for each iteration with the SamBada software (version 0.6.0; Stucki et al., 2017). First, the 261 

simulated matrix of genotypes is filtered through a customized R function with minor allele frequency <0.05 and major genotype 262 

frequency >0.95 to avoid including rare or monomorphic alleles and genotypes, respectively. Secondly, a principal component 263 

analysis (PCA) is run on the filtered genotype matrix to obtain synthetic variables accounting for population structure (hereafter 264 

referred to as population structure variables; Patterson, Price, & Reich, 2006). The analysis of the eigenvalues of the PCA is carried 265 

out in order to assess whether the population structure is negligible for downstream analysis or not (Patterson et al., 2006). At 266 

each iteration, the algorithm runs a Tracy-Widom significance test of the eigenvalues, as implemented in the AssocTests R 267 

package (version 0.4, Wang, Zhang, Li, & Zhu, 2017). Significant eigenvalues indicate the presence of non-negligible population 268 

structure: in these situations, the corresponding principal components will be used as co-variables in the genotype-environment 269 

association study.  270 

After filtering, SamBada is used to detect candidate loci for local adaptation. The software is able to run multivariate logistic 271 

regression models (Joost et al., 2007) that include population structure as a co-variable, while guaranteeing fast computations 272 

(Duruz et al., 2019; Rellstab et al., 2015; Stucki et al., 2017). To ensure compatibility with our pipeline and increase computational 273 

speed, we integrated the SamBada method into a customized python script (version 3.5; van Rossum, 1995) based on the Pandas 274 

(McKinney, 2010), Statsmodels (Seabold & Perktold, 2010) and Multiprocessing (Mckerns, Strand, Sullivan, Fang, & Aivazis, 2011) 275 

packages. P-values related to the two statistics (G-score and Wald-score) associated with each association model are computed 276 

and subsequently corrected for multiple testing using the R q-value package (version 2.6; Storey, 2003). Models are deemed 277 

significant when showing a q<0.05 for both tests. When multiple models are found to be significant for the same marker, only 278 

the best one is kept (according to the G-score). The pipeline was developed in the R-environment using the stats library. 279 

 280 

Simulations and evaluation of the performance 281 

Each combination of demographic scenarios, sampling designs, number of sampling locations and sample sizes was replicated 20 282 

times for a total of 4,800 iteration (Tab. 2). A new genetic matrix was randomly redrawn for each iteration to change the selective 283 

forces implying local adaptation and the demographic set-up determining the neutral loci. At the end of each iteration, three 284 

diagnostic parameters were computed:  285 

- True Positive Rate of the analysis (TPR or statistical power): percentage of true associations detected to be significant; 286 

- False Discovery Rate of the analysis (FDR): percentage of false association among the significant ones; 287 
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- Positive Predictive Value (PPV; Marshall, 1989) of the ten strongest associations: significant associations were sorted 288 

according to the association strength (β, the value of the parameter associated to environmental variable in the logistic 289 

model). PPV represents the percentage of true associations among the best ten associations according to β.  290 

After the simulations, an analysis of ranks (Kruskal-Wallis test; Kruskal & Wallis, 1952) was performed using the kruskal.test R 291 

function to test whether TPR, FDR and PPV were significantly influenced (p<0.01) by each of the three elements underlying the 292 

sample strategy (i.e. sampling design, number of sampling locations and sample size; Tab. 2). Contextually, we computed the 293 

epsilon-squared (E2) coefficient (as implemented in the rcompanion R package, version 2.2.1; Mangiafico, 2019)  that quantifies, 294 

on a scale from 0 to 1, the influence of each sampling element on the three diagnostic parameters (Tomczak & Tomczak, 2014). 295 

Finally, we calculated the changes in the median values of TPR, FDR and PPV across the levels of each element underlying the 296 

sample strategy. In the case of numerical elements (i.e. number of sampling locations and sample size), we quantified the changes 297 

in TPR, FDR and PPV along with the increments of the ordinal factor levels (for ex.: the TPR median increase between sample sizes 298 

of 100 to 200, 200 to 400, 400 to 800, etc.). In the case of sample design, where the factor levels are not ordinal, we compared 299 

each design approach against a random sampling scheme.  300 

 301 

Results 302 

Parameters of simulations  303 

For the panmictic population scenario, the simulative variant best matching the CDPOP results was obtained with the coefficients 304 

𝑚 = 1	and 𝑐 = 	0.5, whereas for the structured population scenario, the simulative variant was best at 𝑚 = 10	and 305 

𝑐 = 	𝑈𝑛𝑖𝑓(0.2, 0.4) (Fig. 2a-c, Box S2, Tab. S2a-b). In the panmictic population scenario, we found that the moderate selection 306 

case was best emulated by 𝑠" = 0.4 and 𝑠; = −0.2 and the strong selection by 𝑠" = 	0.3 and 𝑠; = +0.1. In the structured 307 

population scenario, the moderate selection found its best match in the simulative variant with 𝑠" = 0 and 𝑠; = −0.1 while the 308 

strong selection in the one set with 𝑠" = 0 and 𝑠; = +0.2 (Fig. 2d-e, Box S2, Tab. S2c-d). 309 

 310 

True Positive Rate 311 

In general, the panmictic population scenario simulations showed higher TPR (MdnPAN=40% [IQR=0-90%]) than simulations 312 

performed under the structured population scenario (MdnSTR=0% [IQR=0-40%]; Fig. 4a-c). For both scenarios, the main influence 313 

on TPR was found to be sample size (E2PAN=0.815, E2STR=0.613; Tab. 3c). Smaller sample sizes (N= 50, 100) resulted in TPR close or 314 

equal to zero for both demographic scenarios (Fig. 4c, Tab. S3c). Under the structured population scenario, an increase of TPR 315 
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started from N=200 (Tab. S3c), leading to an initial increase of 5% of the median TPR for every 10 additional samples. At N=400, 316 

this increment progressively became less abrupt until reaching a maximal value at N=800 (Mdn=100% [IQR=60-100%]; Fig. 4c; 317 

Tab.  S3c). By comparison, the panmictic population scenario showed an increase in TPR starting at N=400, with a more constant 318 

and less abrupt rate of increase (Fig. 4c, Tab. S3c). Under this scenario, a N=1600 was not sufficient to yield maximal TPR 319 

(Mdn=80% [IQR=60-90%]; Fig. 4c). 320 

The effect of number of sampling locations on TPR was significant, even though weaker than the effect of sample size 321 

(E2PAN=0.008, E2STR=0.17; Tab. 3a; Fig. 4b). Under the panmictic population scenario in particular, an increase in the number of 322 

sampling locations did not change the median TPR, but its inter-quartile range (Fig. 4b, Tab. S3b). Conversely, TPR was affected 323 

by the number of sampling locations under the structured population scenario (Fig. 4b, Tab. S3b). This effect was particularly 324 

evident between L=5 and L=10, where additional sampling sites led to an increase of the median TPR by 10% (Tab. S3b). At higher 325 

numbers of sampling sites (L=20, 40 and 50) the incremental rate of TPR was less evident but still positive (Tab. S3b).  326 

Similar to the influence of sampling locations, the type of sampling design had a minor effect on TPR when compared to the effect 327 

that sample size had (E2PAN=0.0163, E2STR=0.1229; Tab. 3a; Fig. 4a). When compared to the random approach, a hybrid design 328 

approach was seen to increase the median TPR by 10% and 30% under panmictic and structured population scenarios, 329 

respectively (Fig. 4a, Tab S3a). The two other design approaches only affected median TPR for the structured population scenario; 330 

compared to a random sampling scheme, the environmental design increased TPR by 30%, while the geographical design 331 

decreased TPR by 10% (Fig. 4a, Tab. S3a).  332 

 333 

False Discovery Rate 334 

False discoveries generally appeared at a higher rate under a panmictic population scenario (MdnPAN=100% [IQR=20-100%]) than 335 

under a structured population scenario (MdnSTR=63% [IQR=20-100%]; Fig. 4d-f). Sample size had the greatest effect on FDR for 336 

both population scenarios (E2PAN=0.621, E2STR=0.408; Tab. 3f; Fig. 4f). For the panmictic population scenario, median FDR was 337 

100% at smaller sample sizes (N=50, 100 and 200; Fig. 4f), but between N=200 and N=400, the FDR began to decrease by 2.6% 338 

for every ten additional samples taken (Tab. S3c). The reduction in FDR was less abrupt after N=400, and null after N=800 (Tab. 339 

S3c). At N=1600, median FDR was 20% [IQR=10-30%] (Fig. 4f). The structured population scenario produced a different pattern: 340 

the largest median FDR was found at smaller sample sizes (N=50 and 100), before a steep decrease was observed closer to N=200 341 

(Fig. 4f, Tab. S3c). At larger sample sizes (N=400, 800, 1600), FDR showed a logarithmic increase in growth rate where, at its most 342 
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abrupt (between N=200 and 400), there was an increase of 0.8% FDR for every ten additional samples (Fig. 4f, Tab. S3c). For the 343 

structured population scenario, N=1600 resulted in a median FDR of 68% [IQR=57-82%]. 344 

The effect of sampling location number on FDR was significant, albeit weaker than the effect of sample size on FDR, under both 345 

population scenarios (E2PAN=0.012, E2STR=0.127; Tab. 3e, Fig. 4e). Similar to the pattern for TPR, the number of locations sampled 346 

under the panmictic population scenario did not alter the median FDR, but rather its inter-quartile range (Fig. 4e). By contrast, 347 

the structured population scenario showed a decrease of median FDR along with the increment of the number of sampling 348 

locations (Fig. 4e, Tab. S3b). This decrease was more abrupt increasing from 5 to 10 sampling locations, where additional sites 349 

led to a median FDR reduction of 6%, than between higher numbers of sampling locations (L=20, 40, 50; Tab. S3b).   350 

Sampling design only showed a significant effect on false discovery rates under the structured population scenario, but it was not 351 

as strong as the influences of sample size and sampling locations (E2STR=0.007; Tab. 3d, Fig. 4d). When compared to a random 352 

sampling scheme, both the environmental and hybrid sampling schemes showed a decrease in median FDR of 7%, while the 353 

geographic scheme showed a slight increase in FDR (+0.05%; Fig. 4d, Tab. S3a).    354 

 355 

Positive Predictive Value 356 

The PPVs of the ten strongest significant associations (hereinafter simply referred to as PPV) was generally higher under the 357 

structured population scenario (MdnPAN=70% [IQR=0-100%]) than under the panmictic population scenario (MdnPAN=0% [IQR=0-358 

80%]; Fig. 4g-i). As with TPR and FDR, sample size had the strongest influence on PPV under both population scenarios (E2PAN=0.63, 359 

E2STR=0.381; Tab. 3i, Fig. 4i). Under the panmictic population scenario, median PPV was 0% for the smaller sample sizes (N=50, 360 

100 and 200; Fig. 4i), after which patterns of increase were observed: from N=200 to 400 there was an increase of PPV of 2.6% 361 

for every 10 additional samples, and from N=800 to 1600 PPV continued to increase though it was less abrupt, resulting in a 362 

median PPV of 88% [IQR=75-100%] at N=1600 (Fig. 4i, Tab. S3c). Under the structured population scenario, fewer samples were 363 

required to observe a similar increment: while median PPV was 0 for N=50 and N=100, from N=100 to N=200 the median PPV 364 

increased by 8.4% for every ten additional samples (Fig. 4i, Tab. S3c). The increment of PPV became gradually weaker when 365 

transitioning between higher levels (N=400, 800 and 1600) and led to a median PPV of 100% [IQR=57.5-100%] at N=1600.  366 

Similar to TPR and FDR, the effect of sampling location number on PPV was significant but weaker than when compared to the 367 

effect of sample size (E2PAN=0.0124, E2STR=0.19; Tab. 3h, Fig. 4h). This effect was particularly evident under the structured 368 

population scenario, where an increase of the number of sampling locations strongly raised median PPV (Fig. 4h). The strongest 369 

PPV increment was observed between L=5 and 10, where each additional sampling location raised the median PPV by 13% 370 
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(Fig. 4h, Tab. S3b). With more sampling locations (L=20, 40 and 50) the rate of increase of PPV remained but was weaker (Fig. 4h, 371 

Tab. S3b). In the panmictic population scenario, an increase in the number of sampling locations affected the inter-quartile range 372 

of PPV in particular, but not the medians (Fig. 4h).  373 

The sampling design used resulted in rate changes for PPV under the structured population scenario, despite being less strong 374 

than when compared to the other elements (E2STR=0.0264; Tab. 3g, Fig. 4g). When compared to a random sampling scheme, the 375 

hybrid design and the environmental design increased the median PPV by 24% and 20% respectively, while the geographic design 376 

did not result in any changes (Fig. 4g, Tab. S3a).  377 

 378 

Discussion 379 

The simulations presented in this study highlight that sampling strategy clearly drives the outcome of a landscape genomics 380 

experiment, and that the demographic characteristics of the studied species can significantly affect the analysis. Despite some 381 

limitations that will be discussed below, the results obtained make it possible to answer three questions that researchers are 382 

confronted with when planning this type of research investigation.  383 

 384 

How many samples are required to detect any adaptive signal?  385 

In line with the findings of previous studies (e.g. Lotterhos & Whitlock, 2015), our results suggest that sample size is the key factor 386 

in securing the best possible outcome for a landscape genomics analysis. Where statistical power is concerned, there is an 387 

unquestionable advantage in increasing the number of samples under the scenarios tested. When focusing on the panmictic 388 

population scenario, we found a lack of statistical power in simulations for N≤200, while detection of true positives increased 389 

significantly for N≥400 (Fig. 4c). As we progressively doubled sample size (N=800, 1600), TPR linearly doubled as well (Fig. 4c). 390 

Under the structured population scenario, this increase in statistical power started at N≥100 and followed a logarithmic trend 391 

that achieved the maximum power at N≥800 (Fig. 4c).  392 

These results show that it is crucial to consider the population’s demographic background to ensure sufficient statistical power 393 

in the analyses, as advised by several reviews in the field (Balkenhol et al., 2017; Manel et al., 2012; Rellstab et al., 2015). In fact, 394 

the allelic frequencies of adaptive genotypes respond differently to a same environmental constraint under distinct dispersal 395 

modes (Fig. 2d-e). When individual dispersal is limited by distance (structured population scenario), the allelic frequencies of 396 

adaptive genotypes are the result of several generations of selection, resulting in a progressive disappearance of non-adaptive 397 

alleles from areas where selection acts. When the dispersal of individuals is completely random (panmictic population scenario), 398 
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the same selective force only operates within the last generation, such that even non-adaptive alleles can be found where the 399 

environmental constraint acts. Under these premises, a correlative approach for studying adaptation (such as SamBada) is more 400 

likely to find true positives under a structured population scenario rather than under a panmictic one.  401 

The dichotomy between structured and panmictic populations also emerges when analyzing false discovery rates. Under the 402 

panmictic population scenario, increasing the number of individuals sampled reduced FDR, while the inverse pattern was seen 403 

under a structured population scenario (Fig. 4f). The issue of high false positives rates under structured demographic scenarios is 404 

well acknowledged in landscape genomics (De Mita et al., 2013; Rellstab et al., 2015). Population structure results in gradients of 405 

allele frequencies that can mimic and be confounded with patterns resulting from selection (Rellstab et al., 2015). As sample size 406 

increases, the augmented detection of true positives is accompanied by the (mis-)detection of false positives. Under the panmictic 407 

population scenarios, these confounding gradients of population structure are absent (Fig. 2a-c) and high sample sizes accentuate 408 

the detection of true positives only (Fig. 4f).  409 

Working with FDR up to 70% (Fig. 4f) might appear excessive, but this should be contextualized in the case of landscape genomics 410 

experiments. The latter constitute the first step toward the identification of adaptive loci, which is generally followed by further 411 

experimental validations (Pardo-Diaz, Salazar, & Jiggins, 2015). Most landscape genomics methods test single-locus effects 412 

(Rellstab et al., 2015). This framework is efficient for detecting the few individual loci that provide a strong selective advantage, 413 

rather than the many loci with a weak individual-effect (for instance those composing a polygenic adaptive trait; Pardo-Diaz et 414 

al., 2015). For this reason, when researchers are faced with a high number of significant associations, they tend to focus on the 415 

strongest ones (Rellstab et al., 2015), as we did here by measuring the PPV of the ten strongest associations. By relying on this 416 

diagnostic parameter, we could show that increasing sample size ensures that the genotypes more strongly associated with 417 

environmental gradients are truly due to adaptive associations (Fig. 4i).  Under these considerations, acceptable results are 418 

obtainable with moderate sample sizes: a median PPV of at least 50% was found with simulations with N=400 and N=200 under 419 

panmictic and structured population scenario, respectively.  420 

Each landscape genomic experiment is unique in terms of environmental and demographic scenarios, which is why it is not 421 

possible to propose a comprehensive mathematical formula to predict the expected TPR, FDR and PPV based solely on sample 422 

size. When working with a species with a presumed structured population (for instance, wild land animals), we advise against 423 

conducting experiments with fewer than 200 sampled individuals, as the statistical requirements to detect true signals are 424 

unlikely to be met. Panmixia is extremely rare in nature (Beveridge & Simmons, 2006), but long-range dispersal can be observed 425 
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in many species such as plants (Nathan, 2006) and marine organisms (Riginos et al., 2016). When studying species of this kind, it 426 

is recommendable to increase sample size to at least 400 units. 427 

 428 

How many sampling sites? 429 

Increasing the number of samples inevitably raises the cost of an experiment, largely resulting from sequencing and genotyping 430 

costs (Manel et al., 2010; Rellstab et al., 2015). Additionally, field work rapidly increases the cost of a study in cases where 431 

sampling has to be carried out across landscapes with logistic difficulties and physical obstacles. Therefore, it is both convenient 432 

and economical to optimize the number of sampling locations to control for ancillary costs. 433 

De Mita et al. (2013) suggested that increasing the number of sampling locations would raise power and reduce false discoveries. 434 

The present study partially supports this view. A small number of sampling locations (L=5) was found to reduce TPR and PPV while 435 

increasing FDR, compared to using more sampling locations (L=10, 20, 40 and 50; Fig. 4b, e, h). This is not surprising, because 436 

when sampling at a small number of locations the environmental characterization is likely to neglect some contrasts and ignore 437 

confounding effects between collinear variables (Leempoel et al., 2017; Manel et al., 2010). This was particularly evident under 438 

the structured population scenario (Fig. 4b, e, h). In contrast, we found that higher numbers of sampling locations (L=40 and 50) 439 

provided little benefits in terms of TPR, FDR and PPV, compared to a moderate number of locations (L= 20; Fig. 4b, e, h). These 440 

discrepancies with previous studies are probably due to differences in the respective simulative approaches applied (we use 441 

several environmental descriptors instead of one) and the characteristics of the statistical method we employed to detect 442 

signatures of selection. In fact, as a number of sampling locations is sufficient to portray the environmental contrasts of the study 443 

area, adding more locations does not bring additional information and therefore does not increase statistical power. The 444 

implications of the information described above are considerable since the cost of field work can be drastically reduced with 445 

marginal countereffects on statistical power and false discoveries.   446 

 447 

Where to sample? 448 

Compared with random or opportunistic approaches, sampling designs based on the characteristics of the study area are 449 

expected to improve the power of landscape genomics analysis (Lotterhos & Whitlock, 2015).  We developed three distinct 450 

methods to choose sampling locations accounting for geographical and/or environmental information (geographic, 451 

environmental and hybrid designs). We confronted these design approaches between themselves and with random sampling 452 

schemes. The approach based on geographic position (geographic design) resulted in statistical power similar to the random 453 
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designs (Fig. 4a, d, f), while those based on climatic data (environmental and hybrid design) displayed remarkably higher TPRs 454 

and PPV and slightly lower FDR (Fig. 4a, d, f). These beneficial effects on the analysis were accentuated under the structured 455 

demographic scenario. 456 

These results match previous observations: methods conceived to take advantage of environmental contrasts facilitate the 457 

detection of adaptive signals (Manel et al., 2012; Riginos et al., 2016). Furthermore, the hybrid design prevents the sampling of 458 

neighboring sites with similar conditions, therefore avoiding the superposition between adaptive and neutral genetic variation 459 

(Manel et al., 2012). This is likely to explain why the hybrid design slightly outperformed the environmental approach (Fig. 4a, d, f). 460 

For these reasons, we strongly advise in using a sampling scheme accounting for both environmental and geographical 461 

representativeness. Without bringing any additional cost to the analysis, this approach can boost statistical power of up to 30% 462 

under a complex demographic scenario (Tab. S3a), in comparison to a regular (geographic) or random sampling scheme.    463 

 464 

Limitation 465 

The preliminary run of comparison with a well-established forward-in-time simulation software (CDPOP) displayed the pertinence 466 

of our customized simulative approach (Fig. 2). The neutral genetic variation appeared as random under the panmictic population 467 

scenario (no skew on the PC graph, Fst close to 0, mR close to 0) and structured under the structured population scenario (skew 468 

in the PCA graph, Fst higher than 0, mR different from 0; Fig. 2a-c). Adaptive allele frequencies also matched theoretical 469 

expectations: the responses along the environmental gradients were more stressed under the structured population scenario 470 

than under the panmictic one (Fig. 2d-e).  471 

Nonetheless, the use of forward-in-time simulations on the complete dataset (used by De Mita et al., 2013; Lotterhos & Whitlock, 472 

2015) would probably have resulted in more realistic scenarios. In order to be used in a framework as the one proposed here, 473 

the forward-in-time methods should be compatible with a large number of spatial locations (i.e. potential sampling sites), 474 

hundreds of individuals per location and a genetic dataset counting at least one thousand loci, of which 10 set as adaptive against 475 

distinct environmental variables. Importantly, all these requirements should be fulfilled at a reasonable computational speed 476 

(with our method, for instance, genotypes are computed in a few seconds). As far as we know, there are no existing software 477 

meeting these criteria.  478 

 479 

Conclusions 480 
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The present work provides guidelines for optimizing the sampling strategy in the context of landscape genomic experiments. Our 481 

simulations highlight the importance of considering the demographic characteristic of the studied species when deciding the 482 

sampling strategy to be used. For species with limited dispersal, we suggest working with a minimum sample size of 200 483 

individuals to achieve sufficient power for landscape genomic analyses. When species display long-range dispersal, this number 484 

should be raised to at least 400 individuals. The costs induced by a large number of samples can be balanced by reducing those 485 

related to field work. In cases where a moderate number of sampling locations (20 sites) is sufficient to portray the environmental 486 

contrasts of the study area, there is only minimal statistical benefit for sampling a larger number of sites (40 or 50). Furthermore, 487 

we describe an approach for selecting sampling locations while accounting for environmental characteristics and spatial 488 

representativeness, and show its benefic effects on the detection of true positives.  489 
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Tables and Figures 680 

Table 1. Sampling design in landscape genomics studies. A non-exhaustive list of landscape genomics studies, highlighting 681 

different species and their related sampling strategies.  682 

* Numbers from the Vincent et al. report (2013) concerning the non-pooled samples.  683 

Study Species Sampling Design (D) Sampling Locations 

(L) 

Sample Size 

(S) 

Colli et al. 2014 Goat Spatial and breed representativeness   10 sites 43 

Pariset et al. 2009 Goat Spatial and breed representativeness 16 regions 497 

Stucki et al. 2017, Vajana et al. 

2018 

Cattle Spatial representativeness 51 regions 813 

Harris and Munshi-South, 2017 White-footed 

Mouse 

Habitat representativeness  6 sites 48 

Stronen et al., 2015 Wolf Opportunistic, population 

representativeness 

59 sites 59 

Wenzel et al., 2016 Red Grouse Spatial representativeness 21 sites 231 

Crossley et al., 2017 Potato Beetle Habitat representativeness 16 sites 192 

Dudaniec et al., 2018 Damselfly Environmental and spatial 

representativeness 

25 sites 426 

Theodorou et al., 2018 Red-tailed 

bumblebee 

Habitat representativeness 18 sites 198 

Abebe et al., 2015 Barley Spatial representativeness 10 regions 260 

De Kort et al., 2014 Black alder Spatial and habitat representativeness 24 populations 356 

Pluess et al., 2016 Eurpean beech Spatial and environmental 

representativeness 

79 populations 234 

Yoder et al., 2014 Barrelclover Spatial representativeness 202 sites 202 

DiBattista et al., 2017 Stripey Snapper Spatial representativeness 51 sites 1,016 

Hecht et al., 2015 Chinook salmon Spatial representativeness 53 sites 1,956 

Laporte et al., 2016 Eurpeal Eel Spatial and environmental 

representativeness  

8 sites 179 

Vincent et al., 2013 Atlantic Salmon Spatial representativeness  26* rivers 641* 
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Figure 1. Workflow for each iteration of the simulative approach. The seven steps taken for every iteration. Starting with the 684 

blue boxes, the genetic set-up is established by selecting the demographic scenario (panmictic or structured), which determines 685 

the neutral structure, and by picking the environmental variables implied in adaptation. The environmental variable of interest 686 

and the strength of selection is randomly sampled for each of the 10 adaptive markers. Following this, the sampling strategy (here 687 

shown with red boxes) is set as a combination of design approach (geographic, environmental, hybrid or random), number of 688 

sampling locations (5, 10, 20, 40 or 50 locations) and sample size (50, 100, 200, 400, 800 or 1600 samples). This results in the 689 

creation of a genotype matrix that undergoes a landscape genomics analysis. At the end of iterations, statistical power (TPR) and 690 

false discovery rate (FDR) of the analysis and statistical predictive positive value of the strongest associations (PPV) are calculated 691 

to assess the performance of the sampling strategy.  692 
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Figure 2. Comparison of genotypes simulated with CDPOP and our method. Two distinct demographic scenarios were conceived, 694 

one with random mating (panmictic population) and one with dispersal costs related to distance (structured population). For 695 

each of them, CDPOP simulated the evolution of the population over 100 generations (red graphs) and replicated the same 696 

scenario 10 times. Simultaneously, we replicated the same scenarios using our simulative approach and show here the closest 697 

match (also replicated 10 times) to CDPOP simulations (blue graphs). Five methods for evaluating the genetic makeup are 698 

presented. In a), a principal component analysis is applied to the genotype matrix and the differential of the percentage of 699 

explained variation by each component is plotted for every replicate. In b), a pairwise Fst analysis between five subpopulations 700 

is performed for every replicate and the resulting distribution of Fst is shown. In c), Mantel correlation is calculated between a 701 

matrix of genetic and of geographic distances. The resulting Mantel R for every replicate is shown. In d) and e), the allelic 702 

frequency of adaptive genotypes is shown as a function of the environmental variables causing selection (representing a case of 703 

moderate and strong selection, respectively).  704 
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Figure 3. The three sampling design approaches accounting for landscape characteristics. The three maps illustrate how the 706 

eight sampling sites are chosen under three different sampling designs. Under a geographic strategy (A), sample location is 707 

selected using only geographic coordinates in order to maximize distance between sites. The environmental design (B) is 708 

computed using environmental variables (after filtering out highly correlated variables), in order to maximize the climatic distance 709 

between the chosen sites. The hybrid strategy (C) is a combination of the first two designs: first the landscape is divided into 710 

distinct environmental regions before choosing sites within each region that maximize spatial distance.  711 
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Table 2. Table of factors varying in the simulative approach. Two different demographic scenarios are possible, one in which 714 

there is no neutral genetic structure (panmictic population) and one in which there is a structured variation (structured 715 

population). We then used sampling strategies emulating those observed in real experiments. Three different sampling design 716 

approaches accounting for landscape characteristics are proposed: one maximizing the spatial representativeness of samples 717 

(geographic), one maximizing the environmental representativeness (environmental) and one that is a combination of both 718 

(hybrid). A fourth sampling design picks sampling locations randomly. The numerical ranges we employed were comparable to 719 

those from real experiment: 5 levels for number of sampling locations spanning from 5 to 50 sites, and 6 levels of sample sizes 720 

(i.e. total number of samples) from 50 to 1600 samples. For each combination of the aforementioned factors, 20 replicates were 721 

computed differing in the number and types of selective forces driving adaptation. In total, 4,800 simulation were computed.   722 

Factor  # levels Levels 

Demographic Scenarios 2 Panmictic Population, Structured Population  

Sampling Design (D) 4 Geographic, Environmental, Hybrid, Random 

Sampling Locations (L) 5 5, 10, 20, 40, 50 

Sampling Size (N) 6 50, 100, 200, 400, 800, 1600 

Replicates 20  

Total 4800   

 723 

 724 

  725 
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Table 3. Results of Kruskal-Wallis (KW) rank analysis. The table shows the epsilon-squared (E2) coefficient associated to the KW 726 

test for the three diagnostic parameters of the analysis (TPR: true positive rate, a-c; FDR: false discovery rate, d-f; PPV: positive 727 

predictive value of among the ten strongest significant association models, g-i) for every element determining the sampling 728 

strategy (sampling design: a, d, g; number of locations: b, e, h; sample size: c, f, i) under the two demographic scenarios, panmictic 729 

and structured population. E2 ranges between 0 and 1, where the higher the value the stronger the sampling strategy element 730 

drives the differences in the diagnostic parameter. The asterisks represent the respective degree of significance of the KW test 731 

(*: p<0.01, **: p<0.01, ***: p<0.001, **** p<0.0001, ***** p<0.00001).  732 

TPR 
a) Sampling Design b) # of Sampling Locations c) Sample Size 

Panmictic Structured Panmictic Structured Panmictic Structured 
0.0163***** 0.0229***** 0.00766* 0.17***** 0.815***** 0.613***** 

FDR 
d) Sampling Design e) # of Sampling Locations f) Sample Size 

Panmictic Structured Panmictic Structured Panmictic Structured 
0.00122 0.00733** 0.0116*** 0.127***** 0.621***** 0.408***** 

PPV 
g) Sampling Design h) # of Sampling Locations i) Sample Size 

Panmictic Structured Panmictic Structured Panmictic Structured 

0.00226 0.0264***** 0.0124**** 0.19***** 0.63***** 0.381***** 
 733 

 734 

 735 

  736 
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Figure 4. Effects of sampling strategy on the landscape genomics simulations. The plots display how the performance of 737 

landscape genomics experiments is driven by changes in the elements defining the sampling strategy. Three diagnostic 738 

parameters are used to measure the performance of each strategy: true positive rate (TPR; a-c) and false discovery rate (FDR; d-739 

f) for the analysis and the positive predictive value of the ten strongest significant association models (PPV; g-i). For each 740 

diagnostic parameter, we show the effect of sampling design (a, d, g; ran=random, geo=geographic, env=environmental, hyb= 741 

hybrid), number of sampling locations (b, e, h; 5, 10, 20, 40 or 50 sites) and sample size (c, f, I; 50, 100, 200, 400, 800, 1600 742 

individuals) under two demographic scenarios: panmictic and structured population.  743 

TPR 
a) Sampling Design b) # of Sampling Locations c) Sample Size 

   
FDR 

d) Sampling Design e) # of Sampling Locations f) Sample Size 

   
PPV 

g) Sampling Design h) # of Sampling Locations i) Sample Size 

   
 744 
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Supplementary Tab. 1. List of environmental variables employed. 

Name Geographic 
resolution 

Source 

Annual Mean Temperature 2.5 minutes Bioclim1(BIO1) 

Mean Diurnal Range 2.5 minutes Bioclim1 (BIO2) 

Temperature Seasonality 2.5 minutes Bioclim1(BIO4) 

Mean Temperature of Wettest Quarter  2.5 minutes Bioclim1(BIO8) 

Annual Precipitation 2.5 minutes Bioclim1(BIO12) 

Precipitation Seasonality 2.5 minutes BIoclim1(BIO15) 

Precipitation of Warmest Quarter 2.5 minutes Bioclim1(BIO18) 

Altitude 100 m Marine Geoscience Data System2 

 
1. WorldClim - Global Climate Data | Free climate data for ecological modeling and GIS. Available at: http://www.worldclim.org/. (Accessed: 26th September 2018) 

2. MGDS. Global Multi-Resolution Topography Data Synthesis. Available at: http://www.marine-geo.org/portals/gmrt/. (Accessed: 22nd August 2017) 
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Supplementary Box 1. Computation of the genotype matrix. The vignettes describe how genotypes were computed during simulations. At each iteration, 
a new genotype matrix counting 1’000 loci was generated. Ten of them were set as adaptive and followed the respective pipeline, while the others were 
set as neutral and computed accordingly.  

A) Neutral Locus 
i. An artificial population membership coefficient is computed as the distance from randomly located population centers. The 

membership coefficient is extracted then at each sampling site.  

 
ii. A function translates the coefficient of population structure in the probability of carrying the allele characteristic of the 

population. Finally, alleles are sampled at each site using the probability associated. This step is reiterated if more than one 
individual is sampled at the same site and for all the loci related to a same population membership coefficient.   

 
B) Adaptive Locus 

i. For each sampling site, the environmental values are extracted. 

 

 
 

ii. A function computes the probability of carrying an allele conferring a selective advantage against the environmental 
condition. Alleles are sampled at each site using the probability associated. This step is reiterated if more than one individual 
are sampled at the same site.  

 

 

coefficient of population 
membership 

35 
10 

sampling sites 

|PS 
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Supplementary Box 2. Formulae and parameters for genotype computations 

The probability function for the allele A depending on a population membership coefficient is 
calculated as follows: 
 

𝑝(𝐴|𝑃𝑆) = )
1 − 2𝑐

max(𝑃𝑆) −min	(𝑃𝑆)
4𝑃𝑆 + 𝑐 − )

1 − 2𝑐
max(𝑃𝑆) −min(𝑃𝑆)

4min	(𝑃𝑆) 

 
where PS is a population membership coefficient and c a parameter representing the strength of the 
relationship. This parameter can range between 0 (strongest relation, i.e. maximal and minimal PS 
returns p=1 and p=0, respectively) and 0.5 (no relation, any level of PS returns p=0.5).  
 
Similarly, probability for the allele A depending on environmental selection is calculated as follows: 
 

𝑝(𝐴|𝐸𝑛𝑣) = )
1 − 2𝑠:

max(𝐸𝑛𝑣) −min(𝐸𝑛𝑣)
4𝐸 + 𝑠: − )

1 − 2𝑠:
max(𝐸𝑛𝑣) −min(𝐸𝑛𝑣)

4min(𝐸𝑛𝑣) +	𝑠; 

 
where Env are the values of the environmental variable and s1 represents the strength of selection 
and behaves as the c in the previous equation.  The additional parameter s2 provides a baseline of 
allele frequency.  
 
In our simulations, we set two scenarios employing the following parameters: 
 
- panmictic population scenario (random neutral structure): c=0.5, s1=Unif(0.3, 0.4), s2=Unif(-0.2,0.1) 
- structured population scenario (strong population structure): c=Unif(0.2,0.4), s1=0, s2=Unif(-0.1,0.2) 
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Supplementary Figure 1. Environmental gradients and fitness constraint employed in the CDPOP 
validation run. Panel a) and b) show the distribution of the two environmental variables across the 10-
by-10 cells grid used for the CDPOP simulation. Plots in panels c) and d) show the fitness constraint set 
for the two environmental variables and how the respective adaptive genotypes modulate mortality.  

a) 

 

b) 

 
c) 

 

d) 
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Aa 

aa 
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Supplementary Table 2. CDPOP vs. our simulative approach comparison metrics. The tables show the rank of the simulative 
variants computed with our method (and defined by parameters m, c s1 and s2)  that best matched the CDPOP replicates. In a) 
and b) are shown the metrics used to compare the neutral genetic structure with the CDPOP case of a panmictic population and 
a structured population, respectively. The three metrics employed are 1) the average random mean squared error (RMSE) when 
comparing the curves describing the differential of explained variation by the genetic principal components; 2) the Kullback-
Leibler Divergence (KLD) used to compare the pairwise-Fst distributions; 3) the difference in the average mantel correlation 
(∆mR), which describes the link between genetic and geographic distances. The ranking coefficient is the sum of the three scaled 
metrics. In c) and d) the comparison concerns the adaptive genotypes computed in panmictic structured scenario of CDPOP, 
respectively. Here the RMSE compares, for our simulation and CDPOP runs, the allelic frequency of the adaptive genotype as a 
function of the environmental variable causing adaptation 

a) Panmictic Scenario: Neutral structure metrics 

rank m c RMSE (PCA) KLD (Fst) ∆mR Ranking Coefficient 
1 1 0.5 0.000780575 7.33E-06 0.003577 -4.35661  

2 25 0.4-0.5 0.000771722 7.70E-06 0.022455 -4.25828  

3 10 0.4-0.5 0.000771901 7.93E-06 0.023357 -4.24377  

4 20 0.4-0.5 0.000780659 8.58E-06 0.022308 -4.21677 

5 5 0.4-0.5 0.000770043 7.46E-06 0.034877 -4.21321  

6 15 0.4-0.5 0.000766353 9.31E-06 0.025071 -4.17643  

7 5 0.4-0.4 0.000796873 1.15E-05 0.067273 -3.88113  

8 10 0.4-0.4 0.000763216 1.12E-05 0.074199 -3.87217  

9 25 0.4-0.4 0.000771422 1.27E-05 0.072328 -3.81237  

10 20 0.4-0.4 0.000761967 1.38E-05 0.073625 -3.7593  

 

b) Structured Scenario: Neutral structure metrics 

rank m c RMSE (PCA) KLD (Fst) ∆mR Ranking Coefficient 

1 10 0.2-0.4 0.00290909 8.17E-06 0.320549 -3.63827  

2 20 0.1-0.5 0.00266099 8.85E-06 0.339198 -3.63027  

3 5 0.3 0.003023145 8.38E-06 0.312132 -3.45645  

4 15 0.1-0.5 0.002793301 7.57E-06 0.37057 -3.43066  

5 25 0.2-0.4 0.003250162 8.42E-06 0.314625 -3.31517  

6 15 0.2-0.3 0.002468453 6.72E-06 0.422087 -3.31507  

7 5 0.2-0.4 0.003092629 9.91E-06 0.329403 -3.27752  

8 10 0.3 0.002819477 9.84E-06 0.295631 -3.26125  

9 25 0.1-0.5 0.002947686 8.05E-06 0.373038 -3.23848  

10 15 0.2-0.5 0.002799946 1.02E-05 0.280361 -3.09366  

 

  

c) Panmictic Scenario:  
adaptive genotypes metrics 

Moderate Selection 
rank s1 s2 RMSE (AF) 

1 0 -0.1 0.7417767 
2 0.1 -0.1 0.75108 
3 0.1 -0.2 0.7681983 
4 0 -0.2 0.78917 
5 0.2 -0.1 0.7946361 

Strong Selection 
rank s1 s2 RMSE (AF) 

1 0 0.2 0.676855 
2 0.1 0.2 0.683247 
3 0.1 0 0.710474 
4 0 0.1 0.715619 
5 0.2 0.1 0.728321 

d)  Structured Scenario:  
adaptive genotypes metrics 

Moderate Selection 
rank s1 s2 RMSE (AF) 

1 0.4 -0.2 0.6889893  
2 0.3 -0.2 0.6895106  
3 0.2 -0.2 0.7181186  
4 0.3 -0.1 0.7319583  
5 0.2 -0.1 0.7454251 

Strong Selection 
rank s1 s2 RMSE (AF) 

1 0.3 0.1 0.624262  
2 0.4 0.1 0.6417665  
3 0.2 0.1 0.6484901  
4 0.3 0 0.6709922  
5 0.4 0 0.6831192 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2019. ; https://doi.org/10.1101/603829doi: bioRxiv preprint 

https://doi.org/10.1101/603829
http://creativecommons.org/licenses/by-nc/4.0/


 
 
Supplementary Table 3. Changes in the analysis results under different sampling strategy. The table 
shows the changes in the median value of the three diagnostic parameters (TPR, FDR and PPV) used to 
evaluate the performance of the landscape genomics analysis. In a) the changes concern the different 
sampling design approaches (geo: geographic, env: environmental, hyb: hybrid) as compared to the 
random one. In b), the comparison focuses on the number of sampling locations showing, for a given 
range of locations, by how much an additional sampling site increases the median of the diagnostic 
parameter. In c) is shown, for a given interval of sample size, by how much the median of the diagnostic 
parameter is increased by an additional sample. The results for the two demographic scenarios, panmictic 
and structured, are shown separately. 

 
TPR FDR PPV 

Panmictic Structured Panmictic Structured Panmictic Structured 
a) 

Sampling 
Design 

Geo 0 -0.1 0 0.000576 0 0  
Env 0 0.3 0 -0.07742 0 0.2  
Hyb 0.1 0.3 -0.13393 -0.07742 0.133929 0.245238 

b) 
Number of 
Locations 

5-10 0 0.09 0 -0.06667 0 0.129167  
10-10 0 0.025 0 -0.01667 0 0.025417  
20-40 0 0.005 0 0 0 0  
40-50 0 0.01 0 -0.00754 0 0.01 

c) 
Sample 

Size 

50-100 0 0 0 0 0 0  
100-200 0 0.005 0 -0.00833 0 0.008452  
200-400 0.0005 0.0015 -0.00268 0.000833 0.002679 -0.00023  
400-800 0.00075 0.0005 -0.00066 0.000595 0.000661 0.00025  

800-1600 0.0005 0 0 0.000133 0.000111 0.000125 
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