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Abstract 47 

Background: The interplay between hosts and their associated microbiome is now recognized 48 

as a fundamental basis of the ecology, evolution and development of both players. These 49 

interdependencies inspired a new view of multicellular organisms as “metaorganisms”. The goal 50 

of the Collaborative Research Center “Origin and Function of Metaorganisms” is to understand 51 

why and how microbial communities form long-term associations with hosts from diverse 52 

taxonomic groups, ranging from sponges to humans in addition to plants. 53 

Methods: In order to optimize the choice of analysis procedures, which may differ according to 54 

the host organism and question at hand, we systematically compared the two main technical 55 

approaches for profiling microbial communities, 16S rRNA gene amplicon- and metagenomic 56 

shotgun sequencing across our panel of ten host taxa. This includes two commonly used 16S 57 

rRNA gene regions and two amplification procedures, thus totaling five different microbial 58 

profiles per host sample. 59 

Conclusion: While 16S rRNA gene-based analyses are subject to much skepticism, we 60 

demonstrate that many aspects of bacterial community characterization are consistent across 61 

methods and that metagenomic shotgun results are largely dependent on the employed pipeline. 62 

The resulting insight facilitates the selection of appropriate methods across a wide range of host 63 

taxa. Finally, by contrasting taxonomic and functional profiles and performing phylogenetic 64 

analysis, we provide important and novel insight into broad evolutionary patterns among 65 

metaorganisms, whereby the transition of animals from an aquatic to a terrestrial habitat marks a 66 

major event in the evolution of host-associated microbial composition. 67 

 68 

Keywords: animal microbiome; evolution; phylosymbiosis; holobiont; metaorganism 69 

 70 

Background 71 

Dynamic host-microbe interactions have shaped the evolution of life. Virtually all plants and 72 

animals are colonized by an interdependent complex of microorganisms, and there is growing 73 

recognition that the biological processes of hosts and their associated microbial communities 74 

function in tandem, often as biological partners comprising a collective entity known as the 75 

metaorganism [1]. For instance, symbiotic bacteria contribute to host health and development in 76 

critical ways, ranging from nutrient metabolism to regulating whole life cycles [2] and in turn 77 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2019. ; https://doi.org/10.1101/604314doi: bioRxiv preprint 

https://doi.org/10.1101/604314
http://creativecommons.org/licenses/by-nd/4.0/


benefit from habitats and resources the host provides. Moreover, it is well established that 78 

perturbations of the microbiome likely play an important role in many host disease states [3]. 79 

However, researchers have yet to elucidate the mechanisms driving these interactions, as the 80 

exact molecular and cellular processes are only poorly understood. 81 

An integrated view on the metaorganism encompasses a cross-disciplinary approach 82 

that addresses how and why microbial communities form long-term associations with their hosts. 83 

Despite widespread agreement that the interdependencies of microbes and their hosts warrant 84 

elucidation, there remains considerable incongruity between researchers regarding the best 85 

methodologies to study host-microbe interactions. The development of standardized protocols 86 

for characterizing and analyzing host-associated microbiomes across the breadth of the tree of 87 

life are thus crucial to understand the evolution and function of metaorganisms without the 88 

issues of technical inconsistencies or data quality. 89 

Rapidly growing interest in microbiome research has been bolstered by the ability to 90 

profile diverse microbial communities using next-generation sequencing (NGS). This culture-91 

free, high-throughput technology enables identification and comparison of entire microbial 92 

communities [4]. Metagenomics typically encompasses two particular sequencing strategies: 93 

amplicon sequencing, most often of the 16S rRNA gene as a phylogenetic marker, or shotgun 94 

sequencing, which captures the complete breadth of DNA within a sample [4].  95 

The use of the 16S ribosomal RNA gene as a phylogenetic marker has proven to be an 96 

efficient and cost-effective strategy for microbiome analysis, and even allows for the imputation 97 

of functional content based on taxon abundances [5]. However, PCR-based phylogenetic marker 98 

protocols are vulnerable to biases through sample preparation and sequencing errors, in 99 

particular the choice of which hypervariable regions of the 16S rRNA gene targeted seem to be 100 

among the biggest factors underlying technical differences in microbiome composition [6-8]. 101 

Furthermore, 16S rRNA gene amplicon sequencing is typically limited to taxonomic classification 102 

at the genus-level depending on the database and classifiers used [9], and provides only limited 103 

functional information [5]. These well-recognized limitations of amplicon-based microbial 104 

community analyses have raised concerns about the accuracy and reproducibility of 16S rRNA 105 

phylogenetic marker studies and have led to an increased interest in developing more reliable 106 

methods for amplicon library preparation and sequencing [8, 10]. 107 

Shotgun metagenomics, on the other hand, offers the advantage of species- and strain-108 

level classification of bacteria. Additionally, it allows researchers to examine the functional 109 

relationships between hosts and bacteria by determining the functional content of samples 110 
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directly [9, 11], and enables the exploration of yet unknown microbial life that would otherwise 111 

remain unclassifiable [12]. However, the relatively high costs of shotgun metagenomics and 112 

more demanding bioinformatic requirements have precluded its use for microbiome analysis on 113 

a wide scale [4, 9]. 114 

In this study, we set out to systematically compare experimental and analytical aspects of 115 

the two main technical approaches for profiling microbial communities, 16S rRNA gene 116 

amplicon- and shotgun sequencing, across a diverse array of host species studied in the 117 

Collaborative Research Center 1182, “Origin and Function of Metaorganisms”. The ten host 118 

species range from basal aquatic metazoans [Aplysina aerophoba (sponge) and Mnemiopsis 119 

leidyi (comb jelly)], to marine and limnic cnidarians (Aurelia aurita, Nematostella vectensis, 120 

Hydra vulgaris), standard vertebrate (Mus musculus) and invertebrate model organisms 121 

(Drosophila melanogaster, Caenorhabditis elegans), to Homo sapiens, in addition to wheat 122 

(Triticum aestivum) and a standardized mock community. This setup provides a breadth of 123 

samples in terms of taxonomic composition and diversity. Conducting standardized data 124 

generation procedures on these diverse samples on the one hand provides a unique and 125 

powerful opportunity to systematically compare alternative methods, which display considerable 126 

heterogeneity in performance. On the other hand, this information enables researchers working 127 

on these or similar host species to choose the experimental (e.g. hypervariable region) or 128 

analytical pipelines that best suit their needs, which will be a valuable resource to the greater 129 

community of host-microbe researchers. Finally, we identified a number of interesting, broad 130 

scale patterns contrasting the aquatic and terrestrial environment of metaorganisms, which also 131 

reflect their evolutionary trajectories. 132 

 133 

Results 134 

Our panel of hosts includes ten species, for which five biological replicates each were included 135 

(see Figure S1). The majority of hosts are metazoans, including the “gold sponge” (Aplysina 136 

aerophoba), moon jellyfish (Aurelia aurita), comb jellyfish (Mnemiopsis leidyi), starlet sea 137 

anemone (Nematostella vectensis), fresh-water polyp Hydra vulgaris, roundworm 138 

(Ceanorhabditis elegans), fruit fly (Drosophila melanogaster), mouse (Mus musculus), human 139 

(Homo sapiens), as well as the inclusion of wheat (Triticum aestivum), which can serve as an 140 

outgroup to the metazoan taxa. Drosophila melanogaster was additionally sampled using two 141 

different methods targeting feces and intestinal tissue. Nucleic acid extraction procedures were 142 

conducted according to the needs of the individual host species (see Methods and 143 
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Supplementary Material), after which all DNA templates were subjected to a standard panel of 144 

sequencing procedures. For 16S rRNA gene amplicon sequencing we used primers flanking two 145 

commonly used variable regions, the V1V2 and V3V4 regions. Further, for each region we 146 

compared a single-step fusion-primer PCR to a two-step procedure designed to improve the 147 

accuracy of amplicon-based studies [8]. Finally, all samples were also subjected to shotgun 148 

sequencing, such that five different sequence profiles were generated for each sample. While a 149 

single classification pipeline was employed for all four 16S rRNA gene amplicon sequence 150 

profiles, community composition based on shotgun data was initially evaluated using five 151 

different classification methods (Kraken [13], MEGAN [14], MetaPhlan [15], MetaPhlan2 [16], 152 

and SortmeRNA [17]; see Supplementary Material for comparative descriptions). However, due 153 

to the advantage of simultaneously performing taxonomical and functional classification of 154 

shotgun reads, as well as overall good performance (see analyses of mock community below), 155 

MEGAN was used as a representative pipeline for most subsequent analyses. 156 

Performance of data processing and quality control: All data generated from amplicons were 157 

subject to the same stringent quality control pipeline including read-trimming, merging of forward 158 

and reverse reads, quality filtering based on sequence quality and estimated errors, and chimera 159 

removal (see Methods). The one step V1V2 amplicon data showed the highest rate of read-160 

survival (62.13 ± 23.90%, mean ± s.d.) followed by the corresponding two step method (mean= 161 

49.85 ± 23.90%, mean ± s.d.), in large part due to the greater coverage of this comparatively 162 

shorter amplicon (~312 bp). In contrast, 42.02 ± 16.41% and 36.88 ± 23.89% of the total reads 163 

were included in downstream analysis for the one step and two step V3V4 data, respectively. 164 

The longer V3V4 amplicon (~470 bp) was more affected by drops in quality at the end of the 165 

reads, which decreases the overlap of forward and reverse reads and thus increases the 166 

chances of sequencing errors (Figure S2, for final sample sizes see Table S1). Overall, aside 167 

from chimera removal, each quality control step resulted in a comparatively greater loss of 168 

V3V4- compared to V1V2 data. On the other hand, the V3V4 one step method yields the lowest 169 

number of chimeras, suggesting a lower rate of chimera formation- and/or detection in this 170 

approach (variable region- F1,214=3.8881, P=0.0499, PCR- F1,214=8.1751, P=0.0047, variable 171 

region×PCR- F1,214=6.4733, P=0.0117; Linear Mixed Model with organism as random factor). 172 

Among all host taxa we observe the highest proportion of retained reads in the V1V2 one step 173 

method and the lowest in the V3V4 two step method (Figure S2B; variable region- 174 

F1,215=74.9989, P<0.0001, PCR- F1,215=21.0743, P<0.0001; Linear Mixed Model with organism 175 

as random factor). After quality filtering and the identification of bacterial reads, an average of 176 

0.46 Gb of shotgun reads per sample was achieved (range 0.03 to 2.1 Gb) (Figure S3A, for final 177 
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sample sizes see Table S1). To provide an initial assessment and comparison between the 178 

amplicon and shotgun-based techniques, we plotted the discovered classifiable taxa and 179 

functions for the entire pooled dataset. Although the methods differ distinctly, each method 180 

shows a plateau in the number of discovered entities (see Figure S3C, S3D). 181 

Mock community: The analysis of standardized mock communities is an important measure to 182 

ensure general quality standards in microbial community analysis. In this study we employed a 183 

commercially available mixture of eight bacterial- and two yeast species. Comparison among the 184 

amplification procedures (one- and two step PCR), 16S rRNA gene regions (V1V2, V3V4) and 185 

shotgun data reveals varying degrees of similarity to the expected microbial community 186 

composition (Figure 1). One discrepancy is apparent due to the misclassification of 187 

Escherichia/Shigella, whose close relationship make delineation at the genus level difficult 188 

based on the V1V2 region are subsequently classified to Enterobacteriaceae (Figure 1A, Figure 189 

S4). Classification of this bacterial group also differs according to shotgun pipeline employed, 190 

due to different naming and taxonomic standards of the respective databases (Escherichia, 191 

Shigella, Enterobacteriaceae refer to the Escherichia/ Shigella cluster) [18]. However, overall the 192 

amplicon-based profiles show the closest matches to the expected community. The V1V2 one 193 

step method and Kraken show the lowest degree of deviation between observed and expected 194 

abundances of the focus taxa (Table 1, Figure S4). However, Kraken falsely detects a large 195 

number of taxa not present in the mock communities. In addition, the relative abundances of 196 

fungi in the mock community were relatively well predicted by MEGAN and Kraken, while 197 

MetaPhlan2 failed to identify Cryptococcus and replaced it with several other taxa (see Figure 198 

1). 199 

Next, we evaluated alpha and beta diversity across the different technical and analytical 200 

methods. Interestingly, most methods overestimate taxon richness but underestimate complexity 201 

(as measured by the Shannon index) of the mock community, which could reflect biases arising 202 

from grouping taxon abundances together (Figure 1, Figure S4, Figure S5, Table S2). Overall 203 

the amplicon methods appear to more accurately reflect alpha diversity, although significant 204 

differences are present with regard to the amplified region (species richness: variable region- 205 

F1,10=6.3657, P=0.0302; Shannon H: method- F1,9=3.330, P=0.1014, variable region- F1,9=6.110, 206 

P=0.0354). With regard to beta diversity, the largest distance to the expected composition is 207 

observed in SortmeRNA applied to shotgun sequencing of the mock community, while the 208 

amplicon-based techniques, MEGAN, and MetaPhlan2 show the lowest distance (Figure 1D, 209 

Figure S5, Table S3). Pairwise tests show almost no differences between the amplicon-based 210 

techniques, while all shotgun based methods significantly differ from each other (Table S4). 211 
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Thus, in conclusion shotgun-based analysis pipelines yield a higher degree of variability/error 212 

compared to the amplicon-based approaches based on a simple mock community. For 213 

subsequent analyses we thus mainly focus on the amplicon-based data and MEGAN as a 214 

representative shotgun-based pipeline, for which eukaryotic (e.g. fungal) sequences were not 215 

included in the following analyses. 216 

Taxonomic diversity within and between hosts: To evaluate the performance of our panel of 217 

metagenomic methods over the range of complex host-associated communities in our 218 

consortium, we next employed a panel of alpha- and beta diversity analyses to these samples, 219 

which also provides an opportunity to infer broad patterns across animal taxa based on a 220 

standardized methodology. Measures of alpha diversity display overall consistent values with 221 

respect to host species, although many significant differences between technical methods are 222 

present, mostly in a host-specific manner (Figure 2A-B). However, several host taxa display high 223 

levels of consistency across methods including A. aurita, C. elegans, D. melanogaster and 224 

H. sapiens, which show almost no significant differences between methods. Discrepancies and 225 

individual recommendations for each host species are discussed in the Supplementary Material 226 

(see Figures S6-S16). An intriguing observation is the tendency of aquatic hosts to display 227 

higher alpha diversity values than those of terrestrial hosts, which is supported by average 228 

differences between aquatic and terrestrial hosts and by relative consistent comparisons among 229 

single host species as well (Figure 2C-D, Table S5). Finally, we also compared alpha diversity 230 

estimates based on the other shotgun-based classifiers, which in most cases display greater 231 

heterogeneity than among the 16S rRNA gene amplicon and MEGAN based estimates alone, 232 

but still recover similar trends (Figure S17). 233 

In order to investigate broad patterns of bacterial community similarity according to 234 

metagenomic procedure and host species, we performed beta diversity analyses including all 235 

host samples and each of their five different methodological profiles. This analysis reveals an 236 

overall strong signal of host species, irrespective of the method used to generate community 237 

profiles (Table 2, Figure 3). Pairwise comparisons between hosts are significant in all cases 238 

except for samples derived from the V3V4 two step protocol, which did not consistently reach 239 

significance after correction for multiple testing (Table S6). Further, complementary to the 240 

observations made for alpha diversity, we also find strong signals of community differentiation 241 

between the aquatic and terrestrial hosts (Table 2, Figure 3B and D). The separation between 242 

these environments appears to be stronger based on amplicon data, whereas the separation 243 

between hosts is stronger based on shotgun derived data (Table 2). Clustering of communities 244 

based on host environment is consistent irrespective of the underlying shotgun analysis method, 245 
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although the topologies vary strongly (e.g. MetaPhlan2, see Figure S18). To further evaluate the 246 

variability among biological replicates, we evaluated intra-group distances according to host 247 

species, which reveals organisms with generally higher community variability (i.e. C. elegans, 248 

A. aurita, H. sapiens, H. vulgaris, T. aestivum, and M. leidyi) than other host organisms in our 249 

study (N. vectensis, M. musculus, D. melanogaster, and A. aerophoba; Figure S19A, C). 250 

Interestingly, intra-group distances also significantly differ between the aquatic and terrestrial 251 

environments, whereby aquatic organisms tend to display less variable communities than 252 

terrestrial ones (Figure S19B, D). The low performance of T. aestivum in subsequent analyses 253 

possibly originates from its commercial origin and low bacterial biomass relative to host material. 254 

To identify individual drivers behind patterns of beta diversity, we performed indicator 255 

species analysis [19] at the genus level with respect to method, host species, and environment. 256 

Based on the amplicon data we identified 56 of 313 indicators to display consistent associations 257 

across all four amplicon techniques, such as Bacteroides, Barnesiella, Clostridium IV, and 258 

Faecalibacterium in H. sapiens, and Helicobacter and Mucispirillum in M. musculus, whereas 259 

other associations were limited to e.g. only one variable region (Table S7, S8). However, the 260 

overall pattern of host associations is largely consistent across methods (Figure S20). We also 261 

identified numerous indicator genera for aquatic and terrestrial hosts (Table S9, S10). Indicator 262 

analyses based on shotgun data reveals a smaller and less diverse set of host-specific 263 

indicators, which however show many congruencies with the amplicon-based data. 264 

Functional diversity within and between hosts: To examine the diversity (gene richness) of 265 

metagenomic functions across host species we evaluated EggNOG [20] annotations (assembly-266 

based and MEGAN) to obtain a general functional spectrum (evolutionary genealogy of genes: 267 

Non-supervised Orthologous Groups), in addition to annotations derived from a database 268 

dedicated to functions interacting with carbohydrates (CAZY- Carbohydrate-Active enZYmes) 269 

[21]. Overall the individual host communities differ drastically in gene richness (EggNOG genes 270 

(MEGAN): χ2=52.202, P<2.10×10-16; EggNOG genes (assembly): χ2=49.986, P<2.10×10-16; 271 

CAZY: χ2=48.815, P<2.10×10-16; approximate Kruskal-Wallis test). Although the values also 272 

differ considerably between methods, overall the functional repertoires are most diverse in the 273 

vertebrate hosts, while only H. vulgaris and A. aerophoba as aquatic hosts carry a comparably 274 

diverse functional repertoire (Figure 4A, Figure S21). Interestingly, in contrast to taxonomic 275 

diversity we observe no difference in functional diversity between aquatic and terrestrial hosts. 276 

Next we examined community differences (beta diversity) at the functional level, which 277 

are overall more pronounced (average adj. R2: 0.5084, Figure 4) than those based on taxonomic 278 
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(genus level) classification (shotgun adj. R2: 0.4756; amplicon average adj. R2: 0.4594, see 279 

Table 2 and Table 3, Figure 3 and Figure 4, Figure S22). On the functional level aquatic and 280 

terrestrial hosts are considerably less distinct than observed at the taxonomic level (taxonomic 281 

shotgun adj. R2=0.0766; taxonomic amplicon average adj. R2=0.0690, functional shotgun 282 

average adj. R2=0.0441, see Table 2 and Table 3, Figure 4, S22). Variability of the functional 283 

repertoires was lowest in A. aerophoba, D. melanogaster feces and M. musculus gut contents, 284 

while H. vulgaris, C. elegans, and D. melanogaster gut samples displayed the highest intra-285 

group distances, which translates to a higher amount of functional heterogeneity between 286 

replicates (Figure S23). This reflects in large part the patterns we observed in taxonomic 287 

variability of those host-associated communities (Figure S19).  288 

Indicator functions: To identify specific functions that are characteristic of individual hosts, we 289 

applied indicator analysis to functional categories. General functions in EggNOG reveal several 290 

interesting patterns, including CRISPR related genes in A. aerophoba, H. sapiens, and 291 

H. vulgaris, suggesting a particular importance of viruses in these communities. A. aerophoba 292 

possess a large set of characteristic genes involved in energy production and conversion, amino 293 

acid transport and metabolism, replication, recombination and repair. M. musculus and others 294 

appear to possess a large number of characteristic genes involved in carbohydrate transport 295 

and metabolism, energy production and conversion, transcription and cell 296 

wall/membrane/envelope biogenesis. H. vulgaris is characterized by a high number of genes 297 

involved in transcription, inorganic ion transport, metabolism, signal transduction mechanisms 298 

and cell wall/membrane/envelope biogenesis (Table S11-S13). 299 

Analysis of carbohydrate-metabolizing functions based on CAZY [21] (Carbohydrate-300 

Active enZYmes) reveals the highest number of characteristic glycoside hydrolases (GH) in 301 

H. sapiens and M. musculus, whereas polysaccharide lyases (PLs) for non-hydrolytic cleavage 302 

of glycosidic bonds are present in A. aerophoba and H. sapiens (Table S14). Parts of the 303 

cellulosome are only present in A. aerophoba and not in M. musculus or H. sapiens. 304 

Interestingly, only the freshwater H. vulgaris carries characteristic auxiliary CAZYs involved in 305 

lignin and chitin digestion, which may reflect dietary adaptations of the host. 306 

Performance of metagenome imputation from 16S rRNA gene amplicon data using 307 

PICRUSt across metaorganisms: Researchers often desire to obtain the insight gained from 308 

functional metagenomic information despite being limited to 16S rRNA gene data, for which 309 

imputation methods such as PICRUSt can be employed [5]. However, due to their dependence 310 

on variable region and database coverage [5], these imputations must be viewed with caution. 311 
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Given our data set of both 16S amplicon- and shotgun metagenomic sequences, we 312 

systematically evaluated the performance of PICRUSt predictions across hosts and amplicon 313 

data type (V1V2, V3V4, one step/ two step protocol). Beginning with the mock community, the 314 

V1V2 region displays lower performance for imputing functions compared to V3V4, as indicated 315 

by a higher weighted Nearest Sequenced Taxon Index (NSTI) (t=17.812, P=1.119×10-7, Figure 316 

S24). High NSTI values imply low availability of genome representatives for the respective 317 

sample, due to either large phylogenetic distance for each OTU to its closest sequenced 318 

reference genome or a high frequency of poorly represented OTUs [5]. Comparing the 319 

distribution of functional categories based on Clusters of Orthologous Groups (COG) [22] 320 

between the different imputations (no cutoff applied) and the actual shotgun based repertoires 321 

reveals considerable overlap (Figure S24). Exceptions include the functional category R 322 

(general function prediction only), which is almost absent in the shotgun data, while the category 323 

S (function unknown) is more abundant among the shotgun based functional data (Figure S24). 324 

Next we evaluated functional imputations for the different host species and amplification 325 

methods. We found no significant difference in average NSTI values or prediction success 326 

(NSTI < 0.15) between amplification protocols or variable region. However, approximately a third 327 

(31.8%) of the samples are lost due to incomplete imputation (NSTI > 0.15; Figure 5A). Notable 328 

problematic host taxa are A. aerophoba and H. vulgaris, for which no sample remained below 329 

the NSTI cutoff value. Other host taxa displayed clear differential performance with regard to the 330 

variable region used, whereby H. sapiens, N. vectensis and T. aestivum were successfully 331 

predicted based on V3V4, but not V1V2. However, when we employ Procrustes tests to 332 

compare community functional profiles based on shotgun sequencing (single assembly, 333 

MEGAN) and functional imputations at the COG-category level, we find a lower correspondence 334 

of the V3V4-based imputations compared to those based on V1V2 (Figure 5B), while the 335 

amplification methods displayed no significant difference. A similar pattern is observed when we 336 

correlate community differences based on shotgun results and lower level (single functions) 337 

COG annotations based on PICRUSt, although the difference is not significant (F1,18=0.6172, 338 

P=0.4423).  339 

To investigate the similarities among methods in more detail, we merged shotgun and 340 

PICRUSt based annotations at the level of COG categories. Principle coordinate analysis 341 

reveals only small differences between imputations with regard to amplification method or 342 

variable region (Figure 5C). However, large differences exist between the PICRUSt and shotgun 343 

based functional repertoires, as well as between the shotgun techniques (MEGAN, single 344 

assembly). Differences between the shotgun techniques were significant, but smaller than their 345 
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distance to the imputed functional spectra (Figure 5C, Table S15). Finally, we examined the 346 

abundance of functional categories within single host taxa and the mock community, which 347 

reveals a higher relative abundance of functions related to energy production and conversion 348 

(C), replication, recombination and repair (L), and unknown functions (S) in the assembly-based 349 

annotations compared to the other techniques, which might be an important driver of the 350 

observed differences (Figure S24, S25). 351 

Thus, in summary, the PICRUSt imputed functional repertoires significantly differ from 352 

actual shotgun profiles. While variation in imputation success is largely dependent on the identity 353 

of the particular host community, V3V4 appears to more often yield successful imputations. 354 

However, when successful, V1V2-derived imputations display closer similarity to actual 355 

functional profiles. Finally, the amplification method (one step, two step) appears to have no 356 

significant effect on the quality of functional imputation. These data therefore support the notion 357 

that metagenome imputations should be evaluated with care, as they depend on the underlying 358 

variable region and sample source. 359 

Phylogenetic patterns in microbial community composition: The term “phylosymbiosis” 360 

refers to the phenomenon where the pattern of similarity among host-associated microbial 361 

communities parallels the phylogeny of their hosts [23]. Highly divergent hosts with drastic 362 

differences in physiology and life history might be expected to overwhelm the likelihood of 363 

observing phylosymbiosis, which is typically observed within a given host clade [23]. However, 364 

the factors driving differences in composition among our panel of hosts may also be expected to 365 

vary in terms of the bacterial phylogenetic scale at which they are most readily observed [24]. 366 

Thus, we evaluated the degree to which bacterial community relationships (beta diversity) reflect 367 

the underlying phylogeny of our hosts at a range of bacterial taxonomic ranks, spanning from the 368 

genus to the phylum level. 369 

In order to assess the general overlap between beta diversity and phylogenetic distance 370 

of the host species, we performed Procrustes analysis [25]. These analyses reveal that the 371 

strongest phylogenetic signal is observed when bacterial taxa are grouped at the order and/or 372 

family level, whereby the one step protocols and the V3V4 region display greater correlations to 373 

phylogenetic distance (Figure 6A). A similar pattern is observed for shotgun based community 374 

profiles (i.e. MEGAN), although its fit increases again at the genus level. Measuring beta 375 

diversity based on co-occurrence of bacterial taxa between hosts (Jaccard) displays a weaker 376 

correspondence to host phylogeny than the abundance-based measure (Bray-Curtis) (Figure 6).  377 
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To assess the fit of individual host taxa, we examined the residuals of the correlation 378 

between community composition and phylogenetic distance. This reveals a large variation in 379 

correspondence among host taxa, with M. musculus, M. leidyi, H. sapiens and D. melanogaster 380 

(feces) displaying the highest, while H. vulgaris, C. elegans, and A. aerophoba display the 381 

lowest correspondence between their microbiome composition and phylogenetic position 382 

(largest residuals Figure S26). Furthermore, terrestrial hosts display an overall better 383 

correspondence between co-occurrences of bacterial genera and host relatedness (V1V2 one 384 

step: Z=2.9578, P=0.0025), as do measurements based on V3V4 (one step: Z=2.7496, 385 

P=0.0054; two step: Z=2.8097, P=0.0046; approximate Wilcoxon test). 386 

Next, given the peak of correspondence between bacterial community composition and 387 

host phylogeny observed at the order and/or family level, we set out to identify individual 388 

community members whose abundances best correlate to host phylogenetic distance using 389 

Moran’s eigenvector method [26]. This reveals 41 bacterial families and 36 orders with 390 

significant phylogenetic signal based on one or more amplicon data set, whereby 16 families 391 

and 18 orders display repeated associations across methods (e.g. Clostridia, Ruminococcaceae, 392 

Helicobacteraceae, Lachnospiraceae, Coriobacteriaceae, Erysipelotrichaceae, 393 

Selenomonadales, Bacteroidales, Desulfovibrionales; Table S16; Figure S27, S28). Analyzing 394 

communities based on shotgun data on the other hand identifies 215 bacterial families and 97 395 

orders associated with phylogenetic distances, whereby 69 and 27 display repeated 396 

associations, respectively (Table S17; Figure S29, S30). The combined results of these 397 

analyses identify several families and orders with strong and consistent phylogenetic 398 

associations, in particular for the vertebrate hosts (e.g. Bacteroidaceae/ Bacteroidales, 399 

Bifidobacteriaceae/ Bifidobacteriales, Coriobacteriaceae/ Coriobacteriales, Desulfovibrionaceae/ 400 

Desulfovibrionales, Erysipelotrichaceae/ Erysipelotrichales, Porphyromonadaceae/ 401 

Bacteroidales, Ruminococcaceae/ Clostridiales, Selenomonadales; see Table S16). Other 402 

individual examples include bacteria related to Helicobacteraceae/ Campylobacterales in 403 

A. aurita, which are observed in other marine cnidarians and may be involved in sulfur oxidation 404 

[27]. Alcanivoracaceae, an alkane degrading bacterial group, is strongly associated to the 405 

coastal cnidarian N. vectensis. This association might originate from adaptation to a polluted 406 

coastal environment [28]. Acidobacteria Gp6 and Gp9 specifically occur in A. aerophoba and are 407 

commonly associated to the core microbial community of sponges [29]. 408 

Phylogenetic patterns in functional community composition: In order to contrast the 409 

patterns observed at the taxonomic level to those based on function we used Procrustes 410 

correlation to measure the overlap between phylogenetic distance and community distance 411 
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based on the panel of functional categories in our analyses. Interestingly, the two functional 412 

categories displaying the greatest correspondence to host phylogeny are the CAZY and single 413 

EggNOG based functions (Figure 6). The remainder of patterns between phylogeny and 414 

bacterial functional spectra differed among the host species and functional categories (Figure 415 

S26), T. aestivum and D. melanogaster (feces) display the lowest correspondence, while 416 

C. elegans, M. musculus and H. sapiens display the best correspondence (lowest residuals, 417 

Figure S26) between their functional repertoire and phylogenetic position. As observed for the 418 

taxonomic analyses, terrestrial hosts again display a slightly better correlation than aquatic hosts 419 

(smaller residuals), in particular for the co-abundance of EggNOG categories (Z=2.2116, 420 

P=0.0267), CAZY (Z=2.0393, P=0.0414) and the co-occurrence of EggNOG categories 421 

(Z=2.7377, P=0.0061) and genes (Z=3.3062, P=0.0007; approximate Wilcoxon test) among 422 

hosts. 423 

Finally, to reveal individual functions correlating to host phylogeny, we used the 424 

aforementioned Moran’s I eigenvector analyses with additional indicator analyses to narrow the 425 

potential clade associations. Interestingly, most functions that correlate to a specific host 426 

taxon/clade (1-3 taxa) are mainly restricted to vertebrate hosts or in combination with a 427 

vertebrate host (Table S18-S21). This pattern is repeated across all functional annotations used 428 

in this study. Examples include fucosyltransferases, fucosidases, polysaccharide binding 429 

proteins, as well as hyaluronate, xanthan, and chondroitin lyases that stem from CAZY (see 430 

Figure S31, Table S18). These functions are all related to glycan- and mucin degradation and 431 

interaction, which mediate many intimate host-bacterial interactions and are also observed in 432 

subsequent analyses based on general functional databases (EggNOG; Table S19, Table S20). 433 

Many other phylogenetically correlated functions appear to be driven by the vertebrate hosts as 434 

well, which likely reflects the high functional diversity within this group (see Figure 4 and Figure 435 

S23). Only LPXC and LPXK (EggNOG), genes involved in the biosynthesis of the outer 436 

membrane, are exclusively associated to the non-vertebrate hosts (LPXC: UDP-3-O-acyl-N-437 

acetylglucosamine deacetylase, LPXK: Tetraacyldisaccharide 4'-kinase), as is an oxidative 438 

damage repair function (MSRA reductase) associated to H. vulgaris (Table S19, Figure S31). 439 

EggNOG category Q (secondary metabolites biosynthesis, transport and catabolism) is also 440 

characteristic of invertebrate hosts in addition to a small number of metabolic functions (i.e. 441 

dehydrogenases, mono oxygenase, fatty acid hydroxylase; MEGAN based; Table S20, Figure 442 

S31). More generally we observe a high number of genes of unknown function (S), carbohydrate 443 

transport and metabolism (G), replication, recombination and repair (L), cell 444 

wall/membrane/envelope biogenesis (M), and energy production and conversion (C) (Table S21 445 
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Figure S31). Finally, antibiotic resistance genes and virulence factors also show frequent 446 

phylogenetic and host specific signals (Table S19, S20; Figure S31). 447 

 448 

Discussion 449 

Despite the great number of metagenomic studies published to date, which range in their focus 450 

on technical, analytical or biological aspects, our study represents a unique contribution given its 451 

breadth of different host samples analyzed with a panel of standardized methods. In particular, 452 

the tradeoffs between 16S rRNA gene amplicon- versus shotgun sequencing concerning 453 

amplification bias, functional information and both monetary and computational costs, warrant 454 

careful consideration when designing research projects. While 16S rRNA gene amplicon-based 455 

analyses are subject to considerable skepticism and criticism, we demonstrate that in many 456 

aspects similar, if not superior characterization of bacterial communities is achieved by these 457 

methods, although discrepancies associated with shotgun based data are largely dependent on 458 

the analytic pipeline. We also show, however, that important insight can be gained through the 459 

combination of taxonomic- and functional profiling, and that imputation-based functional profiles 460 

significantly differ from actual profiles. Our findings thus provide a guide for selecting an 461 

appropriate methodology for metagenomic analyses across a variety of metaorganisms. Finally, 462 

these data provide novel insight into the broad scale evolution of host-associated bacterial 463 

communities, which can be viewed as particularly reliable given the repeatability of observations 464 

(e.g. differences between aquatic and terrestrial hosts, indicator taxa) across methods. 465 

 Given the concerns regarding the accuracy of 16S rRNA gene amplicon sequencing, 466 

other studies such as that of Gohl et al. [8] performed systematic comparisons of different library 467 

preparation methods, and found superior results for a two step amplification procedure. This 468 

method offers the additional advantage that one panel of adapter/barcode sequences can be 469 

combined with any number of different primers. Our first analyses were based on a standard 470 

mock community including Gram positive and Gram negative bacteria from the Bacilli and 471 

Gamma Proteobacteria (eight species), as well as two fungi, which did not support an 472 

improvement of performance based on the two step protocol. However, a number of changes 473 

were made to the Gohl et al. [8] protocol to adapt it to our lab procedures (e.g. larger reaction 474 

volumes, polymerase, variable region, heterogeneity spacers) that may contribute to these 475 

discrepancies, in addition to our different and diverse set of samples and other factors with 476 

potential influence on the performance of amplicon sequencing [6-8, 30-32]. The complexity of 477 

the mock community, i.e. the number of taxa, distribution, and phylogenetic breadth, may also 478 
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have an influence on the discovery of clear trends in amplification biases or detection limits for 479 

certain taxonomic groups [33]. Thus, the even and phylogenetically shallow mock community in 480 

our study may be less suited than the staggered and diverse mixtures used in other studies [8], 481 

but still provides valuable information on repeatability, primer biases, and accuracy [33]. 482 

Nonetheless, when applied to our range of complex host-associated communities, we also found 483 

that significant differences in most parameters were due to the variable region rather than 484 

amplification method, and in many cases biological signals were either improved- or limited to 485 

the one step protocol. 486 

Additional sources of variation influencing the outcome of our 16S rRNA gene amplicon-487 

based community profiling are the bioinformatic pipelines we employed, starting from trimming 488 

and merging to clustering and classification, which are stringent and incorporate more reliable 489 

de novo clustering algorithms [34] as well as different classification databases [35]. 490 

Heterogeneity among the different amplicon approaches is however far smaller than the 491 

observed heterogeneity between amplicon and shotgun methods, or within different shotgun 492 

analyses, as observed in other benchmarking studies [31]. Differences between shotgun 493 

approaches have been investigated in detail and also yield varying performances among 494 

classifiers, but in general find a comparatively high performance of MEGAN based approaches 495 

[9, 36, 37], which we also confirm in our study. 496 

Given the limited number of studies that have compared imputed- and shotgun derived 497 

functional repertoires [5, 38], our study also provides important additional insights. As imputation 498 

by definition is data-dependent, the differential performance and prediction among hosts in our 499 

study may in large part be explained by the amount of bacteria isolated, sequenced, and 500 

deposited (16S rRNA or genome) from these hosts or their respective environments. This seems 501 

to be most critical for the aquatic hosts. Furthermore, we observe a clear effect of variable region 502 

on the prediction performance, which is most obvious based on the mock community. The 503 

PICRUSt algorithm was developed and tested using primers targeting V3V4 16S rRNA, thus 504 

optimization of the imputation algorithm might be biased towards this target over the V1V2 505 

variable region. Although these performance differences, in particular the bias towards model 506 

organisms compared to less characterized communities (e.g. hypersaline microbial mats), were 507 

previously shown [5], our study provides additional, experimentally validated guidelines for a 508 

number of novel host taxa. 509 

Interestingly, the strongest correspondence between bacterial community similarity and 510 

host genetic distance was detected at the bacterial order level for most of the employed 511 
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methods. This may on the one hand reflect the deep phylogenetic relationships between our 512 

host taxa, such that turnover of bacterial taxa erodes phylosymbiosis over time [23, 24]. On the 513 

other hand, some of the more striking observations made among our host taxa are the 514 

differences between aquatic and terrestrial hosts, both at the level of alpha and beta diversity. 515 

Based on a molecular clock for the 16S rRNA gene of roughly 1% divergence per 50 million 516 

years [39], bacterial order level divergence corresponds well with the timing of animal 517 

terrestrialization (425-500 MYA) [40, 41]. Although evolutionary rates can widely vary among 518 

bacteria species [42], other studies of individual gut microbial lineages such as the Enteroccoci 519 

indicate that animal terrestrialization was indeed a likely driver of diversification [43]. Specifically 520 

the changing availability of carbohydrates in the host gut can be seen as a main driver of this 521 

diversification, which is consistent with the association of CAZY-based functional repertoires 522 

correlating to phylogenetic distance in our data set [23, 44]. 523 

In contrast to the patterns observed based on 16S rRNA gene amplicon-based profiles, 524 

the differentiation of bacterial communities according to host habitat was less pronounced based 525 

on functional genomic repertoires. This raises the possibility that the colonization of land by 526 

ancient animals required the acquisition of new, land-adapted bacterial lineages to perform 527 

some of the same ancestral functions. The overall observation of increased beta diversity among 528 

terrestrial- compared to aquatic hosts (Figure S19) could in part reflect differential acquisition 529 

among host lineages after colonizing land, although dispersal in the aquatic environment may on 530 

the other hand act as a greater homogenizing factor among aquatic hosts. The stronger 531 

correspondence between bacterial community- and host phylogenetic distance among terrestrial 532 

hosts is also generally consistent with this hypothesis. However, the higher alpha diversity and 533 

the slightly lower correspondence with the phylogenetic patterns in aquatic hosts may also 534 

indicate a higher influence of environmental bacteria or a lack of physiological control over 535 

bacterial communities. 536 

Bacterial taxa and functions involved in carbohydrate utilization were among the most 537 

notable associations to individual hosts, groups of hosts, and/or host phylogenetic relationships. 538 

Taxa such as Bacteroidales, Ruminococcaceae/ Ruminococcales, and Clostridia associated to 539 

humans and/or mice include members known for a mucosal lifestyle, and these hosts also 540 

display the most diverse and abundant repertoire of carbohydrate active enzymes (particularly 541 

glycosylhydrolases) in their microbiome. Other examples include sialidases, esterases, and 542 

fucosyltransferases, as well as different extracellular structures that appear to be specific to 543 

aquatic hosts, indicating differences in mucus and glycan composition according to this host 544 

environment. Glycan structures provide a direct link between the microbial community and the 545 
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host via attachment, nutrition, and communication [45, 46], and the composition of mucin and 546 

glycan structures themselves show strong evolutionary patterns and are distinct among 547 

taxonomic groups [44]. Thus, a high diversity of glycan structures within and between hosts may 548 

determine the specific sets carbohydrate facilitating enzymes of the respective microbial 549 

communities. 550 

In addition to the bacterial carbohydrate hydrolases that digest surrounding host and 551 

dietary carbohydrates, we also identified a number of glycosyltransferases associated with 552 

capsular polysaccharide synthesis (Table S19, Table S20). This type of glycosylation is an 553 

important facilitator for host association and survival [47] and plays a crucial role in infections 554 

[48]. The capsule prevents opsonization and phagocytosis through the host immune system and 555 

gives the bacterium the ability to modulate its interaction with the host environment [47, 49]. This 556 

type of manipulation is performed by mutualists and pathogens alike [47, 50] via molecular 557 

mimicry and tolerogenic immune modulation [51, 52]. Bacterial glycan products like 558 

polysaccharide A (PSA) may also have direct benefits for the host, as it can interfere with the 559 

host immune system by increasing immunologic tolerance, or inhibit the binding of other 560 

microbes (e.g. Helicobacter hepaticus [53]). Thus, capsular and excreted glycan structures are 561 

important for the successful colonization and persistence in different environments [54, 55] and 562 

host organisms [47, 55]. 563 

 564 

Conclusions 565 

In summary, the systematic comparison of five different metagenomic sequencing 566 

methods applied to ten different holobiont yielded a number of novel technical and biological 567 

insights. Although important exceptions will exist, we demonstrate that broad scale biological 568 

patterns are largely consistent across these varying methods. While the richer information 569 

provided by shotgun sequencing is clearly desirable and is likely to surpass amplicon-based 570 

profiling techniques in the foreseeable future, technical variability among analytical pipelines 571 

currently surpasses that observed between different amplicon methods. As many aspects of 572 

differential performance in our study are host-specific (more detailed description of individual 573 

hosts can be found in the Supplementary Material), future development and benchmarking 574 

analyses would also benefit from a including a range of different host/environmental samples. 575 

 576 

Methods 577 
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DNA extraction and 16S rRNA gene amplicon sequencing: Protocols for each host type are 578 

described in the Supplementary Material (see also Figure S18-S28). Each library (16S rRNA 579 

gene amplicon, shotgun) included at least one mock community sample based on the 580 

ZymoBIOMICS™ Microbial Community DNA Standard (Lot.: ZRC187324, ZRC187325) 581 

consisting of 8 bacterial species (Pseudomonas aeruginosa (10.4%), Escherichia coli (9.0%), 582 

Salmonella enterica (11.8%), Lactobacillus fermentum (10.3%), Enterococcus faecalis (14.1%), 583 

Staphylococcus aureus (14.6%), Listeria monocytogenes (13.2%), Bacillus subtilis (13.2%)) and 584 

two fungi (Saccharomyces cerevisiae (1.6%), Cryptococcus neoformans (1.8%)). 585 

The 16S rRNA gene was amplified using uniquely barcoded primers flanking the V1 and 586 

V2 hypervariable regions (27F-338R) and V3V4 hypervariable regions (515F-806R) with fused 587 

MiSeq adapters and heterogeneity spacers in a 25 µl PCR [32]. For the traditional one step PCR 588 

protocol we used 4 µl of each forward and reverse primer (0.28 µM), 0.5 µl dNTPs (200 µM 589 

each), 0.25 µl Phusion Hot Start II High-Fidelity DNA Polymerase (0.5 Us), 5 µl of HF buffer 590 

(Thermo Fisher Scientific, Inc., Waltham, MA, USA) and 1 µl of undiluted DNA. PCRs were 591 

conducted with the following cycling conditions (98°C-30s, 30×[98°C-9s, 55°C-60s, 72°C-90s], 592 

72°C-10 min) and checked on a 1.5 % agarose gel. Using a modified version of the recently 593 

published two step PCR protocol by Gohl et al. 2016, we employed for the first round of 594 

amplification fusion primers consisting of the 16S rRNA gene primers (V1V2, V3V4) and a part 595 

of the Illumina Nextera adapter with the following cycling conditions in a 25 µl PCR reaction 596 

(98°C-30s, 25×[98°C-10s, 55°C-30s, 72°C-60s], 72°C-10 min) [8]. Following the PCR was 597 

diluted 1:10 and 5µl of the solution were used in an additional reaction of 10 µl (98°C-30s, 598 

10×[98°C-9s, 55°C-30s, 72°C-60s], 72°C-10 min) utilizing the Nextera adapter overhangs to 599 

ligate the Illumina adapter sequence and individual MIDs to the amplicons following the 600 

manufacturer’s instructions. The PCR protocol we used 1 µl of each forward and reverse primer 601 

(5 µM), 0.3 µl dNTPs (10 µM), 0.2 µl Phusion Hot Start II High-Fidelity DNA Polymerase (2 U/µl), 602 

2 µl of 5×HF buffer (Thermo Fisher Scientific, Inc., Waltham, MA, USA) and 5 µl of the diluted 603 

PCR product. The concentration of the amplicons was estimated using a Gel Doc™ XR+ 604 

System coupled with Image Lab™ Software (BioRad, Hercules, CA USA) with 3 µl of 605 

O'GeneRulerTM 100 bp Plus DNA Ladder (Thermo Fisher Scientific, Inc., Waltham, MA, USA) 606 

as the internal standard for band intensity measurement. The samples of individual gels were 607 

pooled into approximately equimolar subpools as indicated by band intensity and measured with 608 

the Qubit dsDNA br Assay Kit (Life Technologies GmbH, Darmstadt, Germany). Sub pools were 609 

mixed in an equimolar fashion and stored at -20°C until sequencing.  610 
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Library preparation for shotgun sequencing was performed using the NexteraXT kit 611 

(Illumina) for fragmentation and multiplexing of input DNA following the manufacturer’s 612 

instructions. Amplicon sequencing was performed on the Illumina MiSeq platform with v3 613 

chemistry (2×300 cycle kit), while shotgun sequencing was performed via 2×150bp Mid Output 614 

Kit at the IKMB Sequencing Center (CAU Kiel, Germany). 615 

Amplicon analysis: The respective V1V2 and V3V4 PCR primer sequences were removed 616 

from the sequencing data using cutadapt (v.1.8.3) [56]. Sequence data in FastQ format was 617 

quality trimmed using sickle (v.1.33) in paired-end mode with default settings and removing 618 

sequences dropping below 100bp after trimming [57]. Forward and reverse read were merged 619 

into a single amplicon read using VSEARCH allowing fragments with a length of 280-350 bp for 620 

V1V2 and 350-500 bp for V3V4 amplicons [58]. Sequence data was quality controlled using 621 

fastq_quality_filter (FastX Toolkit) retaining sequences with no more than 5% of per-base quality 622 

values below 30 and subsequently with VSEARCH discarding sequences with more than 1 623 

expected errors [58, 59]. Reference guided chimera removal was performed using the gold.fa 624 

reference in VSEARCH (v2.4.3). The UTAX algorithm was used for a fast classification of the 625 

sequence data in order to remove sequences not assigned to the domains Bacteria or Archaea 626 

and exclude amplicon fragments from Chloroplasts [60]. Notably, only a total of 15 sequences 627 

were assigned to the domain Archaea, all found in two samples of human feces, accounting for 628 

less than 0.1% of the clean reads in theses samples. The entire cleaned sequence data was 629 

concatenated into a single file, dereplicated and processed with VSEARCH for OTU picking 630 

using the UCLUST algorithm [61] using a 97% similarity threshold. OTUs were again checked 631 

for chimeric sequences, now using the de novo implementation of the UCHIME algorithm in 632 

VSEARCH [58, 61, 62]. All clean sequence data of the samples were mapped back to the 633 

cleaned OTU sequences using VSEARCH. OTU sequences and clean sequences mapping to 634 

the OTUs were taxonomically annotated using the RDP classifier algorithm with the RDP training 635 

set 14 [63, 64]. Sequence data were normalized by selecting 10,000 random sequences per 636 

sample. Taxon-by-sample abundance tables were created for all taxonomic levels from Phylum 637 

to Genus, as well as for OTUs. 638 

PICRUSt functional imputations: Species level OTUs (97% similarity threshold) were further 639 

classified using the GreenGenes (August 2013) database [65] via RDP classifier as 640 

implemented in mothur (v1.39.5) and merged with the abundances into a biome file which was 641 

uploaded to the Galaxy PICRUSt v1.1.1 pipeline (http://galaxy.morganlangille.com/) to derive 642 

functional imputations (COG predicitions) [5]. To achieve accurate functional predictions 643 
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samples with NSTI ≤ 0.15 (weighted Nearest Sequenced Taxon Index) were pruned from the 644 

data set, as recommended by the developers. 645 

Shotgun sequencing: Raw demultiplexed sequences were trimmed via Trimmomatic (v0.36) 646 

for low quality regions with a minimum length of 50 bp as well as for adaptor and remaining MID 647 

sequences [66]. After trimming reads were mapped to host specific genome databases and ΦX 648 

with additional retention databases containing all fully sequenced bacterial and metagenomic 649 

genomes (05-09-2015) via DeconSeq (v0.4.3) [67]. Single and paired sequences were repaired 650 

using the BBTools (v37.28) repair function [68]. Combined sequences were searched against 651 

the non-redundant NCBI database (28-07-2017) via DIAMOND [69] with (evalue cutoff 0.001, 652 

v0.8.28) and MEGAN [14] classifying hits by functions (EGGNOG-Oct2016) and taxa (May2017) 653 

(v6.6.1). MetaPhlan [15] (v1.7.7) and MetaPhlan2 [16] (v2.2.0) was used for taxonomic 654 

classification. Forward and reverse reads were mapped to the SIVLA non-redundant database 655 

(v123) via SortmeRNA [17, 70] (2.1b) and classified via RDP classifier and the RPD 16 database 656 

as implemented in mothur [71]. Kraken (v0.10.5-beta) database was constructed on complete 657 

and dusted genome sequences of all archaea (+scaffolds), bacteria, fungi (+scaffolds), protozoa 658 

(+scaffolds), viruses and full sequences of plasmids and plastids [13] (database 21-08-2017), 659 

which was used to classify raw reads as well as assembled contigs, which were used throughout 660 

the manuscript. For assemblies of single samples we used metaSPADES [72] (v3.9.1) using 661 

paired reads in addition to unpaired reads left from the previous steps. PROKKA (v1.12) was 662 

used for gene calling and initial genome annotation [73] using the metagenome option with 663 

additional identifying rRNAs and snRNA via barnap, ARAGORN [74], and Infernal [75]. ORFs 664 

were further annotated via EggNOG annotation via HMMER models implemented in the eggnog-665 

mapper (v0.12.7) [20, 76], CAZY database via dbCAN (v5, 07/24/2016) and HMMER3 [21, 77]. 666 

Gene abundances were derived from mapping the all reads back to the predicted ORF via 667 

bowtie2 (v2.2.6) [78] and calculated TPM (transcripts per kilobase million) via SamTools (v1.5) 668 

[79]. 669 

18S rRNA genes were obtained from NCBI GeneBank and aligned via ClustalW (v1.4) 670 

[80] for host tree construction, which includes A. aerophoba (gi:51095211, AY5917991), 671 

M. leidyi (gi:14517703, AF2937001), H. vulgaris (gi:761889987, JN5940542), A. aurita 672 

(gi:14700050, AY0392081), N. vectensis (gi:13897746, AF2543821), T. aestivum (gi:15982656, 673 

AY0490401), M. musculus (gi:374088232, NR_0032783), H. sapiens (gi:36162, X032051), 674 

D. melanogaster (gi:939630477, NR_1335591), and C.elegans (gi:30525807, AY2681171). 675 

Phylogenetic distance was calculated via DNADIST (v3.5c) [81] and a maximum likelihood tree 676 

was constructed via FastTree v2.1 CAT+Γ model [82]. Accuracy was improved via increased 677 
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minimum evolution rounds for initial tree search [-spr 4], more exhaustive tree search [-mlacc 2], 678 

and a slow initial tree search [-slownni]. 679 

Statistical analysis: Statistical analyses were carried via R [83] (v3.4.3). Alpha diversity indices 680 

(richness, Shannon-Weaver index) and beta diversity metrics based on the shared presence 681 

(Jaccard distance)- or abundance (Bray-Curtis distance) of taxa were calculated in the vegan 682 

package [84] and ordinated via Principal Coordinate Analysis (PCoA, avoiding negative 683 

eigenvalues), or via non-metric multidimensional scaling (NMDS) using a maximum of 10000 684 

random starts to obtain a minimally stressed configuration in three dimensions. Clusters were fit 685 

via an iterative process (10’000 permutations) tested for separation by direct gradient analysis 686 

via distance based Redundancy analyses and permutative ANOVA (10’000 permutations) [85, 687 

86]. Univariate analyses were carried out with approximate Wilcoxon/Kruskal tests as 688 

implemented in coin [87] (10’000 permutations). Procrustes tests were used to relate pairwise 689 

community distances based on either different data sources such as functional repertoires or 690 

taxonomic composition, as well as phylogenetic distances [25, 88]. Moran’s I eigenvector 691 

technique was employed to correlate bacterial community members and their functions to 692 

phylogenetic divergence, as implemented in ape (10’000 permutations) [26, 89] . Indicator 693 

species analysis, employing the generalized indicator value (IndVal.g), was used to assess the 694 

predictive value of a taxon for each respective host phenotype/category as implemented in 695 

indicspecies [19]. Linear mixed models, as implemented in nlme were used to compare the 696 

influence of amplification method or variable region without the influence of the organism of 697 

origin [90]. We employed the Hommel- and Benjamini-Yekutieli adjustment of P-values when 698 

advised [91, 92]. 699 

 700 
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the PopGen cohort. Five individuals from the PopGen biobank (Schleswig-Holstein, Germany) 704 

were randomly selected among the healthy and unmedicated individuals and included in the 705 

study without corresponding meta-information. Study participants collected fecal samples at 706 

home in standard fecal tubes and shipped them immediately at room temperature or brought 707 

them to the collection center (within 24 h). Samples were stored at −80°C until processing. 708 

Human feces (N=4) were sampled and extracted following the procedures as described in Wang 709 

et al. 2016 [93]. A biopsy sample of the sigmoid colon was taken from a healthy control 710 

individual without macro- or microscopical inflammation (N=1) and DNA was extracted as 711 

described in Rausch et al. 2011 [94]. Investigators were blinded to sample identities and written, 712 

informed consent was obtained from all study participants before the study. All protocols were 713 

approved by the Ethics Committee of the Medical Faculty of Kiel and by the data protection 714 

officer of the University Hospital Schleswig-Holstein in adherence with the Declaration of 715 

Helsinki Principles. 716 

Ethics approval for animal and plant samples: Wild derived, hybrid mice were sacrificed 717 

according to the German animal welfare law and Federation of European Laboratory Animal 718 

Science Associations guidelines. Hybrid breeding stocks of wild derived 719 

M. m. musculus × M. m. domesticus hybrids captured in 2008 are kept at the Max Planck 720 

Institute Plön (11th lab generation). The approval for mouse husbandry and experiment was 721 

obtained from the local veterinary office “Veterinäramt Kreis Plön” (Permit: 1401-144/PLÖ-722 

004697). All sampling, including invertebrate and plant samples, was performed in concordance 723 

with the German animal welfare law and Federation of European Laboratory Animal Science 724 

Associations guidelines. Further details for each host type are provided in the Supplementary 725 

Material. 726 
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Availability of data and material: Sequence- and meta-data are accessible under the study 728 

identifier PRJEB30924 (“https://www.ebi.ac.uk/ena”). Remaining DNA from non-human samples 729 

can be made available upon request. All human samples and information on their corresponding 730 

phenotypes have to be obtained from the PopGen Biobank Kiel (Schleswig-Holstein, Germany) 731 

through a Material Data Access Form. Information about the Material Data Access Form and 732 

how to apply can be found at: “https://www.uksh.de/p2n/Information+for+Researchers.html”. 733 
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Figure legends: 746 

Figure 1: Average community composition of bacteria (A) and fungi (B) in the mock community 747 

samples sequenced via metagenomic shotgun- and 16S rRNA gene amplicon techniques 748 

(amplicon: V1V2, V3V4, one step, two step; shotgun: MEGAN based classification (short reads), 749 

MetaPhlan (short reads), MetaPhlan2 (short reads), Kraken based classification (contigs), 750 

SortmeRNA (short reads)). (C) Bacterial genus-level alpha diversity estimates in comparison to 751 

the expected community value. (D) Principle coordinate analysis of the Bray-Curtis distance 752 

between methods and the expected community. Ellipses represent standard deviations of points 753 

within the respective groups. Sample sizes for the different approaches are Nshotgun=4, NV1V2-754 

one step=3, NV1V2-two step=3, NV3V4-one step=3, and NV1V2-two step=3. 755 

Figure 2: Comparison of bacterial genus richness (A) and Shannon H (B) based on 16S rRNA 756 

gene amplicon and shotgun derived genus profiles based on MEGAN highlighting the 757 

differences between variable regions, amplification methods, and metagenomic classifier, as 758 

well as between the different host organisms. Colors show significance of amplification methods 759 

(A, C) or pairwise comparisons of methods (B, D) based on pairwise t-tests with Hommel P-760 

value adjustment (A, B), and approximate Wilcoxon test for the comparison between 761 

environmental categories (C, D). Mean values are shown in grey symbols in plots A and B. 762 

Sample sizes are indicated below the samples. 763 

Figure 3: Non-metric Multidimensional Scaling of Bray-Curtis distances based on genus profiles 764 

derived from the different 16S rRNA gene amplicon methods (V1V2/ V3V4, one step/ two step) 765 

and shotgun derived genus profiles highlighting (A) host differences and (B) differences between 766 

host environments (terrestrial/aquatic; see Table 2). Non-metric Multidimensional Scaling of 767 

Jaccard distances based on genus profiles derived from the different 16S rRNA gene amplicon 768 

methods and shotgun derived genus profiles highlighting (C) host taxon differences and (D) 769 

differences between host environments (terrestrial/aquatic; see Table 2). Both panels show a 770 

separation based on host organisms and environments and not by method. Large symbols 771 

indicate the centroid of the respective host groups and vertical lines help to determine their 772 

position in space. Samples sizes are equal to Figure 2 (see also Table S1). 773 

Figure 4: Multivariate correlation (Procrustes analyses) of phylogenetic distance among host 774 

organisms and community distances based on 16S rRNA gene amplicon- or shotgun derived 775 

community profiles at different taxonomic cutoffs, from Phylum to Genus and species level OTUs 776 

in the amplicon based profiles. Similar results are shown for the correspondence between 777 

functional composition based distances derived from imputed COGs and COG categories 778 
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imputed from PICRUSt, and EggNOG derived genes and COG categories, as well as CAZY. All 779 

correlations are significant at P ≤ 0.05 (10’000 permutations). Large symbols indicate the 780 

centroid of the respective host groups and vertical lines help to determine their position in space. 781 

Figure 5: (A) Differences in Nearest Sequenced Taxon Index (imputation success) between 782 

variable regions (average: Z=0.3869, P=0.7017, approximate Wilcoxon test; probability: odds 783 

ratio=1.5941, P=0.1402, Fisher test) and amplification method (Z=0.0667, P=0.9472, 784 

approximate Wilcoxon test; probability: odds ratio=1.5511, P=0.1436, Fisher test). (B) 785 

Procrustes correlation of imputed and shotgun based COG categories among different 786 

techniques, with significantly higher correspondence between imputed and measured functional 787 

profiles in the V1V2 compared to the V3V4 region (F1,18=7.8537, P=0.0118, ANOVA). (C) Non-788 

metric Multidimensional Scaling displays Bray-Curtis distances based on functional category 789 

abundances (COG categories) derived from PICRUSt (V1V2/ V3V4, one step/ two step) and 790 

shotgun based approaches (MEGAN, single assembly). Ellipses represent standard deviations 791 

of points within the respective groups. 792 

Figure 6: Functional diversities were derived from the number and abundances of MEGAN 793 

based EggNOG annotations. Functional richness between (A) host organisms and (B) host 794 

environmental groups based is displayed, as well as functional differences between hosts (C) 795 

and environmental groups (D). Non-metric Multidimensional Scaling is based on Bray-Curtis 796 

distances on the differences in functional composition between the host organisms is displayed 797 

(C, D; see Table 3). Large symbols indicate the centroid of the respective groups. Functional 798 

variation of communities based on pairwise Bray-Curtis distances within host organism groups 799 

and environmental groups. Samples sizes for the host taxa is N=5, except for D. melanogaster 800 

gut tissue (N=10; see Table S1). 801 
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Tables: 802 

Table 1: Differences between expected and observed genus abundances in the mock communities (Nshotgun=4, Namplicon=3) via a one-803 

sample t-test (two-sided) of relative abundances (P-values are adjusted via Hommel procedure). 804 

   shotgun    amplicon   
Members mock 

community MEGAN Kraken MetaPhlan MetaPhlan2 SortmeRNA V1V2 
one step 

V3V4 
one step 

V1V2 
two step 

V3V4 
two step 

Staphylococcus 0.00002 0.14039 0.07916 0.07010 1.1097 × 10-6 0.52446 0.09200 0.03994 0.21564 
Listeria 0.00395 0.06065 0.02306 0.06043 1.4751 × 10-6 0.34964 0.53267 0.03003 0.00545 
Bacillus 0.00006 0.09558 0.02219 0.03638 3.9824 × 10-7 0.21420 0.02818 0.29671 0.30589 

Pseudomonas 0.13668 0.40989 0.62649 0.46933 2.7877 × 10-7 0.36721 0.05776 0.38147 0.59037 
Escherichia/Shigella* NA NA NA NA 9.9378 × 10-10 0.00462 0.45612 0.00237 0.59037 

Shigella* 4.6372 × 10-10 NA 8.0806 × 10-8 NA NA NA NA NA NA 
Escherichia* 0.00001 0.00882 0.00710 0.28178 NA NA NA NA NA 

Enterobacteriaceae* NA NA NA NA NA 0.87898 0.00004 0.19274 0.00055 
Salmonella 3.8092 × 10-6 0.08772 0.02203 0.03361 4.9348 × 10-7 0.34964 0.05838 0.09712 0.08851 

Lactobacillus 0.00297 0.09704 0.05384 0.04043 1.4751 × 10-6 0.87898 0.53267 0.38147 0.59037 
Enterococcus 0.00012 0.18719 0.00353 0.07277 6.3719 × 10-7 0.04816 0.03746 0.01159 0.00954 

* Escherichia/Shigella relatives counted as equivalent 805 

 806 

Table 2: Taxonomic distance based PERMANOVA results for differences in community composition (genus level) between host species 807 

and host environments based on shared abundance (Bray-Curtis) and shared presence (Jaccard), based on whole genome shotgun and 808 

different amplicon strategies (P-values are adjusted via Hommel procedure). 809 

Distance Factor Data Classifier DF F P PHommel R2 adj. R2 
Bray-Curtis organism shotgun MEGAN 10,49 6.3517 0.0001 0.0001 0.5645 0.4756 

  amplicon V1V2-one step 10,43 7.1026 0.0001 0.0001 0.6229 0.5352 

   V1V2-two step 10,42 4.2297 0.0001 0.0001 0.5018 0.3831 

   V3V4-one step 10,43 7.8964 0.0001 0.0001 0.6474 0.5654 

   V3V4-two step 10,41 3.7917 0.0001 0.0001 0.4805 0.3538 
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 environment shotgun MEGAN 1,58 5.8958 0.0001 0.0004 0.0923 0.0766 

  amplicon V1V2-one step 1,52 6.1588 0.0001 0.0001 0.1059 0.0887 

 
 

 
V1V2-two step 1,51 4.6185 0.0001 0.0001 0.0830 0.0651 

   V3V4-one step 1,52 5.4975 0.0001 0.0001 0.0956 0.0782 

   V3V4-two step 1,50 3.3349 0.0001 0.0001 0.0625 0.0438 
Jaccard organism shotgun MEGAN 10,49 4.7458 0.0001 0.0001 0.4920 0.3883 

  amplicon V1V2-one step 10,43 3.6867 0.0001 0.0001 0.4616 0.3364 

   V1V2-two step 10,42 2.9760 0.0001 0.0001 0.4147 0.2754 

 
 

 
V3V4-one step 10,43 4.0248 0.0001 0.0001 0.4835 0.3633 

   V3V4-two step 10,41 2.9343 0.0001 0.0001 0.4171 0.2750 

 environment shotgun MEGAN 1,58 4.3872 0.0001 0.0004 0.0703 0.0543 

  amplicon V1V2-one step 1,52 3.8714 0.0001 0.0001 0.0693 0.0514 

   V1V2-two step 1,51 3.6541 0.0001 0.0001 0.0669 0.0486 

   V3V4-one step 1,52 4.3213 0.0001 0.0001 0.0767 0.0590 

 
 

 
V3V4-two step 1,50 3.6646 0.0001 0.0001 0.0683 0.0497 

 810 

Table 3: Functional distance based PERMANOVA results for differences in general functional community composition (EggNOG) and 811 

carbohydrate active enzymes (CAZY) between host species and host environments based on shared abundance (Bray-Curtis) and 812 

shared presence (Jaccard) of functions (P-values are adjusted via Hommel procedure). 813 

Distance Factor Data DF F P PHommel R2 adj. R2 
Bray-Curtis organism CAZY 10,47 7.3323 0.0001 0.0001 0.6094 0.5263 

  EggNOG categories 10,49 5.6088 0.0001 0.0001 0.5337 0.4386 
  EggNOG gene+description 10,49 4.4454 0.0001 0.0001 0.4757 0.3687 
  EggNOG (MEGAN categories) 10,49 12.2594 0.0001 0.0001 0.7144 0.6562 
  EggNOG (MEGAN gene) 10,49 8.2788 0.0001 0.0001 0.6282 0.5523 
 environment CAZY 1,56 5.4257 0.0001 0.0007 0.0883 0.0721 
  EggNOG categories 1,58 2.5429 0.0195 0.0195 0.0420 0.0255 
  EggNOG gene+description 1,58 3.0662 0.0001 0.0007 0.0502 0.0338 
  EggNOG (MEGAN categories) 1,58 3.7703 0.0015 0.0030 0.0610 0.0448 
  EggNOG (MEGAN gene) 1,58 3.7271 0.0002 0.0012 0.0604 0.0442 

Jaccard organism CAZY 10,47 3.9098 0.0001 0.0001 0.4541 0.3380 
  EggNOG categories 10,49 3.7179 0.0001 0.0001 0.4314 0.3154 
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  EggNOG gene+description 10,49 2.5275 0.0001 0.0001 0.3403 0.2057 
  EggNOG (MEGAN categories) 10,49 7.7781 0.0001 0.0001 0.6135 0.5346 
  EggNOG (MEGAN gene) 10,49 5.4989 0.0001 0.0001 0.5288 0.4326 
 environment CAZY 1,56 2.5866 0.0003 0.0021 0.0442 0.0271 
  EggNOG categories 1,58 1.4180 0.1442 0.1442 0.0239 0.0070 
  EggNOG gene+description 1,58 1.9535 0.0004 0.0024 0.0326 0.0159 
  EggNOG (MEGAN categories) 1,58 3.0425 0.0460 0.0920 0.0498 0.0335 
  EggNOG (MEGAN gene) 1,58 3.1222 0.0001 0.0009 0.0511 0.0347 

 814 

 815 
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