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Abstract 10 

 11 

A growing body of evidence highlights the intricate linkage of exteroceptive perception to 12 

the rhythmic activity of the visceral body. In parallel, interoceptive inference theories of 13 

emotion and self-consciousness are on the rise in cognitive science.  However, thus far no 14 

formal theory has emerged to integrate these twin domains; instead most extant work is 15 

conceptual in nature. Here, we introduce a formal model of cardiac active inference, which 16 

explains how ascending cardiac signals entrain exteroceptive sensory perception and 17 

confidence. Through simulated psychophysics, we reproduce the defensive startle reflex and 18 

commonly reported effects linking the cardiac cycle to fear perception. We further show that 19 

simulated ‘interoceptive lesions’ blunt fear expectations, induce psychosomatic 20 

hallucinations, and exacerbate metacognitive biases. Through synthetic heart-rate 21 

variability analyses, we illustrate how the balance of arousal-priors and visceral prediction 22 

errors produces idiosyncratic patterns of physiological reactivity. Our model thus offers the 23 

possibility to computationally phenotype disordered brain-body interaction.  24 

   25 

 26 

Introduction 27 

The enactive view of perception – implied by active vision and inference – suggests 28 

an intimate co-dependency between perception and the active sampling of our sensorium. 29 
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In this work, we take the embodied view to its ultimate conclusion and consider perception 30 

as a function of the physical and physiological body we use to ‘measure’ the world. In 31 

particular, our focus is on the coupling – or interaction – between interoceptive and 32 

exteroceptive perception; namely, how bodily states and states of affairs beyond the body 33 

are inferred – and how inference about each domain affects the other. For example, does 34 

what we see depend upon our autonomic status and how does visual perceptual synthesis 35 

affect sympathetic or parasympathetic outflow? The body is, in essence, an ensemble of 36 

fluctuating systems with biorhythms nested at multiple timescales. How then do these 37 

physiological fluctuations interact with perceptual synthesis in the visual and auditory 38 

domains? 39 

There is a rapidly growing body of evidence suggesting that bodily and autonomic 40 

states affect perceptual and metacognitive decisions (Allen et al., 2016b; Azevedo et al., 2017; 41 

Bonvallet and Bloch, 1961; Cohen et al., 1980; Garfinkel et al., 2014; Hauser et al., 2017b; 42 

Lacey and Lacey, 1978; Park et al., 2014; Salomon et al., 2016; Velden and Juris, 1975; Zelano 43 

et al., 2016). Much of this evidence emphasises the dynamic aspect of our physiology; usually 44 

assessed in terms of how psychophysics depends upon the phase of some physiological cycle. 45 

Most of the empirical evidence suggests that biorhythms gate or modulate the way that 46 

sensory evidence is accumulated during perception (Bonvallet et al., 1954; Bonvallet and 47 

Bloch, 1961; Karavaev et al., 2018; Varga and Heck, 2017). In the predictive coding literature, 48 

this is usually treated as fluctuating, context sensitive, changes in the precision of sensory 49 

sampling (e.g., the precision or gain of prediction errors). Clear examples of this include the 50 

fast waxing and waning of precision during active visual sampling. For example, saccadic 51 

suppression – during saccadic eye movements – alternates with attention to fixated visual 52 

information every 250 ms or so. This process of actively sampling the environment via 53 

ballistic saccade itself varies with the cardiac cycle (Galvez-Pol et al., 2018; Kunzendorf et al., 54 

2019; Ohl et al., 2016). At still slower timescales, respiratory (Herrero et al., 2017; Tort et al., 55 

2018b, 2018a; Zelano et al., 2016) are coupled to neuronal oscillations and behavior. In 56 

short, at probably every timescale there are systematic fluctuations in the precision or 57 

quality of sensory evidence that depend upon when we actually interrogate the world, in 58 

relation to the biorhythms of our sensory apparatus; namely, our body. 59 
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Our focus on the multimodal integration of interoceptive and exteroceptive domains 60 

is driven by the overwhelming evidence for interoception as a key modality in hedonics, 61 

arousal, emotion and selfhood (Allen and Friston, 2018; Apps and Tsakiris, 2014; Gallagher 62 

and Allen, 2018; Seth, 2013; Seth and Friston, 2016). This is generally treated under the 63 

rubric of interoceptive inference; namely, active inference in the interoceptive domain. 64 

There are several compelling formulations of interoceptive inference from the perspective 65 

of neurophysiology, neuroanatomy and, indeed, issues of consciousness in terms of minimal 66 

selfhood. However, much of this treatment rests upon a purely conceptual analysis – 67 

underpinned by some notion of active (Bayesian) inference about states of the world 68 

(including the body). In this work, we offer a more formal (mathematical) analysis that we 69 

hope will be a point of reference for both theoretical and empirical investigations. 70 

In brief, we constructed a (minimal) active inference architecture to simulate 71 

embodied perception and concomitant arousal. Here, we focused on simulating interactions 72 

between the cardiac cycle and exteroceptive perception. In principle however, our 73 

simulation provides a computational proof-of-principle that can be expanded to understand 74 

brain-body coupling at any physiological or behavioral timescale. Using a Markov decision 75 

process formulation, we created a synthetic subject who exhibited physiological (cardio-76 

acceleration) responses to arousing stimuli. Our agenda was twofold: first, to provide a 77 

sufficiency proof that – in at least one example – the interaction between interoception and 78 

exteroception emerges from the normative (formal) principles of active inference. 79 

Furthermore, having an in silico subject at hand, means that we can simulate the effects of 80 

various disconnections and pathophysiology. For example, we can examine the effect of 81 

deafferentation of interoceptive signals on arousal, exteroceptive perception, and 82 

(metacognitive) confidence placed in perceptual categorization. Indeed, we were able to go 83 

beyond simulated deafferentation studies and ask what it would be like if we were able to 84 

selectively lesion the precision of (i.e. confidence ascribed to) different sorts of beliefs; for 85 

example, beliefs about ‘what I am doing’, beliefs about ‘the state of the world’, and beliefs 86 

about ‘the sorts of interoceptive and exteroceptive signals I expect to encounter’. 87 

Second, we constructed our synthetic subject in such a way that the same paradigm 88 

could be replicated in real subjects. The motivation for this is that the active inference 89 

scheme used below has an associated process theory (Friston et al., 2017a). In other words, 90 
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neuronal and behavioral responses associated with inferential processes can be simulated 91 

on a trial by trial basis. This means that we can use electrophysiological, eye tracking, 92 

pupillometry and other physiological proxies to test various hypotheses that can be 93 

instantiated in the model. Crucially, this provides a link between neuronal and behavioural 94 

responses – as characterised by the latency between stimuli onset and autonomic responses 95 

(e.g., heart rate acceleration or variability) or confidence judgements (i.e., responses to how 96 

confident were you in your perceptual judgement?). In this paper, we will focus on the basic 97 

phenomenology and (some counterintuitive) results. In subsequent work, we will use this 98 

formalism to model real responses under various experimental manipulations. 99 

In what follows, we briefly describe the generative model and inversion scheme used 100 

to simulate cardiac arousal responses. We then demonstrate the results of anatomical 101 

(deafferentation) lesions on perceptual and metacognitive behaviour, as well as simulated 102 

belief updating. Finally, we will examine the effects on synthetic heart-rate variability when 103 

changing the precision of various prior beliefs that underlie perceptual inference. We 104 

conclude with a discussion of the implications for existing research in this area – and how 105 

this research could be informed by a formal approach providing guidelines to discovery. 106 

  107 

  108 

Methods 109 

  110 

Markov Decision Process 111 

 112 

The simulations reported below build upon the notion of active inference. This is a ‘first-113 

principles’ approach to understanding (Bayes) optimal behaviour. Simply put, active 114 

inference treats the brain as using an internal (generative) model of the world to explain 115 

exteroceptive, proprioceptive, and interoceptive sensory data. By optimizing beliefs about 116 

variables in this model (perceptual inference), or by changing their internal or external 117 
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environment (action), creatures can ensure their sensations and prior beliefs are consistent1. 118 

A Markov decision process (MDP) is a form of probabilistic generative model that describes 119 

the sequential dynamics of unobserved (hidden) variables (e.g., the current state of the 120 

cardiac cycle) and the sensations they cause (e.g., baroreceptor signals). The hidden 121 

variables of an MDP are hidden states (sτ) and sequences of actions or policies (π). The 122 

generative model then embodies the conditional dependencies between these variables, as 123 

expressed graphically in Figure 1. While we provide a brief overview here, we refer readers 124 

to (Friston et al., 2017a) for more technical detail. 125 

 126 

Hidden states generate observable sensory data with probabilities expressed in a likelihood 127 

matrix A. The states evolve through time according to a transition probability matrix, B and 128 

depend only on the state at the previous time, and on the policy, π,.  Finally, we equip the 129 

generative model with preferences (C), prior beliefs about initial states (D), and prior beliefs 130 

about policies. Beliefs about policies have two parts. The first of these is a fixed bias (E). This 131 

may be thought of as a habit; i.e., ‘what I expect to do’ a priori. The second is a belief that the 132 

most probable policies are those that have the lowest expected free energy (G); i.e., ‘what I 133 

expect to do’ after considering the consequences of action. A simple intuition for the latter is 134 

to think of the selection between alternative courses of action as we might think of Bayesian 135 

hypothesis testing (i.e. model comparison); namely, planning as inference (Attias, 2003; 136 

Botvinick and Toussaint, 2012). Here, each policy can be thought of as an alternative 137 

hypothesis about ‘how I am going to behave’. These are evaluated in terms of prior beliefs 138 

(E), and the (predicted) evidence future data affords (G). Just as free energy is used to 139 

approximate the evidence data affords a hypothesis, expected free energy evaluates the 140 

expected evidence, under beliefs about how data are actively generated. As expressed in 141 

Figure 1, expected free energy can be separated into two parts. ‘Risk’ quantifies how far 142 

predicted observations deviate from preferred outcomes. Minimizing this ensures 143 

maintenance of homeostasis. ‘Ambiguity’ quantifies the uncertainty in the mapping from 144 

                                                        
1 The term ‘belief’ here is used in the technical sense of a Bayesian belief, or probability distribution, typically 
considered to be sub-personal. 
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states to outcomes. Minimizing this component ensures that salient, uncertainty-resolving 145 

data are sought (leading to epistemic, information gathering, behavior). 146 

 147 

 148 

 149 

Figure 1. A Markov decision process generative model: the factor graph on the left illustrates the 150 

conditional dependencies, and independencies, between the variables in the generative model (see the main 151 

text for a description of the variables). The variables are shown in circles (with filled circles showing observable 152 

variables). An arrow from one variable to another indicates that the latter depends upon the former. The square 153 

nodes each represent probability distributions. The panels on the right give the forms of the distributions 154 

(associated with each square node) in the generative model, in addition to defining the expected free energy, 155 

and specifying the factorization of the approximate posterior (variational) distributions the agent possesses.  156 

 157 

 158 

Synthetic Cardiac Arousal 159 

 160 

Using the MDP scheme detailed above, we set out to simulate a cardiac arousal 161 

response to threatening stimuli (e.g., a vicious looking spider), in comparison to non-162 

arousing stimuli (e.g., some flowers). To do this, we had to define ‘arousal’ and its 163 

interoceptive correlates. To keep things as simple as possible, we assumed the subject’s 164 

generative model included two sorts of hidden states (interoceptive and exteroceptive – and 165 
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that she could adopt two modes of engagement with the world (relaxed and aroused). These 166 

sorts of generative models are generally cast as Markov decision processes, whereby 167 

transitions among (hidden) states generate observable outcomes in one or more modalities. 168 

The modalities considered here were exteroceptive (non-arousing versus arousing visual 169 

stimuli) and interoceptive (the cardiac phase; diastolic or systolic). Having defined the nature 170 

of the state space generating outcomes, this model can then be parameterised in a relatively 171 

straightforward fashion as outlined above. For any set of A,B,C,D, and E parameters, one can 172 

then simulate active inference using standard marginal message passing schemes (Parr et 173 

al., 2019) to optimize expectations about hidden states of the world – and the action or policy 174 

currently being pursued (technically, a policy is a sequence of actions. In what follows, we 175 

only consider policies with one action) (Friston et al., 2017a, 2017c).  176 

Crucially, inference about policies rest upon prior beliefs that the policies will 177 

minimise expected free energy in the future. This expected free energy has both epistemic 178 

and instrumental terms; namely; the ability of any particular course of action to resolve 179 

uncertainty about hidden states (known as salience, Bayesian surprise, information gain, 180 

etc.) (Barto et al., 2013; Itti and Baldi, 2009; Oudeyer and Kaplan, 2009; Schmidhuber, 2010) 181 

and the pragmatic affordance (known as expected value, utility, reward, etc.) as specified by 182 

the prior preferences (Friston et al., 2015). 183 
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 184 

Figure 2: the generative model. This schematic illustrates how hidden states cause each other and 185 

sensory outcomes in the interoceptive and exteroceptive domain. The upper row describes the probability 186 

transitions among hidden states, while the lower row specifies the outcomes that would be generated by 187 

combinations of hidden states that are inferred on the basis of outcomes. The green panel specifies the models 188 

prior preferences; namely, the sorts of outcomes it expects to encounter. Please see main text for a full 189 

explanation. Although this figure portrays interoceptive and exteroceptive outcomes as separate modalities, 190 

they were in fact modelled as combinations – so that the prior preferences could be evaluated (this is necessary 191 

because the preferred physiological outcome depends upon the visual cue). In this model, the precisions are 192 

denoted by Greek letters and control the fidelity of various probabilistic mapping is (i.e., the likelihood or A 193 

matrices and the transition or B matrices). 194 

 195 

To capture the fundaments of multimodal integration – of interoceptive and exteroceptive 196 

modalities – we assumed the following, reasonably plausible, form for the model. The 197 

synthetic subject had to infer which of two policies she was pursuing: a relaxed policy or an 198 

aroused policy. These are defined operationally in terms of transitions among interoceptive 199 

states. Here, we model this in terms of two distinct forms of cardiac cycling among diastolic 200 

and systolic bodily states. When relaxed, the probability transitions among cardiac states 201 



 
Cardiac Active Inference 

9 
 

meant that there were two phases of diastole and one of systole. Conversely, when aroused, 202 

the first diastolic state jumped immediately to systole. In brief, this means that being aroused 203 

causes cardiac acceleration and the average amount of time spent in systole. The outcomes 204 

are generated by these states were isomorphic; in other words, there was a simple likelihood 205 

mapping from states to sensations; such that the subject received a precise or imprecise 206 

interoceptive cue about the current cardiac status (i.e., diastole or systole). 207 

On the exteroceptive side, we just considered two states of the visual world; namely, 208 

the subject was confronting an arousing or non-arousing visual object. The corresponding 209 

visual modality again had two levels (arousing versus non-arousing picture). Crucially, the 210 

fidelity or precision of this mapping depended upon the interoceptive state. When the 211 

subject was in systole, this mapping became very imprecise. In other words, all outcomes 212 

were equally plausible under each hidden state of the visual world. Conversely, during 213 

diastole, there was a relatively precise likelihood mapping. This is the crucial part of our 214 

model that links the state of the body to the way that it samples the world. Put simply, precise 215 

visual information is only available during certain parts of the cardiac cycle, which itself 216 

depends upon the state of arousal (i.e., the policy currently inferred and selected). This can 217 

be thought of as a simple approximation of cardiac and other bodily timing effects, expressed 218 

as a momentary occlusion or attenuation of sensory input by (for example) afferent 219 

inhibitory baroreceptor effects (Bonvallet and Bloch, 1961; Lacey and Lacey, 1978), or by 220 

the brief flooding of the retina during cardiac contraction. 221 

This simple structure produced some remarkable results that speak to the intimate 222 

relationship between interoception and exteroception. These phenomena (see below) rest 223 

upon the final set of beliefs; namely, preferred outcomes. Here, the subject believed that she 224 

would be, on average, in a systolic state when confronted with an arousing picture and in a 225 

diastolic state otherwise. These minimal prior preferences then present the subject with an 226 

interesting problem. She has to choose between extending periods of precise evidence 227 

accumulation (i.e., a relaxed state with more diastolic episodes) and sacrificing precise 228 

information, via cardio-acceleration, should she infer there is something arousing ‘out there’. 229 

However, to infer what is ‘out there’, she has to resolve her uncertainty, through epistemic 230 

foraging; i.e., maintaining a relaxed state. We therefore hypothesised that at the beginning of 231 
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each trial or exposure to a picture2, subjects would be preferentially in a relaxed state until 232 

they had accumulated sufficient evidence to confidently infer the visual object was arousing 233 

or not. If arousing, she would then infer herself to be aroused and enter into a period of 234 

cardio-acceleration (illustrated in Figure 3). 235 

By carefully adjusting the precision of sensory evidence (through adjusting the A 236 

matrix), we could trade-off the evidence accumulation against these imperatives to simulate 237 

the elaboration of an arousing response to, and only to, arousing stimuli. Furthermore, we 238 

anticipated that a failure to implement a selected policy of arousal would both confound 239 

inference about the policy being pursued (i.e., an aroused state of mind) and – importantly – 240 

confidence about the exteroceptive state of affairs. The latter can be measured quantitatively 241 

in terms of the entropy or average uncertainty over hidden exteroceptive states (after taking 242 

a Bayesian model average over policies). This leads to the prediction that confidence in 243 

perceptual categorisation would not only evolve over time but would depend upon 244 

interoceptive inference. We tested this hypothesis in silico through various lesion 245 

experiments reported in the subsequent sections (Figures 3 - 5). In what follows, we 246 

illustrate the belief updating and arousal responses under ‘normal’ priors (i.e. precisions) 247 

based upon the generative model above (summarized graphically in Figure 2).  248 

Simulations 249 

We implemented a minimal model of interoceptive and emotional inference – in the sense 250 

that one's state of active engagement with the world may be inferred from its interoceptive 251 

and exteroceptive consequences. In this minimal model, the two domains of perception are 252 

coupled by – and only by – sensory attenuation: i.e., attenuation of sensory precision in the 253 

visual domain during (inferred) systole. Precision refers to the reliability or confidence 254 

ascribed to a given probabilistic belief. Within this model there are four kinds of precision; 255 

namely, sensory precision in the visual (α) and cardiac (β) domains and the precision of state 256 

transitions among interoceptive and exteroceptive states. For clarity, we will refer to the 257 

precision of transitions as (inverse) volatility and use precision to refer to sensory (i.e. 258 

                                                        
2 Every simulation started off with a weak prior over hidden states that the picture was not arousing – and a 
weaker prior in favor of the relaxed policy. 
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likelihood) precision. In this example, because there are only two states, the corresponding 259 

parameters of the generative model control both the expected contingencies and their 260 

precision. In other words, when α (or β) decreases to 1/2, sensory signals become imprecise 261 

and completely ambiguous. In what follows, we will focus on manipulations of precision 262 

under a canonical volatility of ζ = 0.9. In other words, we will assume that our synthetic 263 

subject believes state transitions among phases of the cardiac cycle follow each other fairly 264 

reliably with a 90% probability. Similarly, if there is a flower ‘out there’, then there is a 90% 265 

probability that it will remain there at the next sample. Cardiac and visual stimuli were 266 

generated by the same precisions and volatilities as assumed by the subject’s generative 267 

model. 268 

We conducted three sets of simulations to illustrate the sorts of behaviours that 269 

emerge under this active inference scheme – and to establish the construct validity of the 270 

model in relation to empirical phenomena that speak to the influence of interoception on 271 

exteroception and vice versa. This enabled us to illustrate the basic phenomenology of our 272 

agent – in terms of simulated perceptual inference and cardiac physiology – under some 273 

differing levels of sensory precision.  274 

 275 

 276 

Figure 3. Simulated Physiology and Perceptual Inference. To establish the face validity of our 277 

model, we first set out to reproduce some basic psychophysiological phenomenology and establish how these 278 

phenomena change under ‘healthy’ (i.e., normative) versus ‘visceral lesion’ parameter settings. To do so, we fed 279 

agents a fixed sequence of cardiac and exteroceptive stimuli, such that the first 14 trials constituted a ‘baseline’ 280 

period of cardiac quescience (i.e., a steady heart rate), in the absence of arousing stimuli. On the 15th trial, an 281 
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unexpected arousing stimulus (a ‘spider’) is presented and a further 85 trials simulated. This simulation was 282 

repeated for 60 simulated participants, each with randomized starting values, half of which had ‘lesioned’ 283 

interoceptive precision (β = 0.5, blue lines). Under these conditions our synthetic subjects exhibit a clear 284 

‘startle’ or ‘defense’ reflex (Graham and Clifton, 1966; Sokolov, 1963), characterized by an immediate cardio-285 

acceleration (left panel) and a dramatic shift in the posterior expectation of encountering another threatening 286 

stimulus. Interestingly, during the baseline period the posterior expectation of encountering a threat stimulus 287 

oscillates with the heartbeat; i.e., the lesioned subjects show both an attenuation of the cardiac response and a 288 

blunted belief update. Note that for the right panel, only trials 1-40 are shown. On the left, blue lines show 289 

summed heartbeats (time spent in systole) for 15-trial bins; on the right, lines depict the median posterior 290 

probability that the agent will see a spider on the next trial. See Methods and Results for more details.    291 

 292 

In the first set of simulations (Fig. 3), we focused on the physiological and psychological 293 

response to arousing stimuli. To do so, we tested the hypothesis that the unexpected 294 

presentation of a ‘spider’ would induce an aroused state – as reflected in an increased heart 295 

rate – and a greater posterior expectation of encountering an arousing spider stimulus on 296 

the next trial. To evaluate this hypothesis, we supplied the subject with a fixed sequence of 297 

15 stimuli – in both the cardiac and visual domains – and examined the posterior beliefs 298 

about the next exteroceptive state following a period of relaxed cardiac input. Note that this 299 

is possible precisely because our generative model includes beliefs about the future – 300 

including the next hidden state and subsequent sensory sample. Here, we used as outcome 301 

measures the agent’s evoked cardiac acceleration response (calculated by binning the 302 

number of siastole events across the experiment) and the agent’s posterior belief that the 303 

next stimulus would be threatening. These simulations were repeated 60 times with 304 

randomized starting values, such that the first thirty ‘healthy’ agents where compared to an 305 

‘interoceptive lesion’ group for whom interoceptive precision had been attenuated (β = 0.5). 306 

This enabled us to not only establish the interaction of fear expectations and cardiac arousal, 307 

but also to demonstrate how these responses change when interoceptive sensory precision 308 

is ablated.  309 

In the second set of simulations (Fig. 4), our focus moved from perceptual to 310 

metacognitive inference. Here, we examined the interaction between exteroceptive and 311 

interoceptive sensory precision on the one hand and their coupling to cardiac timing and 312 

metacognition (posterior confidence) on the other. Our goal here was to illustrate how both 313 
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interoceptive and exteroceptive precision interact to influence metacognitive inference, and 314 

to link these to empirical findings showing that cardiac arousal biases metacognition (Allen 315 

et al., 2016b; Hauser et al., 2017a). For these, we used the uncertainty about inferred 316 

exteroceptive and interoceptive states (as quantified by the summed entropy of posterior 317 

beliefs for each state) as outcome measures, simulated under a range of cardiac and visual 318 

precision settings (figure 3A). To further illustrate how these effects oscillate with the 319 

cardiac rhythm, we separated these measures for each phase of the cardiac cycle (early 320 

diastole, late diastole, systole). We then repeated these analyses comparing ‘healthy’ 321 

interoceptive inference agents (α & β = 0.9), to agents for whom either exteroceptive or 322 

interoceptive precision was lesioned (α or β = 0.5, respectively). In virtue of our coupling of 323 

exteroceptive sensory precision to the cardiac cycle, we anticipated that metacognitive 324 

confidence (outscored by the negative entropy of posterior beliefs) would depend on the 325 

precision of both interoceptive and exteroceptive states, and that this effect would clearly 326 

oscillate with the cardiac cycle. Further, we expected in the extreme case of our ‘lesioned’ 327 

subjects, these effects would be further exacerbated such that interoceptive and 328 

exteroceptive uncertainty would increase dramatically, under their respective lesion 329 

conditions.  330 

 331 
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 332 

Figure 4. Simulating the influence of interoceptive and exteroceptive precision on metacognitive 333 

uncertainty.  To explore how interoceptive inference influences metacognition, we measured the summed 334 

entropy of beliefs for both exteroceptive (top panels) and interoceptive (bottom panels) states. By simulating 335 

the full range of sensory precision values, from lesioned precision (α or β = 0.5) to ‘hyper-precision’ (α or β = 336 

1), the predominant pattern of interactions is revealed. A) For exteroceptive inferences (i.e., the agent’s belief 337 

that a spider or flower is present), the principle entropy gradient is characterized by reductions in 338 

exteroceptive precision. This effect is modulated in part by interoceptive precision; for example, the lowest 339 

uncertainty is obtained when interoceptive and exteroceptive precision are maximal. B) Separating 340 

exteroceptive uncertainty by each phase of the cardiac cycle reveals a clear effect of the heartbeat on belief 341 

entropy, which is modulated most strongly by lesioning the precision of exteroceptive predictions. Lesioning 342 

interoceptive uncertainty does raise the overall level of exteroceptive uncertainty, but to a lesser degree. Note 343 

that altering exteroceptive precision only affects the diastolic phases (as precision is already attenuated during 344 

systole). Interoceptive lesions preclude precise inferences about the cardiac phase, so reduce the discrepancy 345 

in uncertainty between these phases. C) Similar to exteroceptive belief, interoceptive metacognition is 346 

predominately influenced by interoceptive precision. D) The cardiac cycle also modulates the overall 347 
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uncertainty of interoceptive beliefs; this effect is greatly increased when interoceptive precision is lesioned. 348 

Interestingly, exteroceptive lesions primarily reduce the differentiation between cardiac states.  349 

 350 

Finally, to complement these simulations we modelled the response of first and second order 351 

statistics of the physiological responses to changes in sensory precision. These were based 352 

upon simulated heart rate (frequency of systole) and the heart rate variability (HRV) 353 

assessed over multiple trials or heartbeats (Fig. 5). Our objectives here were; 1) to test the 354 

hypothesis that fluctuations in both low-and high- frequency synthetic heart rate variability 355 

can be produced by altering the balance of interoceptive sensory precision versus the prior 356 

precision for the aroused sympathetic policy, and 2) to illustrate how generative modelling 357 

of interoceptive active inference can be used to phenotype maladaptive inference 358 

parameters from observed heart-rate data (i.e., interoceptive inference phenotyping). For 359 

this analysis, we simulated 1000 trials under three canonical parameter settings designed to 360 

resemble potential neuropsychiatric phenotypes of interest: healthy interoception (α = 0.8, 361 

β = 0.8, prior probability of parasympathetic policy = 55%), hyper-precise interoceptive 362 

sensation (α = 0.8, β = 1, prior probability of parasympathetic policy = 55%), and hyper-363 

precise arousal priors (α = 0.8, β = 0.8, prior probability of sympathetic policy = 75%).  364 

The resulting time-series of systole events from each agent were then convolved with 365 

a canonical QRS-wave response function and transformed into normalized beat-to-beat RR-366 

intervals. To normalize the (arbitrary) sampling rate of each time-series, we assigned a 367 

350ms repetition time (TR) for each state of the MDP simulation, such that the healthy agent 368 

had a heart rate of approximately 60 BPM. The time intervals between successive synthetic 369 

R-peaks was then calculated. As the RR interval data is unevenly sampled, the time series 370 

was linearly interpolated. The power spectrum was then estimated using Welch’s method.  371 

In line with conventional HRV analysis, the power spectra were then categorized into four 372 

frequency bands corresponding to ultra-low (0 - 0.04 Hz), low (0.04- 0.15 Hz), high (0.15 - 373 

0.4 Hz), and very-high (> 0.4 Hz) frequency categories. Finally, to summarize the 374 

physiological response of each agent, we calculated the beats per minute (BPM) and the ratio 375 

between low and high frequency components (LF/HF), i.e., sympathovagal gain or balance. 376 

Sympathovagal valance is thought to index the balance of sympathetic and vagal outflows 377 

and is frequently interpreted implicated in stress and other psychophysiological  and clinical 378 
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disorders (Malliani et al., 1991; Strigo and Craig, 2016) but see (Eckberg Dwain L., 1997; 379 

Heathers, 2012) for critique. Sympathovagal balance was calculated as the ratio of area 380 

under the curve (AUC) for low and high-frequency HRV; AUCLF/ AUCHF.  381 

   382 

 383 

Figure 5. Synthetic Heart-Rate Variability (HRV) and Interoceptive Computational Phenotyping. To 384 

illustrate the potential of our approach as a generative model of physiological reactivity, we produced synthetic 385 

heartbeat traces and analyzed these with a standard time-frequency approach under various canonical 386 

parameter settings. A) Synthetic ECG traces produced by convolving a standard QRS-wave function with systole 387 

events generated by our model.  B) These where then transformed into RR-intervals by assuming an 350ms 388 

sampling rate, C) Power spectra of RR-intervals were calculated using Welch’s method and categorized as ultra-389 

low (ULF), low, (LF), high (HF), and very high frequency (VHF) bands for each simulated agent. Physiological 390 

responses were then summarized in terms of beats-per-minute (BMP) and sympathovagal balance (ratio of 391 

area under curve for each frequency band, aLF/aHF) (Malliani et al., 1991). To illustrate the potential of our 392 

approach for interoceptive computational phenotyping, we simulated three different agents – one with healthy 393 

interoceptive inference (bottom left), another with hyper-precise visceral sensations (bottom middle), and 394 

another with hyper-precise priors for the aroused (sympathetic) policy (bottom right). These each produce 395 

unique interoceptive inference ‘fingerprints’; i.e., the individual patterns of heart-rate variability produced by 396 

these parameter settings. In this example, hyper-precise visceral sensations reduce heart-rate and shift overall 397 

peak frequency to the high-frequency domain, whereas hyper strong arousal priors induce strong heart-rate 398 
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acceleration coupled with attenuated ultra-low and ultra-fast oscillations. In the future, these idiosyncratic 399 

patterns could be used to identify maladaptive interoceptive inference from heart-rate data.  400 

 401 

 402 

Results  403 

 404 

Simulated Physiology and Perceptual Active Inference. 405 

To establish the face validity of our model, we simulated the basic psychophysiological 406 

behavior of our active inference agent. This involved simulating a fixed series of stimuli 407 

(states) in which the heartbeat was forced to remain relaxed – and only non-arousing 408 

(flower) stimuli were presented. On the 15th trial, an unexpected spider stimulus was 409 

presented, and the simulation continued for a further 85 trials. Thus, by evaluating the 410 

evolution of the agent’s synthetic interoceptive physiology and exteroceptive beliefs, before 411 

and after the quiescent baseline period, we hoped to reproduce and illuminate well-known 412 

psychophysiological phenomenon such as the defensive startle reflex (Graham and Clifton, 413 

1966; Sokolov, 1963).  414 

 This analysis, illustrated in Figure 3, revealed several interesting aspects of 415 

interoceptive active inference. Over 60 simulations there was a clear and robust increase in 416 

heart-rate acceleration, following the presentation of the unexpected or novel threat 417 

stimulus. During subsequent experiences of its own heartbeat and spiders or flowers, this 418 

response habituates, resulting in a gradual heart-rate deceleration from the evoked cardiac 419 

response. This robust modulation of heart-rate was accompanied by a jump from an 420 

expected probability of encountering a spider of about 25% to almost 65% following the 421 

spider presentation. This combined response of both the heartbeat and fear-expectations is 422 

further underscored by the curious oscillation of cardiac states and the expected probability 423 

of observing a spider; note the uptick in expectations of approximately 5% on each systole 424 

event (denoted by the pink dotted line on Figure 3, right panel).  A simple explanation for 425 

this result is that, during presentation of a stream of flowers, we can confidently infer a safe 426 

external environment. This accounts for the relatively low probability of spiders in the 427 

earlier part of the plot. However, during systole, attenuated integration of exteroceptive data 428 
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leads to greater uncertainty. Going from a confident inference in the absence of a spider to a 429 

more uncertain inference necessarily increases the probability of a scary environment 430 

during this cardiac phase. This offers a simple perspective on previous experimental work 431 

suggesting that fear-stimuli are potentiated when presented in synchrony with the heart 432 

(Garfinkel et al., 2014; Garfinkel and Critchley, 2016); namely, that a mechanism underlying 433 

this effect can be found in the link between cardiac active inference and fear expectations. In 434 

short, under generative models of an embodied world – in which sensory sampling depends 435 

upon fast fluctuations in bodily states – there is a necessary dependency of Bayesian belief 436 

updating (i.e., perceptual inference) across all modalities on introception. 437 

 When comparing these effects in the healthy agent to our sample of ‘lesion patients’, 438 

a few sensible but counter-intuitive consequences ensue. In the physiological domain, when 439 

presented with the unexpected arousal stimulus, the lesioned agent shows a blunted cardiac 440 

acceleration response, which remains diminished throughout the simulated trials. This 441 

blunting effect is mirrored for fear expectations in the immediate post-stimulus (e.g., trials 442 

15-20) period, further underlining the close link between visceral and exteroceptive 443 

inference in our agent. The reason for this blunting likely results from the differing 444 

exteroceptive precision anticipated during different cardiac phases (see also Fig. 4B). A 445 

visual impression – consistent with a spider – is highly informative during diastole but must 446 

be treated with suspicion during the sensory-attenuated systolic phase. This implies a 447 

blunting of belief-updating in response to a spider, when we are unsure of cardiac phase 448 

(compared to when we are confident of a diastolic phase).  A further interesting result is 449 

found when examining the controlled baseline period (trials 0-15); baseline fear 450 

expectations in the interoceptive lesion group are actually slightly enhanced by about 5-10% 451 

posterior probability. This lends an interesting embodied twist to the literature on ‘circular 452 

inference’, psychosis and hallucinations (Denève and Jardri, 2016; Powers et al., 2017),  453 

suggesting that the disruption of interoceptive precision may be one mechanism underlying 454 

hallucinations, particularly those that are affective and/or somatic in nature.  455 
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Simulating the Influence of Sensory Precision on Metacognition 456 

We next performed a series of simulations to tease apart how interoceptive and 457 

exteroceptive precision (and their disruption) influence ‘metacognition’; that is the 458 

uncertainty in our agent’s beliefs. To do so, we first measured the Shannon entropy for 459 

interoceptive and exteroceptive inferences (summed across both factors of posterior beliefs) 460 

under a full range of precision settings from 0.5 - 1. To highlight the oscillatory nature of 461 

cardiac effects, we then calculated the same entropy measure separately for each cardiac 462 

state (early diastole, late diastole, systole). Finally, we compared these ‘healthy’ simulations 463 

to extreme degradations in sensory precision (exteroceptive and interoceptive ‘lesions’), to 464 

better understand how disruptions of each modality are integrated in metacognition.  465 

 This analysis revealed first of all that, in our simplified model, metacognitive 466 

uncertainty is largely influenced by the unimodal precision of each domain. For both 467 

exteroceptive and interoceptive inferences, the slope of the uncertainty gradient (Fig. 4A & 468 

C) was predominantly characterized by degradations in the precision of the corresponding 469 

modality. However, this modularity is not complete; exteroceptive uncertainty is at its lowest 470 

when interoceptive and exteroceptive precision are maximal. Similarly, although 471 

interoceptive uncertainty is largely driven by interoceptive precision, small interactions 472 

with exteroceptive precision can be observed in the plotted uncertainty gradient. One 473 

interesting isomorphism, however, is that overall interoceptive uncertainty is less affected 474 

by exteroceptive precision. This is likely due to that fact that in our model, the cardiac cycle 475 

directly modulates exteroceptive precision, whereas exteroceptive states only indirectly 476 

modulate interoceptive responses, via policy selection.   477 

This intricate relationship of the cardiac cycle and metacognitive uncertainty is 478 

further teased apart in Figure 4B, which shows clearly that exteroceptive confidence 479 

oscillates with each phase of the heartbeat, being highest at diastole. This is an unsurprising 480 

feature of our model: on each diastole, phase exteroceptive sensory precision drops 481 

effectively to null. Interestingly however, average exteroceptive uncertainty is modulated in 482 

a fairly linear fashion by visceral and exteroceptive lesions: average entropy is increased 483 

modestly by lesioning interoceptive precision and more robustly by exteroceptive lesions. 484 

Whereas interoceptive lesions caused the greatest increase in interoceptive entropy, 485 
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exteroceptive lesions seem to exert a specific effect of unbinding entropy from the individual 486 

cardiac state, again mirroring the isomorphic representation of these states in uncertainty. 487 

This is a sensible finding, as the manipulation leads to relatively high uncertainty in the 488 

mapping between hidden states and outcomes during all cardiac phases, not just during the 489 

previously attenuated systolic phase. This sort of chronic hypo-arousal – as a consequence 490 

of a failure to contextually modulate precision – is not unlike that which may underwrite the 491 

negative symptoms of schizophrenia or depression.  492 

Synthetic Heart-Rate Variability (HRV) and Embodied Computational Phenotyping  493 

In our final set of simulations, we illustrated how the interoceptive inference approach 494 

developed here offers a new means for analyzing and interpreting fluctuations in observed 495 

physiological data. Our goal here was to demonstrate the potential for generative modelling 496 

and ‘embodied computational phenotyping’; i.e., the identification of specific parameters of 497 

brain-body interaction underlying maladaptive interoceptive inference in psychiatric and 498 

other health-harming disorders; e.g., (Peters et al., 2017).  499 

To this end, we generated synthetic cardiac data by convolving our train of cardiac 500 

events with an ECG response waveform. Following standard methods, we then calculated the 501 

normalized beat-to-beat intervals and performed a time-frequency analysis of the resulting 502 

RR-interval data. By repeating this analysis for a ‘healthy’ agent under normative values, an 503 

agent with interoceptive ‘hyper-precision’ (i.e., β = 1), and an agent with an overly precise 504 

prior beliefs about its own arousal, we illustrate how individual HRV fingerprints are linked 505 

to unique patterns of interoceptive active inference.  506 

 This analysis showed that, despite the exceedingly simple (biomechanically speaking) 507 

conditions of our model, sensible and interesting patterns of heart-rate variability emerge 508 

for different combinations of interoceptive sensory and prior precision. Specifically, we 509 

found that whereas the healthy agent exhibited a relatively relaxed profile in terms of heart 510 

rate and sympathovagal balance (BMP = 63.5, peak frequency = 0.14 Hz) – predominated by 511 

low versus high frequency oscillations (aLF/aHF = 0.52) – an agent with hyper-precise 512 

visceral sensations exhibited a mild downshift in heart-rate coupled (BPM= 59.5) with an 513 

overall increase in high-frequency oscillations (aLF/aHF = 0.51, peak frequency = 0.25). In 514 
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contrast, the agent with hyper-precise arousal priors showed a strong bimodal modulation 515 

of both ultra-low and ultra-high frequencies HRV (peak frequencies = 0.04 Hz & 0.34 Hz, 516 

respectively), coupled with a strong increase in heart-rate (BPM = 84) and high versus low-517 

frequency outflow (aLF/aHF = 0.47). These results speak to the unique role of different 518 

active inference parameters in producing highly idiosyncratic patterns of HRV variability. In 519 

the future, our model may be enhanced to subserve computational phenotyping of individual 520 

differences and/or patient subgroups categorized by the balance of visceral precision and 521 

arousal policy priors from raw HRV data alone.  522 

 523 

 524 

Discussion and Conclusions 525 

 526 

In the present work, we have introduced the first formal model of interoceptive inference as 527 

applied to emotion, exteroceptive perception, and metacognitive uncertainty. Through a 528 

variety of simulations, we demonstrated that this model can reproduce a variety of 529 

psychological and physiological phenomena, each of which speak to a unique domain of the 530 

burgeoning interoceptive inference literature (Allen and Friston, 2018; Feldman and Friston, 531 

2010; Seth, 2013), and the application of interoceptive inference to computational 532 

psychiatry (Owens et al., 2018; Petzschner et al., 2017). This formulation of interoceptive 533 

inference reproduces some of the finer details of physiological responses to arousing stimuli 534 

that, crucially, are emergent properties under the simple assumption that people use 535 

generative models to infer the state of their lived world.  536 

The form of the generative model and (neurobiological implausible) belief updating 537 

used in this paper are generic: exactly the same scheme has been used to simulate a whole 538 

range of processes, from neuroeconomic games to scene construction and attentional neglect 539 

(Friston et al., 2017a; Parr and Friston, 2018). The key aspect of the generative model 540 

introduced here is that the quality (i.e., precision) of sensory information depends upon 541 

fluctuations in (inferred) autonomic states. This simple fact underwrites all of the 542 

phenomenology illustrated above; both in terms of simulated physiology and accompanying 543 

belief updates. The explicit inclusion of interoception into active inference licenses us to talk 544 

about ‘fear’ and in the sense that affective inference is thought to emerge under models that 545 
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generate multimodal predictions that encompass the interoceptive domain. Furthermore, 546 

casting everything as inference enables a metacognitive stance on belief updating, in the 547 

sense that one can quantify uncertainty invested in beliefs about states of the body, states of 548 

the world and, indeed, states of (autonomic) action. 549 

In particular, we show that by simulating periodic attenuation of exteroceptive 550 

sensory inputs by the cardiac cycle, affective expectations become intrinsically linked to 551 

afferent interoceptive signals through a startle reflex-like phenomenon. This linkage not only 552 

induces oscillatory synchrony between the heartbeat and exteroceptive behavior, but also 553 

propagates to metacognitive uncertainty (i.e., the entropy of posterior beliefs). This latter 554 

finding speaks to numerous reports of metacognitive bias (e.g.,  confidence-accuracy 555 

dissociation) by illustrating how the precision of interoceptive states can directly influence 556 

exteroceptive uncertainty (Allen et al., 2016b; Boldt et al., 2017; Spence et al., 2016). By 557 

simulating synthetic heart-rate variability (HRV) responses, we further illustrated how 558 

idiosyncratic patterns of aberrant interoceptive precision-weighting can be recovered 559 

through generative modelling of physiological responses, opening the door to computational 560 

phenotyping of disordered brain-body interaction in the spirit of (Schwartenbeck P and K 561 

Friston 2016). In what follows, we outline some of what we view as the most promising 562 

future directions for this work, sketch a proposed neuroanatomy underlying our model, and 563 

point out a few limitations for consideration. 564 

By focusing on the periodic nature of the cardiac cycle, and concomitant influences 565 

on exteroceptive perception, our goal was to provide an initial proof-of-principle, illustrating 566 

how visceral and exteroceptive signals may be combined under active inference. Our aim 567 

was not to suggest that our model provides the ultimate view of interoceptive inference; 568 

indeed, we view the present work as a starting point that can be taken forward in a variety 569 

of research directions, some of which are outline below.  570 

In this paper, we formalized the hypothesis that frequently reported effects of cardiac 571 

timing on perception could arise as a function of periodic sensory attenuation – but the 572 

reader should feel encouraged to test their own hypotheses within the openly available MDP 573 

framework. Our intention here was also not to prioritize cardiac-brain interaction over e.g., 574 

gastric or respiratory cycles, but instead to provide a toy example, to show how these 575 

systems may be subjected to formal analyses. This was motivated by the large predominance 576 
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of research on cardiac-brain interaction; however, we do anticipate that the periodic 577 

attenuation of sensory precision by visceral signals is likely to provide a general explanation 578 

of brain-body interaction. 579 

Neurophysiologically, the principal means by which cardiac signals influence the 580 

central nervous system is through the afferent cardiac baroreceptors. These pressure-581 

sensitive neurons, located primarily in the aorta and carotid artery, are triggered by the 582 

systolic pressure wave generated when the heart contracts. Far from being restricted to 583 

homeostatic function only, it was first reported (nearly a century ago) that afferent 584 

baroreceptor outputs induce a general inhibitory effect on cortical processing (Bonvallet et 585 

al., 1954; Bonvallet and Bloch, 1961; Koch, 1932). These findings were later extended by 586 

Lacey and Lacey (1978) who proposed the “neurovisceral afferent integration hypothesis”, 587 

positing that cardiac acceleration and deceleration serve to respectively disengage or engage 588 

with an exteroceptive stimulus via cortical inhibition.  589 

In parallel, the soviet psychologist Evgeny Sokolov proposed that novelty (but not 590 

threat) evoked heart-rate deceleration was a core component of the ‘orienting reflex’ 591 

(Sokolov, 1963). By reducing overall cardiac output, this reflex served to limit the 592 

contribution of cardiac signals to cortical noise boosting overall signal-to-noise ratio3. In 593 

contrast, Sokolov theorized that the defensive startle reflex – in which an extremely strong 594 

(e.g., the loud bang of a starting gun) or unexpectedly aversive (e.g., the sudden presentation 595 

of a spider) stimulus evokes cardiac acceleration – facilitated the disengagement of cortical 596 

processing, to initiate fight-or-flight responses. These theories in turn sparked a wave of 597 

empirical studies attempting to link cardio-acceleration and deceleration responses to 598 

increased or decreased exteroceptive sensitivity, which continues to this day (Azevedo et al., 599 

2017; Cohen et al., 1980; Delfini and Campos, 1972; Edwards et al., 2009; Elliott, 1972; 600 

Garfinkel et al., 2014; Ghione, 1996; Park et al., 2014; Salomon et al., 2016; Sandman et al., 601 

1977; Saxon, 1970; Velden and Juris, 1975).  602 

                                                        
3 Sokolov (1963) described the orienting reflex as an ‘embodied’ mechanism for boosting to signal-to-noise and 
thus enhancing processing of the oddball stimulus. The reflex consists primarily of the rapid deployment of 
saccades to the oddball stimulus, freezing of the muscles of the head and neck so as to orient the visual organs 
towards the stimulus, and an immediate cardiac deceleration. In light of their inhibitory influence, the cardiac 
deceleration was thought to primarily reduce cortical noise; when coupled with the other bodily components 
of the response it was thought that effective overall signal would be maximized. 
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While these findings highlight the intricate relationship between cardiac timing and 603 

exteroceptive psychophysics, so far a consistent pattern of findings (e.g.,  sensory signal 604 

enhancement and/or inhibition) has failed to emerge (see Elliott, 1972 for one critique). A 605 

cursory review of this literature reveals evidence for both exteroceptive enhancement and 606 

suppression, depending upon the specific nature of the exteroceptive stimuli (i.e., whether 607 

they are inherently aversive, sociocultural, or neutral in nature), the context of the arousal 608 

(including specific stimulus and response timing), and other psychophysiological 609 

moderators; such as age, gender, and overall physical fitness. Accordingly, more recent 610 

proposals have focused on more modality-specific exteroceptive enhancement by cardiac 611 

signals. For example, that cardiac-exteroceptive effects specifically potentiate fear or threat 612 

signals (Garfinkel and Critchley, 2016) or the generation of a subjective first-person 613 

viewpoint (Park and Tallon-Baudry, 2014).  614 

We offer a unique synthesis of these views, expressed in terms of interoceptive 615 

inference. In our model, the cyclic influence of the heart on exteroception is exerted primarily 616 

through the attenuation of sensory precision on each systolic contraction, which in turns 617 

influences the selected (multimodal) arousal policy as determined by the agent’s 618 

preferences. The coupling of sensory attenuation to the cardiac cycle endorses the notion 619 

that baroreceptors exert an inhibitory influence on the brain. Beyond this direct effect, our 620 

model can also be understood in light of the well-known relationship between intrinsic noise 621 

fluctuations in the brain and cardio-respiratory cycles (Birn, 2012; Karavaev et al., 2018). 622 

Physiological oscillations exert non-neuronal influences on spontaneous brain activity via a 623 

variety of more or less direct causal influences; for example, at each heart beat visual input 624 

to the retina is briefly attenuated by a pulsatile blood inflow. Similarly, with each cardio-625 

respiratory cycle, fluctuations in cerebral pulsatile motion and blood pressure induce 626 

neurons to spontaneously fire, shaping the ‘infraslow’ brain dynamics (Golanov et al., 1994; 627 

Karavaev et al., 2018; Zanatta et al., 2013) that influence the overall global dynamics of 628 

neural excitability and connectivity (Fox et al., 2007, 2006; Fox and Raichle, 2007). Our 629 

suggestion is that, insofar as the brain must model its own dynamic noise trajectories as a 630 

function of active self-inference, non-neuronal sources of variability such as inscribed by 631 

visceral rhythms must be incorporated within the brain’s generative model of its own 632 

percepts. Interoceptive fluctuations are thus an important influence over the precision of 633 
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exteroceptive sensory channels, and interoception is itself the means by which the brain 634 

infers and controls its own pathway through these precision trajectories. The modelling 635 

introduced here can thus be expanded beyond the cardiac domain to the more general 636 

problem of modelling how spontaneous fluctuations in neurovisceral cycles (including 637 

heart-rate variability) influence information processing and behavior.   638 

What then, explains the lack of consistent results within the cardiac timing literature? 639 

In contrast to the binary on/off hypotheses proposed by Lacey or Sokolov, our simulations 640 

highlight the context-sensitive manner by which ascending visceral signals modulate the 641 

precision of both interoceptive and exteroceptive inferences. For example, our simulation of 642 

the startle response (illustrated in Fig. 3) clearly indicates that the functional impact of 643 

cardio-ballistic responses is coupled to the agent’s baseline prior expectations, as well as the 644 

overall precision of active inference and policy selection. In this sense, whether a specific 645 

cardiac response is likely to potentiate or inhibit a specific domain (e.g., fear) depends upon 646 

the specific weighting of arousal policy priors, the precision of incoming exteroceptive and 647 

interoceptive sensations, and the linkages thereof as determined by the task itself. In other 648 

words, the specific balance of prior beliefs and sensory information, in a given cognitive or 649 

affective domain, must be addressed before one can predict the exact directionality of an 650 

interoceptive effect on perception, or vice versa. Here, we modelled the generation of arousal 651 

policies as a function of hyper-parameters governing the preferred policy. In the future this 652 

can be unpacked further by examining the divergence between prior and posterior beliefs 653 

about these policies (e.g., through inferred epistemic value). Through Landauer’s principle, 654 

this divergence may be equated with the associated metabolic costs of computation and the 655 

conceptual notion of interoceptive self-modelling (Kiverstein, 2018; Limanowski and 656 

Blankenburg, 2013; Seth and Tsakiris, 2018).  657 

 658 

The computational neuroanatomy of interoceptive inference 659 

 Having addressed the construct validity of our model, we now speculate as to some 660 

likely neuronal substrates of the message passing implied by variational inference. 661 

Interoceptive inference can be broken down into four core functional domains: basic 662 
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sensory-motor control, conscious interoceptive (perceptual) awareness, metacognitive 663 

monitoring, and hedonic (intrinsic) value. In our model, we focused primarily on the simplest 664 

possible implementation of interoceptive inference, corresponding to the sensory-motor 665 

domain (i.e., ascending and descending cardiac pathways) and their low-level interaction 666 

with exteroceptive inference, via neuromodulatory gain control. Future work will benefit 667 

from expanding upon our representation of uncertainty to include the computation of 668 

epistemic and/or intrinsic value as proxies for these higher-order interoceptive systems 669 

(Friston et al., 2017b; Parr and Friston, 2017). 670 

 671 

 672 

Figure 6, computational neuroanatomy of interoception. The schematic above shows the form of 673 

the neuronal message passing implied by active inference for the generative model depicted in Figure 2. We 674 

have related this to the anatomical networks that could implement these inferences. The sensory observations 675 

in our simulations are visual and interoceptive (cardiac). These sensations are carried by cranial nerves II and 676 

IX respectively. Cranial nerve II targets the superior colliculus in the midbrain. This structure sends short 677 

latency visual data to the amygdala, which is well placed to make inferences about emotionally salient stimuli. 678 
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The amygdala additionally receives visual data from the ventral visual stream in the temporal lobe. Cranial 679 

nerve IX carries information from the carotid sinus baroreceptors to the nucleus tractus solitarus in the 680 

brainstem. This nucleus communicates with the posterior insula (via thalamic and PAG relays); the anterior 681 

cingulate monitors and controls the precision of this ascending visceral information via neuromodulation, 682 

possibly via feedback through noradrenergic pathways (not shown). The posterior insula and amygdala 683 

interact with one another but also project to the anterior insula. This targets the nucleus ambiguus (via 684 

brainstem relays such as the periaqueductal gray), which gives rise to the vagus (X) nerve. The vagus nerve 685 

targets neurons in the cardiac plexus that project to both the sinoatrial node and the atrioventricular node of 686 

the heart, slowing its rhythm. The nucleus tractus solitarus additionally participates in a reflex loop implicating 687 

the sympathetic control of the cardiac cycle, but this is omitted for simplicity. The functional anatomy suggested 688 

here implies the anterior insula might play a similar computational role in autonomic policy selection to the 689 

basal ganglia in selection of policies involving the skeletal muscles (Friston et al., 2018). Note that inscribed 690 

directed influences (blue arrows), are not assumed to be monosynaptic – for simplicity, many intermediary 691 

relay nodes have been omitted.  692 

 693 

Accordingly, in our sketch of the putative neuroanatomy underlying cardiac active 694 

inference (Fig. 6), we focus primarily on the neuronal substrates that inscribe low-level 695 

viscerosensory and visceromotor control, as well as some hierarchically superior regions 696 

related to emotional salience and interoceptive awareness. For simplicity, our model depicts 697 

only the minimal neuronal message passing scheme implied by our generative model; as 698 

such, we have omitted many of the intermediary relay nodes; e.g., in the thalamus and ventral 699 

visual stream. Afferent baroreceptor signals are transmitted along the ascending vagus to 700 

the rostrum of the nucleus tractus solitarus (NTS, Mifflin and Felder, 1990; Miura and Reis, 701 

1972). From here, ascending viscerosensory signal are projected via brainstem and midbrain 702 

nuclei to the thalamus, somatosensory cortex, and posterior insula (Cechetto and Saper, 703 

1987; Craig, 2002); ascending cardio-sensory outcomes are thus encoded in the NTS and 704 

then passed to the posterior insular cortex (PIC) as inferred interoceptive states. The PIC has 705 

a well-known role as primary viscerosensory cortex; electrical stimulation of this area elicits 706 

phantom visceral sensations (e.g., pain, heart-rate acceleration) (Chouchou et al., 2019; 707 

Oppenheimer et al., 1992) and bolus isoproterenol infusions increase the intensity of 708 

cardiorespiratory sensations and concomitant PIC activations (Hassanpour et al., 2016; 709 

Khalsa et al., 2009). In parallel, visual sensory outcomes are passed via the second cranial 710 

nerve to the superior colliculus, where they inform exteroceptive inference in the amygdala, 711 
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which is well-situated to process salient emotional stimuli (Anderson and Phelps, 2001; 712 

Liddell et al., 2005). These interoceptive and exteroceptive expectations then converge in the 713 

anterior insular cortex (AIC), where they inform the selection of the appropriate autonomic 714 

policy. Finally, the selected policy is passed down the hierarchy via descending pathways 715 

(likely carried by von Economo neurons), to eventually engage the rostral nucleus ambiguus 716 

and descending vagus, decelerating the heart-rate when the relaxed policy is selected. 717 

Collectively, the scheme represents a multimodal reflex arc interlinking exteroceptive and 718 

interoceptive domains to specific patterns of cardio-ballistic responses.  719 

Within this scheme, we suggest that the rostral anterior cingulate (ACC) controls the 720 

precision of ascending visceral outcomes and inferred interoceptive states via 721 

neuromodulatory gain control (Fardo et al., 2017; Feldman and Friston, 2010). Further, 722 

interoceptive and exteroceptive state precisions (in our scheme) interact indirectly through 723 

global neuromodulatory influences, possibly through regulation of noradrenaline by the ACC 724 

(via descending influence on the locus coeruleus). Neurobiologically and functionally 725 

speaking, the AIC and ACC share similar profiles; both are densely populated with Von 726 

Economo neurons (VENs), which are well-suited for the long-range modulation of neural 727 

activity across the cortex (Allman et al., 2011), and also contain diverse populations of 728 

noradrenergic, dopaminergic, and opioidergic neurons. Both regions further share an 729 

integrative connectivity structure, with projections to both lower-level visceral-motor 730 

brainstem nuclei and higher-order regions implicated in decision-making, metacognition, 731 

and self-awareness, such as the ventromedial and dorsomedial prefrontal cortices (Allen et 732 

al., 2017, 2016a; Fleming and Dolan, 2012; Menon and Uddin, 2010; Ullsperger et al., 2010). 733 

However, the AIC is more densely interconnected with the PIC whereas the ACC is more 734 

closely related to uncertainty and decision-making. On this basis, we propose that whereas 735 

the AIC integrates the visceral and exteroceptive states required for the regulation of arousal 736 

policies, the ACC is likely to regulate the gain or precision of these interactions4.  737 

                                                        
4 It is worth noting that this model may explain the widespread, seemingly unspecific activation profiles of 
these areas (Chang et al., 2013; Yarkoni et al., 2011), as the generative model specified here suggests both form 
part of an integrated hierarchical circuit by which interoceptive and exteroceptive states interact: e.g., either 
through the regulation of arousal policies or through the modulation of ascending viscerosensory precision. 
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What about metacognitive or reward-related interoceptive processes? Although here 738 

we do not model these higher-order functions, the model can be expanded to include the 739 

explicit representation of policy uncertainty and epistemic value as the mechanisms 740 

underlying metacognitive self-inference; i.e., the integrative self-model that combines 741 

exteroceptive and interoceptive predictions into a conscious schema (Allen and Tsakiris, 742 

2019). In this case, we would expect that the VMPFC and DLPFC are likely to be engaged in 743 

inferences about variables (e.g., those derived from expected free energy such as epistemic 744 

and intrinsic value) that contextualize the inferences performed by the AIC and ACC over 745 

longer timescales (Friston et al., 2015, 2017a).  746 

 747 

Limitations and Future Directions 748 

The model and simulations presented here represent a minimal proof-of-principle 749 

demonstrating how cyclic interactions of interoceptive and exteroceptive perception arise 750 

directly from the principles of active inference. Here, our primary goal was to move the 751 

literature beyond purely conceptual analyses of ‘interoceptive inference’, to provide a formal 752 

model sub-serving direct hypothesis testing. As such, we focus primarily on reproducing 753 

commonly reported phenomena, rather than empirical cross-validation or biological 754 

plausibility. While the model presented here does a reasonably good job of approximating 755 

the cardiac cycle, it should be clear that much work remains to be done if the model is to be 756 

used as a full generative model; e.g., of heart-brain interactions and/or physiological data 757 

such as HRV. We therefore anticipate a variety of fruitful applications. For example, the 758 

present MDP scheme could be expanded to include biologically realistic cardiac parameters, 759 

or to include other visceral modalities such as gastric or respiratory fluctuations. Similarly, 760 

the exteroceptive states modelled here could be adapted to a variety of experimental tasks 761 

to capture embodied influences on, for example, active spatial navigation (Kaplan and 762 

Friston, 2018; Lockmann et al., 2018; Lockmann and Tort, 2018), active reward learning 763 

(FitzGerald et al., 2015; Marshall et al., 2019), interaction between the cardiac cycle and 764 

ballistic saccades (Galvez-Pol et al., 2018; Mirza et al., 2016; Ohl et al., 2016), or 765 

metacognitive self-inference (Allen et al., 2016b; Friston et al., 2017b; Hauser et al., 2017a). 766 
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These and other future directions will hopefully guide a newly embodied approach to 767 

computational psychiatry, enabling the detailed phenotyping of clinical populations in terms 768 

of aberrant interoceptive inference.  769 

 770 

 771 
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