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Abstract

PCR amplification plays a central role in the measurement of mixed microbial
communities via high-throughput sequencing. Yet PCR is also known to be a common
source of bias in microbiome data. Here we present a paired modeling and experimental
approach to characterize and mitigate PCR bias in microbiome studies. We use
experimental data from mock bacterial communities to validate our approach and
human gut microbiota samples to characterize PCR bias under real-world conditions.
Our results suggest that PCR can bias estimates of microbial relative abundances by a
factor of 2-4 but that this bias can be mitigated using simple Bayesian multinomial
logistic-normal linear models.

Author summary

High-throughput sequencing is often used to profile host-associated microbial
communities. Many processing steps are required to transform a community of bacteria
into a pool of DNA suitable for sequencing. One important step is amplification where,
to create enough DNA for sequencing, DNA from many different bacteria are repeatedly
copied using a technique called Polymerase Chain Reaction (PCR). However, PCR is
known to introduce bias as DNA from some bacteria are more efficiently copied than
others. Here we introduce an experimental procedure that allows this bias to be
measured and computational techniques that allow this bias to be mitigated in
sequencing data.

Introduction 1

Polymerase Chain Reaction (PCR) amplification is an essential procedure used when 2

profiling microbial communities by high-throughput sequencing. Yet, PCR is also 3
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known to be a common source of bias in high-throughput sequencing studies [1–3]. In 4

the study of microbial communities by 16S rRNA, PCR bias can be substantial. Mock 5

communities have been used to demonstrate that over-amplification of specific 16S 6

rRNA templates occurs reproducibly, often with preferential amplification of over 3.5 7

fold [4]. Even single nucleotide mismatches between primer and template have been 8

shown to lead to preferential amplification of up to 10 fold [5]. 9

Relatively little progress though has been made in characterizing PCR bias in such a 10

way that the bias can be corrected. Dual-indexing amplification with high-fidelity 11

polymerases has been shown to lead to decreased PCR bias in microbiome studies [6]. 12

Such experimental modifications can still have high levels of error [6]. Recently, a 13

computational method called alpine was proposed as a means of inferring and correcting 14

PCR bias in RNA-seq studies [3]. However, alpine requires the presence of reference 15

genomes against which transcripts can be aligned, something that is often not present in 16

the analysis of metagenomic or amplicon based microbiome studies which characterize 17

multiple taxa simultaneously. 18

Here we introduce a calibration curve for PCR which allows bias to be characterized 19

directly from host associated microbial communities without the need to create mock 20

standards. We pair with this calibration curve with Bayesian multinomial 21

logistic-normal linear (pibble) models which learn and mitigate PCR bias while 22

accounting for uncertainty due to multivariate counting and random technical 23

variation [7, 8]. We validate our approach using both mock and human gut microbial 24

communities. Our results support the hypotheses that substantial bias is introduced 25

when using DNA amplification to survey microbial communities, as well as demonstrate 26

how a simple modeling method can help mitigate this bias. 27

Results 28

Measuring and Modeling PCR Bias 29

To develop a model of PCR bias we denote by aj the absolute abundance of a transcript 30

j ∈ {1, . . . , D} in a pool of DNA prior to PCR amplification. We also denote by bj the 31

efficiency with which transcript j is amplified by PCR, e.g., bj = 2 implies that 32

transcript j undergoes perfect doubling at each PCR cycle. Finally, we denote by wij 33

the absolute abundance of a transcript j in a pool of DNA after xi cycles of PCR. With 34

this notation we can write the following multiplicative model for PCR bias: 35

wij = ajb
xi
j . (1)

Equation (1) can be written in log scale using vector notation as the following log-linear 36

model: 37

log2(wi) = log2(a) + log2(b)xi, (2)

where log2(wi) refers to the element-wise logarithm of the vector wi. Equation (2) states 38

that bias (deviation from doubling at each cycle) would present as a non-zero slope of a 39

regression line relating microbial abundance to PCR cycle number (log2(b) 6= 0). 40

This model suggests that, given measurements of transcript abundance (wi) at 41

different PCR cycle numbers (xi), we could infer the unbiased abundance of each 42

transcript (a) and the efficiency or bias with which each transcript is amplified (b). We 43

therefore propose creating calibration curves that utilize multiple aliquots of DNA 44

extracted from the same microbial community, which are then amplified with varying 45

numbers of PCR cycles and sequenced using high-throughput multiplex sequencing 46

(HTS). 47
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Mock Community Analysis 48

To evaluate the utility of our approach to characterizing and removing PCR bias, we 49

designed a mock community where DNA from fourteen bacterial isolates was pooled in 50

approximately known amounts. To capture PCR bias, the mock community was split 51

into aliquots and each aliquot underwent a predetermined number of PCR cycles 52

varying from 3 to 35 cycles. To avoid systematic bias from the ordering in which the 53

amplifications were done, the order of PCRs were randomized. The resulting amplified 54

DNA was pooled and sequenced. We found that we could only reliably map five 16S 55

rRNA sequences in our HTS pipeline to mock community members; reads from isolates 56

that could not be uniquely mapped were amalgamated into a category called “other”. 57

The resulting table of sequence variants was analyzed using a multinomial 58

logistic-normal linear (pibble) model (Methods). This model accounts for the 59

composition nature of 16S rRNA HTS data [9, 10] as well as uncertainty due to 60

multivariate counting [8]. We also added to our model a binary covariate denoting 61

whether samples were amplified in the first or second batch of PCR reactions to account 62

for sample processing batch effects. Finally, based on prior reports of the accuracy of 63

qPCR [11], we made the assumption that our measurement of the true microbial 64

composition of this mock community was accurate to within one order of magnitude in 65

log-ratio space. 66

As indicated by Equation (2), a non-zero slope in the relationship between 67

community composition and PCR cycle number would be evidence for PCR bias. Visual 68

inspection confirmed a linear relationship between these variables according to both the 69

posterior marginal (Figure 1) and the posterior predictive distribution (Figure S1) of 70

the fitted pibble model. Moreover, the slope of this relationship indicates that indeed, 71

bias was introduced over 35 cycels of PCR (Figure 1) – relative bias approached 4-8 fold 72

for some sequence variants (Figure S2). 73

Still, by using our pibble model fit to this calibration curve data, we found that we 74

could remove much of the bias introduced by PCR (Figure 1). Our model removed bias 75

in 4 of 6 log-ratios and correctly inferred that one log-ratio had little bias (S. 76

gallolyticus). Only one log-ratio, the coordinate corresponding to C. innocuum, 77

remained uncorrected by our model. However, we note that the overall bias of C. 78

innocuum was slight and that our model did not worsen the bias. Thus, in 6 out of 6 79

log-ratios, our model either left the bias unchanged or mitigated it. 80

Human Gut Microbial Community Analysis 81

To characterize and correct PCR bias in human gut microbial communities we repeated 82

the experimental approach used for the mock community but applied to four different 83

communities derived from human hosts. Each community was cultured ex vivo for 1-3 84

days using an independent artificial gut systems as previously described [8]. The PCR 85

experiments for these real communities were performed on multiple PCR machines due 86

to the large number of samples involved. After initial preprocessing, the resulting data 87

represented 68 bacterial genera from 6 bacterial phyla. To fit this data, we modeled 88

each of the four individuals with random intercepts, a fixed effect for cycle number, and 89

random effects for each PCR machine (Methods). 90

As in our analysis of the mock community, we find that the calibration data from 91

human gut microbial communities is well fit by a pibble model (Figure S3 and File S1). 92

This further supports our conceptual model for PCR bias in human gut microbial 93

community data. To succinctly visualize the scale of PCR bias present when amplifying 94

human gut microbial communities, we investigated the total bias introduced into the 95

data after 35 cycles of PCR (Figure 2). As in our evaluation of the mock community, we 96

find that 35 cycles of PCR induces a substantial bias in estimated relative abundances 97
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Fig 1. Combining calibration experiments with multinomial logistic-normal linear (pibble)
models allows PCR bias to be mitigated. Mean (blue line) and 95% credible regions (grey ribbon)
from pibble model (ΛX; Methods) applied to mock community calibration data. To illustrate the impact
of PCR bias the compositional estimates from cycle 35 were projected onto cycle 0 (cycle 0 is the
unamplified community; black bar). The inferred linear relationship between PCR cycle number and
composition is shown after adjusting for PCR batch. This adjustment leads the linear fit to appear
non-linear even though the overall model is linear. A pseudo-count of 0.65 was added to observed count
data prior to log-ratio transformation to enable the data to be visualized along with the posterior
estimates. This pseudo-count was included for visualization purposes only and was not required for
fitting the pibble model. The true mock community composition is shown with measurement error as a
dark red bar at PCR cycle 0.

with approximately 15% of taxa being subject to over a factor of 2 bias (Figure S4). 98

These results are in line with prior reports suggesting an average deviation between 2-3 99

fold [6]. Our results suggest that the genera Holdemania, Coprococcus, and 100

Ruminococcus are consistently the most under-represented taxa due to PCR bias while 101

Parasutterella, Bifidobacterium, and Bacteroides are consistently the most 102

over-represented. 103

Investigating modelled random effects associated with PCR machine revealed that 104

PCR reactions run on one machine were substantially different than those run on the 105

other machines (Figure S5). Reviewing the settings on each PCR machine, it was found 106

that the outlying machine had its temperature mis-set during the annealing phase of 107

each PCR cycle (Methods). Our bias estimates therefore excluded samples from this 108

PCR machine. More broadly, this finding demonstrates how creating PCR calibration 109

curves can be used to detect and correct for sample processing errors in microbiota 110

surveys. 111

Last, we hypothesized that PCR bias could be predicted based on either sequence 112

similarity (using the Levenshtein distance) or GC content of 16S rRNA amplicons. 113

While the primer binding sequence has been associated with PCR bias [4, 12], this 114

sequence is often not available from standard bioinformatics pipelines whereas the 16S 115

rRNA amplicon sequence is. Therefore, if such prediction was possible, it could provide 116
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Fig 2. Evidence that PCR induces substantial bias in human gut microbial communities.
To visualize the scale of PCR bias in real microbial communities we calculated bias induced after 35
cycles of PCR as the log-ratio of the taxon proportion at cycle 35 versus inferred taxon proportions at
cycle 0 (unamplified). The mean and 95% credible regions for this bias is depicted for each taxon. Those
taxa with 95% credible regions not overlapping zero are shown in black. This absolute value of this bias
on the proportional scale is presented in Figure S4. A full set of posterior fits similar to those shown in
Figure 1 is given in File S1.

a means of mitigating PCR bias for taxa not included in an initial calibration 117

experiment with minimal additional effort. To investigate this hypothesis we used both 118

linear and non-linear models to predict bias based on these metrics (Methods). Both 119

sequence similarity and GC content of inferred amplicons proved to be poor predictors 120

of PCR bias (see Methods for further details). This failure of prediction suggests that 121

PCR bias is more complicated than GC content or sequence similarity of sequenced 122

amplicons and may require access to the primer binding sequence for prediction. 123

Discussion 124

Here we have presented an approach to characterizing and correcting PCR bias in 125

microbiome studies based on a simple calibration experiment and multinomial 126

logistic-normal linear (pibble) models. Using both mock and human gut microbial 127

communities we demonstrated that sequencing data were well-fit by log-linear models, 128

which lends credence to our conceptual model of PCR bias as a multiplicative process. 129

Moreover, our model suggests that PCR can bias relative abundance estimates by a 130

factor of 2-8. Still, using mock communities we demonstrated that our approach can 131

measure and mitigate PCR bias. Although we used these mock communities to validate 132

our approach, our approach does not require that mock communities be used to 133

measure and mitigate bias in microbiota survey data. We find this appealing as many 134

microbial taxa that may be of interest are difficult to isolate and culture without 135

specialized experimental techniques [13]. 136
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While our mock community results demonstrated we can mitigate PCR bias it also 137

suggested that our current methods may not completely remove this bias. In particular 138

there were two log-ratios, the log-ratio coordinates for C. innocuum and H. hathewayi 139

that may have be under-corrected. There are two potential explanations for this. First, 140

other sources of bias and random variation which we have not accounted for may be 141

contributing to the observed data [14]. For example, bias present in DNA sequencing, 142

which also relies on amplification [15], could affect measurements but would not have 143

been captured by our calibration experiments. Second, our conceptual model of PCR 144

bias as a multiplicative process may fail to account for some subtleties of this error. For 145

example, it has been demonstrated that template annealing of high abundance 146

sequences in the later stages of amplification could inhibit application [1, 16]. We would 147

expect such abundance dependent effects to appear non-linear in log-ratio space. Future 148

studies investigating other sources of technical bias and non-log-linear aspects of PCR 149

bias would likely provide avenues for more completely removing PCR bias. 150

Even without further refinement, we believe that this work provides a simple 151

experimental and computational approach for mitigating PCR bias in real data without 152

the need for mock community standards. For those wishing to apply this method we 153

recommend that this calibration experiment be performed using a pooled library of 154

samples. Such pooling would ensure that the bias associated with each taxon in a study 155

can be captured by the calibration experiment. Additionally, we recommend the 156

collection of technical replicates within the calibration experiment as demonstrated in 157

both our mock and human gut microbial community experiments. As PCR bias is just 158

one source of technical variation [14], technical replicates may prevent other sources of 159

technical variation from being incorrectly attributed to PCR bias. 160

Materials and methods 161

PCR Bias Model 162

To account for the fact that high throughput-sequencing reflects the relative abundance
of microbial taxa in a community [9, 10], we constrain the model in Equation (2) to the
simplex – the mathematical space describing relative abundances. This constraint can
be imposed by multiplying Equation (2) by a D − 1×D contrast matrix Ψ to so that
Equation (2) is parameterized by log-ratios:

Ψ log(wi) = Ψ log(a) + Ψ log(b)xi (3)

↓
ηi = α+ βxi (4)

where η now represents the relative abundance corresponding to wi but represented as a 163

vector of log-ratios determined by the contrast matrix Ψ. 164

Beyond PCR bias, sequence count data may be subject to other sources of technical
variation including but not limited to variation from counting [17] and batch effects. To
account for these sources of random variation we embed Equation (4) in the following
probabilistic model

Yi ∼ Multinomial(πi) (5)

πi = φ−1(ηi) (6)

ηi ∼ N(ΛXi,Σ) (7)

where Yi denotes the sequence counts from a sample i ∈ {1, . . . , D}, ΛXi denotes a 165

generalization of α+ βxi to a larger class of linear models (e.g., allowing other 166
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covariates such as batch number to be modeled in addition to PCR cycle number), and 167

φ−1(ηi) denotes the inverse transformation of ηi = Ψ log(πi) which is given by 168

πi = C[exp(ΨT ηi)] and where C denotes the closure operation defined as 169

C[m1, . . . ,mD] =

(
m1∑D
i=1mi

, . . . ,
mD∑D
i=1mi

)
.

Equations (5)-(7) denote a multinomial logistic-normal linear model similar to that
proposed by Silverman et al. [8] as part of the MALLARD framework for time-series
analysis of microbiome data. In this work we fit a Bayesian formulation of the above
model using matrix-normal and inverse Wishart priors

Λ ∼ N(Θ,Σ,Γ) (8)

Σ ∼ IW (Ξ, υ) (9)

which is available as the function pibble in the stray R package [18] which uses a 170

marginal Laplace approximation for inference [7]. Together, Equations (5)-(9) form a 171

generative model for PCR bias in sequence count data motivated by the multiplicative 172

model of PCR bias given in Equation (2). 173

Sample Acquisition 174

Fecal samples were collected from four human subjects under a protocol approved by 175

the Duke Health Institutional Review Board (Duke Health IRB Pro00049498). Subjects 176

provided fecal samples at no risk to themselves, had no acute enteric illness, and had 177

not taken antibiotics in the past month. 178

Mock Community Data Collection 179

The mock community included DNA from fourteen isolates; six were obtained from BEI 180

Resources while the rest were isolated and cultured gut bacteria from a human fecal 181

sample. The following reagent was obtained through BEI Resources, NIAID, NIH as 182

part of the Human Microbiome Project: Hungatella hathewayi, Strain WAL-18680, 183

HM-308; Streptococcus gallolyticus subsp. gallolyticus, Strain TX20005, HM-272; 184

Bacteroides fragilis, Strain 3 1 12, HM-20; Lachnospiraceae sp., Strain 7 1 58FAA, 185

HM-153; Veillonella sp., Strain 6 1 27, HM-49. The following reagent was obtained 186

through the NIH Biodefense and Emerging Infections Research Resources Repository, 187

NIAID, NIH: Escherichia coli, Strain B6914-MS1, NR-6. DNA from individual cultures 188

were extracted using Qiagen UltraClean kits. The total 16S rRNA gene was amplified 189

(8-27F, 1512-1429R) and sequenced using Sanger sequencing (EtonBio). Clonal 190

sequences were determined through visual inspection of the resultant chromatograms. A 191

combined library of equal amounts of DNA from each isolate was created based on 192

quantifying DNA concentration using Quant-iT dsDNA Assay Kit (Thermo Fisher 193

Scientific). As Quant-iT quantifies total DNA, not just 16S rRNA, qPCR was also used 194

to estimate the resulting mock community composition based on amplifying 16S rRNA. 195

qPCR was performed as follows: the V4 region of the 16S rRNA gene was barcoded and 196

amplified (F515/R806) [19]; all reactions began with a denaturing step of 95C for 2 197

minutes, followed by 50C for 10 min, followed by 35 amplification cycles - one 198

amplification cycle consists of: 95C for 15 seconds, 60C for 1 minute. PCR was 199

performed using the same primers as qPCR. PCR steps were adapted from Caporaso et 200

al. to permit a variable number of PCR cycles: all reactions began with a denaturing 201

step of 94C for 3 minutes, followed by a variable number of amplification cycles, and 202

finished with 10 minutes of 72C. One amplification cycle consists of: 94C for 45 seconds, 203
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50C for 1 minute, 72C for 1.5 minutes. The number of amplification cycles ranged from 204

3 to 35. All PCRs were run on a single machine. The order in which the PCRs were 205

done was randomized to avoid systematic bias. 16S rRNA amplicon sequencing was 206

performed using an Illumina MiniSeq with paired-end 150 bp reads. 207

Real Community Data Collection 208

To characterize PCR bias for real microbial communities we analyzed samples from an 209

artificial gut system. Four fecal samples from four separate donors were used to 210

inoculate artificial gut vessels as previously reported [8]. After inoculation, samples 211

from the system were also taken from Day 1, Day 2, and Day 3. Bacterial DNA was 212

extracted using Qiagen DNeasy PowerSoil Kit. The bacterial DNA concentration of the 213

samples was quantified using a Quant-iT dsDNA Assay Kit (Thermo Fisher Scientific). 214

As in the mock community, the V4 region of the 16S rRNA gene was barcoded and 215

amplified. PCR was performed using the same parameters as for the mock community 216

except PCR amplifications were split between 5 machines. The number of amplification 217

cycles ranged from 20 to 35. 16S rRNA amplicon sequencing was done by an Illumina 218

MiniSeq with paired-end 150 bp reads (CAPARASO). After initial data analysis it was 219

found that PCR machine 3 was miscalibrated and the middle amplification step was set 220

to 58C rather than 50C. 221

Data Preprocessing 222

Sequencing data was processed and denoised using DADA2 [20] following a previously 223

published analysis pipeline [8]. For both the mock and real community data, only 224

samples with more than 5000 reads were retained for analysis. This retained 99.7% of 225

sequence variant counts from the mock and 99.8% of sequence variant counts from the 226

real communities respectively. The mock community data was analyzed at the 227

sequence-variant level. Five sequence variants could be uniquely mapped to isolates in 228

the mock community, the other mock community members were amalgamated into a 229

category called “other” for analysis. The real community data was analyzed at the 230

genus level and genera that were not seen in at least 30% of samples with at least 3 231

counts were amalgamated together into a category called “other” for analysis. Notably, 232

no pseudo-counts were added to the data prior to analysis as the Bayesian 233

multinomial-logistic normal linear model in Equation (5)-(9) models zeros directly [21]. 234

Analysis of Mock Community Data 235

To model the mock community data we took Xi (the covariate vector assigned to 236

sample i to be Xi = [1, xi, IBatch]T where 1 represents a constant intercept, xi denotes 237

the number of PCR cycles that sample i went through, and IBatch is a binary variable 238

denoting whether that sample was part of the the first (IBatch = 0) or second 239

(IBatch = 1) batch of PCR reactions. This specification for Xi implies that Λ can be 240

interpreted as 241

Λ =

 α1 β1 γ1
...

...
...

αD−1 βD−1 γD−1


where α` represents the community composition of the `-th log-ratio at cycle 0, and β` 242

the bias for the `-th log-ratio, and γ` is a variable we introduce to model the effect of 243

batch on the `-th log-ratio. 244

Based on prior reports [4] we choose Bayesian priors that reflected that PCR bias 245

was likely small and centered about zero (no bias) for all log-ratios. This was encoded 246
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as Γ = 2I3 where I3 represents a 3× 3 identify matrix and Θ = 0(D−1)×3. Additionally, 247

our prior reflected our weak belief that the covariance between the absolute abundance 248

of taxa was independent on the log-scale (Ξ = ΨIΨT and υ = D + 2). The multinomial 249

logistic-normal linear model was fit in additive log-ratio coordinates as is default in 250

stray and the resulting posterior samples were then transformed into the centered 251

log-ratio coordinate system for figure generation. This transformation was performed 252

using the function to clr provided by the stray software package. 253

Analysis of Real Community Data 254

To model the real community data we took Xi to be 255

Xi = [IP1
, . . . , IP4

, xi, IPCR2, . . . , IPCR5]T where IP1
is a binary variable denoting if the 256

i-th sample was from person 1, xi denotes the PCR cycle number as in the mock 257

community, and IPCR2 is a binary variable denoting if the i-th sample was amplified on 258

PCR machine number 2. 259

Based on our analysis of the mock community data we updated our prior to better 260

reflect our updated beliefs. We choose Γ = diag(4, 4, 4, 4, 1, 1, 1, 1, 1) reflecting our 261

updated prior belief regarding the relative scale of the community intercept and other 262

covariates. In this way we used a form of Bayesian sequential learning to update our 263

prior beliefs for the real community data based on the posterior estimates from the 264

mock community analysis. As before we took Θ to be a matrix of zeros reflecting our 265

prior belief that we expect the effect of PCR bias and PCR machine to be small. Ξ and 266

υ were chosen as in the mock community analysis. The multinomial model was fit and 267

posteriors transformed as in the analysis of the mock community data. 268

Predicting Bias from 16S rRNA Amplicon Sequence 269

A linear regression model predicting PCR bias (β) in log-ratio space based on amplicon 270

GC content was fit to 2000 posterior samples. The predictive potential of this model 271

was summarized based on the R2 statistics for each posterior sample (2.0%, 1.3%–2.6% 272

mean and 25-th–75-th quantiles respectively). 273

Sequence dissimilarity was summarized as a distance matrix Dseq with elements 274

Dseq
ij denoting the Levenshtein distance between sequences from taxon i and j 275

(calculated using function stringDist from the R package Biostrings [22]). To assess the 276

predictive potential of linear models based on sequence similarity we fit a linear 277

regression model predicting PCR bias in log-ratio space based on the first 10 278

eigenvectors of the matrix Dseq. The predictive potential of this model was summarized 279

based on the R2 statistics for each posterior sample (1.6%, 1.5%–1.8% mean and 280

25-th–75-th quantiles respectively). 281

To assess the predictive potential of non-linear Gaussian process models we
transformed the distance matrix Dseq into a covariance matrix Σ between sequences
using the following radial basis function kernel

Σseq
ij = e−

(D
seq
ij

)2

2σ2

where we refer to σ as the bandwidth of the kernel. A similar RBF kernel was built to 282

calculate ΣGC which represents the covariance between taxa based on the squared 283

difference between GC content for two taxa. We assessed the predictive potential of 284

both Σseq and ΣGC by fitting the following kernel selection model to each posterior 285

sample of bias (β(s)) 286

(τ̂1, τ̂2) = arg min
τ1,τ2∈R+

− logN(β(s)|β(s)
, τ1I + τ2Σ) (10)
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where β
(s)

denotes the mean of the biases in posterior sample s. We implemented this 287

kernel selection model as the stand-alone R package NVC (Normal Variance 288

Components) [23]. To assess the percent of variation explained by either sequence 289

similarity or GC content we defined the following statistic ρ = τ2/(τ1 + τ2) which 290

represents the percent of variation explained by the corresponding covariance matrix. 291

Kernel bandwidths were chosen by 10-fold cross validation. In both cases we find that 292

ρ ≈ 0.5 with corresponding bandwidths such that Σ ≈ I demonstrating that Gaussian 293

processes regression with RBF kernels could not predict PCR bias based on either GC 294

content or sequence similarity. 295

Data and Code Availability 296

Demultiplexed sequencing data was uploaded to SRA (BioProject PRJNA528810 and 297

PRJNA528820). Code to reproduce our analyses along with sequence variant tables 298

from DADA2 are available at https://github.com/jsilve24/pcrbias paper code. 299

Supporting information 300

S1 Fig. Posterior Predictive Checks for Mock Community Analysis 301

Observed sequence count data Y was vectorized and plotted in decreasing order of 302

counts (green line). 2000 samples from the posterior distribution of the multinomial 303

logistic-normal linear model were used to generate 2000 new sequence count datasets. 304

For each observed sequence count, the mean and 95% probability of the corresponding 305

generated datasets is overlayed. 306

S2 Fig. Bias Visualized for Mock Community Data Bias visualized for mock 307

community data. Letting P ij represent the relative abundance of taxon i after j cycles 308

of PCR we calculated Biasi = exp | log(P i35/P
i
0)|. That is, for this visualization we 309

consider a taxon that is decreased by a factor of 1/b to have the same bias a taxon 310

increased by a factor of b. Here we plot 100 posterior samples of Bias (black lines) and 311

the corresponding mean (green line). 312

S3 Fig. Posterior Predictive Checks for Real Community Analysis 313

Observed sequence count data Y was vectorized and plotted in decreasing order of 314

counts (green line). 2000 samples from the posterior distribution of the multinomial 315

logistic-normal linear model were used to generate 2000 new sequence count datasets. 316

For each observed sequence count, the mean and 95% probability of the corresponding 317

generated datasets is overlayed. 318

S4 Fig. Bias Visualized for Real Community Data Bias visualized for mock 319

community data. Letting P ij represent the relative abundance of taxon i after j cycles 320

of PCR we calculated Biasi = exp | log(P i35/P
i
0)|. That is, for this visualization we 321

consider a taxon that is decreased by a factor of 1/b to have the same bias a taxon 322

increased by a factor of b. Here we plot 100 posterior samples of Bias (black lines) and 323

the corresponding mean (green line). 324

S5 Fig. Posterior Euclidean Norm of Random Intercept Vector 325

Associated with Each PCR Machine from Real Data Analysis This norm is 326

shown as a Kernel Density estimate over 2000 posterior samples for each PCR machine. 327
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S1 File. Marginal Fits for Mulitnomial Logistic-Normal Linear Model 328

Applied to Real Data Analysis Mean (blue line) and 95% credible regions (grey 329

ribbon) from multinomial logistic-normal linear model (ΛX; Methods) applied to mock 330

community calibration data. The inferred linear relationship between PCR cycle 331

number and composition is shown adjusting for PCR machine. This adjustment leads 332

the linear fit to appear non-linear even though the overall model is linear. A 333

pseudo-count of 0.65 was added to observed count data prior to log-ratio transformation 334

to enable the data to be visualized along with the posterior estimates. Each column 335

corresponds to one of the four microbial communities analyzed. 336
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